ip_fw.h revision 169245
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw.h 169245 2007-05-04 11:15:41Z bz $
26 */
27
28#ifndef _IPFW2_H
29#define _IPFW2_H
30
31/*
32 * The kernel representation of ipfw rules is made of a list of
33 * 'instructions' (for all practical purposes equivalent to BPF
34 * instructions), which specify which fields of the packet
35 * (or its metadata) should be analysed.
36 *
37 * Each instruction is stored in a structure which begins with
38 * "ipfw_insn", and can contain extra fields depending on the
39 * instruction type (listed below).
40 * Note that the code is written so that individual instructions
41 * have a size which is a multiple of 32 bits. This means that, if
42 * such structures contain pointers or other 64-bit entities,
43 * (there is just one instance now) they may end up unaligned on
44 * 64-bit architectures, so the must be handled with care.
45 *
46 * "enum ipfw_opcodes" are the opcodes supported. We can have up
47 * to 256 different opcodes. When adding new opcodes, they should
48 * be appended to the end of the opcode list before O_LAST_OPCODE,
49 * this will prevent the ABI from being broken, otherwise users
50 * will have to recompile ipfw(8) when they update the kernel.
51 */
52
53enum ipfw_opcodes {		/* arguments (4 byte each)	*/
54	O_NOP,
55
56	O_IP_SRC,		/* u32 = IP			*/
57	O_IP_SRC_MASK,		/* ip = IP/mask			*/
58	O_IP_SRC_ME,		/* none				*/
59	O_IP_SRC_SET,		/* u32=base, arg1=len, bitmap	*/
60
61	O_IP_DST,		/* u32 = IP			*/
62	O_IP_DST_MASK,		/* ip = IP/mask			*/
63	O_IP_DST_ME,		/* none				*/
64	O_IP_DST_SET,		/* u32=base, arg1=len, bitmap	*/
65
66	O_IP_SRCPORT,		/* (n)port list:mask 4 byte ea	*/
67	O_IP_DSTPORT,		/* (n)port list:mask 4 byte ea	*/
68	O_PROTO,		/* arg1=protocol		*/
69
70	O_MACADDR2,		/* 2 mac addr:mask		*/
71	O_MAC_TYPE,		/* same as srcport		*/
72
73	O_LAYER2,		/* none				*/
74	O_IN,			/* none				*/
75	O_FRAG,			/* none				*/
76
77	O_RECV,			/* none				*/
78	O_XMIT,			/* none				*/
79	O_VIA,			/* none				*/
80
81	O_IPOPT,		/* arg1 = 2*u8 bitmap		*/
82	O_IPLEN,		/* arg1 = len			*/
83	O_IPID,			/* arg1 = id			*/
84
85	O_IPTOS,		/* arg1 = id			*/
86	O_IPPRECEDENCE,		/* arg1 = precedence << 5	*/
87	O_IPTTL,		/* arg1 = TTL			*/
88
89	O_IPVER,		/* arg1 = version		*/
90	O_UID,			/* u32 = id			*/
91	O_GID,			/* u32 = id			*/
92	O_ESTAB,		/* none (tcp established)	*/
93	O_TCPFLAGS,		/* arg1 = 2*u8 bitmap		*/
94	O_TCPWIN,		/* arg1 = desired win		*/
95	O_TCPSEQ,		/* u32 = desired seq.		*/
96	O_TCPACK,		/* u32 = desired seq.		*/
97	O_ICMPTYPE,		/* u32 = icmp bitmap		*/
98	O_TCPOPTS,		/* arg1 = 2*u8 bitmap		*/
99
100	O_VERREVPATH,		/* none				*/
101	O_VERSRCREACH,		/* none				*/
102
103	O_PROBE_STATE,		/* none				*/
104	O_KEEP_STATE,		/* none				*/
105	O_LIMIT,		/* ipfw_insn_limit		*/
106	O_LIMIT_PARENT,		/* dyn_type, not an opcode.	*/
107
108	/*
109	 * These are really 'actions'.
110	 */
111
112	O_LOG,			/* ipfw_insn_log		*/
113	O_PROB,			/* u32 = match probability	*/
114
115	O_CHECK_STATE,		/* none				*/
116	O_ACCEPT,		/* none				*/
117	O_DENY,			/* none 			*/
118	O_REJECT,		/* arg1=icmp arg (same as deny)	*/
119	O_COUNT,		/* none				*/
120	O_SKIPTO,		/* arg1=next rule number	*/
121	O_PIPE,			/* arg1=pipe number		*/
122	O_QUEUE,		/* arg1=queue number		*/
123	O_DIVERT,		/* arg1=port number		*/
124	O_TEE,			/* arg1=port number		*/
125	O_FORWARD_IP,		/* fwd sockaddr			*/
126	O_FORWARD_MAC,		/* fwd mac			*/
127	O_NAT,                  /* nope                         */
128
129	/*
130	 * More opcodes.
131	 */
132	O_IPSEC,		/* has ipsec history 		*/
133	O_IP_SRC_LOOKUP,	/* arg1=table number, u32=value	*/
134	O_IP_DST_LOOKUP,	/* arg1=table number, u32=value	*/
135	O_ANTISPOOF,		/* none				*/
136	O_JAIL,			/* u32 = id			*/
137	O_ALTQ,			/* u32 = altq classif. qid	*/
138	O_DIVERTED,		/* arg1=bitmap (1:loop, 2:out)	*/
139	O_TCPDATALEN,		/* arg1 = tcp data len		*/
140	O_IP6_SRC,		/* address without mask		*/
141	O_IP6_SRC_ME,		/* my addresses			*/
142	O_IP6_SRC_MASK,		/* address with the mask	*/
143	O_IP6_DST,
144	O_IP6_DST_ME,
145	O_IP6_DST_MASK,
146	O_FLOW6ID,		/* for flow id tag in the ipv6 pkt */
147	O_ICMP6TYPE,		/* icmp6 packet type filtering	*/
148	O_EXT_HDR,		/* filtering for ipv6 extension header */
149	O_IP6,
150
151	/*
152	 * actions for ng_ipfw
153	 */
154	O_NETGRAPH,		/* send to ng_ipfw		*/
155	O_NGTEE,		/* copy to ng_ipfw		*/
156
157	O_IP4,
158
159	O_UNREACH6,		/* arg1=icmpv6 code arg (deny)  */
160
161	O_TAG,   		/* arg1=tag number */
162	O_TAGGED,		/* arg1=tag number */
163
164	O_LAST_OPCODE		/* not an opcode!		*/
165};
166
167/*
168 * The extension header are filtered only for presence using a bit
169 * vector with a flag for each header.
170 */
171#define EXT_FRAGMENT	0x1
172#define EXT_HOPOPTS	0x2
173#define EXT_ROUTING	0x4
174#define EXT_AH		0x8
175#define EXT_ESP		0x10
176#define EXT_DSTOPTS	0x20
177#define EXT_RTHDR0		0x40
178#define EXT_RTHDR2		0x80
179
180/*
181 * Template for instructions.
182 *
183 * ipfw_insn is used for all instructions which require no operands,
184 * a single 16-bit value (arg1), or a couple of 8-bit values.
185 *
186 * For other instructions which require different/larger arguments
187 * we have derived structures, ipfw_insn_*.
188 *
189 * The size of the instruction (in 32-bit words) is in the low
190 * 6 bits of "len". The 2 remaining bits are used to implement
191 * NOT and OR on individual instructions. Given a type, you can
192 * compute the length to be put in "len" using F_INSN_SIZE(t)
193 *
194 * F_NOT	negates the match result of the instruction.
195 *
196 * F_OR		is used to build or blocks. By default, instructions
197 *		are evaluated as part of a logical AND. An "or" block
198 *		{ X or Y or Z } contains F_OR set in all but the last
199 *		instruction of the block. A match will cause the code
200 *		to skip past the last instruction of the block.
201 *
202 * NOTA BENE: in a couple of places we assume that
203 *	sizeof(ipfw_insn) == sizeof(u_int32_t)
204 * this needs to be fixed.
205 *
206 */
207typedef struct	_ipfw_insn {	/* template for instructions */
208	enum ipfw_opcodes	opcode:8;
209	u_int8_t	len;	/* numer of 32-byte words */
210#define	F_NOT		0x80
211#define	F_OR		0x40
212#define	F_LEN_MASK	0x3f
213#define	F_LEN(cmd)	((cmd)->len & F_LEN_MASK)
214
215	u_int16_t	arg1;
216} ipfw_insn;
217
218/*
219 * The F_INSN_SIZE(type) computes the size, in 4-byte words, of
220 * a given type.
221 */
222#define	F_INSN_SIZE(t)	((sizeof (t))/sizeof(u_int32_t))
223
224#define MTAG_IPFW	1148380143	/* IPFW-tagged cookie */
225
226/*
227 * This is used to store an array of 16-bit entries (ports etc.)
228 */
229typedef struct	_ipfw_insn_u16 {
230	ipfw_insn o;
231	u_int16_t ports[2];	/* there may be more */
232} ipfw_insn_u16;
233
234/*
235 * This is used to store an array of 32-bit entries
236 * (uid, single IPv4 addresses etc.)
237 */
238typedef struct	_ipfw_insn_u32 {
239	ipfw_insn o;
240	u_int32_t d[1];	/* one or more */
241} ipfw_insn_u32;
242
243/*
244 * This is used to store IP addr-mask pairs.
245 */
246typedef struct	_ipfw_insn_ip {
247	ipfw_insn o;
248	struct in_addr	addr;
249	struct in_addr	mask;
250} ipfw_insn_ip;
251
252/*
253 * This is used to forward to a given address (ip).
254 */
255typedef struct  _ipfw_insn_sa {
256	ipfw_insn o;
257	struct sockaddr_in sa;
258} ipfw_insn_sa;
259
260/*
261 * This is used for MAC addr-mask pairs.
262 */
263typedef struct	_ipfw_insn_mac {
264	ipfw_insn o;
265	u_char addr[12];	/* dst[6] + src[6] */
266	u_char mask[12];	/* dst[6] + src[6] */
267} ipfw_insn_mac;
268
269/*
270 * This is used for interface match rules (recv xx, xmit xx).
271 */
272typedef struct	_ipfw_insn_if {
273	ipfw_insn o;
274	union {
275		struct in_addr ip;
276		int glob;
277	} p;
278	char name[IFNAMSIZ];
279} ipfw_insn_if;
280
281/*
282 * This is used for storing an altq queue id number.
283 */
284typedef struct _ipfw_insn_altq {
285	ipfw_insn	o;
286	u_int32_t	qid;
287} ipfw_insn_altq;
288
289/*
290 * This is used for limit rules.
291 */
292typedef struct	_ipfw_insn_limit {
293	ipfw_insn o;
294	u_int8_t _pad;
295	u_int8_t limit_mask;	/* combination of DYN_* below	*/
296#define	DYN_SRC_ADDR	0x1
297#define	DYN_SRC_PORT	0x2
298#define	DYN_DST_ADDR	0x4
299#define	DYN_DST_PORT	0x8
300
301	u_int16_t conn_limit;
302} ipfw_insn_limit;
303
304/*
305 * This is used for log instructions.
306 */
307typedef struct  _ipfw_insn_log {
308        ipfw_insn o;
309	u_int32_t max_log;	/* how many do we log -- 0 = all */
310	u_int32_t log_left;	/* how many left to log 	*/
311} ipfw_insn_log;
312
313/* Server pool support (LSNAT). */
314struct cfg_spool {
315	LIST_ENTRY(cfg_spool)   _next;          /* chain of spool instances */
316	struct in_addr          addr;
317	u_short                 port;
318};
319
320/* Redirect modes id. */
321#define REDIR_ADDR      0x01
322#define REDIR_PORT      0x02
323#define REDIR_PROTO     0x04
324
325/* Nat redirect configuration. */
326struct cfg_redir {
327	LIST_ENTRY(cfg_redir)   _next;          /* chain of redir instances */
328	u_int16_t               mode;           /* type of redirect mode */
329	struct in_addr	        laddr;          /* local ip address */
330	struct in_addr	        paddr;          /* public ip address */
331	struct in_addr	        raddr;          /* remote ip address */
332	u_short                 lport;          /* local port */
333	u_short                 pport;          /* public port */
334	u_short                 rport;          /* remote port  */
335	u_short                 pport_cnt;      /* number of public ports */
336	u_short                 rport_cnt;      /* number of remote ports */
337	int                     proto;          /* protocol: tcp/udp */
338	struct alias_link       **alink;
339	/* num of entry in spool chain */
340	u_int16_t               spool_cnt;
341	/* chain of spool instances */
342	LIST_HEAD(spool_chain, cfg_spool) spool_chain;
343};
344
345#define NAT_BUF_LEN     1024
346/* Nat configuration data struct. */
347struct cfg_nat {
348	/* chain of nat instances */
349	LIST_ENTRY(cfg_nat)     _next;
350	int                     id;                     /* nat id */
351	struct in_addr          ip;                     /* nat ip address */
352	char                    if_name[IF_NAMESIZE];   /* interface name */
353	int                     mode;                   /* aliasing mode */
354	struct libalias	        *lib;                   /* libalias instance */
355	/* number of entry in spool chain */
356	int                     redir_cnt;
357	/* chain of redir instances */
358	LIST_HEAD(redir_chain, cfg_redir) redir_chain;
359};
360
361#define SOF_NAT         sizeof(struct cfg_nat)
362#define SOF_REDIR       sizeof(struct cfg_redir)
363#define SOF_SPOOL       sizeof(struct cfg_spool)
364
365/* Nat command. */
366typedef struct	_ipfw_insn_nat {
367 	ipfw_insn	o;
368 	struct cfg_nat *nat;
369} ipfw_insn_nat;
370
371/* Apply ipv6 mask on ipv6 addr */
372#define APPLY_MASK(addr,mask)                          \
373    (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \
374    (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \
375    (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \
376    (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3];
377
378/* Structure for ipv6 */
379typedef struct _ipfw_insn_ip6 {
380       ipfw_insn o;
381       struct in6_addr addr6;
382       struct in6_addr mask6;
383} ipfw_insn_ip6;
384
385/* Used to support icmp6 types */
386typedef struct _ipfw_insn_icmp6 {
387       ipfw_insn o;
388       uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h
389                       *     define ICMP6_MAXTYPE
390                       *     as follows: n = ICMP6_MAXTYPE/32 + 1
391                        *     Actually is 203
392                       */
393} ipfw_insn_icmp6;
394
395/*
396 * Here we have the structure representing an ipfw rule.
397 *
398 * It starts with a general area (with link fields and counters)
399 * followed by an array of one or more instructions, which the code
400 * accesses as an array of 32-bit values.
401 *
402 * Given a rule pointer  r:
403 *
404 *  r->cmd		is the start of the first instruction.
405 *  ACTION_PTR(r)	is the start of the first action (things to do
406 *			once a rule matched).
407 *
408 * When assembling instruction, remember the following:
409 *
410 *  + if a rule has a "keep-state" (or "limit") option, then the
411 *	first instruction (at r->cmd) MUST BE an O_PROBE_STATE
412 *  + if a rule has a "log" option, then the first action
413 *	(at ACTION_PTR(r)) MUST be O_LOG
414 *  + if a rule has an "altq" option, it comes after "log"
415 *  + if a rule has an O_TAG option, it comes after "log" and "altq"
416 *
417 * NOTE: we use a simple linked list of rules because we never need
418 * 	to delete a rule without scanning the list. We do not use
419 *	queue(3) macros for portability and readability.
420 */
421
422struct ip_fw {
423	struct ip_fw	*next;		/* linked list of rules		*/
424	struct ip_fw	*next_rule;	/* ptr to next [skipto] rule	*/
425	/* 'next_rule' is used to pass up 'set_disable' status		*/
426
427	u_int16_t	act_ofs;	/* offset of action in 32-bit units */
428	u_int16_t	cmd_len;	/* # of 32-bit words in cmd	*/
429	u_int16_t	rulenum;	/* rule number			*/
430	u_int8_t	set;		/* rule set (0..31)		*/
431#define	RESVD_SET	31	/* set for default and persistent rules */
432	u_int8_t	_pad;		/* padding			*/
433
434	/* These fields are present in all rules.			*/
435	u_int64_t	pcnt;		/* Packet counter		*/
436	u_int64_t	bcnt;		/* Byte counter			*/
437	u_int32_t	timestamp;	/* tv_sec of last match		*/
438
439	ipfw_insn	cmd[1];		/* storage for commands		*/
440};
441
442#define ACTION_PTR(rule)				\
443	(ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) )
444
445#define RULESIZE(rule)  (sizeof(struct ip_fw) + \
446	((struct ip_fw *)(rule))->cmd_len * 4 - 4)
447
448/*
449 * This structure is used as a flow mask and a flow id for various
450 * parts of the code.
451 */
452struct ipfw_flow_id {
453	u_int32_t	dst_ip;
454	u_int32_t	src_ip;
455	u_int16_t	dst_port;
456	u_int16_t	src_port;
457	u_int8_t	proto;
458	u_int8_t	flags;	/* protocol-specific flags */
459	uint8_t		addr_type; /* 4 = ipv4, 6 = ipv6, 1=ether ? */
460	struct in6_addr dst_ip6;	/* could also store MAC addr! */
461	struct in6_addr src_ip6;
462	u_int32_t	flow_id6;
463	u_int32_t	frag_id6;
464};
465
466#define IS_IP6_FLOW_ID(id)	((id)->addr_type == 6)
467
468/*
469 * Dynamic ipfw rule.
470 */
471typedef struct _ipfw_dyn_rule ipfw_dyn_rule;
472
473struct _ipfw_dyn_rule {
474	ipfw_dyn_rule	*next;		/* linked list of rules.	*/
475	struct ip_fw *rule;		/* pointer to rule		*/
476	/* 'rule' is used to pass up the rule number (from the parent)	*/
477
478	ipfw_dyn_rule *parent;		/* pointer to parent rule	*/
479	u_int64_t	pcnt;		/* packet match counter		*/
480	u_int64_t	bcnt;		/* byte match counter		*/
481	struct ipfw_flow_id id;		/* (masked) flow id		*/
482	u_int32_t	expire;		/* expire time			*/
483	u_int32_t	bucket;		/* which bucket in hash table	*/
484	u_int32_t	state;		/* state of this rule (typically a
485					 * combination of TCP flags)
486					 */
487	u_int32_t	ack_fwd;	/* most recent ACKs in forward	*/
488	u_int32_t	ack_rev;	/* and reverse directions (used	*/
489					/* to generate keepalives)	*/
490	u_int16_t	dyn_type;	/* rule type			*/
491	u_int16_t	count;		/* refcount			*/
492};
493
494/*
495 * Definitions for IP option names.
496 */
497#define	IP_FW_IPOPT_LSRR	0x01
498#define	IP_FW_IPOPT_SSRR	0x02
499#define	IP_FW_IPOPT_RR		0x04
500#define	IP_FW_IPOPT_TS		0x08
501
502/*
503 * Definitions for TCP option names.
504 */
505#define	IP_FW_TCPOPT_MSS	0x01
506#define	IP_FW_TCPOPT_WINDOW	0x02
507#define	IP_FW_TCPOPT_SACK	0x04
508#define	IP_FW_TCPOPT_TS		0x08
509#define	IP_FW_TCPOPT_CC		0x10
510
511#define	ICMP_REJECT_RST		0x100	/* fake ICMP code (send a TCP RST) */
512#define	ICMP6_UNREACH_RST	0x100	/* fake ICMPv6 code (send a TCP RST) */
513
514/*
515 * These are used for lookup tables.
516 */
517typedef struct	_ipfw_table_entry {
518	in_addr_t	addr;		/* network address		*/
519	u_int32_t	value;		/* value			*/
520	u_int16_t	tbl;		/* table number			*/
521	u_int8_t	masklen;	/* mask length			*/
522} ipfw_table_entry;
523
524typedef struct	_ipfw_table {
525	u_int32_t	size;		/* size of entries in bytes	*/
526	u_int32_t	cnt;		/* # of entries			*/
527	u_int16_t	tbl;		/* table number			*/
528	ipfw_table_entry ent[0];	/* entries			*/
529} ipfw_table;
530
531#define IP_FW_TABLEARG	65535
532
533/*
534 * Main firewall chains definitions and global var's definitions.
535 */
536#ifdef _KERNEL
537
538/* Return values from ipfw_chk() */
539enum {
540	IP_FW_PASS = 0,
541	IP_FW_DENY,
542	IP_FW_DIVERT,
543	IP_FW_TEE,
544	IP_FW_DUMMYNET,
545	IP_FW_NETGRAPH,
546	IP_FW_NGTEE,
547	IP_FW_NAT,
548};
549
550/* flags for divert mtag */
551#define	IP_FW_DIVERT_LOOPBACK_FLAG	0x00080000
552#define	IP_FW_DIVERT_OUTPUT_FLAG	0x00100000
553
554/*
555 * Structure for collecting parameters to dummynet for ip6_output forwarding
556 */
557struct _ip6dn_args {
558       struct ip6_pktopts *opt_or;
559       struct route_in6 ro_or;
560       int flags_or;
561       struct ip6_moptions *im6o_or;
562       struct ifnet *origifp_or;
563       struct ifnet *ifp_or;
564       struct sockaddr_in6 dst_or;
565       u_long mtu_or;
566       struct route_in6 ro_pmtu_or;
567};
568
569/*
570 * Arguments for calling ipfw_chk() and dummynet_io(). We put them
571 * all into a structure because this way it is easier and more
572 * efficient to pass variables around and extend the interface.
573 */
574struct ip_fw_args {
575	struct mbuf	*m;		/* the mbuf chain		*/
576	struct ifnet	*oif;		/* output interface		*/
577	struct sockaddr_in *next_hop;	/* forward address		*/
578	struct ip_fw	*rule;		/* matching rule		*/
579	struct ether_header *eh;	/* for bridged packets		*/
580
581	struct ipfw_flow_id f_id;	/* grabbed from IP header	*/
582	u_int32_t	cookie;		/* a cookie depending on rule action */
583	struct inpcb	*inp;
584
585	struct _ip6dn_args	dummypar; /* dummynet->ip6_output */
586	struct sockaddr_in hopstore;	/* store here if cannot use a pointer */
587};
588
589/*
590 * Function definitions.
591 */
592
593/* Firewall hooks */
594struct sockopt;
595struct dn_flow_set;
596
597int ipfw_check_in(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp);
598int ipfw_check_out(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp);
599
600int ipfw_chk(struct ip_fw_args *);
601
602int ipfw_init(void);
603void ipfw_destroy(void);
604
605typedef int ip_fw_ctl_t(struct sockopt *);
606extern ip_fw_ctl_t *ip_fw_ctl_ptr;
607extern int fw_one_pass;
608extern int fw_enable;
609#ifdef INET6
610extern int fw6_enable;
611#endif
612
613/* For kernel ipfw_ether and ipfw_bridge. */
614typedef	int ip_fw_chk_t(struct ip_fw_args *args);
615extern	ip_fw_chk_t	*ip_fw_chk_ptr;
616#define	IPFW_LOADED	(ip_fw_chk_ptr != NULL)
617
618#endif /* _KERNEL */
619#endif /* _IPFW2_H */
620