ip_input.c revision 98666
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 98666 2002-06-23 09:15:43Z luigi $
35 */
36
37#define	_IP_VHL
38
39#include "opt_bootp.h"
40#include "opt_ipfw.h"
41#include "opt_ipdn.h"
42#include "opt_ipdivert.h"
43#include "opt_ipfilter.h"
44#include "opt_ipstealth.h"
45#include "opt_ipsec.h"
46#include "opt_pfil_hooks.h"
47#include "opt_random_ip_id.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/domain.h>
54#include <sys/protosw.h>
55#include <sys/socket.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#include <sys/syslog.h>
59#include <sys/sysctl.h>
60
61#include <net/pfil.h>
62#include <net/if.h>
63#include <net/if_types.h>
64#include <net/if_var.h>
65#include <net/if_dl.h>
66#include <net/route.h>
67#include <net/netisr.h>
68#include <net/intrq.h>
69
70#include <netinet/in.h>
71#include <netinet/in_systm.h>
72#include <netinet/in_var.h>
73#include <netinet/ip.h>
74#include <netinet/in_pcb.h>
75#include <netinet/ip_var.h>
76#include <netinet/ip_icmp.h>
77#include <machine/in_cksum.h>
78
79#include <sys/socketvar.h>
80
81#include <netinet/ip_fw.h>
82#include <netinet/ip_dummynet.h>
83
84#ifdef IPSEC
85#include <netinet6/ipsec.h>
86#include <netkey/key.h>
87#endif
88
89int rsvp_on = 0;
90static int ip_rsvp_on;
91struct socket *ip_rsvpd;
92
93int	ipforwarding = 0;
94SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95    &ipforwarding, 0, "Enable IP forwarding between interfaces");
96
97static int	ipsendredirects = 1; /* XXX */
98SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
99    &ipsendredirects, 0, "Enable sending IP redirects");
100
101int	ip_defttl = IPDEFTTL;
102SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
103    &ip_defttl, 0, "Maximum TTL on IP packets");
104
105static int	ip_dosourceroute = 0;
106SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
107    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
108
109static int	ip_acceptsourceroute = 0;
110SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
111    CTLFLAG_RW, &ip_acceptsourceroute, 0,
112    "Enable accepting source routed IP packets");
113
114static int	ip_keepfaith = 0;
115SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
116	&ip_keepfaith,	0,
117	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
118
119static int	ip_nfragpackets = 0;
120static int	ip_maxfragpackets;	/* initialized in ip_init() */
121SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
122	&ip_maxfragpackets, 0,
123	"Maximum number of IPv4 fragment reassembly queue entries");
124
125/*
126 * XXX - Setting ip_checkinterface mostly implements the receive side of
127 * the Strong ES model described in RFC 1122, but since the routing table
128 * and transmit implementation do not implement the Strong ES model,
129 * setting this to 1 results in an odd hybrid.
130 *
131 * XXX - ip_checkinterface currently must be disabled if you use ipnat
132 * to translate the destination address to another local interface.
133 *
134 * XXX - ip_checkinterface must be disabled if you add IP aliases
135 * to the loopback interface instead of the interface where the
136 * packets for those addresses are received.
137 */
138static int	ip_checkinterface = 1;
139SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
141
142#ifdef DIAGNOSTIC
143static int	ipprintfs = 0;
144#endif
145
146static int	ipqmaxlen = IFQ_MAXLEN;
147
148extern	struct domain inetdomain;
149extern	struct protosw inetsw[];
150u_char	ip_protox[IPPROTO_MAX];
151struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
152struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
153u_long 	in_ifaddrhmask;				/* mask for hash table */
154
155SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
156    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
157SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
158    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
159
160struct ipstat ipstat;
161SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
162    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
163
164/* Packet reassembly stuff */
165#define IPREASS_NHASH_LOG2      6
166#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
167#define IPREASS_HMASK           (IPREASS_NHASH - 1)
168#define IPREASS_HASH(x,y) \
169	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
170
171static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
172static int    nipq = 0;         /* total # of reass queues */
173static int    maxnipq;
174
175#ifdef IPCTL_DEFMTU
176SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
177    &ip_mtu, 0, "Default MTU");
178#endif
179
180#ifdef IPSTEALTH
181static int	ipstealth = 0;
182SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
183    &ipstealth, 0, "");
184#endif
185
186
187/* Firewall hooks */
188ip_fw_chk_t *ip_fw_chk_ptr;
189int fw_enable = 1 ;
190
191/* Dummynet hooks */
192ip_dn_io_t *ip_dn_io_ptr;
193
194
195/*
196 * We need to save the IP options in case a protocol wants to respond
197 * to an incoming packet over the same route if the packet got here
198 * using IP source routing.  This allows connection establishment and
199 * maintenance when the remote end is on a network that is not known
200 * to us.
201 */
202static int	ip_nhops = 0;
203static	struct ip_srcrt {
204	struct	in_addr dst;			/* final destination */
205	char	nop;				/* one NOP to align */
206	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
207	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
208} ip_srcrt;
209
210static void	save_rte(u_char *, struct in_addr);
211static int	ip_dooptions(struct mbuf *m, int,
212			struct sockaddr_in *next_hop);
213static void	ip_forward(struct mbuf *m, int srcrt,
214			struct sockaddr_in *next_hop);
215static void	ip_freef(struct ipqhead *, struct ipq *);
216static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
217		struct ipq *, u_int32_t *, u_int16_t *);
218static void	ipintr(void);
219
220/*
221 * IP initialization: fill in IP protocol switch table.
222 * All protocols not implemented in kernel go to raw IP protocol handler.
223 */
224void
225ip_init()
226{
227	register struct protosw *pr;
228	register int i;
229
230	TAILQ_INIT(&in_ifaddrhead);
231	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
232	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
233	if (pr == 0)
234		panic("ip_init");
235	for (i = 0; i < IPPROTO_MAX; i++)
236		ip_protox[i] = pr - inetsw;
237	for (pr = inetdomain.dom_protosw;
238	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
239		if (pr->pr_domain->dom_family == PF_INET &&
240		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
241			ip_protox[pr->pr_protocol] = pr - inetsw;
242
243	for (i = 0; i < IPREASS_NHASH; i++)
244	    TAILQ_INIT(&ipq[i]);
245
246	maxnipq = nmbclusters / 4;
247	ip_maxfragpackets = nmbclusters / 4;
248
249#ifndef RANDOM_IP_ID
250	ip_id = time_second & 0xffff;
251#endif
252	ipintrq.ifq_maxlen = ipqmaxlen;
253	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
254	ipintrq_present = 1;
255
256	register_netisr(NETISR_IP, ipintr);
257}
258
259static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
260struct	route ipforward_rt;
261
262/*
263 * Ip input routine.  Checksum and byte swap header.  If fragmented
264 * try to reassemble.  Process options.  Pass to next level.
265 */
266void
267ip_input(struct mbuf *m)
268{
269	struct ip *ip;
270	struct ipq *fp;
271	struct in_ifaddr *ia = NULL;
272	struct ifaddr *ifa;
273	int    i, hlen, checkif;
274	u_short sum;
275	struct in_addr pkt_dst;
276	u_int32_t divert_info = 0;		/* packet divert/tee info */
277	struct ip_fw_args args;
278#ifdef PFIL_HOOKS
279	struct packet_filter_hook *pfh;
280	struct mbuf *m0;
281	int rv;
282#endif /* PFIL_HOOKS */
283
284	args.eh = NULL;
285	args.oif = NULL;
286	args.rule = NULL;
287	args.divert_rule = 0;			/* divert cookie */
288	args.next_hop = NULL;
289
290	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
291	for (; m && m->m_type == MT_TAG; m = m->m_next) {
292		switch(m->m_tag_id) {
293		default:
294			printf("ip_input: unrecognised MT_TAG tag %d\n",
295			    m->m_tag_id);
296			break;
297
298		case PACKET_TAG_DUMMYNET:
299			args.rule = ((struct dn_pkt *)m)->rule;
300			break;
301
302		case PACKET_TAG_DIVERT:
303			args.divert_rule = (int)m->m_hdr.mh_data & 0xffff;
304			break;
305
306		case PACKET_TAG_IPFORWARD:
307			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
308			break;
309		}
310	}
311
312	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
313	    ("ip_input: no HDR"));
314
315	if (args.rule) {	/* dummynet already filtered us */
316		ip = mtod(m, struct ip *);
317		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
318		goto iphack ;
319	}
320
321	ipstat.ips_total++;
322
323	if (m->m_pkthdr.len < sizeof(struct ip))
324		goto tooshort;
325
326	if (m->m_len < sizeof (struct ip) &&
327	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
328		ipstat.ips_toosmall++;
329		return;
330	}
331	ip = mtod(m, struct ip *);
332
333	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
334		ipstat.ips_badvers++;
335		goto bad;
336	}
337
338	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
339	if (hlen < sizeof(struct ip)) {	/* minimum header length */
340		ipstat.ips_badhlen++;
341		goto bad;
342	}
343	if (hlen > m->m_len) {
344		if ((m = m_pullup(m, hlen)) == 0) {
345			ipstat.ips_badhlen++;
346			return;
347		}
348		ip = mtod(m, struct ip *);
349	}
350
351	/* 127/8 must not appear on wire - RFC1122 */
352	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
353	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
354		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
355			ipstat.ips_badaddr++;
356			goto bad;
357		}
358	}
359
360	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
361		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
362	} else {
363		if (hlen == sizeof(struct ip)) {
364			sum = in_cksum_hdr(ip);
365		} else {
366			sum = in_cksum(m, hlen);
367		}
368	}
369	if (sum) {
370		ipstat.ips_badsum++;
371		goto bad;
372	}
373
374	/*
375	 * Convert fields to host representation.
376	 */
377	ip->ip_len = ntohs(ip->ip_len);
378	if (ip->ip_len < hlen) {
379		ipstat.ips_badlen++;
380		goto bad;
381	}
382	ip->ip_off = ntohs(ip->ip_off);
383
384	/*
385	 * Check that the amount of data in the buffers
386	 * is as at least much as the IP header would have us expect.
387	 * Trim mbufs if longer than we expect.
388	 * Drop packet if shorter than we expect.
389	 */
390	if (m->m_pkthdr.len < ip->ip_len) {
391tooshort:
392		ipstat.ips_tooshort++;
393		goto bad;
394	}
395	if (m->m_pkthdr.len > ip->ip_len) {
396		if (m->m_len == m->m_pkthdr.len) {
397			m->m_len = ip->ip_len;
398			m->m_pkthdr.len = ip->ip_len;
399		} else
400			m_adj(m, ip->ip_len - m->m_pkthdr.len);
401	}
402
403#ifdef IPSEC
404	if (ipsec_gethist(m, NULL))
405		goto pass;
406#endif
407
408	/*
409	 * IpHack's section.
410	 * Right now when no processing on packet has done
411	 * and it is still fresh out of network we do our black
412	 * deals with it.
413	 * - Firewall: deny/allow/divert
414	 * - Xlate: translate packet's addr/port (NAT).
415	 * - Pipe: pass pkt through dummynet.
416	 * - Wrap: fake packet's addr/port <unimpl.>
417	 * - Encapsulate: put it in another IP and send out. <unimp.>
418 	 */
419
420iphack:
421
422#ifdef PFIL_HOOKS
423	/*
424	 * Run through list of hooks for input packets.  If there are any
425	 * filters which require that additional packets in the flow are
426	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
427	 * Note that filters must _never_ set this flag, as another filter
428	 * in the list may have previously cleared it.
429	 */
430	m0 = m;
431	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
432	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
433		if (pfh->pfil_func) {
434			rv = pfh->pfil_func(ip, hlen,
435					    m->m_pkthdr.rcvif, 0, &m0);
436			if (rv)
437				return;
438			m = m0;
439			if (m == NULL)
440				return;
441			ip = mtod(m, struct ip *);
442		}
443#endif /* PFIL_HOOKS */
444
445	if (fw_enable && IPFW_LOADED) {
446		/*
447		 * If we've been forwarded from the output side, then
448		 * skip the firewall a second time
449		 */
450		if (args.next_hop)
451			goto ours;
452
453		args.m = m;
454		i = ip_fw_chk_ptr(&args);
455		m = args.m;
456
457		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
458			if (m)
459				m_freem(m);
460			return;
461		}
462		ip = mtod(m, struct ip *); /* just in case m changed */
463		if (i == 0 && args.next_hop == NULL)	/* common case */
464			goto pass;
465                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
466			/* Send packet to the appropriate pipe */
467			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
468			return;
469		}
470#ifdef IPDIVERT
471		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
472			/* Divert or tee packet */
473			divert_info = i;
474			goto ours;
475		}
476#endif
477		if (i == 0 && args.next_hop != NULL)
478			goto pass;
479		/*
480		 * if we get here, the packet must be dropped
481		 */
482		m_freem(m);
483		return;
484	}
485pass:
486
487	/*
488	 * Process options and, if not destined for us,
489	 * ship it on.  ip_dooptions returns 1 when an
490	 * error was detected (causing an icmp message
491	 * to be sent and the original packet to be freed).
492	 */
493	ip_nhops = 0;		/* for source routed packets */
494	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
495		return;
496
497        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
498         * matter if it is destined to another node, or whether it is
499         * a multicast one, RSVP wants it! and prevents it from being forwarded
500         * anywhere else. Also checks if the rsvp daemon is running before
501	 * grabbing the packet.
502         */
503	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
504		goto ours;
505
506	/*
507	 * Check our list of addresses, to see if the packet is for us.
508	 * If we don't have any addresses, assume any unicast packet
509	 * we receive might be for us (and let the upper layers deal
510	 * with it).
511	 */
512	if (TAILQ_EMPTY(&in_ifaddrhead) &&
513	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
514		goto ours;
515
516	/*
517	 * Cache the destination address of the packet; this may be
518	 * changed by use of 'ipfw fwd'.
519	 */
520	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
521
522	/*
523	 * Enable a consistency check between the destination address
524	 * and the arrival interface for a unicast packet (the RFC 1122
525	 * strong ES model) if IP forwarding is disabled and the packet
526	 * is not locally generated and the packet is not subject to
527	 * 'ipfw fwd'.
528	 *
529	 * XXX - Checking also should be disabled if the destination
530	 * address is ipnat'ed to a different interface.
531	 *
532	 * XXX - Checking is incompatible with IP aliases added
533	 * to the loopback interface instead of the interface where
534	 * the packets are received.
535	 */
536	checkif = ip_checkinterface && (ipforwarding == 0) &&
537	    m->m_pkthdr.rcvif != NULL &&
538	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
539	    (args.next_hop == NULL);
540
541	/*
542	 * Check for exact addresses in the hash bucket.
543	 */
544	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
545		/*
546		 * If the address matches, verify that the packet
547		 * arrived via the correct interface if checking is
548		 * enabled.
549		 */
550		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
551		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
552			goto ours;
553	}
554	/*
555	 * Check for broadcast addresses.
556	 *
557	 * Only accept broadcast packets that arrive via the matching
558	 * interface.  Reception of forwarded directed broadcasts would
559	 * be handled via ip_forward() and ether_output() with the loopback
560	 * into the stack for SIMPLEX interfaces handled by ether_output().
561	 */
562	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
563	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
564			if (ifa->ifa_addr->sa_family != AF_INET)
565				continue;
566			ia = ifatoia(ifa);
567			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
568			    pkt_dst.s_addr)
569				goto ours;
570			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
571				goto ours;
572#ifdef BOOTP_COMPAT
573			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
574				goto ours;
575#endif
576		}
577	}
578	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
579		struct in_multi *inm;
580		if (ip_mrouter) {
581			/*
582			 * If we are acting as a multicast router, all
583			 * incoming multicast packets are passed to the
584			 * kernel-level multicast forwarding function.
585			 * The packet is returned (relatively) intact; if
586			 * ip_mforward() returns a non-zero value, the packet
587			 * must be discarded, else it may be accepted below.
588			 */
589			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
590				ipstat.ips_cantforward++;
591				m_freem(m);
592				return;
593			}
594
595			/*
596			 * The process-level routing daemon needs to receive
597			 * all multicast IGMP packets, whether or not this
598			 * host belongs to their destination groups.
599			 */
600			if (ip->ip_p == IPPROTO_IGMP)
601				goto ours;
602			ipstat.ips_forward++;
603		}
604		/*
605		 * See if we belong to the destination multicast group on the
606		 * arrival interface.
607		 */
608		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
609		if (inm == NULL) {
610			ipstat.ips_notmember++;
611			m_freem(m);
612			return;
613		}
614		goto ours;
615	}
616	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
617		goto ours;
618	if (ip->ip_dst.s_addr == INADDR_ANY)
619		goto ours;
620
621	/*
622	 * FAITH(Firewall Aided Internet Translator)
623	 */
624	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
625		if (ip_keepfaith) {
626			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
627				goto ours;
628		}
629		m_freem(m);
630		return;
631	}
632
633	/*
634	 * Not for us; forward if possible and desirable.
635	 */
636	if (ipforwarding == 0) {
637		ipstat.ips_cantforward++;
638		m_freem(m);
639	} else {
640#ifdef IPSEC
641		/*
642		 * Enforce inbound IPsec SPD.
643		 */
644		if (ipsec4_in_reject(m, NULL)) {
645			ipsecstat.in_polvio++;
646			goto bad;
647		}
648#endif /* IPSEC */
649		ip_forward(m, 0, args.next_hop);
650	}
651	return;
652
653ours:
654#ifdef IPSTEALTH
655	/*
656	 * IPSTEALTH: Process non-routing options only
657	 * if the packet is destined for us.
658	 */
659	if (ipstealth && hlen > sizeof (struct ip) &&
660	    ip_dooptions(m, 1, args.next_hop))
661		return;
662#endif /* IPSTEALTH */
663
664	/* Count the packet in the ip address stats */
665	if (ia != NULL) {
666		ia->ia_ifa.if_ipackets++;
667		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
668	}
669
670	/*
671	 * If offset or IP_MF are set, must reassemble.
672	 * Otherwise, nothing need be done.
673	 * (We could look in the reassembly queue to see
674	 * if the packet was previously fragmented,
675	 * but it's not worth the time; just let them time out.)
676	 */
677	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
678
679		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
680		/*
681		 * Look for queue of fragments
682		 * of this datagram.
683		 */
684		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
685			if (ip->ip_id == fp->ipq_id &&
686			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
687			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
688			    ip->ip_p == fp->ipq_p)
689				goto found;
690
691		fp = 0;
692
693		/* check if there's a place for the new queue */
694		if (nipq > maxnipq) {
695		    /*
696		     * drop something from the tail of the current queue
697		     * before proceeding further
698		     */
699		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
700		    if (q == NULL) {   /* gak */
701			for (i = 0; i < IPREASS_NHASH; i++) {
702			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
703			    if (r) {
704				ip_freef(&ipq[i], r);
705				break;
706			    }
707			}
708		    } else
709			ip_freef(&ipq[sum], q);
710		}
711found:
712		/*
713		 * Adjust ip_len to not reflect header,
714		 * convert offset of this to bytes.
715		 */
716		ip->ip_len -= hlen;
717		if (ip->ip_off & IP_MF) {
718		        /*
719		         * Make sure that fragments have a data length
720			 * that's a non-zero multiple of 8 bytes.
721		         */
722			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
723				ipstat.ips_toosmall++; /* XXX */
724				goto bad;
725			}
726			m->m_flags |= M_FRAG;
727		}
728		ip->ip_off <<= 3;
729
730		/*
731		 * Attempt reassembly; if it succeeds, proceed.
732		 * ip_reass() will return a different mbuf, and update
733		 * the divert info in divert_info and args.divert_rule.
734		 */
735		ipstat.ips_fragments++;
736		m->m_pkthdr.header = ip;
737		m = ip_reass(m,
738		    &ipq[sum], fp, &divert_info, &args.divert_rule);
739		if (m == 0)
740			return;
741		ipstat.ips_reassembled++;
742		ip = mtod(m, struct ip *);
743		/* Get the header length of the reassembled packet */
744		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
745#ifdef IPDIVERT
746		/* Restore original checksum before diverting packet */
747		if (divert_info != 0) {
748			ip->ip_len += hlen;
749			ip->ip_len = htons(ip->ip_len);
750			ip->ip_off = htons(ip->ip_off);
751			ip->ip_sum = 0;
752			if (hlen == sizeof(struct ip))
753				ip->ip_sum = in_cksum_hdr(ip);
754			else
755				ip->ip_sum = in_cksum(m, hlen);
756			ip->ip_off = ntohs(ip->ip_off);
757			ip->ip_len = ntohs(ip->ip_len);
758			ip->ip_len -= hlen;
759		}
760#endif
761	} else
762		ip->ip_len -= hlen;
763
764#ifdef IPDIVERT
765	/*
766	 * Divert or tee packet to the divert protocol if required.
767	 */
768	if (divert_info != 0) {
769		struct mbuf *clone = NULL;
770
771		/* Clone packet if we're doing a 'tee' */
772		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
773			clone = m_dup(m, M_DONTWAIT);
774
775		/* Restore packet header fields to original values */
776		ip->ip_len += hlen;
777		ip->ip_len = htons(ip->ip_len);
778		ip->ip_off = htons(ip->ip_off);
779
780		/* Deliver packet to divert input routine */
781		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
782		ipstat.ips_delivered++;
783
784		/* If 'tee', continue with original packet */
785		if (clone == NULL)
786			return;
787		m = clone;
788		ip = mtod(m, struct ip *);
789		ip->ip_len += hlen;
790		/*
791		 * Jump backwards to complete processing of the
792		 * packet. But first clear divert_info to avoid
793		 * entering this block again.
794		 * We do not need to clear args.divert_rule
795		 * or args.next_hop as they will not be used.
796		 */
797		divert_info = 0;
798		goto pass;
799	}
800#endif
801
802#ifdef IPSEC
803	/*
804	 * enforce IPsec policy checking if we are seeing last header.
805	 * note that we do not visit this with protocols with pcb layer
806	 * code - like udp/tcp/raw ip.
807	 */
808	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
809	    ipsec4_in_reject(m, NULL)) {
810		ipsecstat.in_polvio++;
811		goto bad;
812	}
813#endif
814
815	/*
816	 * Switch out to protocol's input routine.
817	 */
818	ipstat.ips_delivered++;
819	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
820		/* TCP needs IPFORWARD info if available */
821		struct m_hdr tag;
822
823		tag.mh_type = MT_TAG;
824		tag.mh_flags = PACKET_TAG_IPFORWARD;
825		tag.mh_data = (caddr_t)args.next_hop;
826		tag.mh_next = m;
827
828		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
829			(struct mbuf *)&tag, hlen);
830	} else
831		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
832	return;
833bad:
834	m_freem(m);
835}
836
837/*
838 * IP software interrupt routine - to go away sometime soon
839 */
840static void
841ipintr(void)
842{
843	struct mbuf *m;
844
845	while (1) {
846		IF_DEQUEUE(&ipintrq, m);
847		if (m == 0)
848			return;
849		ip_input(m);
850	}
851}
852
853/*
854 * Take incoming datagram fragment and try to reassemble it into
855 * whole datagram.  If a chain for reassembly of this datagram already
856 * exists, then it is given as fp; otherwise have to make a chain.
857 *
858 * When IPDIVERT enabled, keep additional state with each packet that
859 * tells us if we need to divert or tee the packet we're building.
860 * In particular, *divinfo includes the port and TEE flag,
861 * *divert_rule is the number of the matching rule.
862 */
863
864static struct mbuf *
865ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
866	u_int32_t *divinfo, u_int16_t *divert_rule)
867{
868	struct ip *ip = mtod(m, struct ip *);
869	register struct mbuf *p, *q, *nq;
870	struct mbuf *t;
871	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
872	int i, next;
873
874	/*
875	 * Presence of header sizes in mbufs
876	 * would confuse code below.
877	 */
878	m->m_data += hlen;
879	m->m_len -= hlen;
880
881	/*
882	 * If first fragment to arrive, create a reassembly queue.
883	 */
884	if (fp == 0) {
885		/*
886		 * Enforce upper bound on number of fragmented packets
887		 * for which we attempt reassembly;
888		 * If maxfrag is 0, never accept fragments.
889		 * If maxfrag is -1, accept all fragments without limitation.
890		 */
891		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
892			goto dropfrag;
893		ip_nfragpackets++;
894		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
895			goto dropfrag;
896		fp = mtod(t, struct ipq *);
897		TAILQ_INSERT_HEAD(head, fp, ipq_list);
898		nipq++;
899		fp->ipq_ttl = IPFRAGTTL;
900		fp->ipq_p = ip->ip_p;
901		fp->ipq_id = ip->ip_id;
902		fp->ipq_src = ip->ip_src;
903		fp->ipq_dst = ip->ip_dst;
904		fp->ipq_frags = m;
905		m->m_nextpkt = NULL;
906#ifdef IPDIVERT
907		fp->ipq_div_info = 0;
908		fp->ipq_div_cookie = 0;
909#endif
910		goto inserted;
911	}
912
913#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
914
915	/*
916	 * Find a segment which begins after this one does.
917	 */
918	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
919		if (GETIP(q)->ip_off > ip->ip_off)
920			break;
921
922	/*
923	 * If there is a preceding segment, it may provide some of
924	 * our data already.  If so, drop the data from the incoming
925	 * segment.  If it provides all of our data, drop us, otherwise
926	 * stick new segment in the proper place.
927	 *
928	 * If some of the data is dropped from the the preceding
929	 * segment, then it's checksum is invalidated.
930	 */
931	if (p) {
932		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
933		if (i > 0) {
934			if (i >= ip->ip_len)
935				goto dropfrag;
936			m_adj(m, i);
937			m->m_pkthdr.csum_flags = 0;
938			ip->ip_off += i;
939			ip->ip_len -= i;
940		}
941		m->m_nextpkt = p->m_nextpkt;
942		p->m_nextpkt = m;
943	} else {
944		m->m_nextpkt = fp->ipq_frags;
945		fp->ipq_frags = m;
946	}
947
948	/*
949	 * While we overlap succeeding segments trim them or,
950	 * if they are completely covered, dequeue them.
951	 */
952	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
953	     q = nq) {
954		i = (ip->ip_off + ip->ip_len) -
955		    GETIP(q)->ip_off;
956		if (i < GETIP(q)->ip_len) {
957			GETIP(q)->ip_len -= i;
958			GETIP(q)->ip_off += i;
959			m_adj(q, i);
960			q->m_pkthdr.csum_flags = 0;
961			break;
962		}
963		nq = q->m_nextpkt;
964		m->m_nextpkt = nq;
965		m_freem(q);
966	}
967
968inserted:
969
970#ifdef IPDIVERT
971	/*
972	 * Transfer firewall instructions to the fragment structure.
973	 * Only trust info in the fragment at offset 0.
974	 */
975	if (ip->ip_off == 0) {
976		fp->ipq_div_info = *divinfo;
977		fp->ipq_div_cookie = *divert_rule;
978	}
979	*divinfo = 0;
980	*divert_rule = 0;
981#endif
982
983	/*
984	 * Check for complete reassembly.
985	 */
986	next = 0;
987	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
988		if (GETIP(q)->ip_off != next)
989			return (0);
990		next += GETIP(q)->ip_len;
991	}
992	/* Make sure the last packet didn't have the IP_MF flag */
993	if (p->m_flags & M_FRAG)
994		return (0);
995
996	/*
997	 * Reassembly is complete.  Make sure the packet is a sane size.
998	 */
999	q = fp->ipq_frags;
1000	ip = GETIP(q);
1001	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1002		ipstat.ips_toolong++;
1003		ip_freef(head, fp);
1004		return (0);
1005	}
1006
1007	/*
1008	 * Concatenate fragments.
1009	 */
1010	m = q;
1011	t = m->m_next;
1012	m->m_next = 0;
1013	m_cat(m, t);
1014	nq = q->m_nextpkt;
1015	q->m_nextpkt = 0;
1016	for (q = nq; q != NULL; q = nq) {
1017		nq = q->m_nextpkt;
1018		q->m_nextpkt = NULL;
1019		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1020		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1021		m_cat(m, q);
1022	}
1023
1024#ifdef IPDIVERT
1025	/*
1026	 * Extract firewall instructions from the fragment structure.
1027	 */
1028	*divinfo = fp->ipq_div_info;
1029	*divert_rule = fp->ipq_div_cookie;
1030#endif
1031
1032	/*
1033	 * Create header for new ip packet by
1034	 * modifying header of first packet;
1035	 * dequeue and discard fragment reassembly header.
1036	 * Make header visible.
1037	 */
1038	ip->ip_len = next;
1039	ip->ip_src = fp->ipq_src;
1040	ip->ip_dst = fp->ipq_dst;
1041	TAILQ_REMOVE(head, fp, ipq_list);
1042	nipq--;
1043	(void) m_free(dtom(fp));
1044	ip_nfragpackets--;
1045	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1046	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1047	/* some debugging cruft by sklower, below, will go away soon */
1048	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1049		register int plen = 0;
1050		for (t = m; t; t = t->m_next)
1051			plen += t->m_len;
1052		m->m_pkthdr.len = plen;
1053	}
1054	return (m);
1055
1056dropfrag:
1057#ifdef IPDIVERT
1058	*divinfo = 0;
1059	*divert_rule = 0;
1060#endif
1061	ipstat.ips_fragdropped++;
1062	m_freem(m);
1063	return (0);
1064
1065#undef GETIP
1066}
1067
1068/*
1069 * Free a fragment reassembly header and all
1070 * associated datagrams.
1071 */
1072static void
1073ip_freef(fhp, fp)
1074	struct ipqhead *fhp;
1075	struct ipq *fp;
1076{
1077	register struct mbuf *q;
1078
1079	while (fp->ipq_frags) {
1080		q = fp->ipq_frags;
1081		fp->ipq_frags = q->m_nextpkt;
1082		m_freem(q);
1083	}
1084	TAILQ_REMOVE(fhp, fp, ipq_list);
1085	(void) m_free(dtom(fp));
1086	ip_nfragpackets--;
1087	nipq--;
1088}
1089
1090/*
1091 * IP timer processing;
1092 * if a timer expires on a reassembly
1093 * queue, discard it.
1094 */
1095void
1096ip_slowtimo()
1097{
1098	register struct ipq *fp;
1099	int s = splnet();
1100	int i;
1101
1102	for (i = 0; i < IPREASS_NHASH; i++) {
1103		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1104			struct ipq *fpp;
1105
1106			fpp = fp;
1107			fp = TAILQ_NEXT(fp, ipq_list);
1108			if(--fpp->ipq_ttl == 0) {
1109				ipstat.ips_fragtimeout++;
1110				ip_freef(&ipq[i], fpp);
1111			}
1112		}
1113	}
1114	/*
1115	 * If we are over the maximum number of fragments
1116	 * (due to the limit being lowered), drain off
1117	 * enough to get down to the new limit.
1118	 */
1119	for (i = 0; i < IPREASS_NHASH; i++) {
1120		if (ip_maxfragpackets >= 0) {
1121			while (ip_nfragpackets > ip_maxfragpackets &&
1122				!TAILQ_EMPTY(&ipq[i])) {
1123				ipstat.ips_fragdropped++;
1124				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1125			}
1126		}
1127	}
1128	ipflow_slowtimo();
1129	splx(s);
1130}
1131
1132/*
1133 * Drain off all datagram fragments.
1134 */
1135void
1136ip_drain()
1137{
1138	int     i;
1139
1140	for (i = 0; i < IPREASS_NHASH; i++) {
1141		while(!TAILQ_EMPTY(&ipq[i])) {
1142			ipstat.ips_fragdropped++;
1143			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1144		}
1145	}
1146	in_rtqdrain();
1147}
1148
1149/*
1150 * Do option processing on a datagram,
1151 * possibly discarding it if bad options are encountered,
1152 * or forwarding it if source-routed.
1153 * The pass argument is used when operating in the IPSTEALTH
1154 * mode to tell what options to process:
1155 * [LS]SRR (pass 0) or the others (pass 1).
1156 * The reason for as many as two passes is that when doing IPSTEALTH,
1157 * non-routing options should be processed only if the packet is for us.
1158 * Returns 1 if packet has been forwarded/freed,
1159 * 0 if the packet should be processed further.
1160 */
1161static int
1162ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1163{
1164	struct ip *ip = mtod(m, struct ip *);
1165	u_char *cp;
1166	struct in_ifaddr *ia;
1167	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1168	struct in_addr *sin, dst;
1169	n_time ntime;
1170
1171	dst = ip->ip_dst;
1172	cp = (u_char *)(ip + 1);
1173	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1174	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1175		opt = cp[IPOPT_OPTVAL];
1176		if (opt == IPOPT_EOL)
1177			break;
1178		if (opt == IPOPT_NOP)
1179			optlen = 1;
1180		else {
1181			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1182				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1183				goto bad;
1184			}
1185			optlen = cp[IPOPT_OLEN];
1186			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1187				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1188				goto bad;
1189			}
1190		}
1191		switch (opt) {
1192
1193		default:
1194			break;
1195
1196		/*
1197		 * Source routing with record.
1198		 * Find interface with current destination address.
1199		 * If none on this machine then drop if strictly routed,
1200		 * or do nothing if loosely routed.
1201		 * Record interface address and bring up next address
1202		 * component.  If strictly routed make sure next
1203		 * address is on directly accessible net.
1204		 */
1205		case IPOPT_LSRR:
1206		case IPOPT_SSRR:
1207#ifdef IPSTEALTH
1208			if (ipstealth && pass > 0)
1209				break;
1210#endif
1211			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1212				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1213				goto bad;
1214			}
1215			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1216				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1217				goto bad;
1218			}
1219			ipaddr.sin_addr = ip->ip_dst;
1220			ia = (struct in_ifaddr *)
1221				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1222			if (ia == 0) {
1223				if (opt == IPOPT_SSRR) {
1224					type = ICMP_UNREACH;
1225					code = ICMP_UNREACH_SRCFAIL;
1226					goto bad;
1227				}
1228				if (!ip_dosourceroute)
1229					goto nosourcerouting;
1230				/*
1231				 * Loose routing, and not at next destination
1232				 * yet; nothing to do except forward.
1233				 */
1234				break;
1235			}
1236			off--;			/* 0 origin */
1237			if (off > optlen - (int)sizeof(struct in_addr)) {
1238				/*
1239				 * End of source route.  Should be for us.
1240				 */
1241				if (!ip_acceptsourceroute)
1242					goto nosourcerouting;
1243				save_rte(cp, ip->ip_src);
1244				break;
1245			}
1246#ifdef IPSTEALTH
1247			if (ipstealth)
1248				goto dropit;
1249#endif
1250			if (!ip_dosourceroute) {
1251				if (ipforwarding) {
1252					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1253					/*
1254					 * Acting as a router, so generate ICMP
1255					 */
1256nosourcerouting:
1257					strcpy(buf, inet_ntoa(ip->ip_dst));
1258					log(LOG_WARNING,
1259					    "attempted source route from %s to %s\n",
1260					    inet_ntoa(ip->ip_src), buf);
1261					type = ICMP_UNREACH;
1262					code = ICMP_UNREACH_SRCFAIL;
1263					goto bad;
1264				} else {
1265					/*
1266					 * Not acting as a router, so silently drop.
1267					 */
1268#ifdef IPSTEALTH
1269dropit:
1270#endif
1271					ipstat.ips_cantforward++;
1272					m_freem(m);
1273					return (1);
1274				}
1275			}
1276
1277			/*
1278			 * locate outgoing interface
1279			 */
1280			(void)memcpy(&ipaddr.sin_addr, cp + off,
1281			    sizeof(ipaddr.sin_addr));
1282
1283			if (opt == IPOPT_SSRR) {
1284#define	INA	struct in_ifaddr *
1285#define	SA	struct sockaddr *
1286			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1287				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1288			} else
1289				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1290			if (ia == 0) {
1291				type = ICMP_UNREACH;
1292				code = ICMP_UNREACH_SRCFAIL;
1293				goto bad;
1294			}
1295			ip->ip_dst = ipaddr.sin_addr;
1296			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1297			    sizeof(struct in_addr));
1298			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1299			/*
1300			 * Let ip_intr's mcast routing check handle mcast pkts
1301			 */
1302			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1303			break;
1304
1305		case IPOPT_RR:
1306#ifdef IPSTEALTH
1307			if (ipstealth && pass == 0)
1308				break;
1309#endif
1310			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1311				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1312				goto bad;
1313			}
1314			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1315				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1316				goto bad;
1317			}
1318			/*
1319			 * If no space remains, ignore.
1320			 */
1321			off--;			/* 0 origin */
1322			if (off > optlen - (int)sizeof(struct in_addr))
1323				break;
1324			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1325			    sizeof(ipaddr.sin_addr));
1326			/*
1327			 * locate outgoing interface; if we're the destination,
1328			 * use the incoming interface (should be same).
1329			 */
1330			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1331			    (ia = ip_rtaddr(ipaddr.sin_addr,
1332			    &ipforward_rt)) == 0) {
1333				type = ICMP_UNREACH;
1334				code = ICMP_UNREACH_HOST;
1335				goto bad;
1336			}
1337			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1338			    sizeof(struct in_addr));
1339			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1340			break;
1341
1342		case IPOPT_TS:
1343#ifdef IPSTEALTH
1344			if (ipstealth && pass == 0)
1345				break;
1346#endif
1347			code = cp - (u_char *)ip;
1348			if (optlen < 4 || optlen > 40) {
1349				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1350				goto bad;
1351			}
1352			if ((off = cp[IPOPT_OFFSET]) < 5) {
1353				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1354				goto bad;
1355			}
1356			if (off > optlen - (int)sizeof(int32_t)) {
1357				cp[IPOPT_OFFSET + 1] += (1 << 4);
1358				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1359					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1360					goto bad;
1361				}
1362				break;
1363			}
1364			off--;				/* 0 origin */
1365			sin = (struct in_addr *)(cp + off);
1366			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1367
1368			case IPOPT_TS_TSONLY:
1369				break;
1370
1371			case IPOPT_TS_TSANDADDR:
1372				if (off + sizeof(n_time) +
1373				    sizeof(struct in_addr) > optlen) {
1374					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1375					goto bad;
1376				}
1377				ipaddr.sin_addr = dst;
1378				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1379							    m->m_pkthdr.rcvif);
1380				if (ia == 0)
1381					continue;
1382				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1383				    sizeof(struct in_addr));
1384				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1385				break;
1386
1387			case IPOPT_TS_PRESPEC:
1388				if (off + sizeof(n_time) +
1389				    sizeof(struct in_addr) > optlen) {
1390					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1391					goto bad;
1392				}
1393				(void)memcpy(&ipaddr.sin_addr, sin,
1394				    sizeof(struct in_addr));
1395				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1396					continue;
1397				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1398				break;
1399
1400			default:
1401				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1402				goto bad;
1403			}
1404			ntime = iptime();
1405			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1406			cp[IPOPT_OFFSET] += sizeof(n_time);
1407		}
1408	}
1409	if (forward && ipforwarding) {
1410		ip_forward(m, 1, next_hop);
1411		return (1);
1412	}
1413	return (0);
1414bad:
1415	icmp_error(m, type, code, 0, 0);
1416	ipstat.ips_badoptions++;
1417	return (1);
1418}
1419
1420/*
1421 * Given address of next destination (final or next hop),
1422 * return internet address info of interface to be used to get there.
1423 */
1424struct in_ifaddr *
1425ip_rtaddr(dst, rt)
1426	struct in_addr dst;
1427	struct route *rt;
1428{
1429	register struct sockaddr_in *sin;
1430
1431	sin = (struct sockaddr_in *)&rt->ro_dst;
1432
1433	if (rt->ro_rt == 0 ||
1434	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1435	    dst.s_addr != sin->sin_addr.s_addr) {
1436		if (rt->ro_rt) {
1437			RTFREE(rt->ro_rt);
1438			rt->ro_rt = 0;
1439		}
1440		sin->sin_family = AF_INET;
1441		sin->sin_len = sizeof(*sin);
1442		sin->sin_addr = dst;
1443
1444		rtalloc_ign(rt, RTF_PRCLONING);
1445	}
1446	if (rt->ro_rt == 0)
1447		return ((struct in_ifaddr *)0);
1448	return (ifatoia(rt->ro_rt->rt_ifa));
1449}
1450
1451/*
1452 * Save incoming source route for use in replies,
1453 * to be picked up later by ip_srcroute if the receiver is interested.
1454 */
1455void
1456save_rte(option, dst)
1457	u_char *option;
1458	struct in_addr dst;
1459{
1460	unsigned olen;
1461
1462	olen = option[IPOPT_OLEN];
1463#ifdef DIAGNOSTIC
1464	if (ipprintfs)
1465		printf("save_rte: olen %d\n", olen);
1466#endif
1467	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1468		return;
1469	bcopy(option, ip_srcrt.srcopt, olen);
1470	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1471	ip_srcrt.dst = dst;
1472}
1473
1474/*
1475 * Retrieve incoming source route for use in replies,
1476 * in the same form used by setsockopt.
1477 * The first hop is placed before the options, will be removed later.
1478 */
1479struct mbuf *
1480ip_srcroute()
1481{
1482	register struct in_addr *p, *q;
1483	register struct mbuf *m;
1484
1485	if (ip_nhops == 0)
1486		return ((struct mbuf *)0);
1487	m = m_get(M_DONTWAIT, MT_HEADER);
1488	if (m == 0)
1489		return ((struct mbuf *)0);
1490
1491#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1492
1493	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1494	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1495	    OPTSIZ;
1496#ifdef DIAGNOSTIC
1497	if (ipprintfs)
1498		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1499#endif
1500
1501	/*
1502	 * First save first hop for return route
1503	 */
1504	p = &ip_srcrt.route[ip_nhops - 1];
1505	*(mtod(m, struct in_addr *)) = *p--;
1506#ifdef DIAGNOSTIC
1507	if (ipprintfs)
1508		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1509#endif
1510
1511	/*
1512	 * Copy option fields and padding (nop) to mbuf.
1513	 */
1514	ip_srcrt.nop = IPOPT_NOP;
1515	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1516	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1517	    &ip_srcrt.nop, OPTSIZ);
1518	q = (struct in_addr *)(mtod(m, caddr_t) +
1519	    sizeof(struct in_addr) + OPTSIZ);
1520#undef OPTSIZ
1521	/*
1522	 * Record return path as an IP source route,
1523	 * reversing the path (pointers are now aligned).
1524	 */
1525	while (p >= ip_srcrt.route) {
1526#ifdef DIAGNOSTIC
1527		if (ipprintfs)
1528			printf(" %lx", (u_long)ntohl(q->s_addr));
1529#endif
1530		*q++ = *p--;
1531	}
1532	/*
1533	 * Last hop goes to final destination.
1534	 */
1535	*q = ip_srcrt.dst;
1536#ifdef DIAGNOSTIC
1537	if (ipprintfs)
1538		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1539#endif
1540	return (m);
1541}
1542
1543/*
1544 * Strip out IP options, at higher
1545 * level protocol in the kernel.
1546 * Second argument is buffer to which options
1547 * will be moved, and return value is their length.
1548 * XXX should be deleted; last arg currently ignored.
1549 */
1550void
1551ip_stripoptions(m, mopt)
1552	register struct mbuf *m;
1553	struct mbuf *mopt;
1554{
1555	register int i;
1556	struct ip *ip = mtod(m, struct ip *);
1557	register caddr_t opts;
1558	int olen;
1559
1560	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1561	opts = (caddr_t)(ip + 1);
1562	i = m->m_len - (sizeof (struct ip) + olen);
1563	bcopy(opts + olen, opts, (unsigned)i);
1564	m->m_len -= olen;
1565	if (m->m_flags & M_PKTHDR)
1566		m->m_pkthdr.len -= olen;
1567	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1568}
1569
1570u_char inetctlerrmap[PRC_NCMDS] = {
1571	0,		0,		0,		0,
1572	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1573	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1574	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1575	0,		0,		0,		0,
1576	ENOPROTOOPT,	ECONNREFUSED
1577};
1578
1579/*
1580 * Forward a packet.  If some error occurs return the sender
1581 * an icmp packet.  Note we can't always generate a meaningful
1582 * icmp message because icmp doesn't have a large enough repertoire
1583 * of codes and types.
1584 *
1585 * If not forwarding, just drop the packet.  This could be confusing
1586 * if ipforwarding was zero but some routing protocol was advancing
1587 * us as a gateway to somewhere.  However, we must let the routing
1588 * protocol deal with that.
1589 *
1590 * The srcrt parameter indicates whether the packet is being forwarded
1591 * via a source route.
1592 */
1593static void
1594ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1595{
1596	struct ip *ip = mtod(m, struct ip *);
1597	struct rtentry *rt;
1598	int error, type = 0, code = 0;
1599	struct mbuf *mcopy;
1600	n_long dest;
1601	struct in_addr pkt_dst;
1602	struct ifnet *destifp;
1603#ifdef IPSEC
1604	struct ifnet dummyifp;
1605#endif
1606
1607	dest = 0;
1608	/*
1609	 * Cache the destination address of the packet; this may be
1610	 * changed by use of 'ipfw fwd'.
1611	 */
1612	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1613
1614#ifdef DIAGNOSTIC
1615	if (ipprintfs)
1616		printf("forward: src %lx dst %lx ttl %x\n",
1617		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1618		    ip->ip_ttl);
1619#endif
1620
1621
1622	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1623		ipstat.ips_cantforward++;
1624		m_freem(m);
1625		return;
1626	}
1627#ifdef IPSTEALTH
1628	if (!ipstealth) {
1629#endif
1630		if (ip->ip_ttl <= IPTTLDEC) {
1631			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1632			    dest, 0);
1633			return;
1634		}
1635#ifdef IPSTEALTH
1636	}
1637#endif
1638
1639	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1640		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1641		return;
1642	} else
1643		rt = ipforward_rt.ro_rt;
1644
1645	/*
1646	 * Save the IP header and at most 8 bytes of the payload,
1647	 * in case we need to generate an ICMP message to the src.
1648	 *
1649	 * We don't use m_copy() because it might return a reference
1650	 * to a shared cluster. Both this function and ip_output()
1651	 * assume exclusive access to the IP header in `m', so any
1652	 * data in a cluster may change before we reach icmp_error().
1653	 */
1654	MGET(mcopy, M_DONTWAIT, m->m_type);
1655	if (mcopy != NULL) {
1656		M_COPY_PKTHDR(mcopy, m);
1657		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1658		    (int)ip->ip_len);
1659		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1660	}
1661
1662#ifdef IPSTEALTH
1663	if (!ipstealth) {
1664#endif
1665		ip->ip_ttl -= IPTTLDEC;
1666#ifdef IPSTEALTH
1667	}
1668#endif
1669
1670	/*
1671	 * If forwarding packet using same interface that it came in on,
1672	 * perhaps should send a redirect to sender to shortcut a hop.
1673	 * Only send redirect if source is sending directly to us,
1674	 * and if packet was not source routed (or has any options).
1675	 * Also, don't send redirect if forwarding using a default route
1676	 * or a route modified by a redirect.
1677	 */
1678	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1679	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1680	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1681	    ipsendredirects && !srcrt && !next_hop) {
1682#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1683		u_long src = ntohl(ip->ip_src.s_addr);
1684
1685		if (RTA(rt) &&
1686		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1687		    if (rt->rt_flags & RTF_GATEWAY)
1688			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1689		    else
1690			dest = pkt_dst.s_addr;
1691		    /* Router requirements says to only send host redirects */
1692		    type = ICMP_REDIRECT;
1693		    code = ICMP_REDIRECT_HOST;
1694#ifdef DIAGNOSTIC
1695		    if (ipprintfs)
1696		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1697#endif
1698		}
1699	}
1700
1701	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1702			  IP_FORWARDING, 0);
1703	if (error)
1704		ipstat.ips_cantforward++;
1705	else {
1706		ipstat.ips_forward++;
1707		if (type)
1708			ipstat.ips_redirectsent++;
1709		else {
1710			if (mcopy) {
1711				ipflow_create(&ipforward_rt, mcopy);
1712				m_freem(mcopy);
1713			}
1714			return;
1715		}
1716	}
1717	if (mcopy == NULL)
1718		return;
1719	destifp = NULL;
1720
1721	switch (error) {
1722
1723	case 0:				/* forwarded, but need redirect */
1724		/* type, code set above */
1725		break;
1726
1727	case ENETUNREACH:		/* shouldn't happen, checked above */
1728	case EHOSTUNREACH:
1729	case ENETDOWN:
1730	case EHOSTDOWN:
1731	default:
1732		type = ICMP_UNREACH;
1733		code = ICMP_UNREACH_HOST;
1734		break;
1735
1736	case EMSGSIZE:
1737		type = ICMP_UNREACH;
1738		code = ICMP_UNREACH_NEEDFRAG;
1739#ifndef IPSEC
1740		if (ipforward_rt.ro_rt)
1741			destifp = ipforward_rt.ro_rt->rt_ifp;
1742#else
1743		/*
1744		 * If the packet is routed over IPsec tunnel, tell the
1745		 * originator the tunnel MTU.
1746		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1747		 * XXX quickhack!!!
1748		 */
1749		if (ipforward_rt.ro_rt) {
1750			struct secpolicy *sp = NULL;
1751			int ipsecerror;
1752			int ipsechdr;
1753			struct route *ro;
1754
1755			sp = ipsec4_getpolicybyaddr(mcopy,
1756						    IPSEC_DIR_OUTBOUND,
1757			                            IP_FORWARDING,
1758			                            &ipsecerror);
1759
1760			if (sp == NULL)
1761				destifp = ipforward_rt.ro_rt->rt_ifp;
1762			else {
1763				/* count IPsec header size */
1764				ipsechdr = ipsec4_hdrsiz(mcopy,
1765							 IPSEC_DIR_OUTBOUND,
1766							 NULL);
1767
1768				/*
1769				 * find the correct route for outer IPv4
1770				 * header, compute tunnel MTU.
1771				 *
1772				 * XXX BUG ALERT
1773				 * The "dummyifp" code relies upon the fact
1774				 * that icmp_error() touches only ifp->if_mtu.
1775				 */
1776				/*XXX*/
1777				destifp = NULL;
1778				if (sp->req != NULL
1779				 && sp->req->sav != NULL
1780				 && sp->req->sav->sah != NULL) {
1781					ro = &sp->req->sav->sah->sa_route;
1782					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1783						dummyifp.if_mtu =
1784						    ro->ro_rt->rt_ifp->if_mtu;
1785						dummyifp.if_mtu -= ipsechdr;
1786						destifp = &dummyifp;
1787					}
1788				}
1789
1790				key_freesp(sp);
1791			}
1792		}
1793#endif /*IPSEC*/
1794		ipstat.ips_cantfrag++;
1795		break;
1796
1797	case ENOBUFS:
1798		type = ICMP_SOURCEQUENCH;
1799		code = 0;
1800		break;
1801
1802	case EACCES:			/* ipfw denied packet */
1803		m_freem(mcopy);
1804		return;
1805	}
1806	icmp_error(mcopy, type, code, dest, destifp);
1807}
1808
1809void
1810ip_savecontrol(inp, mp, ip, m)
1811	register struct inpcb *inp;
1812	register struct mbuf **mp;
1813	register struct ip *ip;
1814	register struct mbuf *m;
1815{
1816	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1817		struct timeval tv;
1818
1819		microtime(&tv);
1820		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1821			SCM_TIMESTAMP, SOL_SOCKET);
1822		if (*mp)
1823			mp = &(*mp)->m_next;
1824	}
1825	if (inp->inp_flags & INP_RECVDSTADDR) {
1826		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1827		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1828		if (*mp)
1829			mp = &(*mp)->m_next;
1830	}
1831#ifdef notyet
1832	/* XXX
1833	 * Moving these out of udp_input() made them even more broken
1834	 * than they already were.
1835	 */
1836	/* options were tossed already */
1837	if (inp->inp_flags & INP_RECVOPTS) {
1838		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1839		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1840		if (*mp)
1841			mp = &(*mp)->m_next;
1842	}
1843	/* ip_srcroute doesn't do what we want here, need to fix */
1844	if (inp->inp_flags & INP_RECVRETOPTS) {
1845		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1846		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1847		if (*mp)
1848			mp = &(*mp)->m_next;
1849	}
1850#endif
1851	if (inp->inp_flags & INP_RECVIF) {
1852		struct ifnet *ifp;
1853		struct sdlbuf {
1854			struct sockaddr_dl sdl;
1855			u_char	pad[32];
1856		} sdlbuf;
1857		struct sockaddr_dl *sdp;
1858		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1859
1860		if (((ifp = m->m_pkthdr.rcvif))
1861		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1862			sdp = (struct sockaddr_dl *)
1863			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
1864			/*
1865			 * Change our mind and don't try copy.
1866			 */
1867			if ((sdp->sdl_family != AF_LINK)
1868			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1869				goto makedummy;
1870			}
1871			bcopy(sdp, sdl2, sdp->sdl_len);
1872		} else {
1873makedummy:
1874			sdl2->sdl_len
1875				= offsetof(struct sockaddr_dl, sdl_data[0]);
1876			sdl2->sdl_family = AF_LINK;
1877			sdl2->sdl_index = 0;
1878			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1879		}
1880		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1881			IP_RECVIF, IPPROTO_IP);
1882		if (*mp)
1883			mp = &(*mp)->m_next;
1884	}
1885}
1886
1887int
1888ip_rsvp_init(struct socket *so)
1889{
1890	if (so->so_type != SOCK_RAW ||
1891	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1892	  return EOPNOTSUPP;
1893
1894	if (ip_rsvpd != NULL)
1895	  return EADDRINUSE;
1896
1897	ip_rsvpd = so;
1898	/*
1899	 * This may seem silly, but we need to be sure we don't over-increment
1900	 * the RSVP counter, in case something slips up.
1901	 */
1902	if (!ip_rsvp_on) {
1903		ip_rsvp_on = 1;
1904		rsvp_on++;
1905	}
1906
1907	return 0;
1908}
1909
1910int
1911ip_rsvp_done(void)
1912{
1913	ip_rsvpd = NULL;
1914	/*
1915	 * This may seem silly, but we need to be sure we don't over-decrement
1916	 * the RSVP counter, in case something slips up.
1917	 */
1918	if (ip_rsvp_on) {
1919		ip_rsvp_on = 0;
1920		rsvp_on--;
1921	}
1922	return 0;
1923}
1924