ip_input.c revision 133069
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 133069 2004-08-03 12:31:38Z andre $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipdn.h"
36#include "opt_ipdivert.h"
37#include "opt_ipfilter.h"
38#include "opt_ipstealth.h"
39#include "opt_ipsec.h"
40#include "opt_mac.h"
41#include "opt_pfil_hooks.h"
42#include "opt_random_ip_id.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/mac.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/domain.h>
50#include <sys/protosw.h>
51#include <sys/socket.h>
52#include <sys/time.h>
53#include <sys/kernel.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_icmp.h>
72#include <machine/in_cksum.h>
73
74#include <sys/socketvar.h>
75
76#include <netinet/ip_fw.h>
77#include <netinet/ip_divert.h>
78#include <netinet/ip_dummynet.h>
79
80#ifdef IPSEC
81#include <netinet6/ipsec.h>
82#include <netkey/key.h>
83#endif
84
85#ifdef FAST_IPSEC
86#include <netipsec/ipsec.h>
87#include <netipsec/key.h>
88#endif
89
90int rsvp_on = 0;
91
92int	ipforwarding = 0;
93SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
94    &ipforwarding, 0, "Enable IP forwarding between interfaces");
95
96static int	ipsendredirects = 1; /* XXX */
97SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
98    &ipsendredirects, 0, "Enable sending IP redirects");
99
100int	ip_defttl = IPDEFTTL;
101SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
102    &ip_defttl, 0, "Maximum TTL on IP packets");
103
104static int	ip_dosourceroute = 0;
105SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
106    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
107
108static int	ip_acceptsourceroute = 0;
109SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
110    CTLFLAG_RW, &ip_acceptsourceroute, 0,
111    "Enable accepting source routed IP packets");
112
113int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
114SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
115    &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
116
117static int	ip_keepfaith = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119	&ip_keepfaith,	0,
120	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121
122static int    nipq = 0;         /* total # of reass queues */
123static int    maxnipq;
124SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125	&maxnipq, 0,
126	"Maximum number of IPv4 fragment reassembly queue entries");
127
128static int    maxfragsperpacket;
129SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
130	&maxfragsperpacket, 0,
131	"Maximum number of IPv4 fragments allowed per packet");
132
133static int	ip_sendsourcequench = 0;
134SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
135	&ip_sendsourcequench, 0,
136	"Enable the transmission of source quench packets");
137
138/*
139 * XXX - Setting ip_checkinterface mostly implements the receive side of
140 * the Strong ES model described in RFC 1122, but since the routing table
141 * and transmit implementation do not implement the Strong ES model,
142 * setting this to 1 results in an odd hybrid.
143 *
144 * XXX - ip_checkinterface currently must be disabled if you use ipnat
145 * to translate the destination address to another local interface.
146 *
147 * XXX - ip_checkinterface must be disabled if you add IP aliases
148 * to the loopback interface instead of the interface where the
149 * packets for those addresses are received.
150 */
151static int	ip_checkinterface = 1;
152SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
153    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
154
155#ifdef DIAGNOSTIC
156static int	ipprintfs = 0;
157#endif
158#ifdef PFIL_HOOKS
159struct pfil_head inet_pfil_hook;
160#endif
161
162static struct	ifqueue ipintrq;
163static int	ipqmaxlen = IFQ_MAXLEN;
164
165extern	struct domain inetdomain;
166extern	struct protosw inetsw[];
167u_char	ip_protox[IPPROTO_MAX];
168struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
169struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
170u_long 	in_ifaddrhmask;				/* mask for hash table */
171
172SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
173    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
174SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
175    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
176
177struct ipstat ipstat;
178SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
179    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
180
181/* Packet reassembly stuff */
182#define IPREASS_NHASH_LOG2      6
183#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
184#define IPREASS_HMASK           (IPREASS_NHASH - 1)
185#define IPREASS_HASH(x,y) \
186	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
187
188static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
189struct mtx ipqlock;
190
191#define	IPQ_LOCK()	mtx_lock(&ipqlock)
192#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
193#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
194#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
195
196#ifdef IPCTL_DEFMTU
197SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
198    &ip_mtu, 0, "Default MTU");
199#endif
200
201#ifdef IPSTEALTH
202int	ipstealth = 0;
203SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
204    &ipstealth, 0, "");
205#endif
206
207
208/* Firewall hooks */
209ip_fw_chk_t *ip_fw_chk_ptr;
210int fw_enable = 1 ;
211int fw_one_pass = 1;
212
213/* Dummynet hooks */
214ip_dn_io_t *ip_dn_io_ptr;
215
216/*
217 * XXX this is ugly -- the following two global variables are
218 * used to store packet state while it travels through the stack.
219 * Note that the code even makes assumptions on the size and
220 * alignment of fields inside struct ip_srcrt so e.g. adding some
221 * fields will break the code. This needs to be fixed.
222 *
223 * We need to save the IP options in case a protocol wants to respond
224 * to an incoming packet over the same route if the packet got here
225 * using IP source routing.  This allows connection establishment and
226 * maintenance when the remote end is on a network that is not known
227 * to us.
228 */
229static int	ip_nhops = 0;
230static	struct ip_srcrt {
231	struct	in_addr dst;			/* final destination */
232	char	nop;				/* one NOP to align */
233	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
234	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
235} ip_srcrt;
236
237static void	save_rte(u_char *, struct in_addr);
238static int	ip_dooptions(struct mbuf *m, int,
239			struct sockaddr_in *next_hop);
240static void	ip_forward(struct mbuf *m, int srcrt,
241			struct sockaddr_in *next_hop);
242static void	ip_freef(struct ipqhead *, struct ipq *);
243static struct	mbuf *ip_reass(struct mbuf *);
244
245/*
246 * IP initialization: fill in IP protocol switch table.
247 * All protocols not implemented in kernel go to raw IP protocol handler.
248 */
249void
250ip_init()
251{
252	register struct protosw *pr;
253	register int i;
254
255	TAILQ_INIT(&in_ifaddrhead);
256	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
257	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
258	if (pr == 0)
259		panic("ip_init");
260	for (i = 0; i < IPPROTO_MAX; i++)
261		ip_protox[i] = pr - inetsw;
262	for (pr = inetdomain.dom_protosw;
263	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
264		if (pr->pr_domain->dom_family == PF_INET &&
265		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
266			ip_protox[pr->pr_protocol] = pr - inetsw;
267
268#ifdef PFIL_HOOKS
269	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
270	inet_pfil_hook.ph_af = AF_INET;
271	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
272		printf("%s: WARNING: unable to register pfil hook, "
273			"error %d\n", __func__, i);
274#endif /* PFIL_HOOKS */
275
276	IPQ_LOCK_INIT();
277	for (i = 0; i < IPREASS_NHASH; i++)
278	    TAILQ_INIT(&ipq[i]);
279
280	maxnipq = nmbclusters / 32;
281	maxfragsperpacket = 16;
282
283#ifndef RANDOM_IP_ID
284	ip_id = time_second & 0xffff;
285#endif
286	ipintrq.ifq_maxlen = ipqmaxlen;
287	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
288	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
289}
290
291/*
292 * Ip input routine.  Checksum and byte swap header.  If fragmented
293 * try to reassemble.  Process options.  Pass to next level.
294 */
295void
296ip_input(struct mbuf *m)
297{
298	struct ip *ip = NULL;
299	struct in_ifaddr *ia = NULL;
300	struct ifaddr *ifa;
301	int    i, checkif, hlen = 0;
302	u_short sum;
303	struct in_addr pkt_dst;
304#ifdef IPDIVERT
305	u_int32_t divert_info;			/* packet divert/tee info */
306#endif
307	struct ip_fw_args args;
308	int dchg = 0;				/* dest changed after fw */
309#ifdef PFIL_HOOKS
310	struct in_addr odst;			/* original dst address */
311#endif
312#ifdef FAST_IPSEC
313	struct m_tag *mtag;
314	struct tdb_ident *tdbi;
315	struct secpolicy *sp;
316	int s, error;
317#endif /* FAST_IPSEC */
318
319	args.eh = NULL;
320	args.oif = NULL;
321
322  	M_ASSERTPKTHDR(m);
323
324	args.next_hop = m_claim_next(m, PACKET_TAG_IPFORWARD);
325	args.rule = ip_dn_claim_rule(m);
326
327	if (m->m_flags & M_FASTFWD_OURS) {
328		/* ip_fastforward firewall changed dest to local */
329		m->m_flags &= ~M_FASTFWD_OURS;	/* for reflected mbufs */
330  		goto ours;
331  	}
332
333  	if (args.rule) {	/* dummynet already filtered us */
334  		ip = mtod(m, struct ip *);
335  		hlen = ip->ip_hl << 2;
336		goto iphack ;
337	}
338
339	ipstat.ips_total++;
340
341	if (m->m_pkthdr.len < sizeof(struct ip))
342		goto tooshort;
343
344	if (m->m_len < sizeof (struct ip) &&
345	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
346		ipstat.ips_toosmall++;
347		return;
348	}
349	ip = mtod(m, struct ip *);
350
351	if (ip->ip_v != IPVERSION) {
352		ipstat.ips_badvers++;
353		goto bad;
354	}
355
356	hlen = ip->ip_hl << 2;
357	if (hlen < sizeof(struct ip)) {	/* minimum header length */
358		ipstat.ips_badhlen++;
359		goto bad;
360	}
361	if (hlen > m->m_len) {
362		if ((m = m_pullup(m, hlen)) == 0) {
363			ipstat.ips_badhlen++;
364			return;
365		}
366		ip = mtod(m, struct ip *);
367	}
368
369	/* 127/8 must not appear on wire - RFC1122 */
370	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
371	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
372		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
373			ipstat.ips_badaddr++;
374			goto bad;
375		}
376	}
377
378	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
379		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
380	} else {
381		if (hlen == sizeof(struct ip)) {
382			sum = in_cksum_hdr(ip);
383		} else {
384			sum = in_cksum(m, hlen);
385		}
386	}
387	if (sum) {
388		ipstat.ips_badsum++;
389		goto bad;
390	}
391
392#ifdef ALTQ
393	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
394		/* packet is dropped by traffic conditioner */
395		return;
396#endif
397
398	/*
399	 * Convert fields to host representation.
400	 */
401	ip->ip_len = ntohs(ip->ip_len);
402	if (ip->ip_len < hlen) {
403		ipstat.ips_badlen++;
404		goto bad;
405	}
406	ip->ip_off = ntohs(ip->ip_off);
407
408	/*
409	 * Check that the amount of data in the buffers
410	 * is as at least much as the IP header would have us expect.
411	 * Trim mbufs if longer than we expect.
412	 * Drop packet if shorter than we expect.
413	 */
414	if (m->m_pkthdr.len < ip->ip_len) {
415tooshort:
416		ipstat.ips_tooshort++;
417		goto bad;
418	}
419	if (m->m_pkthdr.len > ip->ip_len) {
420		if (m->m_len == m->m_pkthdr.len) {
421			m->m_len = ip->ip_len;
422			m->m_pkthdr.len = ip->ip_len;
423		} else
424			m_adj(m, ip->ip_len - m->m_pkthdr.len);
425	}
426#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
427	/*
428	 * Bypass packet filtering for packets from a tunnel (gif).
429	 */
430	if (ipsec_getnhist(m))
431		goto pass;
432#endif
433#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
434	/*
435	 * Bypass packet filtering for packets from a tunnel (gif).
436	 */
437	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
438		goto pass;
439#endif
440
441	/*
442	 * IpHack's section.
443	 * Right now when no processing on packet has done
444	 * and it is still fresh out of network we do our black
445	 * deals with it.
446	 * - Firewall: deny/allow/divert
447	 * - Xlate: translate packet's addr/port (NAT).
448	 * - Pipe: pass pkt through dummynet.
449	 * - Wrap: fake packet's addr/port <unimpl.>
450	 * - Encapsulate: put it in another IP and send out. <unimp.>
451 	 */
452
453iphack:
454
455#ifdef PFIL_HOOKS
456	/*
457	 * Run through list of hooks for input packets.
458	 *
459	 * NB: Beware of the destination address changing (e.g.
460	 *     by NAT rewriting).  When this happens, tell
461	 *     ip_forward to do the right thing.
462	 */
463	odst = ip->ip_dst;
464	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
465	    PFIL_IN) != 0)
466		return;
467	if (m == NULL)			/* consumed by filter */
468		return;
469	ip = mtod(m, struct ip *);
470	dchg = (odst.s_addr != ip->ip_dst.s_addr);
471#endif /* PFIL_HOOKS */
472
473	if (fw_enable && IPFW_LOADED) {
474		/*
475		 * If we've been forwarded from the output side, then
476		 * skip the firewall a second time
477		 */
478		if (args.next_hop)
479			goto ours;
480
481		args.m = m;
482		i = ip_fw_chk_ptr(&args);
483		m = args.m;
484
485		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
486			if (m)
487				m_freem(m);
488			return;
489		}
490		ip = mtod(m, struct ip *); /* just in case m changed */
491		if (i == 0 && args.next_hop == NULL)	/* common case */
492			goto pass;
493                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
494			/* Send packet to the appropriate pipe */
495			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
496			return;
497		}
498#ifdef IPDIVERT
499		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
500			/* Divert or tee packet */
501			goto ours;
502		}
503#endif
504		if (i == 0 && args.next_hop != NULL)
505			goto pass;
506		/*
507		 * if we get here, the packet must be dropped
508		 */
509		m_freem(m);
510		return;
511	}
512pass:
513
514	/*
515	 * Process options and, if not destined for us,
516	 * ship it on.  ip_dooptions returns 1 when an
517	 * error was detected (causing an icmp message
518	 * to be sent and the original packet to be freed).
519	 */
520	ip_nhops = 0;		/* for source routed packets */
521	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
522		return;
523
524        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
525         * matter if it is destined to another node, or whether it is
526         * a multicast one, RSVP wants it! and prevents it from being forwarded
527         * anywhere else. Also checks if the rsvp daemon is running before
528	 * grabbing the packet.
529         */
530	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
531		goto ours;
532
533	/*
534	 * Check our list of addresses, to see if the packet is for us.
535	 * If we don't have any addresses, assume any unicast packet
536	 * we receive might be for us (and let the upper layers deal
537	 * with it).
538	 */
539	if (TAILQ_EMPTY(&in_ifaddrhead) &&
540	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
541		goto ours;
542
543	/*
544	 * Cache the destination address of the packet; this may be
545	 * changed by use of 'ipfw fwd'.
546	 */
547	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
548
549	/*
550	 * Enable a consistency check between the destination address
551	 * and the arrival interface for a unicast packet (the RFC 1122
552	 * strong ES model) if IP forwarding is disabled and the packet
553	 * is not locally generated and the packet is not subject to
554	 * 'ipfw fwd'.
555	 *
556	 * XXX - Checking also should be disabled if the destination
557	 * address is ipnat'ed to a different interface.
558	 *
559	 * XXX - Checking is incompatible with IP aliases added
560	 * to the loopback interface instead of the interface where
561	 * the packets are received.
562	 */
563	checkif = ip_checkinterface && (ipforwarding == 0) &&
564	    m->m_pkthdr.rcvif != NULL &&
565	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
566	    (args.next_hop == NULL) && (dchg == 0);
567
568	/*
569	 * Check for exact addresses in the hash bucket.
570	 */
571	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
572		/*
573		 * If the address matches, verify that the packet
574		 * arrived via the correct interface if checking is
575		 * enabled.
576		 */
577		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
578		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
579			goto ours;
580	}
581	/*
582	 * Check for broadcast addresses.
583	 *
584	 * Only accept broadcast packets that arrive via the matching
585	 * interface.  Reception of forwarded directed broadcasts would
586	 * be handled via ip_forward() and ether_output() with the loopback
587	 * into the stack for SIMPLEX interfaces handled by ether_output().
588	 */
589	if (m->m_pkthdr.rcvif != NULL &&
590	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
591	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
592			if (ifa->ifa_addr->sa_family != AF_INET)
593				continue;
594			ia = ifatoia(ifa);
595			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
596			    pkt_dst.s_addr)
597				goto ours;
598			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
599				goto ours;
600#ifdef BOOTP_COMPAT
601			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
602				goto ours;
603#endif
604		}
605	}
606	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
607		struct in_multi *inm;
608		if (ip_mrouter) {
609			/*
610			 * If we are acting as a multicast router, all
611			 * incoming multicast packets are passed to the
612			 * kernel-level multicast forwarding function.
613			 * The packet is returned (relatively) intact; if
614			 * ip_mforward() returns a non-zero value, the packet
615			 * must be discarded, else it may be accepted below.
616			 */
617			if (ip_mforward &&
618			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
619				ipstat.ips_cantforward++;
620				m_freem(m);
621				return;
622			}
623
624			/*
625			 * The process-level routing daemon needs to receive
626			 * all multicast IGMP packets, whether or not this
627			 * host belongs to their destination groups.
628			 */
629			if (ip->ip_p == IPPROTO_IGMP)
630				goto ours;
631			ipstat.ips_forward++;
632		}
633		/*
634		 * See if we belong to the destination multicast group on the
635		 * arrival interface.
636		 */
637		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
638		if (inm == NULL) {
639			ipstat.ips_notmember++;
640			m_freem(m);
641			return;
642		}
643		goto ours;
644	}
645	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
646		goto ours;
647	if (ip->ip_dst.s_addr == INADDR_ANY)
648		goto ours;
649
650	/*
651	 * FAITH(Firewall Aided Internet Translator)
652	 */
653	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
654		if (ip_keepfaith) {
655			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
656				goto ours;
657		}
658		m_freem(m);
659		return;
660	}
661
662	/*
663	 * Not for us; forward if possible and desirable.
664	 */
665	if (ipforwarding == 0) {
666		ipstat.ips_cantforward++;
667		m_freem(m);
668	} else {
669#ifdef IPSEC
670		/*
671		 * Enforce inbound IPsec SPD.
672		 */
673		if (ipsec4_in_reject(m, NULL)) {
674			ipsecstat.in_polvio++;
675			goto bad;
676		}
677#endif /* IPSEC */
678#ifdef FAST_IPSEC
679		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
680		s = splnet();
681		if (mtag != NULL) {
682			tdbi = (struct tdb_ident *)(mtag + 1);
683			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
684		} else {
685			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
686						   IP_FORWARDING, &error);
687		}
688		if (sp == NULL) {	/* NB: can happen if error */
689			splx(s);
690			/*XXX error stat???*/
691			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
692			goto bad;
693		}
694
695		/*
696		 * Check security policy against packet attributes.
697		 */
698		error = ipsec_in_reject(sp, m);
699		KEY_FREESP(&sp);
700		splx(s);
701		if (error) {
702			ipstat.ips_cantforward++;
703			goto bad;
704		}
705#endif /* FAST_IPSEC */
706		ip_forward(m, dchg, args.next_hop);
707	}
708	return;
709
710ours:
711#ifdef IPSTEALTH
712	/*
713	 * IPSTEALTH: Process non-routing options only
714	 * if the packet is destined for us.
715	 */
716	if (ipstealth && hlen > sizeof (struct ip) &&
717	    ip_dooptions(m, 1, args.next_hop))
718		return;
719#endif /* IPSTEALTH */
720
721	/* Count the packet in the ip address stats */
722	if (ia != NULL) {
723		ia->ia_ifa.if_ipackets++;
724		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
725	}
726
727	/*
728	 * Attempt reassembly; if it succeeds, proceed.
729	 * ip_reass() will return a different mbuf.
730	 */
731	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
732		m = ip_reass(m);
733		if (m == NULL)
734			return;
735		ip = mtod(m, struct ip *);
736		/* Get the header length of the reassembled packet */
737		hlen = ip->ip_hl << 2;
738#ifdef IPDIVERT
739		/* Restore original checksum before diverting packet */
740		if (divert_find_info(m) != 0) {
741			ip->ip_len = htons(ip->ip_len);
742			ip->ip_off = htons(ip->ip_off);
743			ip->ip_sum = 0;
744			if (hlen == sizeof(struct ip))
745				ip->ip_sum = in_cksum_hdr(ip);
746			else
747				ip->ip_sum = in_cksum(m, hlen);
748			ip->ip_off = ntohs(ip->ip_off);
749			ip->ip_len = ntohs(ip->ip_len);
750		}
751#endif
752	}
753
754	/*
755	 * Further protocols expect the packet length to be w/o the
756	 * IP header.
757	 */
758	ip->ip_len -= hlen;
759
760#ifdef IPDIVERT
761	/*
762	 * Divert or tee packet to the divert protocol if required.
763	 */
764	divert_info = divert_find_info(m);
765	if (divert_info != 0) {
766		struct mbuf *clone;
767
768		/* Clone packet if we're doing a 'tee' */
769		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
770			clone = divert_clone(m);
771		else
772			clone = NULL;
773
774		/* Restore packet header fields to original values */
775		ip->ip_len += hlen;
776		ip->ip_len = htons(ip->ip_len);
777		ip->ip_off = htons(ip->ip_off);
778
779		/* Deliver packet to divert input routine */
780		divert_packet(m, 1);
781		ipstat.ips_delivered++;
782
783		/* If 'tee', continue with original packet */
784		if (clone == NULL)
785			return;
786		m = clone;
787		ip = mtod(m, struct ip *);
788		ip->ip_len += hlen;
789		/*
790		 * Jump backwards to complete processing of the
791		 * packet.  We do not need to clear args.next_hop
792		 * as that will not be used again and the cloned packet
793		 * doesn't contain a divert packet tag so we won't
794		 * re-entry this block.
795		 */
796		goto pass;
797	}
798#endif
799
800#ifdef IPSEC
801	/*
802	 * enforce IPsec policy checking if we are seeing last header.
803	 * note that we do not visit this with protocols with pcb layer
804	 * code - like udp/tcp/raw ip.
805	 */
806	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
807	    ipsec4_in_reject(m, NULL)) {
808		ipsecstat.in_polvio++;
809		goto bad;
810	}
811#endif
812#if FAST_IPSEC
813	/*
814	 * enforce IPsec policy checking if we are seeing last header.
815	 * note that we do not visit this with protocols with pcb layer
816	 * code - like udp/tcp/raw ip.
817	 */
818	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
819		/*
820		 * Check if the packet has already had IPsec processing
821		 * done.  If so, then just pass it along.  This tag gets
822		 * set during AH, ESP, etc. input handling, before the
823		 * packet is returned to the ip input queue for delivery.
824		 */
825		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
826		s = splnet();
827		if (mtag != NULL) {
828			tdbi = (struct tdb_ident *)(mtag + 1);
829			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
830		} else {
831			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
832						   IP_FORWARDING, &error);
833		}
834		if (sp != NULL) {
835			/*
836			 * Check security policy against packet attributes.
837			 */
838			error = ipsec_in_reject(sp, m);
839			KEY_FREESP(&sp);
840		} else {
841			/* XXX error stat??? */
842			error = EINVAL;
843DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
844			goto bad;
845		}
846		splx(s);
847		if (error)
848			goto bad;
849	}
850#endif /* FAST_IPSEC */
851
852	/*
853	 * Switch out to protocol's input routine.
854	 */
855	ipstat.ips_delivered++;
856	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
857		/* attach next hop info for TCP */
858		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
859		    sizeof(struct sockaddr_in *), M_NOWAIT);
860		if (mtag == NULL)
861			goto bad;
862		*(struct sockaddr_in **)(mtag+1) = args.next_hop;
863		m_tag_prepend(m, mtag);
864	}
865	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
866	return;
867bad:
868	m_freem(m);
869}
870
871/*
872 * Take incoming datagram fragment and try to reassemble it into
873 * whole datagram.  If the argument is the first fragment or one
874 * in between the function will return NULL and store the mbuf
875 * in the fragment chain.  If the argument is the last fragment
876 * the packet will be reassembled and the pointer to the new
877 * mbuf returned for further processing.  Only m_tags attached
878 * to the first packet/fragment are preserved.
879 * The IP header is *NOT* adjusted out of iplen.
880 */
881
882struct mbuf *
883ip_reass(struct mbuf *m)
884{
885	struct ip *ip;
886	struct mbuf *p, *q, *nq, *t;
887	struct ipq *fp = NULL;
888	struct ipqhead *head;
889	int i, hlen, next;
890	u_int8_t ecn, ecn0;
891	u_short hash;
892
893	/* If maxnipq is 0, never accept fragments. */
894	if (maxnipq == 0) {
895		ipstat.ips_fragments++;
896		ipstat.ips_fragdropped++;
897		goto dropfrag;
898	}
899
900	ip = mtod(m, struct ip *);
901	hlen = ip->ip_hl << 2;
902
903	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
904	head = &ipq[hash];
905	IPQ_LOCK();
906
907	/*
908	 * Look for queue of fragments
909	 * of this datagram.
910	 */
911	TAILQ_FOREACH(fp, head, ipq_list)
912		if (ip->ip_id == fp->ipq_id &&
913		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
914		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
915#ifdef MAC
916		    mac_fragment_match(m, fp) &&
917#endif
918		    ip->ip_p == fp->ipq_p)
919			goto found;
920
921	fp = NULL;
922
923	/*
924	 * Enforce upper bound on number of fragmented packets
925	 * for which we attempt reassembly;
926	 * If maxnipq is -1, accept all fragments without limitation.
927	 */
928	if ((nipq > maxnipq) && (maxnipq > 0)) {
929		/*
930		 * drop something from the tail of the current queue
931		 * before proceeding further
932		 */
933		struct ipq *q = TAILQ_LAST(head, ipqhead);
934		if (q == NULL) {   /* gak */
935			for (i = 0; i < IPREASS_NHASH; i++) {
936				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
937				if (r) {
938					ipstat.ips_fragtimeout += r->ipq_nfrags;
939					ip_freef(&ipq[i], r);
940					break;
941				}
942			}
943		} else {
944			ipstat.ips_fragtimeout += q->ipq_nfrags;
945			ip_freef(head, q);
946		}
947	}
948
949found:
950	/*
951	 * Adjust ip_len to not reflect header,
952	 * convert offset of this to bytes.
953	 */
954	ip->ip_len -= hlen;
955	if (ip->ip_off & IP_MF) {
956		/*
957		 * Make sure that fragments have a data length
958		 * that's a non-zero multiple of 8 bytes.
959		 */
960		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
961			IPQ_UNLOCK();
962			ipstat.ips_toosmall++; /* XXX */
963			goto dropfrag;
964		}
965		m->m_flags |= M_FRAG;
966	} else
967		m->m_flags &= ~M_FRAG;
968	ip->ip_off <<= 3;
969
970
971	/*
972	 * Attempt reassembly; if it succeeds, proceed.
973	 * ip_reass() will return a different mbuf.
974	 */
975	ipstat.ips_fragments++;
976	m->m_pkthdr.header = ip;
977
978	/* Previous ip_reass() started here. */
979	/*
980	 * Presence of header sizes in mbufs
981	 * would confuse code below.
982	 */
983	m->m_data += hlen;
984	m->m_len -= hlen;
985
986	/*
987	 * If first fragment to arrive, create a reassembly queue.
988	 */
989	if (fp == NULL) {
990		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
991			goto dropfrag;
992		fp = mtod(t, struct ipq *);
993#ifdef MAC
994		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
995			m_free(t);
996			goto dropfrag;
997		}
998		mac_create_ipq(m, fp);
999#endif
1000		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1001		nipq++;
1002		fp->ipq_nfrags = 1;
1003		fp->ipq_ttl = IPFRAGTTL;
1004		fp->ipq_p = ip->ip_p;
1005		fp->ipq_id = ip->ip_id;
1006		fp->ipq_src = ip->ip_src;
1007		fp->ipq_dst = ip->ip_dst;
1008		fp->ipq_frags = m;
1009		m->m_nextpkt = NULL;
1010		goto inserted;
1011	} else {
1012		fp->ipq_nfrags++;
1013#ifdef MAC
1014		mac_update_ipq(m, fp);
1015#endif
1016	}
1017
1018#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1019
1020	/*
1021	 * Handle ECN by comparing this segment with the first one;
1022	 * if CE is set, do not lose CE.
1023	 * drop if CE and not-ECT are mixed for the same packet.
1024	 */
1025	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1026	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1027	if (ecn == IPTOS_ECN_CE) {
1028		if (ecn0 == IPTOS_ECN_NOTECT)
1029			goto dropfrag;
1030		if (ecn0 != IPTOS_ECN_CE)
1031			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1032	}
1033	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1034		goto dropfrag;
1035
1036	/*
1037	 * Find a segment which begins after this one does.
1038	 */
1039	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1040		if (GETIP(q)->ip_off > ip->ip_off)
1041			break;
1042
1043	/*
1044	 * If there is a preceding segment, it may provide some of
1045	 * our data already.  If so, drop the data from the incoming
1046	 * segment.  If it provides all of our data, drop us, otherwise
1047	 * stick new segment in the proper place.
1048	 *
1049	 * If some of the data is dropped from the the preceding
1050	 * segment, then it's checksum is invalidated.
1051	 */
1052	if (p) {
1053		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1054		if (i > 0) {
1055			if (i >= ip->ip_len)
1056				goto dropfrag;
1057			m_adj(m, i);
1058			m->m_pkthdr.csum_flags = 0;
1059			ip->ip_off += i;
1060			ip->ip_len -= i;
1061		}
1062		m->m_nextpkt = p->m_nextpkt;
1063		p->m_nextpkt = m;
1064	} else {
1065		m->m_nextpkt = fp->ipq_frags;
1066		fp->ipq_frags = m;
1067	}
1068
1069	/*
1070	 * While we overlap succeeding segments trim them or,
1071	 * if they are completely covered, dequeue them.
1072	 */
1073	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1074	     q = nq) {
1075		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1076		if (i < GETIP(q)->ip_len) {
1077			GETIP(q)->ip_len -= i;
1078			GETIP(q)->ip_off += i;
1079			m_adj(q, i);
1080			q->m_pkthdr.csum_flags = 0;
1081			break;
1082		}
1083		nq = q->m_nextpkt;
1084		m->m_nextpkt = nq;
1085		ipstat.ips_fragdropped++;
1086		fp->ipq_nfrags--;
1087		m_freem(q);
1088	}
1089
1090inserted:
1091
1092#ifdef IPDIVERT
1093	if (ip->ip_off != 0) {
1094		/*
1095		 * Strip any divert information; only the info
1096		 * on the first fragment is used/kept.
1097		 */
1098		struct m_tag *mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
1099		if (mtag)
1100			m_tag_delete(m, mtag);
1101	}
1102#endif
1103
1104	/*
1105	 * Check for complete reassembly and perform frag per packet
1106	 * limiting.
1107	 *
1108	 * Frag limiting is performed here so that the nth frag has
1109	 * a chance to complete the packet before we drop the packet.
1110	 * As a result, n+1 frags are actually allowed per packet, but
1111	 * only n will ever be stored. (n = maxfragsperpacket.)
1112	 *
1113	 */
1114	next = 0;
1115	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1116		if (GETIP(q)->ip_off != next) {
1117			if (fp->ipq_nfrags > maxfragsperpacket) {
1118				ipstat.ips_fragdropped += fp->ipq_nfrags;
1119				ip_freef(head, fp);
1120			}
1121			goto done;
1122		}
1123		next += GETIP(q)->ip_len;
1124	}
1125	/* Make sure the last packet didn't have the IP_MF flag */
1126	if (p->m_flags & M_FRAG) {
1127		if (fp->ipq_nfrags > maxfragsperpacket) {
1128			ipstat.ips_fragdropped += fp->ipq_nfrags;
1129			ip_freef(head, fp);
1130		}
1131		goto done;
1132	}
1133
1134	/*
1135	 * Reassembly is complete.  Make sure the packet is a sane size.
1136	 */
1137	q = fp->ipq_frags;
1138	ip = GETIP(q);
1139	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1140		ipstat.ips_toolong++;
1141		ipstat.ips_fragdropped += fp->ipq_nfrags;
1142		ip_freef(head, fp);
1143		goto done;
1144	}
1145
1146	/*
1147	 * Concatenate fragments.
1148	 */
1149	m = q;
1150	t = m->m_next;
1151	m->m_next = 0;
1152	m_cat(m, t);
1153	nq = q->m_nextpkt;
1154	q->m_nextpkt = 0;
1155	for (q = nq; q != NULL; q = nq) {
1156		nq = q->m_nextpkt;
1157		q->m_nextpkt = NULL;
1158		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1159		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1160		m_cat(m, q);
1161	}
1162#ifdef MAC
1163	mac_create_datagram_from_ipq(fp, m);
1164	mac_destroy_ipq(fp);
1165#endif
1166
1167	/*
1168	 * Create header for new ip packet by modifying header of first
1169	 * packet;  dequeue and discard fragment reassembly header.
1170	 * Make header visible.
1171	 */
1172	ip->ip_len = (ip->ip_hl << 2) + next;
1173	ip->ip_src = fp->ipq_src;
1174	ip->ip_dst = fp->ipq_dst;
1175	TAILQ_REMOVE(head, fp, ipq_list);
1176	nipq--;
1177	(void) m_free(dtom(fp));
1178	m->m_len += (ip->ip_hl << 2);
1179	m->m_data -= (ip->ip_hl << 2);
1180	/* some debugging cruft by sklower, below, will go away soon */
1181	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1182		m_fixhdr(m);
1183	ipstat.ips_reassembled++;
1184	IPQ_UNLOCK();
1185	return (m);
1186
1187dropfrag:
1188	ipstat.ips_fragdropped++;
1189	if (fp != NULL)
1190		fp->ipq_nfrags--;
1191	m_freem(m);
1192done:
1193	IPQ_UNLOCK();
1194	return (NULL);
1195
1196#undef GETIP
1197}
1198
1199/*
1200 * Free a fragment reassembly header and all
1201 * associated datagrams.
1202 */
1203static void
1204ip_freef(fhp, fp)
1205	struct ipqhead *fhp;
1206	struct ipq *fp;
1207{
1208	register struct mbuf *q;
1209
1210	IPQ_LOCK_ASSERT();
1211
1212	while (fp->ipq_frags) {
1213		q = fp->ipq_frags;
1214		fp->ipq_frags = q->m_nextpkt;
1215		m_freem(q);
1216	}
1217	TAILQ_REMOVE(fhp, fp, ipq_list);
1218	(void) m_free(dtom(fp));
1219	nipq--;
1220}
1221
1222/*
1223 * IP timer processing;
1224 * if a timer expires on a reassembly
1225 * queue, discard it.
1226 */
1227void
1228ip_slowtimo()
1229{
1230	register struct ipq *fp;
1231	int s = splnet();
1232	int i;
1233
1234	IPQ_LOCK();
1235	for (i = 0; i < IPREASS_NHASH; i++) {
1236		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1237			struct ipq *fpp;
1238
1239			fpp = fp;
1240			fp = TAILQ_NEXT(fp, ipq_list);
1241			if(--fpp->ipq_ttl == 0) {
1242				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1243				ip_freef(&ipq[i], fpp);
1244			}
1245		}
1246	}
1247	/*
1248	 * If we are over the maximum number of fragments
1249	 * (due to the limit being lowered), drain off
1250	 * enough to get down to the new limit.
1251	 */
1252	if (maxnipq >= 0 && nipq > maxnipq) {
1253		for (i = 0; i < IPREASS_NHASH; i++) {
1254			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1255				ipstat.ips_fragdropped +=
1256				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1257				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1258			}
1259		}
1260	}
1261	IPQ_UNLOCK();
1262	splx(s);
1263}
1264
1265/*
1266 * Drain off all datagram fragments.
1267 */
1268void
1269ip_drain()
1270{
1271	int     i;
1272
1273	IPQ_LOCK();
1274	for (i = 0; i < IPREASS_NHASH; i++) {
1275		while(!TAILQ_EMPTY(&ipq[i])) {
1276			ipstat.ips_fragdropped +=
1277			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1278			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1279		}
1280	}
1281	IPQ_UNLOCK();
1282	in_rtqdrain();
1283}
1284
1285/*
1286 * Do option processing on a datagram,
1287 * possibly discarding it if bad options are encountered,
1288 * or forwarding it if source-routed.
1289 * The pass argument is used when operating in the IPSTEALTH
1290 * mode to tell what options to process:
1291 * [LS]SRR (pass 0) or the others (pass 1).
1292 * The reason for as many as two passes is that when doing IPSTEALTH,
1293 * non-routing options should be processed only if the packet is for us.
1294 * Returns 1 if packet has been forwarded/freed,
1295 * 0 if the packet should be processed further.
1296 */
1297static int
1298ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1299{
1300	struct ip *ip = mtod(m, struct ip *);
1301	u_char *cp;
1302	struct in_ifaddr *ia;
1303	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1304	struct in_addr *sin, dst;
1305	n_time ntime;
1306	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1307
1308	/* ignore or reject packets with IP options */
1309	if (ip_doopts == 0)
1310		return 0;
1311	else if (ip_doopts == 2) {
1312		type = ICMP_UNREACH;
1313		code = ICMP_UNREACH_FILTER_PROHIB;
1314		goto bad;
1315	}
1316
1317	dst = ip->ip_dst;
1318	cp = (u_char *)(ip + 1);
1319	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1320	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1321		opt = cp[IPOPT_OPTVAL];
1322		if (opt == IPOPT_EOL)
1323			break;
1324		if (opt == IPOPT_NOP)
1325			optlen = 1;
1326		else {
1327			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1328				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1329				goto bad;
1330			}
1331			optlen = cp[IPOPT_OLEN];
1332			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1333				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1334				goto bad;
1335			}
1336		}
1337		switch (opt) {
1338
1339		default:
1340			break;
1341
1342		/*
1343		 * Source routing with record.
1344		 * Find interface with current destination address.
1345		 * If none on this machine then drop if strictly routed,
1346		 * or do nothing if loosely routed.
1347		 * Record interface address and bring up next address
1348		 * component.  If strictly routed make sure next
1349		 * address is on directly accessible net.
1350		 */
1351		case IPOPT_LSRR:
1352		case IPOPT_SSRR:
1353#ifdef IPSTEALTH
1354			if (ipstealth && pass > 0)
1355				break;
1356#endif
1357			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1358				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1359				goto bad;
1360			}
1361			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1362				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1363				goto bad;
1364			}
1365			ipaddr.sin_addr = ip->ip_dst;
1366			ia = (struct in_ifaddr *)
1367				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1368			if (ia == 0) {
1369				if (opt == IPOPT_SSRR) {
1370					type = ICMP_UNREACH;
1371					code = ICMP_UNREACH_SRCFAIL;
1372					goto bad;
1373				}
1374				if (!ip_dosourceroute)
1375					goto nosourcerouting;
1376				/*
1377				 * Loose routing, and not at next destination
1378				 * yet; nothing to do except forward.
1379				 */
1380				break;
1381			}
1382			off--;			/* 0 origin */
1383			if (off > optlen - (int)sizeof(struct in_addr)) {
1384				/*
1385				 * End of source route.  Should be for us.
1386				 */
1387				if (!ip_acceptsourceroute)
1388					goto nosourcerouting;
1389				save_rte(cp, ip->ip_src);
1390				break;
1391			}
1392#ifdef IPSTEALTH
1393			if (ipstealth)
1394				goto dropit;
1395#endif
1396			if (!ip_dosourceroute) {
1397				if (ipforwarding) {
1398					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1399					/*
1400					 * Acting as a router, so generate ICMP
1401					 */
1402nosourcerouting:
1403					strcpy(buf, inet_ntoa(ip->ip_dst));
1404					log(LOG_WARNING,
1405					    "attempted source route from %s to %s\n",
1406					    inet_ntoa(ip->ip_src), buf);
1407					type = ICMP_UNREACH;
1408					code = ICMP_UNREACH_SRCFAIL;
1409					goto bad;
1410				} else {
1411					/*
1412					 * Not acting as a router, so silently drop.
1413					 */
1414#ifdef IPSTEALTH
1415dropit:
1416#endif
1417					ipstat.ips_cantforward++;
1418					m_freem(m);
1419					return (1);
1420				}
1421			}
1422
1423			/*
1424			 * locate outgoing interface
1425			 */
1426			(void)memcpy(&ipaddr.sin_addr, cp + off,
1427			    sizeof(ipaddr.sin_addr));
1428
1429			if (opt == IPOPT_SSRR) {
1430#define	INA	struct in_ifaddr *
1431#define	SA	struct sockaddr *
1432			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1433				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1434			} else
1435				ia = ip_rtaddr(ipaddr.sin_addr);
1436			if (ia == 0) {
1437				type = ICMP_UNREACH;
1438				code = ICMP_UNREACH_SRCFAIL;
1439				goto bad;
1440			}
1441			ip->ip_dst = ipaddr.sin_addr;
1442			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1443			    sizeof(struct in_addr));
1444			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1445			/*
1446			 * Let ip_intr's mcast routing check handle mcast pkts
1447			 */
1448			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1449			break;
1450
1451		case IPOPT_RR:
1452#ifdef IPSTEALTH
1453			if (ipstealth && pass == 0)
1454				break;
1455#endif
1456			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1457				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1458				goto bad;
1459			}
1460			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1461				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1462				goto bad;
1463			}
1464			/*
1465			 * If no space remains, ignore.
1466			 */
1467			off--;			/* 0 origin */
1468			if (off > optlen - (int)sizeof(struct in_addr))
1469				break;
1470			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1471			    sizeof(ipaddr.sin_addr));
1472			/*
1473			 * locate outgoing interface; if we're the destination,
1474			 * use the incoming interface (should be same).
1475			 */
1476			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1477			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1478				type = ICMP_UNREACH;
1479				code = ICMP_UNREACH_HOST;
1480				goto bad;
1481			}
1482			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1483			    sizeof(struct in_addr));
1484			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1485			break;
1486
1487		case IPOPT_TS:
1488#ifdef IPSTEALTH
1489			if (ipstealth && pass == 0)
1490				break;
1491#endif
1492			code = cp - (u_char *)ip;
1493			if (optlen < 4 || optlen > 40) {
1494				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1495				goto bad;
1496			}
1497			if ((off = cp[IPOPT_OFFSET]) < 5) {
1498				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1499				goto bad;
1500			}
1501			if (off > optlen - (int)sizeof(int32_t)) {
1502				cp[IPOPT_OFFSET + 1] += (1 << 4);
1503				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1504					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1505					goto bad;
1506				}
1507				break;
1508			}
1509			off--;				/* 0 origin */
1510			sin = (struct in_addr *)(cp + off);
1511			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1512
1513			case IPOPT_TS_TSONLY:
1514				break;
1515
1516			case IPOPT_TS_TSANDADDR:
1517				if (off + sizeof(n_time) +
1518				    sizeof(struct in_addr) > optlen) {
1519					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1520					goto bad;
1521				}
1522				ipaddr.sin_addr = dst;
1523				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1524							    m->m_pkthdr.rcvif);
1525				if (ia == 0)
1526					continue;
1527				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1528				    sizeof(struct in_addr));
1529				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1530				off += sizeof(struct in_addr);
1531				break;
1532
1533			case IPOPT_TS_PRESPEC:
1534				if (off + sizeof(n_time) +
1535				    sizeof(struct in_addr) > optlen) {
1536					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1537					goto bad;
1538				}
1539				(void)memcpy(&ipaddr.sin_addr, sin,
1540				    sizeof(struct in_addr));
1541				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1542					continue;
1543				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1544				off += sizeof(struct in_addr);
1545				break;
1546
1547			default:
1548				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1549				goto bad;
1550			}
1551			ntime = iptime();
1552			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1553			cp[IPOPT_OFFSET] += sizeof(n_time);
1554		}
1555	}
1556	if (forward && ipforwarding) {
1557		ip_forward(m, 1, next_hop);
1558		return (1);
1559	}
1560	return (0);
1561bad:
1562	icmp_error(m, type, code, 0, 0);
1563	ipstat.ips_badoptions++;
1564	return (1);
1565}
1566
1567/*
1568 * Given address of next destination (final or next hop),
1569 * return internet address info of interface to be used to get there.
1570 */
1571struct in_ifaddr *
1572ip_rtaddr(dst)
1573	struct in_addr dst;
1574{
1575	struct route sro;
1576	struct sockaddr_in *sin;
1577	struct in_ifaddr *ifa;
1578
1579	bzero(&sro, sizeof(sro));
1580	sin = (struct sockaddr_in *)&sro.ro_dst;
1581	sin->sin_family = AF_INET;
1582	sin->sin_len = sizeof(*sin);
1583	sin->sin_addr = dst;
1584	rtalloc_ign(&sro, RTF_CLONING);
1585
1586	if (sro.ro_rt == NULL)
1587		return ((struct in_ifaddr *)0);
1588
1589	ifa = ifatoia(sro.ro_rt->rt_ifa);
1590	RTFREE(sro.ro_rt);
1591	return ifa;
1592}
1593
1594/*
1595 * Save incoming source route for use in replies,
1596 * to be picked up later by ip_srcroute if the receiver is interested.
1597 */
1598static void
1599save_rte(option, dst)
1600	u_char *option;
1601	struct in_addr dst;
1602{
1603	unsigned olen;
1604
1605	olen = option[IPOPT_OLEN];
1606#ifdef DIAGNOSTIC
1607	if (ipprintfs)
1608		printf("save_rte: olen %d\n", olen);
1609#endif
1610	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1611		return;
1612	bcopy(option, ip_srcrt.srcopt, olen);
1613	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1614	ip_srcrt.dst = dst;
1615}
1616
1617/*
1618 * Retrieve incoming source route for use in replies,
1619 * in the same form used by setsockopt.
1620 * The first hop is placed before the options, will be removed later.
1621 */
1622struct mbuf *
1623ip_srcroute()
1624{
1625	register struct in_addr *p, *q;
1626	register struct mbuf *m;
1627
1628	if (ip_nhops == 0)
1629		return ((struct mbuf *)0);
1630	m = m_get(M_DONTWAIT, MT_HEADER);
1631	if (m == 0)
1632		return ((struct mbuf *)0);
1633
1634#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1635
1636	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1637	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1638	    OPTSIZ;
1639#ifdef DIAGNOSTIC
1640	if (ipprintfs)
1641		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1642#endif
1643
1644	/*
1645	 * First save first hop for return route
1646	 */
1647	p = &ip_srcrt.route[ip_nhops - 1];
1648	*(mtod(m, struct in_addr *)) = *p--;
1649#ifdef DIAGNOSTIC
1650	if (ipprintfs)
1651		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1652#endif
1653
1654	/*
1655	 * Copy option fields and padding (nop) to mbuf.
1656	 */
1657	ip_srcrt.nop = IPOPT_NOP;
1658	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1659	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1660	    &ip_srcrt.nop, OPTSIZ);
1661	q = (struct in_addr *)(mtod(m, caddr_t) +
1662	    sizeof(struct in_addr) + OPTSIZ);
1663#undef OPTSIZ
1664	/*
1665	 * Record return path as an IP source route,
1666	 * reversing the path (pointers are now aligned).
1667	 */
1668	while (p >= ip_srcrt.route) {
1669#ifdef DIAGNOSTIC
1670		if (ipprintfs)
1671			printf(" %lx", (u_long)ntohl(q->s_addr));
1672#endif
1673		*q++ = *p--;
1674	}
1675	/*
1676	 * Last hop goes to final destination.
1677	 */
1678	*q = ip_srcrt.dst;
1679#ifdef DIAGNOSTIC
1680	if (ipprintfs)
1681		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1682#endif
1683	return (m);
1684}
1685
1686/*
1687 * Strip out IP options, at higher
1688 * level protocol in the kernel.
1689 * Second argument is buffer to which options
1690 * will be moved, and return value is their length.
1691 * XXX should be deleted; last arg currently ignored.
1692 */
1693void
1694ip_stripoptions(m, mopt)
1695	register struct mbuf *m;
1696	struct mbuf *mopt;
1697{
1698	register int i;
1699	struct ip *ip = mtod(m, struct ip *);
1700	register caddr_t opts;
1701	int olen;
1702
1703	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1704	opts = (caddr_t)(ip + 1);
1705	i = m->m_len - (sizeof (struct ip) + olen);
1706	bcopy(opts + olen, opts, (unsigned)i);
1707	m->m_len -= olen;
1708	if (m->m_flags & M_PKTHDR)
1709		m->m_pkthdr.len -= olen;
1710	ip->ip_v = IPVERSION;
1711	ip->ip_hl = sizeof(struct ip) >> 2;
1712}
1713
1714u_char inetctlerrmap[PRC_NCMDS] = {
1715	0,		0,		0,		0,
1716	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1717	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1718	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1719	0,		0,		EHOSTUNREACH,	0,
1720	ENOPROTOOPT,	ECONNREFUSED
1721};
1722
1723/*
1724 * Forward a packet.  If some error occurs return the sender
1725 * an icmp packet.  Note we can't always generate a meaningful
1726 * icmp message because icmp doesn't have a large enough repertoire
1727 * of codes and types.
1728 *
1729 * If not forwarding, just drop the packet.  This could be confusing
1730 * if ipforwarding was zero but some routing protocol was advancing
1731 * us as a gateway to somewhere.  However, we must let the routing
1732 * protocol deal with that.
1733 *
1734 * The srcrt parameter indicates whether the packet is being forwarded
1735 * via a source route.
1736 */
1737static void
1738ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1739{
1740	struct ip *ip = mtod(m, struct ip *);
1741	struct in_ifaddr *ia;
1742	int error, type = 0, code = 0;
1743	struct mbuf *mcopy;
1744	n_long dest;
1745	struct in_addr pkt_dst;
1746	struct ifnet *destifp;
1747#if defined(IPSEC) || defined(FAST_IPSEC)
1748	struct ifnet dummyifp;
1749#endif
1750
1751	/*
1752	 * Cache the destination address of the packet; this may be
1753	 * changed by use of 'ipfw fwd'.
1754	 */
1755	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1756
1757#ifdef DIAGNOSTIC
1758	if (ipprintfs)
1759		printf("forward: src %lx dst %lx ttl %x\n",
1760		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1761		    ip->ip_ttl);
1762#endif
1763
1764
1765	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1766		ipstat.ips_cantforward++;
1767		m_freem(m);
1768		return;
1769	}
1770#ifdef IPSTEALTH
1771	if (!ipstealth) {
1772#endif
1773		if (ip->ip_ttl <= IPTTLDEC) {
1774			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1775			    0, 0);
1776			return;
1777		}
1778#ifdef IPSTEALTH
1779	}
1780#endif
1781
1782	if ((ia = ip_rtaddr(pkt_dst)) == 0) {
1783		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1784		return;
1785	}
1786
1787	/*
1788	 * Save the IP header and at most 8 bytes of the payload,
1789	 * in case we need to generate an ICMP message to the src.
1790	 *
1791	 * XXX this can be optimized a lot by saving the data in a local
1792	 * buffer on the stack (72 bytes at most), and only allocating the
1793	 * mbuf if really necessary. The vast majority of the packets
1794	 * are forwarded without having to send an ICMP back (either
1795	 * because unnecessary, or because rate limited), so we are
1796	 * really we are wasting a lot of work here.
1797	 *
1798	 * We don't use m_copy() because it might return a reference
1799	 * to a shared cluster. Both this function and ip_output()
1800	 * assume exclusive access to the IP header in `m', so any
1801	 * data in a cluster may change before we reach icmp_error().
1802	 */
1803	MGET(mcopy, M_DONTWAIT, m->m_type);
1804	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1805		/*
1806		 * It's probably ok if the pkthdr dup fails (because
1807		 * the deep copy of the tag chain failed), but for now
1808		 * be conservative and just discard the copy since
1809		 * code below may some day want the tags.
1810		 */
1811		m_free(mcopy);
1812		mcopy = NULL;
1813	}
1814	if (mcopy != NULL) {
1815		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1816		    (int)ip->ip_len);
1817		mcopy->m_pkthdr.len = mcopy->m_len;
1818		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1819	}
1820
1821#ifdef IPSTEALTH
1822	if (!ipstealth) {
1823#endif
1824		ip->ip_ttl -= IPTTLDEC;
1825#ifdef IPSTEALTH
1826	}
1827#endif
1828
1829	/*
1830	 * If forwarding packet using same interface that it came in on,
1831	 * perhaps should send a redirect to sender to shortcut a hop.
1832	 * Only send redirect if source is sending directly to us,
1833	 * and if packet was not source routed (or has any options).
1834	 * Also, don't send redirect if forwarding using a default route
1835	 * or a route modified by a redirect.
1836	 */
1837	dest = 0;
1838	if (ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1839		struct sockaddr_in *sin;
1840		struct route ro;
1841		struct rtentry *rt;
1842
1843		bzero(&ro, sizeof(ro));
1844		sin = (struct sockaddr_in *)&ro.ro_dst;
1845		sin->sin_family = AF_INET;
1846		sin->sin_len = sizeof(*sin);
1847		sin->sin_addr = pkt_dst;
1848		rtalloc_ign(&ro, RTF_CLONING);
1849
1850		rt = ro.ro_rt;
1851
1852		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1853		    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1854		    ipsendredirects && !srcrt && !next_hop) {
1855#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1856			u_long src = ntohl(ip->ip_src.s_addr);
1857
1858			if (RTA(rt) &&
1859			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1860				if (rt->rt_flags & RTF_GATEWAY)
1861					dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1862				else
1863					dest = pkt_dst.s_addr;
1864				/* Router requirements says to only send host redirects */
1865				type = ICMP_REDIRECT;
1866				code = ICMP_REDIRECT_HOST;
1867#ifdef DIAGNOSTIC
1868				if (ipprintfs)
1869					printf("redirect (%d) to %lx\n", code, (u_long)dest);
1870#endif
1871			}
1872		}
1873		if (rt)
1874			RTFREE(rt);
1875	}
1876
1877	if (next_hop) {
1878		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
1879		    sizeof(struct sockaddr_in *), M_NOWAIT);
1880		if (mtag == NULL) {
1881			m_freem(m);
1882			return;
1883		}
1884		*(struct sockaddr_in **)(mtag+1) = next_hop;
1885		m_tag_prepend(m, mtag);
1886	}
1887	error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
1888	if (error)
1889		ipstat.ips_cantforward++;
1890	else {
1891		ipstat.ips_forward++;
1892		if (type)
1893			ipstat.ips_redirectsent++;
1894		else {
1895			if (mcopy)
1896				m_freem(mcopy);
1897			return;
1898		}
1899	}
1900	if (mcopy == NULL)
1901		return;
1902	destifp = NULL;
1903
1904	switch (error) {
1905
1906	case 0:				/* forwarded, but need redirect */
1907		/* type, code set above */
1908		break;
1909
1910	case ENETUNREACH:		/* shouldn't happen, checked above */
1911	case EHOSTUNREACH:
1912	case ENETDOWN:
1913	case EHOSTDOWN:
1914	default:
1915		type = ICMP_UNREACH;
1916		code = ICMP_UNREACH_HOST;
1917		break;
1918
1919	case EMSGSIZE:
1920		type = ICMP_UNREACH;
1921		code = ICMP_UNREACH_NEEDFRAG;
1922#if defined(IPSEC) || defined(FAST_IPSEC)
1923		/*
1924		 * If the packet is routed over IPsec tunnel, tell the
1925		 * originator the tunnel MTU.
1926		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1927		 * XXX quickhack!!!
1928		 */
1929		{
1930			struct secpolicy *sp = NULL;
1931			int ipsecerror;
1932			int ipsechdr;
1933			struct route *ro;
1934
1935#ifdef IPSEC
1936			sp = ipsec4_getpolicybyaddr(mcopy,
1937						    IPSEC_DIR_OUTBOUND,
1938						    IP_FORWARDING,
1939						    &ipsecerror);
1940#else /* FAST_IPSEC */
1941			sp = ipsec_getpolicybyaddr(mcopy,
1942						   IPSEC_DIR_OUTBOUND,
1943						   IP_FORWARDING,
1944						   &ipsecerror);
1945#endif
1946			if (sp != NULL) {
1947				/* count IPsec header size */
1948				ipsechdr = ipsec4_hdrsiz(mcopy,
1949							 IPSEC_DIR_OUTBOUND,
1950							 NULL);
1951
1952				/*
1953				 * find the correct route for outer IPv4
1954				 * header, compute tunnel MTU.
1955				 *
1956				 * XXX BUG ALERT
1957				 * The "dummyifp" code relies upon the fact
1958				 * that icmp_error() touches only ifp->if_mtu.
1959				 */
1960				/*XXX*/
1961				destifp = NULL;
1962				if (sp->req != NULL
1963				 && sp->req->sav != NULL
1964				 && sp->req->sav->sah != NULL) {
1965					ro = &sp->req->sav->sah->sa_route;
1966					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1967						dummyifp.if_mtu =
1968						    ro->ro_rt->rt_rmx.rmx_mtu ?
1969						    ro->ro_rt->rt_rmx.rmx_mtu :
1970						    ro->ro_rt->rt_ifp->if_mtu;
1971						dummyifp.if_mtu -= ipsechdr;
1972						destifp = &dummyifp;
1973					}
1974				}
1975
1976#ifdef IPSEC
1977				key_freesp(sp);
1978#else /* FAST_IPSEC */
1979				KEY_FREESP(&sp);
1980#endif
1981				ipstat.ips_cantfrag++;
1982				break;
1983			} else
1984#endif /*IPSEC || FAST_IPSEC*/
1985		destifp = ia->ia_ifp;
1986#if defined(IPSEC) || defined(FAST_IPSEC)
1987		}
1988#endif /*IPSEC || FAST_IPSEC*/
1989		ipstat.ips_cantfrag++;
1990		break;
1991
1992	case ENOBUFS:
1993		/*
1994		 * A router should not generate ICMP_SOURCEQUENCH as
1995		 * required in RFC1812 Requirements for IP Version 4 Routers.
1996		 * Source quench could be a big problem under DoS attacks,
1997		 * or if the underlying interface is rate-limited.
1998		 * Those who need source quench packets may re-enable them
1999		 * via the net.inet.ip.sendsourcequench sysctl.
2000		 */
2001		if (ip_sendsourcequench == 0) {
2002			m_freem(mcopy);
2003			return;
2004		} else {
2005			type = ICMP_SOURCEQUENCH;
2006			code = 0;
2007		}
2008		break;
2009
2010	case EACCES:			/* ipfw denied packet */
2011		m_freem(mcopy);
2012		return;
2013	}
2014	icmp_error(mcopy, type, code, dest, destifp);
2015}
2016
2017void
2018ip_savecontrol(inp, mp, ip, m)
2019	register struct inpcb *inp;
2020	register struct mbuf **mp;
2021	register struct ip *ip;
2022	register struct mbuf *m;
2023{
2024	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
2025		struct bintime bt;
2026
2027		bintime(&bt);
2028		if (inp->inp_socket->so_options & SO_BINTIME) {
2029			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
2030			SCM_BINTIME, SOL_SOCKET);
2031			if (*mp)
2032				mp = &(*mp)->m_next;
2033		}
2034		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2035			struct timeval tv;
2036
2037			bintime2timeval(&bt, &tv);
2038			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2039				SCM_TIMESTAMP, SOL_SOCKET);
2040			if (*mp)
2041				mp = &(*mp)->m_next;
2042		}
2043	}
2044	if (inp->inp_flags & INP_RECVDSTADDR) {
2045		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2046		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2047		if (*mp)
2048			mp = &(*mp)->m_next;
2049	}
2050	if (inp->inp_flags & INP_RECVTTL) {
2051		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2052		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2053		if (*mp)
2054			mp = &(*mp)->m_next;
2055	}
2056#ifdef notyet
2057	/* XXX
2058	 * Moving these out of udp_input() made them even more broken
2059	 * than they already were.
2060	 */
2061	/* options were tossed already */
2062	if (inp->inp_flags & INP_RECVOPTS) {
2063		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2064		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2065		if (*mp)
2066			mp = &(*mp)->m_next;
2067	}
2068	/* ip_srcroute doesn't do what we want here, need to fix */
2069	if (inp->inp_flags & INP_RECVRETOPTS) {
2070		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2071		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2072		if (*mp)
2073			mp = &(*mp)->m_next;
2074	}
2075#endif
2076	if (inp->inp_flags & INP_RECVIF) {
2077		struct ifnet *ifp;
2078		struct sdlbuf {
2079			struct sockaddr_dl sdl;
2080			u_char	pad[32];
2081		} sdlbuf;
2082		struct sockaddr_dl *sdp;
2083		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2084
2085		if (((ifp = m->m_pkthdr.rcvif))
2086		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2087			sdp = (struct sockaddr_dl *)
2088			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2089			/*
2090			 * Change our mind and don't try copy.
2091			 */
2092			if ((sdp->sdl_family != AF_LINK)
2093			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2094				goto makedummy;
2095			}
2096			bcopy(sdp, sdl2, sdp->sdl_len);
2097		} else {
2098makedummy:
2099			sdl2->sdl_len
2100				= offsetof(struct sockaddr_dl, sdl_data[0]);
2101			sdl2->sdl_family = AF_LINK;
2102			sdl2->sdl_index = 0;
2103			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2104		}
2105		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2106			IP_RECVIF, IPPROTO_IP);
2107		if (*mp)
2108			mp = &(*mp)->m_next;
2109	}
2110}
2111
2112/*
2113 * XXX these routines are called from the upper part of the kernel.
2114 * They need to be locked when we remove Giant.
2115 *
2116 * They could also be moved to ip_mroute.c, since all the RSVP
2117 *  handling is done there already.
2118 */
2119static int ip_rsvp_on;
2120struct socket *ip_rsvpd;
2121int
2122ip_rsvp_init(struct socket *so)
2123{
2124	if (so->so_type != SOCK_RAW ||
2125	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2126		return EOPNOTSUPP;
2127
2128	if (ip_rsvpd != NULL)
2129		return EADDRINUSE;
2130
2131	ip_rsvpd = so;
2132	/*
2133	 * This may seem silly, but we need to be sure we don't over-increment
2134	 * the RSVP counter, in case something slips up.
2135	 */
2136	if (!ip_rsvp_on) {
2137		ip_rsvp_on = 1;
2138		rsvp_on++;
2139	}
2140
2141	return 0;
2142}
2143
2144int
2145ip_rsvp_done(void)
2146{
2147	ip_rsvpd = NULL;
2148	/*
2149	 * This may seem silly, but we need to be sure we don't over-decrement
2150	 * the RSVP counter, in case something slips up.
2151	 */
2152	if (ip_rsvp_on) {
2153		ip_rsvp_on = 0;
2154		rsvp_on--;
2155	}
2156	return 0;
2157}
2158
2159void
2160rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2161{
2162	if (rsvp_input_p) { /* call the real one if loaded */
2163		rsvp_input_p(m, off);
2164		return;
2165	}
2166
2167	/* Can still get packets with rsvp_on = 0 if there is a local member
2168	 * of the group to which the RSVP packet is addressed.  But in this
2169	 * case we want to throw the packet away.
2170	 */
2171
2172	if (!rsvp_on) {
2173		m_freem(m);
2174		return;
2175	}
2176
2177	if (ip_rsvpd != NULL) {
2178		rip_input(m, off);
2179		return;
2180	}
2181	/* Drop the packet */
2182	m_freem(m);
2183}
2184