if_vlan.c revision 204156
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
32 * Might be extended some day to also handle IEEE 802.1p priority
33 * tagging.  This is sort of sneaky in the implementation, since
34 * we need to pretend to be enough of an Ethernet implementation
35 * to make arp work.  The way we do this is by telling everyone
36 * that we are an Ethernet, and then catch the packets that
37 * ether_output() left on our output queue when it calls
38 * if_start(), rewrite them for use by the real outgoing interface,
39 * and ask it to send them.
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: head/sys/net/if_vlan.c 204156 2010-02-21 00:07:45Z yongari $");
44
45#include "opt_vlan.h"
46
47#include <sys/param.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/module.h>
53#include <sys/rwlock.h>
54#include <sys/queue.h>
55#include <sys/socket.h>
56#include <sys/sockio.h>
57#include <sys/sysctl.h>
58#include <sys/systm.h>
59
60#include <net/bpf.h>
61#include <net/ethernet.h>
62#include <net/if.h>
63#include <net/if_clone.h>
64#include <net/if_dl.h>
65#include <net/if_types.h>
66#include <net/if_vlan_var.h>
67#include <net/vnet.h>
68
69#define VLANNAME	"vlan"
70#define	VLAN_DEF_HWIDTH	4
71#define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
72
73#define	UP_AND_RUNNING(ifp) \
74    ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
75
76LIST_HEAD(ifvlanhead, ifvlan);
77
78struct ifvlantrunk {
79	struct	ifnet   *parent;	/* parent interface of this trunk */
80	struct	rwlock	rw;
81#ifdef VLAN_ARRAY
82#define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
83	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
84#else
85	struct	ifvlanhead *hash;	/* dynamic hash-list table */
86	uint16_t	hmask;
87	uint16_t	hwidth;
88#endif
89	int		refcnt;
90};
91
92struct vlan_mc_entry {
93	struct ether_addr		mc_addr;
94	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
95};
96
97struct	ifvlan {
98	struct	ifvlantrunk *ifv_trunk;
99	struct	ifnet *ifv_ifp;
100#define	TRUNK(ifv)	((ifv)->ifv_trunk)
101#define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
102	int	ifv_pflags;	/* special flags we have set on parent */
103	struct	ifv_linkmib {
104		int	ifvm_encaplen;	/* encapsulation length */
105		int	ifvm_mtufudge;	/* MTU fudged by this much */
106		int	ifvm_mintu;	/* min transmission unit */
107		uint16_t ifvm_proto;	/* encapsulation ethertype */
108		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
109	}	ifv_mib;
110	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
111#ifndef VLAN_ARRAY
112	LIST_ENTRY(ifvlan) ifv_list;
113#endif
114};
115#define	ifv_proto	ifv_mib.ifvm_proto
116#define	ifv_tag		ifv_mib.ifvm_tag
117#define	ifv_encaplen	ifv_mib.ifvm_encaplen
118#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
119#define	ifv_mintu	ifv_mib.ifvm_mintu
120
121/* Special flags we should propagate to parent. */
122static struct {
123	int flag;
124	int (*func)(struct ifnet *, int);
125} vlan_pflags[] = {
126	{IFF_PROMISC, ifpromisc},
127	{IFF_ALLMULTI, if_allmulti},
128	{0, NULL}
129};
130
131SYSCTL_DECL(_net_link);
132SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
133SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
134
135static int soft_pad = 0;
136SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
137	   "pad short frames before tagging");
138
139static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
140
141static eventhandler_tag ifdetach_tag;
142static eventhandler_tag iflladdr_tag;
143
144/*
145 * We have a global mutex, that is used to serialize configuration
146 * changes and isn't used in normal packet delivery.
147 *
148 * We also have a per-trunk rwlock, that is locked shared on packet
149 * processing and exclusive when configuration is changed.
150 *
151 * The VLAN_ARRAY substitutes the dynamic hash with a static array
152 * with 4096 entries. In theory this can give a boost in processing,
153 * however on practice it does not. Probably this is because array
154 * is too big to fit into CPU cache.
155 */
156static struct mtx ifv_mtx;
157#define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
158#define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
159#define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
160#define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
161#define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
162#define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
163#define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
164#define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
165#define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
166#define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
167#define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
168#define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
169#define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
170
171#ifndef VLAN_ARRAY
172static	void vlan_inithash(struct ifvlantrunk *trunk);
173static	void vlan_freehash(struct ifvlantrunk *trunk);
174static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
175static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
176static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
177static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
178	uint16_t tag);
179#endif
180static	void trunk_destroy(struct ifvlantrunk *trunk);
181
182static	void vlan_start(struct ifnet *ifp);
183static	void vlan_init(void *foo);
184static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
185static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
186static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
187    int (*func)(struct ifnet *, int));
188static	int vlan_setflags(struct ifnet *ifp, int status);
189static	int vlan_setmulti(struct ifnet *ifp);
190static	int vlan_unconfig(struct ifnet *ifp);
191static	int vlan_unconfig_locked(struct ifnet *ifp);
192static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
193static	void vlan_link_state(struct ifnet *ifp);
194static	void vlan_capabilities(struct ifvlan *ifv);
195static	void vlan_trunk_capabilities(struct ifnet *ifp);
196
197static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
198    const char *, int *);
199static	int vlan_clone_match(struct if_clone *, const char *);
200static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
201static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
202
203static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
204static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
205
206static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
207    IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
208
209#ifndef VLAN_ARRAY
210#define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
211
212static void
213vlan_inithash(struct ifvlantrunk *trunk)
214{
215	int i, n;
216
217	/*
218	 * The trunk must not be locked here since we call malloc(M_WAITOK).
219	 * It is OK in case this function is called before the trunk struct
220	 * gets hooked up and becomes visible from other threads.
221	 */
222
223	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
224	    ("%s: hash already initialized", __func__));
225
226	trunk->hwidth = VLAN_DEF_HWIDTH;
227	n = 1 << trunk->hwidth;
228	trunk->hmask = n - 1;
229	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
230	for (i = 0; i < n; i++)
231		LIST_INIT(&trunk->hash[i]);
232}
233
234static void
235vlan_freehash(struct ifvlantrunk *trunk)
236{
237#ifdef INVARIANTS
238	int i;
239
240	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
241	for (i = 0; i < (1 << trunk->hwidth); i++)
242		KASSERT(LIST_EMPTY(&trunk->hash[i]),
243		    ("%s: hash table not empty", __func__));
244#endif
245	free(trunk->hash, M_VLAN);
246	trunk->hash = NULL;
247	trunk->hwidth = trunk->hmask = 0;
248}
249
250static int
251vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
252{
253	int i, b;
254	struct ifvlan *ifv2;
255
256	TRUNK_LOCK_ASSERT(trunk);
257	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
258
259	b = 1 << trunk->hwidth;
260	i = HASH(ifv->ifv_tag, trunk->hmask);
261	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
262		if (ifv->ifv_tag == ifv2->ifv_tag)
263			return (EEXIST);
264
265	/*
266	 * Grow the hash when the number of vlans exceeds half of the number of
267	 * hash buckets squared. This will make the average linked-list length
268	 * buckets/2.
269	 */
270	if (trunk->refcnt > (b * b) / 2) {
271		vlan_growhash(trunk, 1);
272		i = HASH(ifv->ifv_tag, trunk->hmask);
273	}
274	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
275	trunk->refcnt++;
276
277	return (0);
278}
279
280static int
281vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
282{
283	int i, b;
284	struct ifvlan *ifv2;
285
286	TRUNK_LOCK_ASSERT(trunk);
287	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
288
289	b = 1 << trunk->hwidth;
290	i = HASH(ifv->ifv_tag, trunk->hmask);
291	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
292		if (ifv2 == ifv) {
293			trunk->refcnt--;
294			LIST_REMOVE(ifv2, ifv_list);
295			if (trunk->refcnt < (b * b) / 2)
296				vlan_growhash(trunk, -1);
297			return (0);
298		}
299
300	panic("%s: vlan not found\n", __func__);
301	return (ENOENT); /*NOTREACHED*/
302}
303
304/*
305 * Grow the hash larger or smaller if memory permits.
306 */
307static void
308vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
309{
310	struct ifvlan *ifv;
311	struct ifvlanhead *hash2;
312	int hwidth2, i, j, n, n2;
313
314	TRUNK_LOCK_ASSERT(trunk);
315	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
316
317	if (howmuch == 0) {
318		/* Harmless yet obvious coding error */
319		printf("%s: howmuch is 0\n", __func__);
320		return;
321	}
322
323	hwidth2 = trunk->hwidth + howmuch;
324	n = 1 << trunk->hwidth;
325	n2 = 1 << hwidth2;
326	/* Do not shrink the table below the default */
327	if (hwidth2 < VLAN_DEF_HWIDTH)
328		return;
329
330	/* M_NOWAIT because we're called with trunk mutex held */
331	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
332	if (hash2 == NULL) {
333		printf("%s: out of memory -- hash size not changed\n",
334		    __func__);
335		return;		/* We can live with the old hash table */
336	}
337	for (j = 0; j < n2; j++)
338		LIST_INIT(&hash2[j]);
339	for (i = 0; i < n; i++)
340		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
341			LIST_REMOVE(ifv, ifv_list);
342			j = HASH(ifv->ifv_tag, n2 - 1);
343			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
344		}
345	free(trunk->hash, M_VLAN);
346	trunk->hash = hash2;
347	trunk->hwidth = hwidth2;
348	trunk->hmask = n2 - 1;
349
350	if (bootverbose)
351		if_printf(trunk->parent,
352		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
353}
354
355static __inline struct ifvlan *
356vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
357{
358	struct ifvlan *ifv;
359
360	TRUNK_LOCK_RASSERT(trunk);
361
362	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
363		if (ifv->ifv_tag == tag)
364			return (ifv);
365	return (NULL);
366}
367
368#if 0
369/* Debugging code to view the hashtables. */
370static void
371vlan_dumphash(struct ifvlantrunk *trunk)
372{
373	int i;
374	struct ifvlan *ifv;
375
376	for (i = 0; i < (1 << trunk->hwidth); i++) {
377		printf("%d: ", i);
378		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
379			printf("%s ", ifv->ifv_ifp->if_xname);
380		printf("\n");
381	}
382}
383#endif /* 0 */
384#endif /* !VLAN_ARRAY */
385
386static void
387trunk_destroy(struct ifvlantrunk *trunk)
388{
389	VLAN_LOCK_ASSERT();
390
391	TRUNK_LOCK(trunk);
392#ifndef VLAN_ARRAY
393	vlan_freehash(trunk);
394#endif
395	trunk->parent->if_vlantrunk = NULL;
396	TRUNK_UNLOCK(trunk);
397	TRUNK_LOCK_DESTROY(trunk);
398	free(trunk, M_VLAN);
399}
400
401/*
402 * Program our multicast filter. What we're actually doing is
403 * programming the multicast filter of the parent. This has the
404 * side effect of causing the parent interface to receive multicast
405 * traffic that it doesn't really want, which ends up being discarded
406 * later by the upper protocol layers. Unfortunately, there's no way
407 * to avoid this: there really is only one physical interface.
408 *
409 * XXX: There is a possible race here if more than one thread is
410 *      modifying the multicast state of the vlan interface at the same time.
411 */
412static int
413vlan_setmulti(struct ifnet *ifp)
414{
415	struct ifnet		*ifp_p;
416	struct ifmultiaddr	*ifma, *rifma = NULL;
417	struct ifvlan		*sc;
418	struct vlan_mc_entry	*mc;
419	struct sockaddr_dl	sdl;
420	int			error;
421
422	/*VLAN_LOCK_ASSERT();*/
423
424	/* Find the parent. */
425	sc = ifp->if_softc;
426	ifp_p = PARENT(sc);
427
428	CURVNET_SET_QUIET(ifp_p->if_vnet);
429
430	bzero((char *)&sdl, sizeof(sdl));
431	sdl.sdl_len = sizeof(sdl);
432	sdl.sdl_family = AF_LINK;
433	sdl.sdl_index = ifp_p->if_index;
434	sdl.sdl_type = IFT_ETHER;
435	sdl.sdl_alen = ETHER_ADDR_LEN;
436
437	/* First, remove any existing filter entries. */
438	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
439		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
440		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
441		if (error)
442			return (error);
443		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
444		free(mc, M_VLAN);
445	}
446
447	/* Now program new ones. */
448	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
449		if (ifma->ifma_addr->sa_family != AF_LINK)
450			continue;
451		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
452		if (mc == NULL)
453			return (ENOMEM);
454		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
455		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
456		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
457		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
458		    LLADDR(&sdl), ETHER_ADDR_LEN);
459		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
460		if (error)
461			return (error);
462	}
463
464	CURVNET_RESTORE();
465	return (0);
466}
467
468/*
469 * A handler for parent interface link layer address changes.
470 * If the parent interface link layer address is changed we
471 * should also change it on all children vlans.
472 */
473static void
474vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
475{
476	struct ifvlan *ifv;
477#ifndef VLAN_ARRAY
478	struct ifvlan *next;
479#endif
480	int i;
481
482	/*
483	 * Check if it's a trunk interface first of all
484	 * to avoid needless locking.
485	 */
486	if (ifp->if_vlantrunk == NULL)
487		return;
488
489	VLAN_LOCK();
490	/*
491	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
492	 */
493#ifdef VLAN_ARRAY
494	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
495		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
496#else /* VLAN_ARRAY */
497	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
498		LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) {
499#endif /* VLAN_ARRAY */
500			VLAN_UNLOCK();
501			if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp), ETHER_ADDR_LEN);
502			VLAN_LOCK();
503		}
504	VLAN_UNLOCK();
505
506}
507
508/*
509 * A handler for network interface departure events.
510 * Track departure of trunks here so that we don't access invalid
511 * pointers or whatever if a trunk is ripped from under us, e.g.,
512 * by ejecting its hot-plug card.  However, if an ifnet is simply
513 * being renamed, then there's no need to tear down the state.
514 */
515static void
516vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
517{
518	struct ifvlan *ifv;
519	int i;
520
521	/*
522	 * Check if it's a trunk interface first of all
523	 * to avoid needless locking.
524	 */
525	if (ifp->if_vlantrunk == NULL)
526		return;
527
528	/* If the ifnet is just being renamed, don't do anything. */
529	if (ifp->if_flags & IFF_RENAMING)
530		return;
531
532	VLAN_LOCK();
533	/*
534	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
535	 * Check trunk pointer after each vlan_unconfig() as it will
536	 * free it and set to NULL after the last vlan was detached.
537	 */
538#ifdef VLAN_ARRAY
539	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
540		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
541			vlan_unconfig_locked(ifv->ifv_ifp);
542			if (ifp->if_vlantrunk == NULL)
543				break;
544		}
545#else /* VLAN_ARRAY */
546restart:
547	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
548		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
549			vlan_unconfig_locked(ifv->ifv_ifp);
550			if (ifp->if_vlantrunk)
551				goto restart;	/* trunk->hwidth can change */
552			else
553				break;
554		}
555#endif /* VLAN_ARRAY */
556	/* Trunk should have been destroyed in vlan_unconfig(). */
557	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
558	VLAN_UNLOCK();
559}
560
561/*
562 * VLAN support can be loaded as a module.  The only place in the
563 * system that's intimately aware of this is ether_input.  We hook
564 * into this code through vlan_input_p which is defined there and
565 * set here.  Noone else in the system should be aware of this so
566 * we use an explicit reference here.
567 */
568extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
569
570/* For if_link_state_change() eyes only... */
571extern	void (*vlan_link_state_p)(struct ifnet *);
572
573static int
574vlan_modevent(module_t mod, int type, void *data)
575{
576
577	switch (type) {
578	case MOD_LOAD:
579		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
580		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
581		if (ifdetach_tag == NULL)
582			return (ENOMEM);
583		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
584		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
585		if (iflladdr_tag == NULL)
586			return (ENOMEM);
587		VLAN_LOCK_INIT();
588		vlan_input_p = vlan_input;
589		vlan_link_state_p = vlan_link_state;
590		vlan_trunk_cap_p = vlan_trunk_capabilities;
591		if_clone_attach(&vlan_cloner);
592		if (bootverbose)
593			printf("vlan: initialized, using "
594#ifdef VLAN_ARRAY
595			       "full-size arrays"
596#else
597			       "hash tables with chaining"
598#endif
599
600			       "\n");
601		break;
602	case MOD_UNLOAD:
603		if_clone_detach(&vlan_cloner);
604		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
605		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
606		vlan_input_p = NULL;
607		vlan_link_state_p = NULL;
608		vlan_trunk_cap_p = NULL;
609		VLAN_LOCK_DESTROY();
610		if (bootverbose)
611			printf("vlan: unloaded\n");
612		break;
613	default:
614		return (EOPNOTSUPP);
615	}
616	return (0);
617}
618
619static moduledata_t vlan_mod = {
620	"if_vlan",
621	vlan_modevent,
622	0
623};
624
625DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
626MODULE_VERSION(if_vlan, 3);
627
628static struct ifnet *
629vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
630{
631	const char *cp;
632	struct ifnet *ifp;
633	int t;
634
635	/* Check for <etherif>.<vlan> style interface names. */
636	IFNET_RLOCK_NOSLEEP();
637	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
638		if (ifp->if_type != IFT_ETHER)
639			continue;
640		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
641			continue;
642		cp = name + strlen(ifp->if_xname);
643		if (*cp++ != '.')
644			continue;
645		if (*cp == '\0')
646			continue;
647		t = 0;
648		for(; *cp >= '0' && *cp <= '9'; cp++)
649			t = (t * 10) + (*cp - '0');
650		if (*cp != '\0')
651			continue;
652		if (tag != NULL)
653			*tag = t;
654		break;
655	}
656	IFNET_RUNLOCK_NOSLEEP();
657
658	return (ifp);
659}
660
661static int
662vlan_clone_match(struct if_clone *ifc, const char *name)
663{
664	const char *cp;
665
666	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
667		return (1);
668
669	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
670		return (0);
671	for (cp = name + 4; *cp != '\0'; cp++) {
672		if (*cp < '0' || *cp > '9')
673			return (0);
674	}
675
676	return (1);
677}
678
679static int
680vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
681{
682	char *dp;
683	int wildcard;
684	int unit;
685	int error;
686	int tag;
687	int ethertag;
688	struct ifvlan *ifv;
689	struct ifnet *ifp;
690	struct ifnet *p;
691	struct vlanreq vlr;
692	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
693
694	/*
695	 * There are 3 (ugh) ways to specify the cloned device:
696	 * o pass a parameter block with the clone request.
697	 * o specify parameters in the text of the clone device name
698	 * o specify no parameters and get an unattached device that
699	 *   must be configured separately.
700	 * The first technique is preferred; the latter two are
701	 * supported for backwards compatibilty.
702	 */
703	if (params) {
704		error = copyin(params, &vlr, sizeof(vlr));
705		if (error)
706			return error;
707		p = ifunit(vlr.vlr_parent);
708		if (p == NULL)
709			return ENXIO;
710		/*
711		 * Don't let the caller set up a VLAN tag with
712		 * anything except VLID bits.
713		 */
714		if (vlr.vlr_tag & ~EVL_VLID_MASK)
715			return (EINVAL);
716		error = ifc_name2unit(name, &unit);
717		if (error != 0)
718			return (error);
719
720		ethertag = 1;
721		tag = vlr.vlr_tag;
722		wildcard = (unit < 0);
723	} else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
724		ethertag = 1;
725		unit = -1;
726		wildcard = 0;
727
728		/*
729		 * Don't let the caller set up a VLAN tag with
730		 * anything except VLID bits.
731		 */
732		if (tag & ~EVL_VLID_MASK)
733			return (EINVAL);
734	} else {
735		ethertag = 0;
736
737		error = ifc_name2unit(name, &unit);
738		if (error != 0)
739			return (error);
740
741		wildcard = (unit < 0);
742	}
743
744	error = ifc_alloc_unit(ifc, &unit);
745	if (error != 0)
746		return (error);
747
748	/* In the wildcard case, we need to update the name. */
749	if (wildcard) {
750		for (dp = name; *dp != '\0'; dp++);
751		if (snprintf(dp, len - (dp-name), "%d", unit) >
752		    len - (dp-name) - 1) {
753			panic("%s: interface name too long", __func__);
754		}
755	}
756
757	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
758	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
759	if (ifp == NULL) {
760		ifc_free_unit(ifc, unit);
761		free(ifv, M_VLAN);
762		return (ENOSPC);
763	}
764	SLIST_INIT(&ifv->vlan_mc_listhead);
765
766	ifp->if_softc = ifv;
767	/*
768	 * Set the name manually rather than using if_initname because
769	 * we don't conform to the default naming convention for interfaces.
770	 */
771	strlcpy(ifp->if_xname, name, IFNAMSIZ);
772	ifp->if_dname = ifc->ifc_name;
773	ifp->if_dunit = unit;
774	/* NB: flags are not set here */
775	ifp->if_linkmib = &ifv->ifv_mib;
776	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
777	/* NB: mtu is not set here */
778
779	ifp->if_init = vlan_init;
780	ifp->if_start = vlan_start;
781	ifp->if_ioctl = vlan_ioctl;
782	ifp->if_snd.ifq_maxlen = ifqmaxlen;
783	ifp->if_flags = VLAN_IFFLAGS;
784	ether_ifattach(ifp, eaddr);
785	/* Now undo some of the damage... */
786	ifp->if_baudrate = 0;
787	ifp->if_type = IFT_L2VLAN;
788	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
789
790	if (ethertag) {
791		error = vlan_config(ifv, p, tag);
792		if (error != 0) {
793			/*
794			 * Since we've partialy failed, we need to back
795			 * out all the way, otherwise userland could get
796			 * confused.  Thus, we destroy the interface.
797			 */
798			ether_ifdetach(ifp);
799			vlan_unconfig(ifp);
800			if_free_type(ifp, IFT_ETHER);
801			ifc_free_unit(ifc, unit);
802			free(ifv, M_VLAN);
803
804			return (error);
805		}
806
807		/* Update flags on the parent, if necessary. */
808		vlan_setflags(ifp, 1);
809	}
810
811	return (0);
812}
813
814static int
815vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
816{
817	struct ifvlan *ifv = ifp->if_softc;
818	int unit = ifp->if_dunit;
819
820	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
821	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
822	if_free_type(ifp, IFT_ETHER);
823	free(ifv, M_VLAN);
824	ifc_free_unit(ifc, unit);
825
826	return (0);
827}
828
829/*
830 * The ifp->if_init entry point for vlan(4) is a no-op.
831 */
832static void
833vlan_init(void *foo __unused)
834{
835}
836
837/*
838 * The if_start method for vlan(4) interface. It doesn't
839 * raises the IFF_DRV_OACTIVE flag, since it is called
840 * only from IFQ_HANDOFF() macro in ether_output_frame().
841 * If the interface queue is full, and vlan_start() is
842 * not called, the queue would never get emptied and
843 * interface would stall forever.
844 */
845static void
846vlan_start(struct ifnet *ifp)
847{
848	struct ifvlan *ifv;
849	struct ifnet *p;
850	struct mbuf *m;
851	int error;
852
853	ifv = ifp->if_softc;
854	p = PARENT(ifv);
855
856	for (;;) {
857		IF_DEQUEUE(&ifp->if_snd, m);
858		if (m == NULL)
859			break;
860		BPF_MTAP(ifp, m);
861
862		/*
863		 * Do not run parent's if_start() if the parent is not up,
864		 * or parent's driver will cause a system crash.
865		 */
866		if (!UP_AND_RUNNING(p)) {
867			m_freem(m);
868			ifp->if_collisions++;
869			continue;
870		}
871
872		/*
873		 * Pad the frame to the minimum size allowed if told to.
874		 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
875		 * paragraph C.4.4.3.b.  It can help to work around buggy
876		 * bridges that violate paragraph C.4.4.3.a from the same
877		 * document, i.e., fail to pad short frames after untagging.
878		 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
879		 * untagging it will produce a 62-byte frame, which is a runt
880		 * and requires padding.  There are VLAN-enabled network
881		 * devices that just discard such runts instead or mishandle
882		 * them somehow.
883		 */
884		if (soft_pad) {
885			static char pad[8];	/* just zeros */
886			int n;
887
888			for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
889			     n > 0; n -= sizeof(pad))
890				if (!m_append(m, min(n, sizeof(pad)), pad))
891					break;
892
893			if (n > 0) {
894				if_printf(ifp, "cannot pad short frame\n");
895				ifp->if_oerrors++;
896				m_freem(m);
897				continue;
898			}
899		}
900
901		/*
902		 * If underlying interface can do VLAN tag insertion itself,
903		 * just pass the packet along. However, we need some way to
904		 * tell the interface where the packet came from so that it
905		 * knows how to find the VLAN tag to use, so we attach a
906		 * packet tag that holds it.
907		 */
908		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
909			m->m_pkthdr.ether_vtag = ifv->ifv_tag;
910			m->m_flags |= M_VLANTAG;
911		} else {
912			m = ether_vlanencap(m, ifv->ifv_tag);
913			if (m == NULL) {
914				if_printf(ifp,
915				    "unable to prepend VLAN header\n");
916				ifp->if_oerrors++;
917				continue;
918			}
919		}
920
921		/*
922		 * Send it, precisely as ether_output() would have.
923		 * We are already running at splimp.
924		 */
925		error = (p->if_transmit)(p, m);
926		if (!error)
927			ifp->if_opackets++;
928		else
929			ifp->if_oerrors++;
930	}
931}
932
933static void
934vlan_input(struct ifnet *ifp, struct mbuf *m)
935{
936	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
937	struct ifvlan *ifv;
938	uint16_t tag;
939
940	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
941
942	if (m->m_flags & M_VLANTAG) {
943		/*
944		 * Packet is tagged, but m contains a normal
945		 * Ethernet frame; the tag is stored out-of-band.
946		 */
947		tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
948		m->m_flags &= ~M_VLANTAG;
949	} else {
950		struct ether_vlan_header *evl;
951
952		/*
953		 * Packet is tagged in-band as specified by 802.1q.
954		 */
955		switch (ifp->if_type) {
956		case IFT_ETHER:
957			if (m->m_len < sizeof(*evl) &&
958			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
959				if_printf(ifp, "cannot pullup VLAN header\n");
960				return;
961			}
962			evl = mtod(m, struct ether_vlan_header *);
963			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
964
965			/*
966			 * Remove the 802.1q header by copying the Ethernet
967			 * addresses over it and adjusting the beginning of
968			 * the data in the mbuf.  The encapsulated Ethernet
969			 * type field is already in place.
970			 */
971			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
972			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
973			m_adj(m, ETHER_VLAN_ENCAP_LEN);
974			break;
975
976		default:
977#ifdef INVARIANTS
978			panic("%s: %s has unsupported if_type %u",
979			      __func__, ifp->if_xname, ifp->if_type);
980#endif
981			m_freem(m);
982			ifp->if_noproto++;
983			return;
984		}
985	}
986
987	TRUNK_RLOCK(trunk);
988#ifdef VLAN_ARRAY
989	ifv = trunk->vlans[tag];
990#else
991	ifv = vlan_gethash(trunk, tag);
992#endif
993	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
994		TRUNK_RUNLOCK(trunk);
995		m_freem(m);
996		ifp->if_noproto++;
997		return;
998	}
999	TRUNK_RUNLOCK(trunk);
1000
1001	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1002	ifv->ifv_ifp->if_ipackets++;
1003
1004	/* Pass it back through the parent's input routine. */
1005	(*ifp->if_input)(ifv->ifv_ifp, m);
1006}
1007
1008static int
1009vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
1010{
1011	struct ifvlantrunk *trunk;
1012	struct ifnet *ifp;
1013	int error = 0;
1014
1015	/* VID numbers 0x0 and 0xFFF are reserved */
1016	if (tag == 0 || tag == 0xFFF)
1017		return (EINVAL);
1018	if (p->if_type != IFT_ETHER)
1019		return (EPROTONOSUPPORT);
1020	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1021		return (EPROTONOSUPPORT);
1022	if (ifv->ifv_trunk)
1023		return (EBUSY);
1024
1025	if (p->if_vlantrunk == NULL) {
1026		trunk = malloc(sizeof(struct ifvlantrunk),
1027		    M_VLAN, M_WAITOK | M_ZERO);
1028#ifndef VLAN_ARRAY
1029		vlan_inithash(trunk);
1030#endif
1031		VLAN_LOCK();
1032		if (p->if_vlantrunk != NULL) {
1033			/* A race that that is very unlikely to be hit. */
1034#ifndef VLAN_ARRAY
1035			vlan_freehash(trunk);
1036#endif
1037			free(trunk, M_VLAN);
1038			goto exists;
1039		}
1040		TRUNK_LOCK_INIT(trunk);
1041		TRUNK_LOCK(trunk);
1042		p->if_vlantrunk = trunk;
1043		trunk->parent = p;
1044	} else {
1045		VLAN_LOCK();
1046exists:
1047		trunk = p->if_vlantrunk;
1048		TRUNK_LOCK(trunk);
1049	}
1050
1051	ifv->ifv_tag = tag;	/* must set this before vlan_inshash() */
1052#ifdef VLAN_ARRAY
1053	if (trunk->vlans[tag] != NULL) {
1054		error = EEXIST;
1055		goto done;
1056	}
1057	trunk->vlans[tag] = ifv;
1058	trunk->refcnt++;
1059#else
1060	error = vlan_inshash(trunk, ifv);
1061	if (error)
1062		goto done;
1063#endif
1064	ifv->ifv_proto = ETHERTYPE_VLAN;
1065	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1066	ifv->ifv_mintu = ETHERMIN;
1067	ifv->ifv_pflags = 0;
1068
1069	/*
1070	 * If the parent supports the VLAN_MTU capability,
1071	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1072	 * use it.
1073	 */
1074	if (p->if_capenable & IFCAP_VLAN_MTU) {
1075		/*
1076		 * No need to fudge the MTU since the parent can
1077		 * handle extended frames.
1078		 */
1079		ifv->ifv_mtufudge = 0;
1080	} else {
1081		/*
1082		 * Fudge the MTU by the encapsulation size.  This
1083		 * makes us incompatible with strictly compliant
1084		 * 802.1Q implementations, but allows us to use
1085		 * the feature with other NetBSD implementations,
1086		 * which might still be useful.
1087		 */
1088		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1089	}
1090
1091	ifv->ifv_trunk = trunk;
1092	ifp = ifv->ifv_ifp;
1093	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1094	ifp->if_baudrate = p->if_baudrate;
1095	/*
1096	 * Copy only a selected subset of flags from the parent.
1097	 * Other flags are none of our business.
1098	 */
1099#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1100	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1101	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1102#undef VLAN_COPY_FLAGS
1103
1104	ifp->if_link_state = p->if_link_state;
1105
1106	vlan_capabilities(ifv);
1107
1108	/*
1109	 * Set up our ``Ethernet address'' to reflect the underlying
1110	 * physical interface's.
1111	 */
1112	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
1113
1114	/*
1115	 * Configure multicast addresses that may already be
1116	 * joined on the vlan device.
1117	 */
1118	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1119
1120	/* We are ready for operation now. */
1121	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1122done:
1123	TRUNK_UNLOCK(trunk);
1124	if (error == 0)
1125		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag);
1126	VLAN_UNLOCK();
1127
1128	return (error);
1129}
1130
1131static int
1132vlan_unconfig(struct ifnet *ifp)
1133{
1134	int ret;
1135
1136	VLAN_LOCK();
1137	ret = vlan_unconfig_locked(ifp);
1138	VLAN_UNLOCK();
1139	return (ret);
1140}
1141
1142static int
1143vlan_unconfig_locked(struct ifnet *ifp)
1144{
1145	struct ifvlantrunk *trunk;
1146	struct vlan_mc_entry *mc;
1147	struct ifvlan *ifv;
1148	struct ifnet  *parent;
1149	int error;
1150
1151	VLAN_LOCK_ASSERT();
1152
1153	ifv = ifp->if_softc;
1154	trunk = ifv->ifv_trunk;
1155	parent = NULL;
1156
1157	if (trunk != NULL) {
1158		struct sockaddr_dl sdl;
1159
1160		TRUNK_LOCK(trunk);
1161		parent = trunk->parent;
1162
1163		/*
1164		 * Since the interface is being unconfigured, we need to
1165		 * empty the list of multicast groups that we may have joined
1166		 * while we were alive from the parent's list.
1167		 */
1168		bzero((char *)&sdl, sizeof(sdl));
1169		sdl.sdl_len = sizeof(sdl);
1170		sdl.sdl_family = AF_LINK;
1171		sdl.sdl_index = parent->if_index;
1172		sdl.sdl_type = IFT_ETHER;
1173		sdl.sdl_alen = ETHER_ADDR_LEN;
1174
1175		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1176			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1177			    ETHER_ADDR_LEN);
1178			error = if_delmulti(parent, (struct sockaddr *)&sdl);
1179			if (error)
1180				return (error);
1181			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1182			free(mc, M_VLAN);
1183		}
1184
1185		vlan_setflags(ifp, 0); /* clear special flags on parent */
1186#ifdef VLAN_ARRAY
1187		trunk->vlans[ifv->ifv_tag] = NULL;
1188		trunk->refcnt--;
1189#else
1190		vlan_remhash(trunk, ifv);
1191#endif
1192		ifv->ifv_trunk = NULL;
1193
1194		/*
1195		 * Check if we were the last.
1196		 */
1197		if (trunk->refcnt == 0) {
1198			trunk->parent->if_vlantrunk = NULL;
1199			/*
1200			 * XXXGL: If some ithread has already entered
1201			 * vlan_input() and is now blocked on the trunk
1202			 * lock, then it should preempt us right after
1203			 * unlock and finish its work. Then we will acquire
1204			 * lock again in trunk_destroy().
1205			 */
1206			TRUNK_UNLOCK(trunk);
1207			trunk_destroy(trunk);
1208		} else
1209			TRUNK_UNLOCK(trunk);
1210	}
1211
1212	/* Disconnect from parent. */
1213	if (ifv->ifv_pflags)
1214		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1215	ifp->if_mtu = ETHERMTU;
1216	ifp->if_link_state = LINK_STATE_UNKNOWN;
1217	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1218
1219	/*
1220	 * Only dispatch an event if vlan was
1221	 * attached, otherwise there is nothing
1222	 * to cleanup anyway.
1223	 */
1224	if (parent != NULL)
1225		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag);
1226
1227	return (0);
1228}
1229
1230/* Handle a reference counted flag that should be set on the parent as well */
1231static int
1232vlan_setflag(struct ifnet *ifp, int flag, int status,
1233	     int (*func)(struct ifnet *, int))
1234{
1235	struct ifvlan *ifv;
1236	int error;
1237
1238	/* XXX VLAN_LOCK_ASSERT(); */
1239
1240	ifv = ifp->if_softc;
1241	status = status ? (ifp->if_flags & flag) : 0;
1242	/* Now "status" contains the flag value or 0 */
1243
1244	/*
1245	 * See if recorded parent's status is different from what
1246	 * we want it to be.  If it is, flip it.  We record parent's
1247	 * status in ifv_pflags so that we won't clear parent's flag
1248	 * we haven't set.  In fact, we don't clear or set parent's
1249	 * flags directly, but get or release references to them.
1250	 * That's why we can be sure that recorded flags still are
1251	 * in accord with actual parent's flags.
1252	 */
1253	if (status != (ifv->ifv_pflags & flag)) {
1254		error = (*func)(PARENT(ifv), status);
1255		if (error)
1256			return (error);
1257		ifv->ifv_pflags &= ~flag;
1258		ifv->ifv_pflags |= status;
1259	}
1260	return (0);
1261}
1262
1263/*
1264 * Handle IFF_* flags that require certain changes on the parent:
1265 * if "status" is true, update parent's flags respective to our if_flags;
1266 * if "status" is false, forcedly clear the flags set on parent.
1267 */
1268static int
1269vlan_setflags(struct ifnet *ifp, int status)
1270{
1271	int error, i;
1272
1273	for (i = 0; vlan_pflags[i].flag; i++) {
1274		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1275				     status, vlan_pflags[i].func);
1276		if (error)
1277			return (error);
1278	}
1279	return (0);
1280}
1281
1282/* Inform all vlans that their parent has changed link state */
1283static void
1284vlan_link_state(struct ifnet *ifp)
1285{
1286	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1287	struct ifvlan *ifv;
1288	int i;
1289
1290	TRUNK_LOCK(trunk);
1291#ifdef VLAN_ARRAY
1292	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1293		if (trunk->vlans[i] != NULL) {
1294			ifv = trunk->vlans[i];
1295#else
1296	for (i = 0; i < (1 << trunk->hwidth); i++)
1297		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1298#endif
1299			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1300			if_link_state_change(ifv->ifv_ifp,
1301			    trunk->parent->if_link_state);
1302		}
1303	TRUNK_UNLOCK(trunk);
1304}
1305
1306static void
1307vlan_capabilities(struct ifvlan *ifv)
1308{
1309	struct ifnet *p = PARENT(ifv);
1310	struct ifnet *ifp = ifv->ifv_ifp;
1311
1312	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1313
1314	/*
1315	 * If the parent interface can do checksum offloading
1316	 * on VLANs, then propagate its hardware-assisted
1317	 * checksumming flags. Also assert that checksum
1318	 * offloading requires hardware VLAN tagging.
1319	 */
1320	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1321		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1322
1323	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1324	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1325		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1326		ifp->if_hwassist = p->if_hwassist & (CSUM_IP | CSUM_TCP |
1327		    CSUM_UDP | CSUM_SCTP | CSUM_IP_FRAGS | CSUM_FRAGMENT);
1328	} else {
1329		ifp->if_capenable = 0;
1330		ifp->if_hwassist = 0;
1331	}
1332	/*
1333	 * If the parent interface can do TSO on VLANs then
1334	 * propagate the hardware-assisted flag. TSO on VLANs
1335	 * does not necessarily require hardware VLAN tagging.
1336	 */
1337	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1338		ifp->if_capabilities |= p->if_capabilities & IFCAP_TSO;
1339	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1340		ifp->if_capenable |= p->if_capenable & IFCAP_TSO;
1341		ifp->if_hwassist |= p->if_hwassist & CSUM_TSO;
1342	} else {
1343		ifp->if_capenable &= ~(p->if_capenable & IFCAP_TSO);
1344		ifp->if_hwassist &= ~(p->if_hwassist & CSUM_TSO);
1345	}
1346}
1347
1348static void
1349vlan_trunk_capabilities(struct ifnet *ifp)
1350{
1351	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1352	struct ifvlan *ifv;
1353	int i;
1354
1355	TRUNK_LOCK(trunk);
1356#ifdef VLAN_ARRAY
1357	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1358		if (trunk->vlans[i] != NULL) {
1359			ifv = trunk->vlans[i];
1360#else
1361	for (i = 0; i < (1 << trunk->hwidth); i++) {
1362		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1363#endif
1364			vlan_capabilities(ifv);
1365	}
1366	TRUNK_UNLOCK(trunk);
1367}
1368
1369static int
1370vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1371{
1372	struct ifnet *p;
1373	struct ifreq *ifr;
1374	struct ifvlan *ifv;
1375	struct vlanreq vlr;
1376	int error = 0;
1377
1378	ifr = (struct ifreq *)data;
1379	ifv = ifp->if_softc;
1380
1381	switch (cmd) {
1382	case SIOCGIFMEDIA:
1383		VLAN_LOCK();
1384		if (TRUNK(ifv) != NULL) {
1385			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1386					SIOCGIFMEDIA, data);
1387			VLAN_UNLOCK();
1388			/* Limit the result to the parent's current config. */
1389			if (error == 0) {
1390				struct ifmediareq *ifmr;
1391
1392				ifmr = (struct ifmediareq *)data;
1393				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1394					ifmr->ifm_count = 1;
1395					error = copyout(&ifmr->ifm_current,
1396						ifmr->ifm_ulist,
1397						sizeof(int));
1398				}
1399			}
1400		} else {
1401			VLAN_UNLOCK();
1402			error = EINVAL;
1403		}
1404		break;
1405
1406	case SIOCSIFMEDIA:
1407		error = EINVAL;
1408		break;
1409
1410	case SIOCSIFMTU:
1411		/*
1412		 * Set the interface MTU.
1413		 */
1414		VLAN_LOCK();
1415		if (TRUNK(ifv) != NULL) {
1416			if (ifr->ifr_mtu >
1417			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1418			    ifr->ifr_mtu <
1419			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1420				error = EINVAL;
1421			else
1422				ifp->if_mtu = ifr->ifr_mtu;
1423		} else
1424			error = EINVAL;
1425		VLAN_UNLOCK();
1426		break;
1427
1428	case SIOCSETVLAN:
1429		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1430		if (error)
1431			break;
1432		if (vlr.vlr_parent[0] == '\0') {
1433			vlan_unconfig(ifp);
1434			break;
1435		}
1436		p = ifunit(vlr.vlr_parent);
1437		if (p == NULL) {
1438			error = ENOENT;
1439			break;
1440		}
1441		/*
1442		 * Don't let the caller set up a VLAN tag with
1443		 * anything except VLID bits.
1444		 */
1445		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1446			error = EINVAL;
1447			break;
1448		}
1449		error = vlan_config(ifv, p, vlr.vlr_tag);
1450		if (error)
1451			break;
1452
1453		/* Update flags on the parent, if necessary. */
1454		vlan_setflags(ifp, 1);
1455		break;
1456
1457	case SIOCGETVLAN:
1458		bzero(&vlr, sizeof(vlr));
1459		VLAN_LOCK();
1460		if (TRUNK(ifv) != NULL) {
1461			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1462			    sizeof(vlr.vlr_parent));
1463			vlr.vlr_tag = ifv->ifv_tag;
1464		}
1465		VLAN_UNLOCK();
1466		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1467		break;
1468
1469	case SIOCSIFFLAGS:
1470		/*
1471		 * We should propagate selected flags to the parent,
1472		 * e.g., promiscuous mode.
1473		 */
1474		if (TRUNK(ifv) != NULL)
1475			error = vlan_setflags(ifp, 1);
1476		break;
1477
1478	case SIOCADDMULTI:
1479	case SIOCDELMULTI:
1480		/*
1481		 * If we don't have a parent, just remember the membership for
1482		 * when we do.
1483		 */
1484		if (TRUNK(ifv) != NULL)
1485			error = vlan_setmulti(ifp);
1486		break;
1487
1488	default:
1489		error = ether_ioctl(ifp, cmd, data);
1490	}
1491
1492	return (error);
1493}
1494