ip_input.c revision 142268
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 142268 2005-02-23 00:38:12Z sam $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_carp.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mac.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/syslog.h>
52#include <sys/sysctl.h>
53
54#include <net/pfil.h>
55#include <net/if.h>
56#include <net/if_types.h>
57#include <net/if_var.h>
58#include <net/if_dl.h>
59#include <net/route.h>
60#include <net/netisr.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip_var.h>
68#include <netinet/ip_icmp.h>
69#include <machine/in_cksum.h>
70#ifdef DEV_CARP
71#include <netinet/ip_carp.h>
72#endif
73
74#include <sys/socketvar.h>
75
76/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
77#include <netinet/ip_fw.h>
78#include <netinet/ip_dummynet.h>
79
80#ifdef IPSEC
81#include <netinet6/ipsec.h>
82#include <netkey/key.h>
83#endif
84
85#ifdef FAST_IPSEC
86#include <netipsec/ipsec.h>
87#include <netipsec/key.h>
88#endif
89
90int rsvp_on = 0;
91
92int	ipforwarding = 0;
93SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
94    &ipforwarding, 0, "Enable IP forwarding between interfaces");
95
96static int	ipsendredirects = 1; /* XXX */
97SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
98    &ipsendredirects, 0, "Enable sending IP redirects");
99
100int	ip_defttl = IPDEFTTL;
101SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
102    &ip_defttl, 0, "Maximum TTL on IP packets");
103
104static int	ip_dosourceroute = 0;
105SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
106    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
107
108static int	ip_acceptsourceroute = 0;
109SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
110    CTLFLAG_RW, &ip_acceptsourceroute, 0,
111    "Enable accepting source routed IP packets");
112
113int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
114SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
115    &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
116
117static int	ip_keepfaith = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119	&ip_keepfaith,	0,
120	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121
122static int    nipq = 0;         /* total # of reass queues */
123static int    maxnipq;
124SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125	&maxnipq, 0,
126	"Maximum number of IPv4 fragment reassembly queue entries");
127
128static int    maxfragsperpacket;
129SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
130	&maxfragsperpacket, 0,
131	"Maximum number of IPv4 fragments allowed per packet");
132
133static int	ip_sendsourcequench = 0;
134SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
135	&ip_sendsourcequench, 0,
136	"Enable the transmission of source quench packets");
137
138int	ip_do_randomid = 0;
139SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
140	&ip_do_randomid, 0,
141	"Assign random ip_id values");
142
143/*
144 * XXX - Setting ip_checkinterface mostly implements the receive side of
145 * the Strong ES model described in RFC 1122, but since the routing table
146 * and transmit implementation do not implement the Strong ES model,
147 * setting this to 1 results in an odd hybrid.
148 *
149 * XXX - ip_checkinterface currently must be disabled if you use ipnat
150 * to translate the destination address to another local interface.
151 *
152 * XXX - ip_checkinterface must be disabled if you add IP aliases
153 * to the loopback interface instead of the interface where the
154 * packets for those addresses are received.
155 */
156static int	ip_checkinterface = 0;
157SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
158    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
159
160#ifdef DIAGNOSTIC
161static int	ipprintfs = 0;
162#endif
163
164struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
165
166static struct	ifqueue ipintrq;
167static int	ipqmaxlen = IFQ_MAXLEN;
168
169extern	struct domain inetdomain;
170extern	struct protosw inetsw[];
171u_char	ip_protox[IPPROTO_MAX];
172struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
173struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
174u_long 	in_ifaddrhmask;				/* mask for hash table */
175
176SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
177    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
178SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
179    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
180
181struct ipstat ipstat;
182SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
183    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
184
185/* Packet reassembly stuff */
186#define IPREASS_NHASH_LOG2      6
187#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
188#define IPREASS_HMASK           (IPREASS_NHASH - 1)
189#define IPREASS_HASH(x,y) \
190	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
191
192static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
193struct mtx ipqlock;
194struct callout ipport_tick_callout;
195
196#define	IPQ_LOCK()	mtx_lock(&ipqlock)
197#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
198#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
199#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
200
201#ifdef IPCTL_DEFMTU
202SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
203    &ip_mtu, 0, "Default MTU");
204#endif
205
206#ifdef IPSTEALTH
207int	ipstealth = 0;
208SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
209    &ipstealth, 0, "");
210#endif
211
212/*
213 * ipfw_ether and ipfw_bridge hooks.
214 * XXX: Temporary until those are converted to pfil_hooks as well.
215 */
216ip_fw_chk_t *ip_fw_chk_ptr = NULL;
217ip_dn_io_t *ip_dn_io_ptr = NULL;
218int fw_enable = 1;
219int fw_one_pass = 1;
220
221/*
222 * XXX this is ugly.  IP options source routing magic.
223 */
224struct ipoptrt {
225	struct	in_addr dst;			/* final destination */
226	char	nop;				/* one NOP to align */
227	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
228	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
229};
230
231struct ipopt_tag {
232	struct	m_tag tag;
233	int	ip_nhops;
234	struct	ipoptrt ip_srcrt;
235};
236
237static void	save_rte(struct mbuf *, u_char *, struct in_addr);
238static int	ip_dooptions(struct mbuf *m, int);
239static void	ip_forward(struct mbuf *m, int srcrt);
240static void	ip_freef(struct ipqhead *, struct ipq *);
241
242/*
243 * IP initialization: fill in IP protocol switch table.
244 * All protocols not implemented in kernel go to raw IP protocol handler.
245 */
246void
247ip_init()
248{
249	register struct protosw *pr;
250	register int i;
251
252	TAILQ_INIT(&in_ifaddrhead);
253	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
254	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
255	if (pr == NULL)
256		panic("ip_init: PF_INET not found");
257
258	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
259	for (i = 0; i < IPPROTO_MAX; i++)
260		ip_protox[i] = pr - inetsw;
261	/*
262	 * Cycle through IP protocols and put them into the appropriate place
263	 * in ip_protox[].
264	 */
265	for (pr = inetdomain.dom_protosw;
266	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
267		if (pr->pr_domain->dom_family == PF_INET &&
268		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
269			/* Be careful to only index valid IP protocols. */
270			if (pr->pr_protocol < IPPROTO_MAX)
271				ip_protox[pr->pr_protocol] = pr - inetsw;
272		}
273
274	/* Initialize packet filter hooks. */
275	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
276	inet_pfil_hook.ph_af = AF_INET;
277	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
278		printf("%s: WARNING: unable to register pfil hook, "
279			"error %d\n", __func__, i);
280
281	/* Initialize IP reassembly queue. */
282	IPQ_LOCK_INIT();
283	for (i = 0; i < IPREASS_NHASH; i++)
284	    TAILQ_INIT(&ipq[i]);
285	maxnipq = nmbclusters / 32;
286	maxfragsperpacket = 16;
287
288	/* Start ipport_tick. */
289	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
290	ipport_tick(NULL);
291	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
292		SHUTDOWN_PRI_DEFAULT);
293
294	/* Initialize various other remaining things. */
295	ip_id = time_second & 0xffff;
296	ipintrq.ifq_maxlen = ipqmaxlen;
297	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
298	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
299}
300
301void ip_fini(xtp)
302	void *xtp;
303{
304	callout_stop(&ipport_tick_callout);
305}
306
307/*
308 * Ip input routine.  Checksum and byte swap header.  If fragmented
309 * try to reassemble.  Process options.  Pass to next level.
310 */
311void
312ip_input(struct mbuf *m)
313{
314	struct ip *ip = NULL;
315	struct in_ifaddr *ia = NULL;
316	struct ifaddr *ifa;
317	int    checkif, hlen = 0;
318	u_short sum;
319	int dchg = 0;				/* dest changed after fw */
320	struct in_addr odst;			/* original dst address */
321#ifdef FAST_IPSEC
322	struct m_tag *mtag;
323	struct tdb_ident *tdbi;
324	struct secpolicy *sp;
325	int s, error;
326#endif /* FAST_IPSEC */
327
328  	M_ASSERTPKTHDR(m);
329
330	if (m->m_flags & M_FASTFWD_OURS) {
331		/*
332		 * Firewall or NAT changed destination to local.
333		 * We expect ip_len and ip_off to be in host byte order.
334		 */
335		m->m_flags &= ~M_FASTFWD_OURS;
336		/* Set up some basics that will be used later. */
337		ip = mtod(m, struct ip *);
338		hlen = ip->ip_hl << 2;
339  		goto ours;
340  	}
341
342	ipstat.ips_total++;
343
344	if (m->m_pkthdr.len < sizeof(struct ip))
345		goto tooshort;
346
347	if (m->m_len < sizeof (struct ip) &&
348	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
349		ipstat.ips_toosmall++;
350		return;
351	}
352	ip = mtod(m, struct ip *);
353
354	if (ip->ip_v != IPVERSION) {
355		ipstat.ips_badvers++;
356		goto bad;
357	}
358
359	hlen = ip->ip_hl << 2;
360	if (hlen < sizeof(struct ip)) {	/* minimum header length */
361		ipstat.ips_badhlen++;
362		goto bad;
363	}
364	if (hlen > m->m_len) {
365		if ((m = m_pullup(m, hlen)) == NULL) {
366			ipstat.ips_badhlen++;
367			return;
368		}
369		ip = mtod(m, struct ip *);
370	}
371
372	/* 127/8 must not appear on wire - RFC1122 */
373	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
374	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
375		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
376			ipstat.ips_badaddr++;
377			goto bad;
378		}
379	}
380
381	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
382		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
383	} else {
384		if (hlen == sizeof(struct ip)) {
385			sum = in_cksum_hdr(ip);
386		} else {
387			sum = in_cksum(m, hlen);
388		}
389	}
390	if (sum) {
391		ipstat.ips_badsum++;
392		goto bad;
393	}
394
395#ifdef ALTQ
396	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
397		/* packet is dropped by traffic conditioner */
398		return;
399#endif
400
401	/*
402	 * Convert fields to host representation.
403	 */
404	ip->ip_len = ntohs(ip->ip_len);
405	if (ip->ip_len < hlen) {
406		ipstat.ips_badlen++;
407		goto bad;
408	}
409	ip->ip_off = ntohs(ip->ip_off);
410
411	/*
412	 * Check that the amount of data in the buffers
413	 * is as at least much as the IP header would have us expect.
414	 * Trim mbufs if longer than we expect.
415	 * Drop packet if shorter than we expect.
416	 */
417	if (m->m_pkthdr.len < ip->ip_len) {
418tooshort:
419		ipstat.ips_tooshort++;
420		goto bad;
421	}
422	if (m->m_pkthdr.len > ip->ip_len) {
423		if (m->m_len == m->m_pkthdr.len) {
424			m->m_len = ip->ip_len;
425			m->m_pkthdr.len = ip->ip_len;
426		} else
427			m_adj(m, ip->ip_len - m->m_pkthdr.len);
428	}
429#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
430	/*
431	 * Bypass packet filtering for packets from a tunnel (gif).
432	 */
433	if (ipsec_getnhist(m))
434		goto passin;
435#endif
436#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
437	/*
438	 * Bypass packet filtering for packets from a tunnel (gif).
439	 */
440	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
441		goto passin;
442#endif
443
444	/*
445	 * Run through list of hooks for input packets.
446	 *
447	 * NB: Beware of the destination address changing (e.g.
448	 *     by NAT rewriting).  When this happens, tell
449	 *     ip_forward to do the right thing.
450	 */
451
452	/* Jump over all PFIL processing if hooks are not active. */
453	if (inet_pfil_hook.ph_busy_count == -1)
454		goto passin;
455
456	odst = ip->ip_dst;
457	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
458	    PFIL_IN, NULL) != 0)
459		return;
460	if (m == NULL)			/* consumed by filter */
461		return;
462
463	ip = mtod(m, struct ip *);
464	dchg = (odst.s_addr != ip->ip_dst.s_addr);
465
466#ifdef IPFIREWALL_FORWARD
467	if (m->m_flags & M_FASTFWD_OURS) {
468		m->m_flags &= ~M_FASTFWD_OURS;
469		goto ours;
470	}
471#ifndef IPFIREWALL_FORWARD_EXTENDED
472	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
473#else
474	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
475		/*
476		 * Directly ship on the packet.  This allows to forward packets
477		 * that were destined for us to some other directly connected
478		 * host.
479		 */
480		ip_forward(m, dchg);
481		return;
482	}
483#endif /* IPFIREWALL_FORWARD_EXTENDED */
484#endif /* IPFIREWALL_FORWARD */
485
486passin:
487	/*
488	 * Process options and, if not destined for us,
489	 * ship it on.  ip_dooptions returns 1 when an
490	 * error was detected (causing an icmp message
491	 * to be sent and the original packet to be freed).
492	 */
493	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
494		return;
495
496        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
497         * matter if it is destined to another node, or whether it is
498         * a multicast one, RSVP wants it! and prevents it from being forwarded
499         * anywhere else. Also checks if the rsvp daemon is running before
500	 * grabbing the packet.
501         */
502	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
503		goto ours;
504
505	/*
506	 * Check our list of addresses, to see if the packet is for us.
507	 * If we don't have any addresses, assume any unicast packet
508	 * we receive might be for us (and let the upper layers deal
509	 * with it).
510	 */
511	if (TAILQ_EMPTY(&in_ifaddrhead) &&
512	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
513		goto ours;
514
515	/*
516	 * Enable a consistency check between the destination address
517	 * and the arrival interface for a unicast packet (the RFC 1122
518	 * strong ES model) if IP forwarding is disabled and the packet
519	 * is not locally generated and the packet is not subject to
520	 * 'ipfw fwd'.
521	 *
522	 * XXX - Checking also should be disabled if the destination
523	 * address is ipnat'ed to a different interface.
524	 *
525	 * XXX - Checking is incompatible with IP aliases added
526	 * to the loopback interface instead of the interface where
527	 * the packets are received.
528	 *
529	 * XXX - This is the case for carp vhost IPs as well so we
530	 * insert a workaround. If the packet got here, we already
531	 * checked with carp_iamatch() and carp_forus().
532	 */
533	checkif = ip_checkinterface && (ipforwarding == 0) &&
534	    m->m_pkthdr.rcvif != NULL &&
535	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
536#ifdef DEV_CARP
537	    !m->m_pkthdr.rcvif->if_carp &&
538#endif
539	    (dchg == 0);
540
541	/*
542	 * Check for exact addresses in the hash bucket.
543	 */
544	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
545		/*
546		 * If the address matches, verify that the packet
547		 * arrived via the correct interface if checking is
548		 * enabled.
549		 */
550		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
551		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
552			goto ours;
553	}
554	/*
555	 * Check for broadcast addresses.
556	 *
557	 * Only accept broadcast packets that arrive via the matching
558	 * interface.  Reception of forwarded directed broadcasts would
559	 * be handled via ip_forward() and ether_output() with the loopback
560	 * into the stack for SIMPLEX interfaces handled by ether_output().
561	 */
562	if (m->m_pkthdr.rcvif != NULL &&
563	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
564	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
565			if (ifa->ifa_addr->sa_family != AF_INET)
566				continue;
567			ia = ifatoia(ifa);
568			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
569			    ip->ip_dst.s_addr)
570				goto ours;
571			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
572				goto ours;
573#ifdef BOOTP_COMPAT
574			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
575				goto ours;
576#endif
577		}
578	}
579	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
580		struct in_multi *inm;
581		if (ip_mrouter) {
582			/*
583			 * If we are acting as a multicast router, all
584			 * incoming multicast packets are passed to the
585			 * kernel-level multicast forwarding function.
586			 * The packet is returned (relatively) intact; if
587			 * ip_mforward() returns a non-zero value, the packet
588			 * must be discarded, else it may be accepted below.
589			 */
590			if (ip_mforward &&
591			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
592				ipstat.ips_cantforward++;
593				m_freem(m);
594				return;
595			}
596
597			/*
598			 * The process-level routing daemon needs to receive
599			 * all multicast IGMP packets, whether or not this
600			 * host belongs to their destination groups.
601			 */
602			if (ip->ip_p == IPPROTO_IGMP)
603				goto ours;
604			ipstat.ips_forward++;
605		}
606		/*
607		 * See if we belong to the destination multicast group on the
608		 * arrival interface.
609		 */
610		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
611		if (inm == NULL) {
612			ipstat.ips_notmember++;
613			m_freem(m);
614			return;
615		}
616		goto ours;
617	}
618	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
619		goto ours;
620	if (ip->ip_dst.s_addr == INADDR_ANY)
621		goto ours;
622
623	/*
624	 * FAITH(Firewall Aided Internet Translator)
625	 */
626	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
627		if (ip_keepfaith) {
628			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
629				goto ours;
630		}
631		m_freem(m);
632		return;
633	}
634
635	/*
636	 * Not for us; forward if possible and desirable.
637	 */
638	if (ipforwarding == 0) {
639		ipstat.ips_cantforward++;
640		m_freem(m);
641	} else {
642#ifdef IPSEC
643		/*
644		 * Enforce inbound IPsec SPD.
645		 */
646		if (ipsec4_in_reject(m, NULL)) {
647			ipsecstat.in_polvio++;
648			goto bad;
649		}
650#endif /* IPSEC */
651#ifdef FAST_IPSEC
652		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
653		s = splnet();
654		if (mtag != NULL) {
655			tdbi = (struct tdb_ident *)(mtag + 1);
656			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
657		} else {
658			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
659						   IP_FORWARDING, &error);
660		}
661		if (sp == NULL) {	/* NB: can happen if error */
662			splx(s);
663			/*XXX error stat???*/
664			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
665			goto bad;
666		}
667
668		/*
669		 * Check security policy against packet attributes.
670		 */
671		error = ipsec_in_reject(sp, m);
672		KEY_FREESP(&sp);
673		splx(s);
674		if (error) {
675			ipstat.ips_cantforward++;
676			goto bad;
677		}
678#endif /* FAST_IPSEC */
679		ip_forward(m, dchg);
680	}
681	return;
682
683ours:
684#ifdef IPSTEALTH
685	/*
686	 * IPSTEALTH: Process non-routing options only
687	 * if the packet is destined for us.
688	 */
689	if (ipstealth && hlen > sizeof (struct ip) &&
690	    ip_dooptions(m, 1))
691		return;
692#endif /* IPSTEALTH */
693
694	/* Count the packet in the ip address stats */
695	if (ia != NULL) {
696		ia->ia_ifa.if_ipackets++;
697		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
698	}
699
700	/*
701	 * Attempt reassembly; if it succeeds, proceed.
702	 * ip_reass() will return a different mbuf.
703	 */
704	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
705		m = ip_reass(m);
706		if (m == NULL)
707			return;
708		ip = mtod(m, struct ip *);
709		/* Get the header length of the reassembled packet */
710		hlen = ip->ip_hl << 2;
711	}
712
713	/*
714	 * Further protocols expect the packet length to be w/o the
715	 * IP header.
716	 */
717	ip->ip_len -= hlen;
718
719#ifdef IPSEC
720	/*
721	 * enforce IPsec policy checking if we are seeing last header.
722	 * note that we do not visit this with protocols with pcb layer
723	 * code - like udp/tcp/raw ip.
724	 */
725	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
726	    ipsec4_in_reject(m, NULL)) {
727		ipsecstat.in_polvio++;
728		goto bad;
729	}
730#endif
731#if FAST_IPSEC
732	/*
733	 * enforce IPsec policy checking if we are seeing last header.
734	 * note that we do not visit this with protocols with pcb layer
735	 * code - like udp/tcp/raw ip.
736	 */
737	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
738		/*
739		 * Check if the packet has already had IPsec processing
740		 * done.  If so, then just pass it along.  This tag gets
741		 * set during AH, ESP, etc. input handling, before the
742		 * packet is returned to the ip input queue for delivery.
743		 */
744		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
745		s = splnet();
746		if (mtag != NULL) {
747			tdbi = (struct tdb_ident *)(mtag + 1);
748			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
749		} else {
750			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
751						   IP_FORWARDING, &error);
752		}
753		if (sp != NULL) {
754			/*
755			 * Check security policy against packet attributes.
756			 */
757			error = ipsec_in_reject(sp, m);
758			KEY_FREESP(&sp);
759		} else {
760			/* XXX error stat??? */
761			error = EINVAL;
762DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
763			goto bad;
764		}
765		splx(s);
766		if (error)
767			goto bad;
768	}
769#endif /* FAST_IPSEC */
770
771	/*
772	 * Switch out to protocol's input routine.
773	 */
774	ipstat.ips_delivered++;
775
776	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
777	return;
778bad:
779	m_freem(m);
780}
781
782/*
783 * Take incoming datagram fragment and try to reassemble it into
784 * whole datagram.  If the argument is the first fragment or one
785 * in between the function will return NULL and store the mbuf
786 * in the fragment chain.  If the argument is the last fragment
787 * the packet will be reassembled and the pointer to the new
788 * mbuf returned for further processing.  Only m_tags attached
789 * to the first packet/fragment are preserved.
790 * The IP header is *NOT* adjusted out of iplen.
791 */
792
793struct mbuf *
794ip_reass(struct mbuf *m)
795{
796	struct ip *ip;
797	struct mbuf *p, *q, *nq, *t;
798	struct ipq *fp = NULL;
799	struct ipqhead *head;
800	int i, hlen, next;
801	u_int8_t ecn, ecn0;
802	u_short hash;
803
804	/* If maxnipq is 0, never accept fragments. */
805	if (maxnipq == 0) {
806		ipstat.ips_fragments++;
807		ipstat.ips_fragdropped++;
808		m_freem(m);
809		return (NULL);
810	}
811
812	ip = mtod(m, struct ip *);
813	hlen = ip->ip_hl << 2;
814
815	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
816	head = &ipq[hash];
817	IPQ_LOCK();
818
819	/*
820	 * Look for queue of fragments
821	 * of this datagram.
822	 */
823	TAILQ_FOREACH(fp, head, ipq_list)
824		if (ip->ip_id == fp->ipq_id &&
825		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
826		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
827#ifdef MAC
828		    mac_fragment_match(m, fp) &&
829#endif
830		    ip->ip_p == fp->ipq_p)
831			goto found;
832
833	fp = NULL;
834
835	/*
836	 * Enforce upper bound on number of fragmented packets
837	 * for which we attempt reassembly;
838	 * If maxnipq is -1, accept all fragments without limitation.
839	 */
840	if ((nipq > maxnipq) && (maxnipq > 0)) {
841		/*
842		 * drop something from the tail of the current queue
843		 * before proceeding further
844		 */
845		struct ipq *q = TAILQ_LAST(head, ipqhead);
846		if (q == NULL) {   /* gak */
847			for (i = 0; i < IPREASS_NHASH; i++) {
848				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
849				if (r) {
850					ipstat.ips_fragtimeout += r->ipq_nfrags;
851					ip_freef(&ipq[i], r);
852					break;
853				}
854			}
855		} else {
856			ipstat.ips_fragtimeout += q->ipq_nfrags;
857			ip_freef(head, q);
858		}
859	}
860
861found:
862	/*
863	 * Adjust ip_len to not reflect header,
864	 * convert offset of this to bytes.
865	 */
866	ip->ip_len -= hlen;
867	if (ip->ip_off & IP_MF) {
868		/*
869		 * Make sure that fragments have a data length
870		 * that's a non-zero multiple of 8 bytes.
871		 */
872		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
873			ipstat.ips_toosmall++; /* XXX */
874			goto dropfrag;
875		}
876		m->m_flags |= M_FRAG;
877	} else
878		m->m_flags &= ~M_FRAG;
879	ip->ip_off <<= 3;
880
881
882	/*
883	 * Attempt reassembly; if it succeeds, proceed.
884	 * ip_reass() will return a different mbuf.
885	 */
886	ipstat.ips_fragments++;
887	m->m_pkthdr.header = ip;
888
889	/* Previous ip_reass() started here. */
890	/*
891	 * Presence of header sizes in mbufs
892	 * would confuse code below.
893	 */
894	m->m_data += hlen;
895	m->m_len -= hlen;
896
897	/*
898	 * If first fragment to arrive, create a reassembly queue.
899	 */
900	if (fp == NULL) {
901		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
902			goto dropfrag;
903		fp = mtod(t, struct ipq *);
904#ifdef MAC
905		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
906			m_free(t);
907			goto dropfrag;
908		}
909		mac_create_ipq(m, fp);
910#endif
911		TAILQ_INSERT_HEAD(head, fp, ipq_list);
912		nipq++;
913		fp->ipq_nfrags = 1;
914		fp->ipq_ttl = IPFRAGTTL;
915		fp->ipq_p = ip->ip_p;
916		fp->ipq_id = ip->ip_id;
917		fp->ipq_src = ip->ip_src;
918		fp->ipq_dst = ip->ip_dst;
919		fp->ipq_frags = m;
920		m->m_nextpkt = NULL;
921		goto inserted;
922	} else {
923		fp->ipq_nfrags++;
924#ifdef MAC
925		mac_update_ipq(m, fp);
926#endif
927	}
928
929#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
930
931	/*
932	 * Handle ECN by comparing this segment with the first one;
933	 * if CE is set, do not lose CE.
934	 * drop if CE and not-ECT are mixed for the same packet.
935	 */
936	ecn = ip->ip_tos & IPTOS_ECN_MASK;
937	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
938	if (ecn == IPTOS_ECN_CE) {
939		if (ecn0 == IPTOS_ECN_NOTECT)
940			goto dropfrag;
941		if (ecn0 != IPTOS_ECN_CE)
942			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
943	}
944	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
945		goto dropfrag;
946
947	/*
948	 * Find a segment which begins after this one does.
949	 */
950	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
951		if (GETIP(q)->ip_off > ip->ip_off)
952			break;
953
954	/*
955	 * If there is a preceding segment, it may provide some of
956	 * our data already.  If so, drop the data from the incoming
957	 * segment.  If it provides all of our data, drop us, otherwise
958	 * stick new segment in the proper place.
959	 *
960	 * If some of the data is dropped from the the preceding
961	 * segment, then it's checksum is invalidated.
962	 */
963	if (p) {
964		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
965		if (i > 0) {
966			if (i >= ip->ip_len)
967				goto dropfrag;
968			m_adj(m, i);
969			m->m_pkthdr.csum_flags = 0;
970			ip->ip_off += i;
971			ip->ip_len -= i;
972		}
973		m->m_nextpkt = p->m_nextpkt;
974		p->m_nextpkt = m;
975	} else {
976		m->m_nextpkt = fp->ipq_frags;
977		fp->ipq_frags = m;
978	}
979
980	/*
981	 * While we overlap succeeding segments trim them or,
982	 * if they are completely covered, dequeue them.
983	 */
984	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
985	     q = nq) {
986		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
987		if (i < GETIP(q)->ip_len) {
988			GETIP(q)->ip_len -= i;
989			GETIP(q)->ip_off += i;
990			m_adj(q, i);
991			q->m_pkthdr.csum_flags = 0;
992			break;
993		}
994		nq = q->m_nextpkt;
995		m->m_nextpkt = nq;
996		ipstat.ips_fragdropped++;
997		fp->ipq_nfrags--;
998		m_freem(q);
999	}
1000
1001inserted:
1002
1003	/*
1004	 * Check for complete reassembly and perform frag per packet
1005	 * limiting.
1006	 *
1007	 * Frag limiting is performed here so that the nth frag has
1008	 * a chance to complete the packet before we drop the packet.
1009	 * As a result, n+1 frags are actually allowed per packet, but
1010	 * only n will ever be stored. (n = maxfragsperpacket.)
1011	 *
1012	 */
1013	next = 0;
1014	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1015		if (GETIP(q)->ip_off != next) {
1016			if (fp->ipq_nfrags > maxfragsperpacket) {
1017				ipstat.ips_fragdropped += fp->ipq_nfrags;
1018				ip_freef(head, fp);
1019			}
1020			goto done;
1021		}
1022		next += GETIP(q)->ip_len;
1023	}
1024	/* Make sure the last packet didn't have the IP_MF flag */
1025	if (p->m_flags & M_FRAG) {
1026		if (fp->ipq_nfrags > maxfragsperpacket) {
1027			ipstat.ips_fragdropped += fp->ipq_nfrags;
1028			ip_freef(head, fp);
1029		}
1030		goto done;
1031	}
1032
1033	/*
1034	 * Reassembly is complete.  Make sure the packet is a sane size.
1035	 */
1036	q = fp->ipq_frags;
1037	ip = GETIP(q);
1038	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1039		ipstat.ips_toolong++;
1040		ipstat.ips_fragdropped += fp->ipq_nfrags;
1041		ip_freef(head, fp);
1042		goto done;
1043	}
1044
1045	/*
1046	 * Concatenate fragments.
1047	 */
1048	m = q;
1049	t = m->m_next;
1050	m->m_next = NULL;
1051	m_cat(m, t);
1052	nq = q->m_nextpkt;
1053	q->m_nextpkt = NULL;
1054	for (q = nq; q != NULL; q = nq) {
1055		nq = q->m_nextpkt;
1056		q->m_nextpkt = NULL;
1057		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1058		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1059		m_cat(m, q);
1060	}
1061#ifdef MAC
1062	mac_create_datagram_from_ipq(fp, m);
1063	mac_destroy_ipq(fp);
1064#endif
1065
1066	/*
1067	 * Create header for new ip packet by modifying header of first
1068	 * packet;  dequeue and discard fragment reassembly header.
1069	 * Make header visible.
1070	 */
1071	ip->ip_len = (ip->ip_hl << 2) + next;
1072	ip->ip_src = fp->ipq_src;
1073	ip->ip_dst = fp->ipq_dst;
1074	TAILQ_REMOVE(head, fp, ipq_list);
1075	nipq--;
1076	(void) m_free(dtom(fp));
1077	m->m_len += (ip->ip_hl << 2);
1078	m->m_data -= (ip->ip_hl << 2);
1079	/* some debugging cruft by sklower, below, will go away soon */
1080	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1081		m_fixhdr(m);
1082	ipstat.ips_reassembled++;
1083	IPQ_UNLOCK();
1084	return (m);
1085
1086dropfrag:
1087	ipstat.ips_fragdropped++;
1088	if (fp != NULL)
1089		fp->ipq_nfrags--;
1090	m_freem(m);
1091done:
1092	IPQ_UNLOCK();
1093	return (NULL);
1094
1095#undef GETIP
1096}
1097
1098/*
1099 * Free a fragment reassembly header and all
1100 * associated datagrams.
1101 */
1102static void
1103ip_freef(fhp, fp)
1104	struct ipqhead *fhp;
1105	struct ipq *fp;
1106{
1107	register struct mbuf *q;
1108
1109	IPQ_LOCK_ASSERT();
1110
1111	while (fp->ipq_frags) {
1112		q = fp->ipq_frags;
1113		fp->ipq_frags = q->m_nextpkt;
1114		m_freem(q);
1115	}
1116	TAILQ_REMOVE(fhp, fp, ipq_list);
1117	(void) m_free(dtom(fp));
1118	nipq--;
1119}
1120
1121/*
1122 * IP timer processing;
1123 * if a timer expires on a reassembly
1124 * queue, discard it.
1125 */
1126void
1127ip_slowtimo()
1128{
1129	register struct ipq *fp;
1130	int s = splnet();
1131	int i;
1132
1133	IPQ_LOCK();
1134	for (i = 0; i < IPREASS_NHASH; i++) {
1135		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1136			struct ipq *fpp;
1137
1138			fpp = fp;
1139			fp = TAILQ_NEXT(fp, ipq_list);
1140			if(--fpp->ipq_ttl == 0) {
1141				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1142				ip_freef(&ipq[i], fpp);
1143			}
1144		}
1145	}
1146	/*
1147	 * If we are over the maximum number of fragments
1148	 * (due to the limit being lowered), drain off
1149	 * enough to get down to the new limit.
1150	 */
1151	if (maxnipq >= 0 && nipq > maxnipq) {
1152		for (i = 0; i < IPREASS_NHASH; i++) {
1153			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1154				ipstat.ips_fragdropped +=
1155				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1156				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1157			}
1158		}
1159	}
1160	IPQ_UNLOCK();
1161	splx(s);
1162}
1163
1164/*
1165 * Drain off all datagram fragments.
1166 */
1167void
1168ip_drain()
1169{
1170	int     i;
1171
1172	IPQ_LOCK();
1173	for (i = 0; i < IPREASS_NHASH; i++) {
1174		while(!TAILQ_EMPTY(&ipq[i])) {
1175			ipstat.ips_fragdropped +=
1176			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1177			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1178		}
1179	}
1180	IPQ_UNLOCK();
1181	in_rtqdrain();
1182}
1183
1184/*
1185 * The protocol to be inserted into ip_protox[] must be already registered
1186 * in inetsw[], either statically or through pf_proto_register().
1187 */
1188int
1189ipproto_register(u_char ipproto)
1190{
1191	struct protosw *pr;
1192
1193	/* Sanity checks. */
1194	if (ipproto == 0)
1195		return (EPROTONOSUPPORT);
1196
1197	/*
1198	 * The protocol slot must not be occupied by another protocol
1199	 * already.  An index pointing to IPPROTO_RAW is unused.
1200	 */
1201	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1202	if (pr == NULL)
1203		return (EPFNOSUPPORT);
1204	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1205		return (EEXIST);
1206
1207	/* Find the protocol position in inetsw[] and set the index. */
1208	for (pr = inetdomain.dom_protosw;
1209	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1210		if (pr->pr_domain->dom_family == PF_INET &&
1211		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1212			/* Be careful to only index valid IP protocols. */
1213			if (pr->pr_protocol < IPPROTO_MAX) {
1214				ip_protox[pr->pr_protocol] = pr - inetsw;
1215				return (0);
1216			} else
1217				return (EINVAL);
1218		}
1219	}
1220	return (EPROTONOSUPPORT);
1221}
1222
1223int
1224ipproto_unregister(u_char ipproto)
1225{
1226	struct protosw *pr;
1227
1228	/* Sanity checks. */
1229	if (ipproto == 0)
1230		return (EPROTONOSUPPORT);
1231
1232	/* Check if the protocol was indeed registered. */
1233	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1234	if (pr == NULL)
1235		return (EPFNOSUPPORT);
1236	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1237		return (ENOENT);
1238
1239	/* Reset the protocol slot to IPPROTO_RAW. */
1240	ip_protox[ipproto] = pr - inetsw;
1241	return (0);
1242}
1243
1244
1245/*
1246 * Do option processing on a datagram,
1247 * possibly discarding it if bad options are encountered,
1248 * or forwarding it if source-routed.
1249 * The pass argument is used when operating in the IPSTEALTH
1250 * mode to tell what options to process:
1251 * [LS]SRR (pass 0) or the others (pass 1).
1252 * The reason for as many as two passes is that when doing IPSTEALTH,
1253 * non-routing options should be processed only if the packet is for us.
1254 * Returns 1 if packet has been forwarded/freed,
1255 * 0 if the packet should be processed further.
1256 */
1257static int
1258ip_dooptions(struct mbuf *m, int pass)
1259{
1260	struct ip *ip = mtod(m, struct ip *);
1261	u_char *cp;
1262	struct in_ifaddr *ia;
1263	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1264	struct in_addr *sin, dst;
1265	n_time ntime;
1266	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1267
1268	/* ignore or reject packets with IP options */
1269	if (ip_doopts == 0)
1270		return 0;
1271	else if (ip_doopts == 2) {
1272		type = ICMP_UNREACH;
1273		code = ICMP_UNREACH_FILTER_PROHIB;
1274		goto bad;
1275	}
1276
1277	dst = ip->ip_dst;
1278	cp = (u_char *)(ip + 1);
1279	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1280	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1281		opt = cp[IPOPT_OPTVAL];
1282		if (opt == IPOPT_EOL)
1283			break;
1284		if (opt == IPOPT_NOP)
1285			optlen = 1;
1286		else {
1287			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1288				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1289				goto bad;
1290			}
1291			optlen = cp[IPOPT_OLEN];
1292			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1293				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1294				goto bad;
1295			}
1296		}
1297		switch (opt) {
1298
1299		default:
1300			break;
1301
1302		/*
1303		 * Source routing with record.
1304		 * Find interface with current destination address.
1305		 * If none on this machine then drop if strictly routed,
1306		 * or do nothing if loosely routed.
1307		 * Record interface address and bring up next address
1308		 * component.  If strictly routed make sure next
1309		 * address is on directly accessible net.
1310		 */
1311		case IPOPT_LSRR:
1312		case IPOPT_SSRR:
1313#ifdef IPSTEALTH
1314			if (ipstealth && pass > 0)
1315				break;
1316#endif
1317			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1318				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1319				goto bad;
1320			}
1321			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1322				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1323				goto bad;
1324			}
1325			ipaddr.sin_addr = ip->ip_dst;
1326			ia = (struct in_ifaddr *)
1327				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1328			if (ia == NULL) {
1329				if (opt == IPOPT_SSRR) {
1330					type = ICMP_UNREACH;
1331					code = ICMP_UNREACH_SRCFAIL;
1332					goto bad;
1333				}
1334				if (!ip_dosourceroute)
1335					goto nosourcerouting;
1336				/*
1337				 * Loose routing, and not at next destination
1338				 * yet; nothing to do except forward.
1339				 */
1340				break;
1341			}
1342			off--;			/* 0 origin */
1343			if (off > optlen - (int)sizeof(struct in_addr)) {
1344				/*
1345				 * End of source route.  Should be for us.
1346				 */
1347				if (!ip_acceptsourceroute)
1348					goto nosourcerouting;
1349				save_rte(m, cp, ip->ip_src);
1350				break;
1351			}
1352#ifdef IPSTEALTH
1353			if (ipstealth)
1354				goto dropit;
1355#endif
1356			if (!ip_dosourceroute) {
1357				if (ipforwarding) {
1358					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1359					/*
1360					 * Acting as a router, so generate ICMP
1361					 */
1362nosourcerouting:
1363					strcpy(buf, inet_ntoa(ip->ip_dst));
1364					log(LOG_WARNING,
1365					    "attempted source route from %s to %s\n",
1366					    inet_ntoa(ip->ip_src), buf);
1367					type = ICMP_UNREACH;
1368					code = ICMP_UNREACH_SRCFAIL;
1369					goto bad;
1370				} else {
1371					/*
1372					 * Not acting as a router, so silently drop.
1373					 */
1374#ifdef IPSTEALTH
1375dropit:
1376#endif
1377					ipstat.ips_cantforward++;
1378					m_freem(m);
1379					return (1);
1380				}
1381			}
1382
1383			/*
1384			 * locate outgoing interface
1385			 */
1386			(void)memcpy(&ipaddr.sin_addr, cp + off,
1387			    sizeof(ipaddr.sin_addr));
1388
1389			if (opt == IPOPT_SSRR) {
1390#define	INA	struct in_ifaddr *
1391#define	SA	struct sockaddr *
1392			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == NULL)
1393				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1394			} else
1395				ia = ip_rtaddr(ipaddr.sin_addr);
1396			if (ia == NULL) {
1397				type = ICMP_UNREACH;
1398				code = ICMP_UNREACH_SRCFAIL;
1399				goto bad;
1400			}
1401			ip->ip_dst = ipaddr.sin_addr;
1402			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1403			    sizeof(struct in_addr));
1404			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1405			/*
1406			 * Let ip_intr's mcast routing check handle mcast pkts
1407			 */
1408			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1409			break;
1410
1411		case IPOPT_RR:
1412#ifdef IPSTEALTH
1413			if (ipstealth && pass == 0)
1414				break;
1415#endif
1416			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1417				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1418				goto bad;
1419			}
1420			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1421				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1422				goto bad;
1423			}
1424			/*
1425			 * If no space remains, ignore.
1426			 */
1427			off--;			/* 0 origin */
1428			if (off > optlen - (int)sizeof(struct in_addr))
1429				break;
1430			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1431			    sizeof(ipaddr.sin_addr));
1432			/*
1433			 * locate outgoing interface; if we're the destination,
1434			 * use the incoming interface (should be same).
1435			 */
1436			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1437			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1438				type = ICMP_UNREACH;
1439				code = ICMP_UNREACH_HOST;
1440				goto bad;
1441			}
1442			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1443			    sizeof(struct in_addr));
1444			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1445			break;
1446
1447		case IPOPT_TS:
1448#ifdef IPSTEALTH
1449			if (ipstealth && pass == 0)
1450				break;
1451#endif
1452			code = cp - (u_char *)ip;
1453			if (optlen < 4 || optlen > 40) {
1454				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1455				goto bad;
1456			}
1457			if ((off = cp[IPOPT_OFFSET]) < 5) {
1458				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1459				goto bad;
1460			}
1461			if (off > optlen - (int)sizeof(int32_t)) {
1462				cp[IPOPT_OFFSET + 1] += (1 << 4);
1463				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1464					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1465					goto bad;
1466				}
1467				break;
1468			}
1469			off--;				/* 0 origin */
1470			sin = (struct in_addr *)(cp + off);
1471			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1472
1473			case IPOPT_TS_TSONLY:
1474				break;
1475
1476			case IPOPT_TS_TSANDADDR:
1477				if (off + sizeof(n_time) +
1478				    sizeof(struct in_addr) > optlen) {
1479					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1480					goto bad;
1481				}
1482				ipaddr.sin_addr = dst;
1483				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1484							    m->m_pkthdr.rcvif);
1485				if (ia == NULL)
1486					continue;
1487				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1488				    sizeof(struct in_addr));
1489				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1490				off += sizeof(struct in_addr);
1491				break;
1492
1493			case IPOPT_TS_PRESPEC:
1494				if (off + sizeof(n_time) +
1495				    sizeof(struct in_addr) > optlen) {
1496					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1497					goto bad;
1498				}
1499				(void)memcpy(&ipaddr.sin_addr, sin,
1500				    sizeof(struct in_addr));
1501				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1502					continue;
1503				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1504				off += sizeof(struct in_addr);
1505				break;
1506
1507			default:
1508				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1509				goto bad;
1510			}
1511			ntime = iptime();
1512			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1513			cp[IPOPT_OFFSET] += sizeof(n_time);
1514		}
1515	}
1516	if (forward && ipforwarding) {
1517		ip_forward(m, 1);
1518		return (1);
1519	}
1520	return (0);
1521bad:
1522	icmp_error(m, type, code, 0, 0);
1523	ipstat.ips_badoptions++;
1524	return (1);
1525}
1526
1527/*
1528 * Given address of next destination (final or next hop),
1529 * return internet address info of interface to be used to get there.
1530 */
1531struct in_ifaddr *
1532ip_rtaddr(dst)
1533	struct in_addr dst;
1534{
1535	struct route sro;
1536	struct sockaddr_in *sin;
1537	struct in_ifaddr *ifa;
1538
1539	bzero(&sro, sizeof(sro));
1540	sin = (struct sockaddr_in *)&sro.ro_dst;
1541	sin->sin_family = AF_INET;
1542	sin->sin_len = sizeof(*sin);
1543	sin->sin_addr = dst;
1544	rtalloc_ign(&sro, RTF_CLONING);
1545
1546	if (sro.ro_rt == NULL)
1547		return (NULL);
1548
1549	ifa = ifatoia(sro.ro_rt->rt_ifa);
1550	RTFREE(sro.ro_rt);
1551	return (ifa);
1552}
1553
1554/*
1555 * Save incoming source route for use in replies,
1556 * to be picked up later by ip_srcroute if the receiver is interested.
1557 */
1558static void
1559save_rte(m, option, dst)
1560	struct mbuf *m;
1561	u_char *option;
1562	struct in_addr dst;
1563{
1564	unsigned olen;
1565	struct ipopt_tag *opts;
1566
1567	opts = (struct ipopt_tag *)m_tag_get(PACKET_TAG_IPOPTIONS,
1568					sizeof(struct ipopt_tag), M_NOWAIT);
1569	if (opts == NULL)
1570		return;
1571
1572	olen = option[IPOPT_OLEN];
1573#ifdef DIAGNOSTIC
1574	if (ipprintfs)
1575		printf("save_rte: olen %d\n", olen);
1576#endif
1577	if (olen > sizeof(opts->ip_srcrt) - (1 + sizeof(dst)))
1578		return;
1579	bcopy(option, opts->ip_srcrt.srcopt, olen);
1580	opts->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1581	opts->ip_srcrt.dst = dst;
1582	m_tag_prepend(m, (struct m_tag *)opts);
1583}
1584
1585/*
1586 * Retrieve incoming source route for use in replies,
1587 * in the same form used by setsockopt.
1588 * The first hop is placed before the options, will be removed later.
1589 */
1590struct mbuf *
1591ip_srcroute(m0)
1592	struct mbuf *m0;
1593{
1594	register struct in_addr *p, *q;
1595	register struct mbuf *m;
1596	struct ipopt_tag *opts;
1597
1598	opts = (struct ipopt_tag *)m_tag_find(m0, PACKET_TAG_IPOPTIONS, NULL);
1599	if (opts == NULL)
1600		return (NULL);
1601
1602	if (opts->ip_nhops == 0)
1603		return (NULL);
1604	m = m_get(M_DONTWAIT, MT_HEADER);
1605	if (m == NULL)
1606		return (NULL);
1607
1608#define OPTSIZ	(sizeof(opts->ip_srcrt.nop) + sizeof(opts->ip_srcrt.srcopt))
1609
1610	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1611	m->m_len = opts->ip_nhops * sizeof(struct in_addr) +
1612	    sizeof(struct in_addr) + OPTSIZ;
1613#ifdef DIAGNOSTIC
1614	if (ipprintfs)
1615		printf("ip_srcroute: nhops %d mlen %d", opts->ip_nhops, m->m_len);
1616#endif
1617
1618	/*
1619	 * First save first hop for return route
1620	 */
1621	p = &(opts->ip_srcrt.route[opts->ip_nhops - 1]);
1622	*(mtod(m, struct in_addr *)) = *p--;
1623#ifdef DIAGNOSTIC
1624	if (ipprintfs)
1625		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1626#endif
1627
1628	/*
1629	 * Copy option fields and padding (nop) to mbuf.
1630	 */
1631	opts->ip_srcrt.nop = IPOPT_NOP;
1632	opts->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1633	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1634	    &(opts->ip_srcrt.nop), OPTSIZ);
1635	q = (struct in_addr *)(mtod(m, caddr_t) +
1636	    sizeof(struct in_addr) + OPTSIZ);
1637#undef OPTSIZ
1638	/*
1639	 * Record return path as an IP source route,
1640	 * reversing the path (pointers are now aligned).
1641	 */
1642	while (p >= opts->ip_srcrt.route) {
1643#ifdef DIAGNOSTIC
1644		if (ipprintfs)
1645			printf(" %lx", (u_long)ntohl(q->s_addr));
1646#endif
1647		*q++ = *p--;
1648	}
1649	/*
1650	 * Last hop goes to final destination.
1651	 */
1652	*q = opts->ip_srcrt.dst;
1653#ifdef DIAGNOSTIC
1654	if (ipprintfs)
1655		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1656#endif
1657	m_tag_delete(m0, (struct m_tag *)opts);
1658	return (m);
1659}
1660
1661/*
1662 * Strip out IP options, at higher
1663 * level protocol in the kernel.
1664 * Second argument is buffer to which options
1665 * will be moved, and return value is their length.
1666 * XXX should be deleted; last arg currently ignored.
1667 */
1668void
1669ip_stripoptions(m, mopt)
1670	register struct mbuf *m;
1671	struct mbuf *mopt;
1672{
1673	register int i;
1674	struct ip *ip = mtod(m, struct ip *);
1675	register caddr_t opts;
1676	int olen;
1677
1678	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1679	opts = (caddr_t)(ip + 1);
1680	i = m->m_len - (sizeof (struct ip) + olen);
1681	bcopy(opts + olen, opts, (unsigned)i);
1682	m->m_len -= olen;
1683	if (m->m_flags & M_PKTHDR)
1684		m->m_pkthdr.len -= olen;
1685	ip->ip_v = IPVERSION;
1686	ip->ip_hl = sizeof(struct ip) >> 2;
1687}
1688
1689u_char inetctlerrmap[PRC_NCMDS] = {
1690	0,		0,		0,		0,
1691	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1692	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1693	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1694	0,		0,		EHOSTUNREACH,	0,
1695	ENOPROTOOPT,	ECONNREFUSED
1696};
1697
1698/*
1699 * Forward a packet.  If some error occurs return the sender
1700 * an icmp packet.  Note we can't always generate a meaningful
1701 * icmp message because icmp doesn't have a large enough repertoire
1702 * of codes and types.
1703 *
1704 * If not forwarding, just drop the packet.  This could be confusing
1705 * if ipforwarding was zero but some routing protocol was advancing
1706 * us as a gateway to somewhere.  However, we must let the routing
1707 * protocol deal with that.
1708 *
1709 * The srcrt parameter indicates whether the packet is being forwarded
1710 * via a source route.
1711 */
1712void
1713ip_forward(struct mbuf *m, int srcrt)
1714{
1715	struct ip *ip = mtod(m, struct ip *);
1716	struct in_ifaddr *ia = NULL;
1717	int error, type = 0, code = 0;
1718	struct mbuf *mcopy;
1719	struct in_addr dest;
1720	struct ifnet *destifp, dummyifp;
1721
1722#ifdef DIAGNOSTIC
1723	if (ipprintfs)
1724		printf("forward: src %lx dst %lx ttl %x\n",
1725		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1726		    ip->ip_ttl);
1727#endif
1728
1729
1730	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1731		ipstat.ips_cantforward++;
1732		m_freem(m);
1733		return;
1734	}
1735#ifdef IPSTEALTH
1736	if (!ipstealth) {
1737#endif
1738		if (ip->ip_ttl <= IPTTLDEC) {
1739			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1740			    0, 0);
1741			return;
1742		}
1743#ifdef IPSTEALTH
1744	}
1745#endif
1746
1747	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1748		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1749		return;
1750	}
1751
1752	/*
1753	 * Save the IP header and at most 8 bytes of the payload,
1754	 * in case we need to generate an ICMP message to the src.
1755	 *
1756	 * XXX this can be optimized a lot by saving the data in a local
1757	 * buffer on the stack (72 bytes at most), and only allocating the
1758	 * mbuf if really necessary. The vast majority of the packets
1759	 * are forwarded without having to send an ICMP back (either
1760	 * because unnecessary, or because rate limited), so we are
1761	 * really we are wasting a lot of work here.
1762	 *
1763	 * We don't use m_copy() because it might return a reference
1764	 * to a shared cluster. Both this function and ip_output()
1765	 * assume exclusive access to the IP header in `m', so any
1766	 * data in a cluster may change before we reach icmp_error().
1767	 */
1768	MGET(mcopy, M_DONTWAIT, m->m_type);
1769	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1770		/*
1771		 * It's probably ok if the pkthdr dup fails (because
1772		 * the deep copy of the tag chain failed), but for now
1773		 * be conservative and just discard the copy since
1774		 * code below may some day want the tags.
1775		 */
1776		m_free(mcopy);
1777		mcopy = NULL;
1778	}
1779	if (mcopy != NULL) {
1780		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1781		    (int)ip->ip_len);
1782		mcopy->m_pkthdr.len = mcopy->m_len;
1783		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1784	}
1785
1786#ifdef IPSTEALTH
1787	if (!ipstealth) {
1788#endif
1789		ip->ip_ttl -= IPTTLDEC;
1790#ifdef IPSTEALTH
1791	}
1792#endif
1793
1794	/*
1795	 * If forwarding packet using same interface that it came in on,
1796	 * perhaps should send a redirect to sender to shortcut a hop.
1797	 * Only send redirect if source is sending directly to us,
1798	 * and if packet was not source routed (or has any options).
1799	 * Also, don't send redirect if forwarding using a default route
1800	 * or a route modified by a redirect.
1801	 */
1802	dest.s_addr = 0;
1803	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1804		struct sockaddr_in *sin;
1805		struct route ro;
1806		struct rtentry *rt;
1807
1808		bzero(&ro, sizeof(ro));
1809		sin = (struct sockaddr_in *)&ro.ro_dst;
1810		sin->sin_family = AF_INET;
1811		sin->sin_len = sizeof(*sin);
1812		sin->sin_addr = ip->ip_dst;
1813		rtalloc_ign(&ro, RTF_CLONING);
1814
1815		rt = ro.ro_rt;
1816
1817		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1818		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1819#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1820			u_long src = ntohl(ip->ip_src.s_addr);
1821
1822			if (RTA(rt) &&
1823			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1824				if (rt->rt_flags & RTF_GATEWAY)
1825					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1826				else
1827					dest.s_addr = ip->ip_dst.s_addr;
1828				/* Router requirements says to only send host redirects */
1829				type = ICMP_REDIRECT;
1830				code = ICMP_REDIRECT_HOST;
1831#ifdef DIAGNOSTIC
1832				if (ipprintfs)
1833					printf("redirect (%d) to %lx\n", code, (u_long)dest.s_addr);
1834#endif
1835			}
1836		}
1837		if (rt)
1838			RTFREE(rt);
1839	}
1840
1841	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1842	if (error)
1843		ipstat.ips_cantforward++;
1844	else {
1845		ipstat.ips_forward++;
1846		if (type)
1847			ipstat.ips_redirectsent++;
1848		else {
1849			if (mcopy)
1850				m_freem(mcopy);
1851			return;
1852		}
1853	}
1854	if (mcopy == NULL)
1855		return;
1856	destifp = NULL;
1857
1858	switch (error) {
1859
1860	case 0:				/* forwarded, but need redirect */
1861		/* type, code set above */
1862		break;
1863
1864	case ENETUNREACH:		/* shouldn't happen, checked above */
1865	case EHOSTUNREACH:
1866	case ENETDOWN:
1867	case EHOSTDOWN:
1868	default:
1869		type = ICMP_UNREACH;
1870		code = ICMP_UNREACH_HOST;
1871		break;
1872
1873	case EMSGSIZE:
1874		type = ICMP_UNREACH;
1875		code = ICMP_UNREACH_NEEDFRAG;
1876#if defined(IPSEC) || defined(FAST_IPSEC)
1877		/*
1878		 * If the packet is routed over IPsec tunnel, tell the
1879		 * originator the tunnel MTU.
1880		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1881		 * XXX quickhack!!!
1882		 */
1883		{
1884			struct secpolicy *sp = NULL;
1885			int ipsecerror;
1886			int ipsechdr;
1887			struct route *ro;
1888
1889#ifdef IPSEC
1890			sp = ipsec4_getpolicybyaddr(mcopy,
1891						    IPSEC_DIR_OUTBOUND,
1892						    IP_FORWARDING,
1893						    &ipsecerror);
1894#else /* FAST_IPSEC */
1895			sp = ipsec_getpolicybyaddr(mcopy,
1896						   IPSEC_DIR_OUTBOUND,
1897						   IP_FORWARDING,
1898						   &ipsecerror);
1899#endif
1900			if (sp != NULL) {
1901				/* count IPsec header size */
1902				ipsechdr = ipsec4_hdrsiz(mcopy,
1903							 IPSEC_DIR_OUTBOUND,
1904							 NULL);
1905
1906				/*
1907				 * find the correct route for outer IPv4
1908				 * header, compute tunnel MTU.
1909				 *
1910				 * XXX BUG ALERT
1911				 * The "dummyifp" code relies upon the fact
1912				 * that icmp_error() touches only ifp->if_mtu.
1913				 */
1914				/*XXX*/
1915				destifp = NULL;
1916				if (sp->req != NULL
1917				 && sp->req->sav != NULL
1918				 && sp->req->sav->sah != NULL) {
1919					ro = &sp->req->sav->sah->sa_route;
1920					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1921						dummyifp.if_mtu =
1922						    ro->ro_rt->rt_rmx.rmx_mtu ?
1923						    ro->ro_rt->rt_rmx.rmx_mtu :
1924						    ro->ro_rt->rt_ifp->if_mtu;
1925						dummyifp.if_mtu -= ipsechdr;
1926						destifp = &dummyifp;
1927					}
1928				}
1929
1930#ifdef IPSEC
1931				key_freesp(sp);
1932#else /* FAST_IPSEC */
1933				KEY_FREESP(&sp);
1934#endif
1935				ipstat.ips_cantfrag++;
1936				break;
1937			} else
1938#endif /*IPSEC || FAST_IPSEC*/
1939		/*
1940		 * When doing source routing 'ia' can be NULL.  Fall back
1941		 * to the minimum guaranteed routeable packet size and use
1942		 * the same hack as IPSEC to setup a dummyifp for icmp.
1943		 */
1944		if (ia == NULL) {
1945			dummyifp.if_mtu = IP_MSS;
1946			destifp = &dummyifp;
1947		} else
1948			destifp = ia->ia_ifp;
1949#if defined(IPSEC) || defined(FAST_IPSEC)
1950		}
1951#endif /*IPSEC || FAST_IPSEC*/
1952		ipstat.ips_cantfrag++;
1953		break;
1954
1955	case ENOBUFS:
1956		/*
1957		 * A router should not generate ICMP_SOURCEQUENCH as
1958		 * required in RFC1812 Requirements for IP Version 4 Routers.
1959		 * Source quench could be a big problem under DoS attacks,
1960		 * or if the underlying interface is rate-limited.
1961		 * Those who need source quench packets may re-enable them
1962		 * via the net.inet.ip.sendsourcequench sysctl.
1963		 */
1964		if (ip_sendsourcequench == 0) {
1965			m_freem(mcopy);
1966			return;
1967		} else {
1968			type = ICMP_SOURCEQUENCH;
1969			code = 0;
1970		}
1971		break;
1972
1973	case EACCES:			/* ipfw denied packet */
1974		m_freem(mcopy);
1975		return;
1976	}
1977	icmp_error(mcopy, type, code, dest.s_addr, destifp);
1978}
1979
1980void
1981ip_savecontrol(inp, mp, ip, m)
1982	register struct inpcb *inp;
1983	register struct mbuf **mp;
1984	register struct ip *ip;
1985	register struct mbuf *m;
1986{
1987	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1988		struct bintime bt;
1989
1990		bintime(&bt);
1991		if (inp->inp_socket->so_options & SO_BINTIME) {
1992			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1993			SCM_BINTIME, SOL_SOCKET);
1994			if (*mp)
1995				mp = &(*mp)->m_next;
1996		}
1997		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1998			struct timeval tv;
1999
2000			bintime2timeval(&bt, &tv);
2001			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2002				SCM_TIMESTAMP, SOL_SOCKET);
2003			if (*mp)
2004				mp = &(*mp)->m_next;
2005		}
2006	}
2007	if (inp->inp_flags & INP_RECVDSTADDR) {
2008		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2009		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2010		if (*mp)
2011			mp = &(*mp)->m_next;
2012	}
2013	if (inp->inp_flags & INP_RECVTTL) {
2014		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2015		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2016		if (*mp)
2017			mp = &(*mp)->m_next;
2018	}
2019#ifdef notyet
2020	/* XXX
2021	 * Moving these out of udp_input() made them even more broken
2022	 * than they already were.
2023	 */
2024	/* options were tossed already */
2025	if (inp->inp_flags & INP_RECVOPTS) {
2026		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2027		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2028		if (*mp)
2029			mp = &(*mp)->m_next;
2030	}
2031	/* ip_srcroute doesn't do what we want here, need to fix */
2032	if (inp->inp_flags & INP_RECVRETOPTS) {
2033		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2034		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2035		if (*mp)
2036			mp = &(*mp)->m_next;
2037	}
2038#endif
2039	if (inp->inp_flags & INP_RECVIF) {
2040		struct ifnet *ifp;
2041		struct sdlbuf {
2042			struct sockaddr_dl sdl;
2043			u_char	pad[32];
2044		} sdlbuf;
2045		struct sockaddr_dl *sdp;
2046		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2047
2048		if (((ifp = m->m_pkthdr.rcvif))
2049		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2050			sdp = (struct sockaddr_dl *)
2051			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2052			/*
2053			 * Change our mind and don't try copy.
2054			 */
2055			if ((sdp->sdl_family != AF_LINK)
2056			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2057				goto makedummy;
2058			}
2059			bcopy(sdp, sdl2, sdp->sdl_len);
2060		} else {
2061makedummy:
2062			sdl2->sdl_len
2063				= offsetof(struct sockaddr_dl, sdl_data[0]);
2064			sdl2->sdl_family = AF_LINK;
2065			sdl2->sdl_index = 0;
2066			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2067		}
2068		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2069			IP_RECVIF, IPPROTO_IP);
2070		if (*mp)
2071			mp = &(*mp)->m_next;
2072	}
2073}
2074
2075/*
2076 * XXX these routines are called from the upper part of the kernel.
2077 * They need to be locked when we remove Giant.
2078 *
2079 * They could also be moved to ip_mroute.c, since all the RSVP
2080 *  handling is done there already.
2081 */
2082static int ip_rsvp_on;
2083struct socket *ip_rsvpd;
2084int
2085ip_rsvp_init(struct socket *so)
2086{
2087	if (so->so_type != SOCK_RAW ||
2088	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2089		return EOPNOTSUPP;
2090
2091	if (ip_rsvpd != NULL)
2092		return EADDRINUSE;
2093
2094	ip_rsvpd = so;
2095	/*
2096	 * This may seem silly, but we need to be sure we don't over-increment
2097	 * the RSVP counter, in case something slips up.
2098	 */
2099	if (!ip_rsvp_on) {
2100		ip_rsvp_on = 1;
2101		rsvp_on++;
2102	}
2103
2104	return 0;
2105}
2106
2107int
2108ip_rsvp_done(void)
2109{
2110	ip_rsvpd = NULL;
2111	/*
2112	 * This may seem silly, but we need to be sure we don't over-decrement
2113	 * the RSVP counter, in case something slips up.
2114	 */
2115	if (ip_rsvp_on) {
2116		ip_rsvp_on = 0;
2117		rsvp_on--;
2118	}
2119	return 0;
2120}
2121
2122void
2123rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2124{
2125	if (rsvp_input_p) { /* call the real one if loaded */
2126		rsvp_input_p(m, off);
2127		return;
2128	}
2129
2130	/* Can still get packets with rsvp_on = 0 if there is a local member
2131	 * of the group to which the RSVP packet is addressed.  But in this
2132	 * case we want to throw the packet away.
2133	 */
2134
2135	if (!rsvp_on) {
2136		m_freem(m);
2137		return;
2138	}
2139
2140	if (ip_rsvpd != NULL) {
2141		rip_input(m, off);
2142		return;
2143	}
2144	/* Drop the packet */
2145	m_freem(m);
2146}
2147