ip_input.c revision 2754
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $Id: ip_input.c,v 1.5 1994/09/06 22:42:21 wollman Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/domain.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/errno.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47
48#include <net/if.h>
49#include <net/route.h>
50
51#include <netinet/in.h>
52#include <netinet/in_systm.h>
53#include <netinet/ip.h>
54#include <netinet/in_pcb.h>
55#include <netinet/in_var.h>
56#include <netinet/ip_var.h>
57#include <netinet/ip_icmp.h>
58
59#include <sys/socketvar.h>
60struct socket *ip_rsvpd;
61
62#ifndef	IPFORWARDING
63#ifdef GATEWAY
64#define	IPFORWARDING	1	/* forward IP packets not for us */
65#else /* GATEWAY */
66#define	IPFORWARDING	0	/* don't forward IP packets not for us */
67#endif /* GATEWAY */
68#endif /* IPFORWARDING */
69#ifndef	IPSENDREDIRECTS
70#define	IPSENDREDIRECTS	1
71#endif
72int	ipforwarding = IPFORWARDING;
73int	ipsendredirects = IPSENDREDIRECTS;
74int	ip_defttl = IPDEFTTL;
75#ifdef DIAGNOSTIC
76int	ipprintfs = 0;
77#endif
78
79extern	struct domain inetdomain;
80extern	struct protosw inetsw[];
81u_char	ip_protox[IPPROTO_MAX];
82int	ipqmaxlen = IFQ_MAXLEN;
83struct	in_ifaddr *in_ifaddr;			/* first inet address */
84struct	ifqueue ipintrq;
85
86struct ipstat ipstat;
87struct ipq ipq;
88
89/*
90 * We need to save the IP options in case a protocol wants to respond
91 * to an incoming packet over the same route if the packet got here
92 * using IP source routing.  This allows connection establishment and
93 * maintenance when the remote end is on a network that is not known
94 * to us.
95 */
96int	ip_nhops = 0;
97static	struct ip_srcrt {
98	struct	in_addr dst;			/* final destination */
99	char	nop;				/* one NOP to align */
100	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
101	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
102} ip_srcrt;
103
104#ifdef GATEWAY
105extern	int if_index;
106u_long	*ip_ifmatrix;
107#endif
108
109static void save_rte __P((u_char *, struct in_addr));
110/*
111 * IP initialization: fill in IP protocol switch table.
112 * All protocols not implemented in kernel go to raw IP protocol handler.
113 */
114void
115ip_init()
116{
117	register struct protosw *pr;
118	register int i;
119
120	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
121	if (pr == 0)
122		panic("ip_init");
123	for (i = 0; i < IPPROTO_MAX; i++)
124		ip_protox[i] = pr - inetsw;
125	for (pr = inetdomain.dom_protosw;
126	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
127		if (pr->pr_domain->dom_family == PF_INET &&
128		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
129			ip_protox[pr->pr_protocol] = pr - inetsw;
130	ipq.next = ipq.prev = &ipq;
131	ip_id = time.tv_sec & 0xffff;
132	ipintrq.ifq_maxlen = ipqmaxlen;
133#ifdef GATEWAY
134	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
135	ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK);
136	bzero((char *)ip_ifmatrix, i);
137#endif
138}
139
140struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
141struct	route ipforward_rt;
142
143/*
144 * Ip input routine.  Checksum and byte swap header.  If fragmented
145 * try to reassemble.  Process options.  Pass to next level.
146 */
147void
148ipintr()
149{
150	register struct ip *ip;
151	register struct mbuf *m;
152	register struct ipq *fp;
153	register struct in_ifaddr *ia;
154	int hlen, s;
155
156next:
157	/*
158	 * Get next datagram off input queue and get IP header
159	 * in first mbuf.
160	 */
161	s = splimp();
162	IF_DEQUEUE(&ipintrq, m);
163	splx(s);
164	if (m == 0)
165		return;
166#ifdef	DIAGNOSTIC
167	if ((m->m_flags & M_PKTHDR) == 0)
168		panic("ipintr no HDR");
169#endif
170	/*
171	 * If no IP addresses have been set yet but the interfaces
172	 * are receiving, can't do anything with incoming packets yet.
173	 */
174	if (in_ifaddr == NULL)
175		goto bad;
176	ipstat.ips_total++;
177	if (m->m_len < sizeof (struct ip) &&
178	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
179		ipstat.ips_toosmall++;
180		goto next;
181	}
182	ip = mtod(m, struct ip *);
183	if (ip->ip_v != IPVERSION) {
184		ipstat.ips_badvers++;
185		goto bad;
186	}
187	hlen = ip->ip_hl << 2;
188	if (hlen < sizeof(struct ip)) {	/* minimum header length */
189		ipstat.ips_badhlen++;
190		goto bad;
191	}
192	if (hlen > m->m_len) {
193		if ((m = m_pullup(m, hlen)) == 0) {
194			ipstat.ips_badhlen++;
195			goto next;
196		}
197		ip = mtod(m, struct ip *);
198	}
199	if (ip->ip_sum = in_cksum(m, hlen)) {
200		ipstat.ips_badsum++;
201		goto bad;
202	}
203
204	/*
205	 * Convert fields to host representation.
206	 */
207	NTOHS(ip->ip_len);
208	if (ip->ip_len < hlen) {
209		ipstat.ips_badlen++;
210		goto bad;
211	}
212	NTOHS(ip->ip_id);
213	NTOHS(ip->ip_off);
214
215	/*
216	 * Check that the amount of data in the buffers
217	 * is as at least much as the IP header would have us expect.
218	 * Trim mbufs if longer than we expect.
219	 * Drop packet if shorter than we expect.
220	 */
221	if (m->m_pkthdr.len < ip->ip_len) {
222		ipstat.ips_tooshort++;
223		goto bad;
224	}
225	if (m->m_pkthdr.len > ip->ip_len) {
226		if (m->m_len == m->m_pkthdr.len) {
227			m->m_len = ip->ip_len;
228			m->m_pkthdr.len = ip->ip_len;
229		} else
230			m_adj(m, ip->ip_len - m->m_pkthdr.len);
231	}
232
233	/*
234	 * Process options and, if not destined for us,
235	 * ship it on.  ip_dooptions returns 1 when an
236	 * error was detected (causing an icmp message
237	 * to be sent and the original packet to be freed).
238	 */
239	ip_nhops = 0;		/* for source routed packets */
240	if (hlen > sizeof (struct ip) && ip_dooptions(m))
241		goto next;
242
243        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
244         * matter if it is destined to another node, or whether it is
245         * a multicast one, RSVP wants it! and prevents it from being forwarded
246         * anywhere else. Also checks if the rsvp daemon is running before
247	 * grabbing the packet.
248         */
249	if (ip_rsvpd != NULL && ip->ip_p==IPPROTO_RSVP)
250		goto ours;
251
252	/*
253	 * Check our list of addresses, to see if the packet is for us.
254	 */
255	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
256#define	satosin(sa)	((struct sockaddr_in *)(sa))
257
258		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
259			goto ours;
260		if (
261#ifdef	DIRECTED_BROADCAST
262		    ia->ia_ifp == m->m_pkthdr.rcvif &&
263#endif
264		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
265			u_long t;
266
267			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
268			    ip->ip_dst.s_addr)
269				goto ours;
270			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
271				goto ours;
272			/*
273			 * Look for all-0's host part (old broadcast addr),
274			 * either for subnet or net.
275			 */
276			t = ntohl(ip->ip_dst.s_addr);
277			if (t == ia->ia_subnet)
278				goto ours;
279			if (t == ia->ia_net)
280				goto ours;
281		}
282	}
283	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
284		struct in_multi *inm;
285		if (ip_mrouter) {
286			/*
287			 * If we are acting as a multicast router, all
288			 * incoming multicast packets are passed to the
289			 * kernel-level multicast forwarding function.
290			 * The packet is returned (relatively) intact; if
291			 * ip_mforward() returns a non-zero value, the packet
292			 * must be discarded, else it may be accepted below.
293			 *
294			 * (The IP ident field is put in the same byte order
295			 * as expected when ip_mforward() is called from
296			 * ip_output().)
297			 */
298			ip->ip_id = htons(ip->ip_id);
299			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
300				ipstat.ips_cantforward++;
301				m_freem(m);
302				goto next;
303			}
304			ip->ip_id = ntohs(ip->ip_id);
305
306			/*
307			 * The process-level routing demon needs to receive
308			 * all multicast IGMP packets, whether or not this
309			 * host belongs to their destination groups.
310			 */
311			if (ip->ip_p == IPPROTO_IGMP)
312				goto ours;
313			ipstat.ips_forward++;
314		}
315		/*
316		 * See if we belong to the destination multicast group on the
317		 * arrival interface.
318		 */
319		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
320		if (inm == NULL) {
321			ipstat.ips_cantforward++;
322			m_freem(m);
323			goto next;
324		}
325		goto ours;
326	}
327	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
328		goto ours;
329	if (ip->ip_dst.s_addr == INADDR_ANY)
330		goto ours;
331
332	/*
333	 * Not for us; forward if possible and desirable.
334	 */
335	if (ipforwarding == 0) {
336		ipstat.ips_cantforward++;
337		m_freem(m);
338	} else
339		ip_forward(m, 0);
340	goto next;
341
342ours:
343	/*
344	 * If offset or IP_MF are set, must reassemble.
345	 * Otherwise, nothing need be done.
346	 * (We could look in the reassembly queue to see
347	 * if the packet was previously fragmented,
348	 * but it's not worth the time; just let them time out.)
349	 */
350	if (ip->ip_off &~ IP_DF) {
351		if (m->m_flags & M_EXT) {		/* XXX */
352			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
353				ipstat.ips_toosmall++;
354				goto next;
355			}
356			ip = mtod(m, struct ip *);
357		}
358		/*
359		 * Look for queue of fragments
360		 * of this datagram.
361		 */
362		for (fp = ipq.next; fp != &ipq; fp = fp->next)
363			if (ip->ip_id == fp->ipq_id &&
364			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
365			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
366			    ip->ip_p == fp->ipq_p)
367				goto found;
368		fp = 0;
369found:
370
371		/*
372		 * Adjust ip_len to not reflect header,
373		 * set ip_mff if more fragments are expected,
374		 * convert offset of this to bytes.
375		 */
376		ip->ip_len -= hlen;
377		((struct ipasfrag *)ip)->ipf_mff &= ~1;
378		if (ip->ip_off & IP_MF)
379			((struct ipasfrag *)ip)->ipf_mff |= 1;
380		ip->ip_off <<= 3;
381
382		/*
383		 * If datagram marked as having more fragments
384		 * or if this is not the first fragment,
385		 * attempt reassembly; if it succeeds, proceed.
386		 */
387		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
388			ipstat.ips_fragments++;
389			ip = ip_reass((struct ipasfrag *)ip, fp);
390			if (ip == 0)
391				goto next;
392			ipstat.ips_reassembled++;
393			m = dtom(ip);
394		} else
395			if (fp)
396				ip_freef(fp);
397	} else
398		ip->ip_len -= hlen;
399
400	/*
401	 * Switch out to protocol's input routine.
402	 */
403	ipstat.ips_delivered++;
404	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
405	goto next;
406bad:
407	m_freem(m);
408	goto next;
409}
410
411/*
412 * Take incoming datagram fragment and try to
413 * reassemble it into whole datagram.  If a chain for
414 * reassembly of this datagram already exists, then it
415 * is given as fp; otherwise have to make a chain.
416 */
417struct ip *
418ip_reass(ip, fp)
419	register struct ipasfrag *ip;
420	register struct ipq *fp;
421{
422	register struct mbuf *m = dtom(ip);
423	register struct ipasfrag *q;
424	struct mbuf *t;
425	int hlen = ip->ip_hl << 2;
426	int i, next;
427
428	/*
429	 * Presence of header sizes in mbufs
430	 * would confuse code below.
431	 */
432	m->m_data += hlen;
433	m->m_len -= hlen;
434
435	/*
436	 * If first fragment to arrive, create a reassembly queue.
437	 */
438	if (fp == 0) {
439		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
440			goto dropfrag;
441		fp = mtod(t, struct ipq *);
442		insque(fp, &ipq);
443		fp->ipq_ttl = IPFRAGTTL;
444		fp->ipq_p = ip->ip_p;
445		fp->ipq_id = ip->ip_id;
446		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
447		fp->ipq_src = ((struct ip *)ip)->ip_src;
448		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
449		q = (struct ipasfrag *)fp;
450		goto insert;
451	}
452
453	/*
454	 * Find a segment which begins after this one does.
455	 */
456	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
457		if (q->ip_off > ip->ip_off)
458			break;
459
460	/*
461	 * If there is a preceding segment, it may provide some of
462	 * our data already.  If so, drop the data from the incoming
463	 * segment.  If it provides all of our data, drop us.
464	 */
465	if (q->ipf_prev != (struct ipasfrag *)fp) {
466		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
467		if (i > 0) {
468			if (i >= ip->ip_len)
469				goto dropfrag;
470			m_adj(dtom(ip), i);
471			ip->ip_off += i;
472			ip->ip_len -= i;
473		}
474	}
475
476	/*
477	 * While we overlap succeeding segments trim them or,
478	 * if they are completely covered, dequeue them.
479	 */
480	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
481		i = (ip->ip_off + ip->ip_len) - q->ip_off;
482		if (i < q->ip_len) {
483			q->ip_len -= i;
484			q->ip_off += i;
485			m_adj(dtom(q), i);
486			break;
487		}
488		q = q->ipf_next;
489		m_freem(dtom(q->ipf_prev));
490		ip_deq(q->ipf_prev);
491	}
492
493insert:
494	/*
495	 * Stick new segment in its place;
496	 * check for complete reassembly.
497	 */
498	ip_enq(ip, q->ipf_prev);
499	next = 0;
500	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
501		if (q->ip_off != next)
502			return (0);
503		next += q->ip_len;
504	}
505	if (q->ipf_prev->ipf_mff & 1)
506		return (0);
507
508	/*
509	 * Reassembly is complete; concatenate fragments.
510	 */
511	q = fp->ipq_next;
512	m = dtom(q);
513	t = m->m_next;
514	m->m_next = 0;
515	m_cat(m, t);
516	q = q->ipf_next;
517	while (q != (struct ipasfrag *)fp) {
518		t = dtom(q);
519		q = q->ipf_next;
520		m_cat(m, t);
521	}
522
523	/*
524	 * Create header for new ip packet by
525	 * modifying header of first packet;
526	 * dequeue and discard fragment reassembly header.
527	 * Make header visible.
528	 */
529	ip = fp->ipq_next;
530	ip->ip_len = next;
531	ip->ipf_mff &= ~1;
532	((struct ip *)ip)->ip_src = fp->ipq_src;
533	((struct ip *)ip)->ip_dst = fp->ipq_dst;
534	remque(fp);
535	(void) m_free(dtom(fp));
536	m = dtom(ip);
537	m->m_len += (ip->ip_hl << 2);
538	m->m_data -= (ip->ip_hl << 2);
539	/* some debugging cruft by sklower, below, will go away soon */
540	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
541		register int plen = 0;
542		for (t = m; m; m = m->m_next)
543			plen += m->m_len;
544		t->m_pkthdr.len = plen;
545	}
546	return ((struct ip *)ip);
547
548dropfrag:
549	ipstat.ips_fragdropped++;
550	m_freem(m);
551	return (0);
552}
553
554/*
555 * Free a fragment reassembly header and all
556 * associated datagrams.
557 */
558void
559ip_freef(fp)
560	struct ipq *fp;
561{
562	register struct ipasfrag *q, *p;
563
564	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
565		p = q->ipf_next;
566		ip_deq(q);
567		m_freem(dtom(q));
568	}
569	remque(fp);
570	(void) m_free(dtom(fp));
571}
572
573/*
574 * Put an ip fragment on a reassembly chain.
575 * Like insque, but pointers in middle of structure.
576 */
577void
578ip_enq(p, prev)
579	register struct ipasfrag *p, *prev;
580{
581
582	p->ipf_prev = prev;
583	p->ipf_next = prev->ipf_next;
584	prev->ipf_next->ipf_prev = p;
585	prev->ipf_next = p;
586}
587
588/*
589 * To ip_enq as remque is to insque.
590 */
591void
592ip_deq(p)
593	register struct ipasfrag *p;
594{
595
596	p->ipf_prev->ipf_next = p->ipf_next;
597	p->ipf_next->ipf_prev = p->ipf_prev;
598}
599
600/*
601 * IP timer processing;
602 * if a timer expires on a reassembly
603 * queue, discard it.
604 */
605void
606ip_slowtimo()
607{
608	register struct ipq *fp;
609	int s = splnet();
610
611	fp = ipq.next;
612	if (fp == 0) {
613		splx(s);
614		return;
615	}
616	while (fp != &ipq) {
617		--fp->ipq_ttl;
618		fp = fp->next;
619		if (fp->prev->ipq_ttl == 0) {
620			ipstat.ips_fragtimeout++;
621			ip_freef(fp->prev);
622		}
623	}
624	splx(s);
625}
626
627/*
628 * Drain off all datagram fragments.
629 */
630void
631ip_drain()
632{
633
634	while (ipq.next != &ipq) {
635		ipstat.ips_fragdropped++;
636		ip_freef(ipq.next);
637	}
638}
639
640/*
641 * Do option processing on a datagram,
642 * possibly discarding it if bad options are encountered,
643 * or forwarding it if source-routed.
644 * Returns 1 if packet has been forwarded/freed,
645 * 0 if the packet should be processed further.
646 */
647int
648ip_dooptions(m)
649	struct mbuf *m;
650{
651	register struct ip *ip = mtod(m, struct ip *);
652	register u_char *cp;
653	register struct ip_timestamp *ipt;
654	register struct in_ifaddr *ia;
655	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
656	struct in_addr *sin, dst;
657	n_time ntime;
658
659	dst = ip->ip_dst;
660	cp = (u_char *)(ip + 1);
661	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
662	for (; cnt > 0; cnt -= optlen, cp += optlen) {
663		opt = cp[IPOPT_OPTVAL];
664		if (opt == IPOPT_EOL)
665			break;
666		if (opt == IPOPT_NOP)
667			optlen = 1;
668		else {
669			optlen = cp[IPOPT_OLEN];
670			if (optlen <= 0 || optlen > cnt) {
671				code = &cp[IPOPT_OLEN] - (u_char *)ip;
672				goto bad;
673			}
674		}
675		switch (opt) {
676
677		default:
678			break;
679
680		/*
681		 * Source routing with record.
682		 * Find interface with current destination address.
683		 * If none on this machine then drop if strictly routed,
684		 * or do nothing if loosely routed.
685		 * Record interface address and bring up next address
686		 * component.  If strictly routed make sure next
687		 * address is on directly accessible net.
688		 */
689		case IPOPT_LSRR:
690		case IPOPT_SSRR:
691			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
692				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
693				goto bad;
694			}
695			ipaddr.sin_addr = ip->ip_dst;
696			ia = (struct in_ifaddr *)
697				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
698			if (ia == 0) {
699				if (opt == IPOPT_SSRR) {
700					type = ICMP_UNREACH;
701					code = ICMP_UNREACH_SRCFAIL;
702					goto bad;
703				}
704				/*
705				 * Loose routing, and not at next destination
706				 * yet; nothing to do except forward.
707				 */
708				break;
709			}
710			off--;			/* 0 origin */
711			if (off > optlen - sizeof(struct in_addr)) {
712				/*
713				 * End of source route.  Should be for us.
714				 */
715				save_rte(cp, ip->ip_src);
716				break;
717			}
718			/*
719			 * locate outgoing interface
720			 */
721			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
722			    sizeof(ipaddr.sin_addr));
723			if (opt == IPOPT_SSRR) {
724#define	INA	struct in_ifaddr *
725#define	SA	struct sockaddr *
726			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
727				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
728			} else
729				ia = ip_rtaddr(ipaddr.sin_addr);
730			if (ia == 0) {
731				type = ICMP_UNREACH;
732				code = ICMP_UNREACH_SRCFAIL;
733				goto bad;
734			}
735			ip->ip_dst = ipaddr.sin_addr;
736			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
737			    (caddr_t)(cp + off), sizeof(struct in_addr));
738			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
739			/*
740			 * Let ip_intr's mcast routing check handle mcast pkts
741			 */
742			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
743			break;
744
745		case IPOPT_RR:
746			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
747				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
748				goto bad;
749			}
750			/*
751			 * If no space remains, ignore.
752			 */
753			off--;			/* 0 origin */
754			if (off > optlen - sizeof(struct in_addr))
755				break;
756			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
757			    sizeof(ipaddr.sin_addr));
758			/*
759			 * locate outgoing interface; if we're the destination,
760			 * use the incoming interface (should be same).
761			 */
762			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
763			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
764				type = ICMP_UNREACH;
765				code = ICMP_UNREACH_HOST;
766				goto bad;
767			}
768			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
769			    (caddr_t)(cp + off), sizeof(struct in_addr));
770			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
771			break;
772
773		case IPOPT_TS:
774			code = cp - (u_char *)ip;
775			ipt = (struct ip_timestamp *)cp;
776			if (ipt->ipt_len < 5)
777				goto bad;
778			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
779				if (++ipt->ipt_oflw == 0)
780					goto bad;
781				break;
782			}
783			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
784			switch (ipt->ipt_flg) {
785
786			case IPOPT_TS_TSONLY:
787				break;
788
789			case IPOPT_TS_TSANDADDR:
790				if (ipt->ipt_ptr + sizeof(n_time) +
791				    sizeof(struct in_addr) > ipt->ipt_len)
792					goto bad;
793				ipaddr.sin_addr = dst;
794				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
795							    m->m_pkthdr.rcvif);
796				if (ia == 0)
797					continue;
798				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
799				    (caddr_t)sin, sizeof(struct in_addr));
800				ipt->ipt_ptr += sizeof(struct in_addr);
801				break;
802
803			case IPOPT_TS_PRESPEC:
804				if (ipt->ipt_ptr + sizeof(n_time) +
805				    sizeof(struct in_addr) > ipt->ipt_len)
806					goto bad;
807				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
808				    sizeof(struct in_addr));
809				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
810					continue;
811				ipt->ipt_ptr += sizeof(struct in_addr);
812				break;
813
814			default:
815				goto bad;
816			}
817			ntime = iptime();
818			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
819			    sizeof(n_time));
820			ipt->ipt_ptr += sizeof(n_time);
821		}
822	}
823	if (forward) {
824		ip_forward(m, 1);
825		return (1);
826	}
827	return (0);
828bad:
829	ip->ip_len -= ip->ip_hl << 2;   /* XXX icmp_error adds in hdr length */
830	icmp_error(m, type, code, 0, 0);
831	ipstat.ips_badoptions++;
832	return (1);
833}
834
835/*
836 * Given address of next destination (final or next hop),
837 * return internet address info of interface to be used to get there.
838 */
839struct in_ifaddr *
840ip_rtaddr(dst)
841	 struct in_addr dst;
842{
843	register struct sockaddr_in *sin;
844
845	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
846
847	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
848		if (ipforward_rt.ro_rt) {
849			RTFREE(ipforward_rt.ro_rt);
850			ipforward_rt.ro_rt = 0;
851		}
852		sin->sin_family = AF_INET;
853		sin->sin_len = sizeof(*sin);
854		sin->sin_addr = dst;
855
856		rtalloc(&ipforward_rt);
857	}
858	if (ipforward_rt.ro_rt == 0)
859		return ((struct in_ifaddr *)0);
860	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
861}
862
863/*
864 * Save incoming source route for use in replies,
865 * to be picked up later by ip_srcroute if the receiver is interested.
866 */
867void
868save_rte(option, dst)
869	u_char *option;
870	struct in_addr dst;
871{
872	unsigned olen;
873
874	olen = option[IPOPT_OLEN];
875#ifdef DIAGNOSTIC
876	if (ipprintfs)
877		printf("save_rte: olen %d\n", olen);
878#endif
879	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
880		return;
881	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
882	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
883	ip_srcrt.dst = dst;
884}
885
886/*
887 * Retrieve incoming source route for use in replies,
888 * in the same form used by setsockopt.
889 * The first hop is placed before the options, will be removed later.
890 */
891struct mbuf *
892ip_srcroute()
893{
894	register struct in_addr *p, *q;
895	register struct mbuf *m;
896
897	if (ip_nhops == 0)
898		return ((struct mbuf *)0);
899	m = m_get(M_DONTWAIT, MT_SOOPTS);
900	if (m == 0)
901		return ((struct mbuf *)0);
902
903#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
904
905	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
906	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
907	    OPTSIZ;
908#ifdef DIAGNOSTIC
909	if (ipprintfs)
910		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
911#endif
912
913	/*
914	 * First save first hop for return route
915	 */
916	p = &ip_srcrt.route[ip_nhops - 1];
917	*(mtod(m, struct in_addr *)) = *p--;
918#ifdef DIAGNOSTIC
919	if (ipprintfs)
920		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
921#endif
922
923	/*
924	 * Copy option fields and padding (nop) to mbuf.
925	 */
926	ip_srcrt.nop = IPOPT_NOP;
927	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
928	bcopy((caddr_t)&ip_srcrt.nop,
929	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
930	q = (struct in_addr *)(mtod(m, caddr_t) +
931	    sizeof(struct in_addr) + OPTSIZ);
932#undef OPTSIZ
933	/*
934	 * Record return path as an IP source route,
935	 * reversing the path (pointers are now aligned).
936	 */
937	while (p >= ip_srcrt.route) {
938#ifdef DIAGNOSTIC
939		if (ipprintfs)
940			printf(" %lx", ntohl(q->s_addr));
941#endif
942		*q++ = *p--;
943	}
944	/*
945	 * Last hop goes to final destination.
946	 */
947	*q = ip_srcrt.dst;
948#ifdef DIAGNOSTIC
949	if (ipprintfs)
950		printf(" %lx\n", ntohl(q->s_addr));
951#endif
952	return (m);
953}
954
955/*
956 * Strip out IP options, at higher
957 * level protocol in the kernel.
958 * Second argument is buffer to which options
959 * will be moved, and return value is their length.
960 * XXX should be deleted; last arg currently ignored.
961 */
962void
963ip_stripoptions(m, mopt)
964	register struct mbuf *m;
965	struct mbuf *mopt;
966{
967	register int i;
968	struct ip *ip = mtod(m, struct ip *);
969	register caddr_t opts;
970	int olen;
971
972	olen = (ip->ip_hl<<2) - sizeof (struct ip);
973	opts = (caddr_t)(ip + 1);
974	i = m->m_len - (sizeof (struct ip) + olen);
975	bcopy(opts  + olen, opts, (unsigned)i);
976	m->m_len -= olen;
977	if (m->m_flags & M_PKTHDR)
978		m->m_pkthdr.len -= olen;
979	ip->ip_hl = sizeof(struct ip) >> 2;
980}
981
982u_char inetctlerrmap[PRC_NCMDS] = {
983	0,		0,		0,		0,
984	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
985	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
986	EMSGSIZE,	EHOSTUNREACH,	0,		0,
987	0,		0,		0,		0,
988	ENOPROTOOPT
989};
990
991/*
992 * Forward a packet.  If some error occurs return the sender
993 * an icmp packet.  Note we can't always generate a meaningful
994 * icmp message because icmp doesn't have a large enough repertoire
995 * of codes and types.
996 *
997 * If not forwarding, just drop the packet.  This could be confusing
998 * if ipforwarding was zero but some routing protocol was advancing
999 * us as a gateway to somewhere.  However, we must let the routing
1000 * protocol deal with that.
1001 *
1002 * The srcrt parameter indicates whether the packet is being forwarded
1003 * via a source route.
1004 */
1005void
1006ip_forward(m, srcrt)
1007	struct mbuf *m;
1008	int srcrt;
1009{
1010	register struct ip *ip = mtod(m, struct ip *);
1011	register struct sockaddr_in *sin;
1012	register struct rtentry *rt;
1013	int error, type = 0, code = 0;
1014	struct mbuf *mcopy;
1015	n_long dest;
1016	struct ifnet *destifp;
1017
1018	dest = 0;
1019#ifdef DIAGNOSTIC
1020	if (ipprintfs)
1021		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1022			ip->ip_dst, ip->ip_ttl);
1023#endif
1024	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1025		ipstat.ips_cantforward++;
1026		m_freem(m);
1027		return;
1028	}
1029	HTONS(ip->ip_id);
1030	if (ip->ip_ttl <= IPTTLDEC) {
1031		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1032		return;
1033	}
1034	ip->ip_ttl -= IPTTLDEC;
1035
1036	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1037	if ((rt = ipforward_rt.ro_rt) == 0 ||
1038	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1039		if (ipforward_rt.ro_rt) {
1040			RTFREE(ipforward_rt.ro_rt);
1041			ipforward_rt.ro_rt = 0;
1042		}
1043		sin->sin_family = AF_INET;
1044		sin->sin_len = sizeof(*sin);
1045		sin->sin_addr = ip->ip_dst;
1046
1047		rtalloc(&ipforward_rt);
1048		if (ipforward_rt.ro_rt == 0) {
1049			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1050			return;
1051		}
1052		rt = ipforward_rt.ro_rt;
1053	}
1054
1055	/*
1056	 * Save at most 64 bytes of the packet in case
1057	 * we need to generate an ICMP message to the src.
1058	 */
1059	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1060
1061#ifdef GATEWAY
1062	ip_ifmatrix[rt->rt_ifp->if_index +
1063	     if_index * m->m_pkthdr.rcvif->if_index]++;
1064#endif
1065	/*
1066	 * If forwarding packet using same interface that it came in on,
1067	 * perhaps should send a redirect to sender to shortcut a hop.
1068	 * Only send redirect if source is sending directly to us,
1069	 * and if packet was not source routed (or has any options).
1070	 * Also, don't send redirect if forwarding using a default route
1071	 * or a route modified by a redirect.
1072	 */
1073#define	satosin(sa)	((struct sockaddr_in *)(sa))
1074	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1075	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1076	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1077	    ipsendredirects && !srcrt) {
1078#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1079		u_long src = ntohl(ip->ip_src.s_addr);
1080
1081		if (RTA(rt) &&
1082		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1083		    if (rt->rt_flags & RTF_GATEWAY)
1084			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1085		    else
1086			dest = ip->ip_dst.s_addr;
1087		    /* Router requirements says to only send host redirects */
1088		    type = ICMP_REDIRECT;
1089		    code = ICMP_REDIRECT_HOST;
1090#ifdef DIAGNOSTIC
1091		    if (ipprintfs)
1092		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1093#endif
1094		}
1095	}
1096
1097	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1098#ifdef DIRECTED_BROADCAST
1099			    | IP_ALLOWBROADCAST
1100#endif
1101						, 0);
1102	if (error)
1103		ipstat.ips_cantforward++;
1104	else {
1105		ipstat.ips_forward++;
1106		if (type)
1107			ipstat.ips_redirectsent++;
1108		else {
1109			if (mcopy)
1110				m_freem(mcopy);
1111			return;
1112		}
1113	}
1114	if (mcopy == NULL)
1115		return;
1116	destifp = NULL;
1117
1118	switch (error) {
1119
1120	case 0:				/* forwarded, but need redirect */
1121		/* type, code set above */
1122		break;
1123
1124	case ENETUNREACH:		/* shouldn't happen, checked above */
1125	case EHOSTUNREACH:
1126	case ENETDOWN:
1127	case EHOSTDOWN:
1128	default:
1129		type = ICMP_UNREACH;
1130		code = ICMP_UNREACH_HOST;
1131		break;
1132
1133	case EMSGSIZE:
1134		type = ICMP_UNREACH;
1135		code = ICMP_UNREACH_NEEDFRAG;
1136		if (ipforward_rt.ro_rt)
1137			destifp = ipforward_rt.ro_rt->rt_ifp;
1138		ipstat.ips_cantfrag++;
1139		break;
1140
1141	case ENOBUFS:
1142		type = ICMP_SOURCEQUENCH;
1143		code = 0;
1144		break;
1145	}
1146	icmp_error(mcopy, type, code, dest, destifp);
1147}
1148
1149int
1150ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1151	int *name;
1152	u_int namelen;
1153	void *oldp;
1154	size_t *oldlenp;
1155	void *newp;
1156	size_t newlen;
1157{
1158	/* All sysctl names at this level are terminal. */
1159	if (namelen != 1)
1160		return (ENOTDIR);
1161
1162	switch (name[0]) {
1163	case IPCTL_FORWARDING:
1164		return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1165	case IPCTL_SENDREDIRECTS:
1166		return (sysctl_int(oldp, oldlenp, newp, newlen,
1167			&ipsendredirects));
1168	case IPCTL_DEFTTL:
1169		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1170#ifdef notyet
1171	case IPCTL_DEFMTU:
1172		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1173#endif
1174	default:
1175		return (EOPNOTSUPP);
1176	}
1177	/* NOTREACHED */
1178}
1179
1180int
1181ip_rsvp_init(struct socket *so)
1182{
1183	if (so->so_type != SOCK_RAW ||
1184	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1185	  return EOPNOTSUPP;
1186
1187	if (ip_rsvpd != NULL)
1188	  return EADDRINUSE;
1189
1190	ip_rsvpd = so;
1191
1192	return 0;
1193}
1194
1195int
1196ip_rsvp_done(void)
1197{
1198	ip_rsvpd = NULL;
1199	return 0;
1200}
1201