if_vlan.c revision 155493
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/net/if_vlan.c 155493 2006-02-09 22:11:58Z emaste $
30 */
31
32/*
33 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34 * Might be extended some day to also handle IEEE 802.1p priority
35 * tagging.  This is sort of sneaky in the implementation, since
36 * we need to pretend to be enough of an Ethernet implementation
37 * to make arp work.  The way we do this is by telling everyone
38 * that we are an Ethernet, and then catch the packets that
39 * ether_output() left on our output queue when it calls
40 * if_start(), rewrite them for use by the real outgoing interface,
41 * and ask it to send them.
42 */
43
44#include "opt_inet.h"
45#include "opt_vlan.h"
46
47#include <sys/param.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/module.h>
53#include <sys/rwlock.h>
54#include <sys/queue.h>
55#include <sys/socket.h>
56#include <sys/sockio.h>
57#include <sys/sysctl.h>
58#include <sys/systm.h>
59
60#include <net/bpf.h>
61#include <net/ethernet.h>
62#include <net/if.h>
63#include <net/if_clone.h>
64#include <net/if_arp.h>
65#include <net/if_dl.h>
66#include <net/if_types.h>
67#include <net/if_vlan_var.h>
68
69#ifdef INET
70#include <netinet/in.h>
71#include <netinet/if_ether.h>
72#endif
73
74#define VLANNAME	"vlan"
75#define	VLAN_DEF_HWIDTH	4
76#define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
77
78LIST_HEAD(ifvlanhead, ifvlan);
79
80struct ifvlantrunk {
81	struct	ifnet   *parent;	/* parent interface of this trunk */
82	struct	rwlock	rw;
83#ifdef VLAN_ARRAY
84	struct	ifvlan	*vlans[EVL_VLID_MASK+1]; /* static table */
85#else
86	struct	ifvlanhead *hash;	/* dynamic hash-list table */
87	uint16_t	hmask;
88	uint16_t	hwidth;
89#endif
90	int		refcnt;
91	LIST_ENTRY(ifvlantrunk) trunk_entry;
92};
93static LIST_HEAD(, ifvlantrunk) trunk_list;
94
95struct vlan_mc_entry {
96	struct ether_addr		mc_addr;
97	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
98};
99
100struct	ifvlan {
101	struct	ifvlantrunk *ifv_trunk;
102	struct	ifnet *ifv_ifp;
103#define	TRUNK(ifv)	((ifv)->ifv_trunk)
104#define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
105	int	ifv_pflags;	/* special flags we have set on parent */
106	struct	ifv_linkmib {
107		int	ifvm_parent;
108		int	ifvm_encaplen;	/* encapsulation length */
109		int	ifvm_mtufudge;	/* MTU fudged by this much */
110		int	ifvm_mintu;	/* min transmission unit */
111		uint16_t ifvm_proto;	/* encapsulation ethertype */
112		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
113	}	ifv_mib;
114	SLIST_HEAD(__vlan_mchead, vlan_mc_entry) vlan_mc_listhead;
115	LIST_ENTRY(ifvlan) ifv_list;
116};
117#define	ifv_tag	ifv_mib.ifvm_tag
118#define	ifv_encaplen	ifv_mib.ifvm_encaplen
119#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
120#define	ifv_mintu	ifv_mib.ifvm_mintu
121
122/* Special flags we should propagate to parent. */
123static struct {
124	int flag;
125	int (*func)(struct ifnet *, int);
126} vlan_pflags[] = {
127	{IFF_PROMISC, ifpromisc},
128	{IFF_ALLMULTI, if_allmulti},
129	{0, NULL}
130};
131
132SYSCTL_DECL(_net_link);
133SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
134SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
135
136static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
137
138/*
139 * We have a global mutex, that is used to serialize configuration
140 * changes and isn't used in normal packet delivery.
141 *
142 * We also have a per-trunk rwlock, that is locked shared on packet
143 * processing and exclusive when configuration is changed.
144 *
145 * The VLAN_ARRAY substitutes the dynamic hash with a static array
146 * with 4096 entries. In theory this can give a boots in processing,
147 * however on practice it does not. Probably this is because array
148 * is too big to fit into CPU cache.
149 */
150static struct mtx ifv_mtx;
151#define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
152#define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
153#define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
154#define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
155#define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
156#define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
157#define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
158#define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
159#define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
160#define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
161#define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
162#define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
163#define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
164
165#ifndef VLAN_ARRAY
166static	void vlan_inithash(struct ifvlantrunk *trunk);
167static	void vlan_freehash(struct ifvlantrunk *trunk);
168static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
169static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
170static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
171static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
172	uint16_t tag);
173#endif
174static	void trunk_destroy(struct ifvlantrunk *trunk);
175
176static	void vlan_start(struct ifnet *ifp);
177static	void vlan_ifinit(void *foo);
178static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
179static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
180static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
181    int (*func)(struct ifnet *, int));
182static	int vlan_setflags(struct ifnet *ifp, int status);
183static	int vlan_setmulti(struct ifnet *ifp);
184static	int vlan_unconfig(struct ifnet *ifp);
185static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
186static	void vlan_link_state(struct ifnet *ifp, int link);
187static	void vlan_capabilities(struct ifvlan *ifv);
188static	void vlan_trunk_capabilities(struct ifnet *ifp);
189
190static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
191    const char *, int *);
192static	int vlan_clone_match(struct if_clone *, const char *);
193static	int vlan_clone_create(struct if_clone *, char *, size_t);
194static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
195
196static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
197    IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
198
199#ifndef VLAN_ARRAY
200#define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
201static void
202vlan_inithash(struct ifvlantrunk *trunk)
203{
204	int i, n;
205
206	/*
207	 * The trunk must not be locked here since we call malloc(M_WAITOK).
208	 * It is OK in case this function is called before the trunk struct
209	 * gets hooked up and becomes visible from other threads.
210	 */
211
212	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
213	    ("%s: hash already initialized", __func__));
214
215	trunk->hwidth = VLAN_DEF_HWIDTH;
216	n = 1 << trunk->hwidth;
217	trunk->hmask = n - 1;
218	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
219	for (i = 0; i < n; i++)
220		LIST_INIT(&trunk->hash[i]);
221}
222
223static void
224vlan_freehash(struct ifvlantrunk *trunk)
225{
226#ifdef INVARIANTS
227	int i;
228
229	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
230	for (i = 0; i < (1 << trunk->hwidth); i++)
231		KASSERT(LIST_EMPTY(&trunk->hash[i]),
232		    ("%s: hash table not empty", __func__));
233#endif
234	free(trunk->hash, M_VLAN);
235	trunk->hash = NULL;
236	trunk->hwidth = trunk->hmask = 0;
237}
238
239static int
240vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
241{
242	int i, b;
243	struct ifvlan *ifv2;
244
245	TRUNK_LOCK_ASSERT(trunk);
246	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
247
248	b = 1 << trunk->hwidth;
249	i = HASH(ifv->ifv_tag, trunk->hmask);
250	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
251		if (ifv->ifv_tag == ifv2->ifv_tag)
252			return (EEXIST);
253
254	/*
255	 * Grow the hash when the number of vlans exceeds half of the number of
256	 * hash buckets squared. This will make the average linked-list length
257	 * buckets/2.
258	 */
259	if (trunk->refcnt > (b * b) / 2) {
260		vlan_growhash(trunk, 1);
261		i = HASH(ifv->ifv_tag, trunk->hmask);
262	}
263	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
264	trunk->refcnt++;
265
266	return (0);
267}
268
269static int
270vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
271{
272	int i, b;
273	struct ifvlan *ifv2;
274
275	TRUNK_LOCK_ASSERT(trunk);
276	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
277
278	b = 1 << trunk->hwidth;
279	i = HASH(ifv->ifv_tag, trunk->hmask);
280	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
281		if (ifv2 == ifv) {
282			trunk->refcnt--;
283			LIST_REMOVE(ifv2, ifv_list);
284			if (trunk->refcnt < (b * b) / 2)
285				vlan_growhash(trunk, -1);
286			return (0);
287		}
288
289	panic("%s: vlan not found\n", __func__);
290	return (ENOENT); /*NOTREACHED*/
291}
292
293/*
294 * Grow the hash larger or smaller if memory permits.
295 */
296static void
297vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
298{
299
300	struct ifvlan *ifv;
301	struct ifvlanhead *hash2;
302	int hwidth2, i, j, n, n2;
303
304	TRUNK_LOCK_ASSERT(trunk);
305	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
306
307	if (howmuch == 0) {
308		/* Harmless yet obvious coding error */
309		printf("%s: howmuch is 0\n", __func__);
310		return;
311	}
312
313	hwidth2 = trunk->hwidth + howmuch;
314	n = 1 << trunk->hwidth;
315	n2 = 1 << hwidth2;
316	/* Do not shrink the table below the default */
317	if (hwidth2 < VLAN_DEF_HWIDTH)
318		return;
319
320	/* M_NOWAIT because we're called with trunk mutex held */
321	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
322	if (hash2 == NULL) {
323		printf("%s: out of memory -- hash size not changed\n",
324		    __func__);
325		return;		/* We can live with the old hash table */
326	}
327	for (j = 0; j < n2; j++)
328		LIST_INIT(&hash2[j]);
329	for (i = 0; i < n; i++)
330		while (!LIST_EMPTY(&trunk->hash[i])) {
331			ifv = LIST_FIRST(&trunk->hash[i]);
332			LIST_REMOVE(ifv, ifv_list);
333			j = HASH(ifv->ifv_tag, n2 - 1);
334			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
335		}
336	free(trunk->hash, M_VLAN);
337	trunk->hash = hash2;
338	trunk->hwidth = hwidth2;
339	trunk->hmask = n2 - 1;
340}
341
342static __inline struct ifvlan *
343vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
344{
345	struct ifvlan *ifv;
346
347	TRUNK_LOCK_RASSERT(trunk);
348
349	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
350		if (ifv->ifv_tag == tag)
351			return (ifv);
352	return (NULL);
353}
354
355#if 0
356/* Debugging code to view the hashtables. */
357static void
358vlan_dumphash(struct ifvlantrunk *trunk)
359{
360	int i;
361	struct ifvlan *ifv;
362
363	for (i = 0; i < (1 << trunk->hwidth); i++) {
364		printf("%d: ", i);
365		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
366			printf("%s ", ifv->ifv_ifp->if_xname);
367		printf("\n");
368	}
369}
370#endif /* 0 */
371#endif /* !VLAN_ARRAY */
372
373static void
374trunk_destroy(struct ifvlantrunk *trunk)
375{
376	VLAN_LOCK_ASSERT();
377
378	TRUNK_LOCK(trunk);
379#ifndef VLAN_ARRAY
380	vlan_freehash(trunk);
381#endif
382	TRUNK_LOCK_DESTROY(trunk);
383	LIST_REMOVE(trunk, trunk_entry);
384	trunk->parent->if_vlantrunk = NULL;
385	free(trunk, M_VLAN);
386}
387
388/*
389 * Program our multicast filter. What we're actually doing is
390 * programming the multicast filter of the parent. This has the
391 * side effect of causing the parent interface to receive multicast
392 * traffic that it doesn't really want, which ends up being discarded
393 * later by the upper protocol layers. Unfortunately, there's no way
394 * to avoid this: there really is only one physical interface.
395 *
396 * XXX: There is a possible race here if more than one thread is
397 *      modifying the multicast state of the vlan interface at the same time.
398 */
399static int
400vlan_setmulti(struct ifnet *ifp)
401{
402	struct ifnet		*ifp_p;
403	struct ifmultiaddr	*ifma, *rifma = NULL;
404	struct ifvlan		*sc;
405	struct vlan_mc_entry	*mc = NULL;
406	struct sockaddr_dl	sdl;
407	int			error;
408
409	/*VLAN_LOCK_ASSERT();*/
410
411	/* Find the parent. */
412	sc = ifp->if_softc;
413	ifp_p = PARENT(sc);
414
415	bzero((char *)&sdl, sizeof(sdl));
416	sdl.sdl_len = sizeof(sdl);
417	sdl.sdl_family = AF_LINK;
418	sdl.sdl_index = ifp_p->if_index;
419	sdl.sdl_type = IFT_ETHER;
420	sdl.sdl_alen = ETHER_ADDR_LEN;
421
422	/* First, remove any existing filter entries. */
423	while (SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
424		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
425		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
426		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
427		if (error)
428			return (error);
429		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
430		free(mc, M_VLAN);
431	}
432
433	/* Now program new ones. */
434	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
435		if (ifma->ifma_addr->sa_family != AF_LINK)
436			continue;
437		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
438		if (mc == NULL)
439			return (ENOMEM);
440		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
441		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
442		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
443		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
444		    LLADDR(&sdl), ETHER_ADDR_LEN);
445		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
446		if (error)
447			return (error);
448	}
449
450	return (0);
451}
452
453/*
454 * VLAN support can be loaded as a module.  The only place in the
455 * system that's intimately aware of this is ether_input.  We hook
456 * into this code through vlan_input_p which is defined there and
457 * set here.  Noone else in the system should be aware of this so
458 * we use an explicit reference here.
459 */
460extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
461
462/* For if_link_state_change() eyes only... */
463extern	void (*vlan_link_state_p)(struct ifnet *, int);
464
465static int
466vlan_modevent(module_t mod, int type, void *data)
467{
468
469	switch (type) {
470	case MOD_LOAD:
471		LIST_INIT(&trunk_list);
472		VLAN_LOCK_INIT();
473		vlan_input_p = vlan_input;
474		vlan_link_state_p = vlan_link_state;
475		vlan_trunk_cap_p = vlan_trunk_capabilities;
476		if_clone_attach(&vlan_cloner);
477		break;
478	case MOD_UNLOAD:
479	    {
480		struct ifvlantrunk *trunk, *trunk1;
481
482		if_clone_detach(&vlan_cloner);
483		vlan_input_p = NULL;
484		vlan_link_state_p = NULL;
485		vlan_trunk_cap_p = NULL;
486		VLAN_LOCK();
487		LIST_FOREACH_SAFE(trunk, &trunk_list, trunk_entry, trunk1)
488			trunk_destroy(trunk);
489		VLAN_UNLOCK();
490		VLAN_LOCK_DESTROY();
491		break;
492	    }
493	default:
494		return (EOPNOTSUPP);
495	}
496	return (0);
497}
498
499static moduledata_t vlan_mod = {
500	"if_vlan",
501	vlan_modevent,
502	0
503};
504
505DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
506MODULE_VERSION(if_vlan, 1);
507MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
508
509static struct ifnet *
510vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
511{
512	const char *cp;
513	struct ifnet *ifp;
514	int t = 0;
515
516	/* Check for <etherif>.<vlan> style interface names. */
517	IFNET_RLOCK();
518	TAILQ_FOREACH(ifp, &ifnet, if_link) {
519		if (ifp->if_type != IFT_ETHER)
520			continue;
521		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
522			continue;
523		cp = name + strlen(ifp->if_xname);
524		if (*cp != '.')
525			continue;
526		for(; *cp != '\0'; cp++) {
527			if (*cp < '0' || *cp > '9')
528				continue;
529			t = (t * 10) + (*cp - '0');
530		}
531		if (tag != NULL)
532			*tag = t;
533		break;
534	}
535	IFNET_RUNLOCK();
536
537	return (ifp);
538}
539
540static int
541vlan_clone_match(struct if_clone *ifc, const char *name)
542{
543	const char *cp;
544
545	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
546		return (1);
547
548	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
549		return (0);
550	for (cp = name + 4; *cp != '\0'; cp++) {
551		if (*cp < '0' || *cp > '9')
552			return (0);
553	}
554
555	return (1);
556}
557
558static int
559vlan_clone_create(struct if_clone *ifc, char *name, size_t len)
560{
561	char *dp;
562	int wildcard;
563	int unit;
564	int error;
565	int tag;
566	int ethertag;
567	struct ifvlan *ifv;
568	struct ifnet *ifp;
569	struct ifnet *p;
570	u_char eaddr[6] = {0,0,0,0,0,0};
571
572	if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
573		ethertag = 1;
574		unit = -1;
575		wildcard = 0;
576
577		/*
578		 * Don't let the caller set up a VLAN tag with
579		 * anything except VLID bits.
580		 */
581		if (tag & ~EVL_VLID_MASK)
582			return (EINVAL);
583	} else {
584		ethertag = 0;
585
586		error = ifc_name2unit(name, &unit);
587		if (error != 0)
588			return (error);
589
590		wildcard = (unit < 0);
591	}
592
593	error = ifc_alloc_unit(ifc, &unit);
594	if (error != 0)
595		return (error);
596
597	/* In the wildcard case, we need to update the name. */
598	if (wildcard) {
599		for (dp = name; *dp != '\0'; dp++);
600		if (snprintf(dp, len - (dp-name), "%d", unit) >
601		    len - (dp-name) - 1) {
602			panic("%s: interface name too long", __func__);
603		}
604	}
605
606	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
607	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
608	if (ifp == NULL) {
609		ifc_free_unit(ifc, unit);
610		free(ifv, M_VLAN);
611		return (ENOSPC);
612	}
613	SLIST_INIT(&ifv->vlan_mc_listhead);
614
615	ifp->if_softc = ifv;
616	/*
617	 * Set the name manually rather than using if_initname because
618	 * we don't conform to the default naming convention for interfaces.
619	 */
620	strlcpy(ifp->if_xname, name, IFNAMSIZ);
621	ifp->if_dname = ifc->ifc_name;
622	ifp->if_dunit = unit;
623	/* NB: flags are not set here */
624	ifp->if_linkmib = &ifv->ifv_mib;
625	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
626	/* NB: mtu is not set here */
627
628	ifp->if_init = vlan_ifinit;
629	ifp->if_start = vlan_start;
630	ifp->if_ioctl = vlan_ioctl;
631	ifp->if_snd.ifq_maxlen = ifqmaxlen;
632	ifp->if_flags = VLAN_IFFLAGS;
633	ether_ifattach(ifp, eaddr);
634	/* Now undo some of the damage... */
635	ifp->if_baudrate = 0;
636	ifp->if_type = IFT_L2VLAN;
637	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
638
639	if (ethertag) {
640		error = vlan_config(ifv, p, tag);
641		if (error != 0) {
642			/*
643			 * Since we've partialy failed, we need to back
644			 * out all the way, otherwise userland could get
645			 * confused.  Thus, we destroy the interface.
646			 */
647			vlan_unconfig(ifp);
648			ether_ifdetach(ifp);
649			if_free_type(ifp, IFT_ETHER);
650			free(ifv, M_VLAN);
651
652			return (error);
653		}
654		ifp->if_drv_flags |= IFF_DRV_RUNNING;
655
656		/* Update flags on the parent, if necessary. */
657		vlan_setflags(ifp, 1);
658	}
659
660	return (0);
661}
662
663static int
664vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
665{
666	int unit;
667	struct ifvlan *ifv = ifp->if_softc;
668
669	unit = ifp->if_dunit;
670
671	vlan_unconfig(ifp);
672
673	ether_ifdetach(ifp);
674	if_free_type(ifp, IFT_ETHER);
675
676	free(ifv, M_VLAN);
677
678	ifc_free_unit(ifc, unit);
679
680	return (0);
681}
682
683/*
684 * The ifp->if_init entry point for vlan(4) is a no-op.
685 */
686static void
687vlan_ifinit(void *foo)
688{
689
690}
691
692/*
693 * The if_start method for vlan(4) interface. It doesn't
694 * raises the IFF_DRV_OACTIVE flag, since it is called
695 * only from IFQ_HANDOFF() macro in ether_output_frame().
696 * If the interface queue is full, and vlan_start() is
697 * not called, the queue would never get emptied and
698 * interface would stall forever.
699 */
700static void
701vlan_start(struct ifnet *ifp)
702{
703	struct ifvlan *ifv;
704	struct ifnet *p;
705	struct mbuf *m;
706	int error;
707
708	ifv = ifp->if_softc;
709	p = PARENT(ifv);
710
711	for (;;) {
712		IF_DEQUEUE(&ifp->if_snd, m);
713		if (m == 0)
714			break;
715		BPF_MTAP(ifp, m);
716
717		/*
718		 * Do not run parent's if_start() if the parent is not up,
719		 * or parent's driver will cause a system crash.
720		 */
721		if (!((p->if_flags & IFF_UP) &&
722		    (p->if_drv_flags & IFF_DRV_RUNNING))) {
723			m_freem(m);
724			ifp->if_collisions++;
725			continue;
726		}
727
728		/*
729		 * If underlying interface can do VLAN tag insertion itself,
730		 * just pass the packet along. However, we need some way to
731		 * tell the interface where the packet came from so that it
732		 * knows how to find the VLAN tag to use, so we attach a
733		 * packet tag that holds it.
734		 */
735		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
736			struct m_tag *mtag = (struct m_tag *)
737			    uma_zalloc(zone_mtag_vlan, M_NOWAIT);
738			if (mtag == NULL) {
739				ifp->if_oerrors++;
740				m_freem(m);
741				continue;
742			}
743			VLAN_TAG_VALUE(mtag) = ifv->ifv_tag;
744			m_tag_prepend(m, mtag);
745			m->m_flags |= M_VLANTAG;
746		} else {
747			struct ether_vlan_header *evl;
748
749			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
750			if (m == NULL) {
751				if_printf(ifp,
752				    "unable to prepend VLAN header\n");
753				ifp->if_oerrors++;
754				continue;
755			}
756			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
757
758			if (m->m_len < sizeof(*evl)) {
759				m = m_pullup(m, sizeof(*evl));
760				if (m == NULL) {
761					if_printf(ifp,
762					    "cannot pullup VLAN header\n");
763					ifp->if_oerrors++;
764					continue;
765				}
766			}
767
768			/*
769			 * Transform the Ethernet header into an Ethernet header
770			 * with 802.1Q encapsulation.
771			 */
772			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
773			      mtod(m, char *), ETHER_HDR_LEN);
774			evl = mtod(m, struct ether_vlan_header *);
775			evl->evl_proto = evl->evl_encap_proto;
776			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
777			evl->evl_tag = htons(ifv->ifv_tag);
778#ifdef DEBUG
779			printf("%s: %*D\n", __func__, (int)sizeof(*evl),
780			    (unsigned char *)evl, ":");
781#endif
782		}
783
784		/*
785		 * Send it, precisely as ether_output() would have.
786		 * We are already running at splimp.
787		 */
788		IFQ_HANDOFF(p, m, error);
789		if (!error)
790			ifp->if_opackets++;
791		else
792			ifp->if_oerrors++;
793	}
794}
795
796static void
797vlan_input(struct ifnet *ifp, struct mbuf *m)
798{
799	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
800	struct ifvlan *ifv;
801	struct m_tag *mtag;
802	uint16_t tag;
803
804	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
805
806	if (m->m_flags & M_VLANTAG) {
807		/*
808		 * Packet is tagged, but m contains a normal
809		 * Ethernet frame; the tag is stored out-of-band.
810		 */
811		mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
812		KASSERT(mtag != NULL,
813			("%s: M_VLANTAG without m_tag", __func__));
814		tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag));
815		m_tag_delete(m, mtag);
816		m->m_flags &= ~M_VLANTAG;
817	} else {
818		struct ether_vlan_header *evl;
819
820		/*
821		 * Packet is tagged in-band as specified by 802.1q.
822		 */
823		mtag = NULL;
824		switch (ifp->if_type) {
825		case IFT_ETHER:
826			if (m->m_len < sizeof(*evl) &&
827			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
828				if_printf(ifp, "cannot pullup VLAN header\n");
829				return;
830			}
831			evl = mtod(m, struct ether_vlan_header *);
832			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
833				("%s: bad encapsulation protocol (%u)",
834				 __func__, ntohs(evl->evl_encap_proto)));
835
836			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
837
838			/*
839			 * Restore the original ethertype.  We'll remove
840			 * the encapsulation after we've found the vlan
841			 * interface corresponding to the tag.
842			 */
843			evl->evl_encap_proto = evl->evl_proto;
844			break;
845		default:
846			tag = (uint16_t) -1;
847#ifdef INVARIANTS
848			panic("%s: unsupported if_type (%u)",
849			      __func__, ifp->if_type);
850#endif
851			break;
852		}
853	}
854
855	/*
856	 * In VLAN_ARRAY case we proceed completely lockless.
857	 */
858#ifdef VLAN_ARRAY
859	ifv = trunk->vlans[tag];
860	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
861		m_freem(m);
862		ifp->if_noproto++;
863		return;
864	}
865#else
866	TRUNK_RLOCK(trunk);
867	ifv = vlan_gethash(trunk, tag);
868	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
869		TRUNK_RUNLOCK(trunk);
870		m_freem(m);
871		ifp->if_noproto++;
872		return;
873	}
874	TRUNK_RUNLOCK(trunk);
875#endif
876
877	if (mtag == NULL) {
878		/*
879		 * Packet had an in-line encapsulation header;
880		 * remove it.  The original header has already
881		 * been fixed up above.
882		 */
883		bcopy(mtod(m, caddr_t),
884		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
885		      ETHER_HDR_LEN);
886		m_adj(m, ETHER_VLAN_ENCAP_LEN);
887	}
888
889	m->m_pkthdr.rcvif = ifv->ifv_ifp;
890	ifv->ifv_ifp->if_ipackets++;
891
892	/* Pass it back through the parent's input routine. */
893	(*ifp->if_input)(ifv->ifv_ifp, m);
894}
895
896static int
897vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
898{
899	struct ifvlantrunk *trunk;
900	struct ifnet *ifp;
901	int error = 0;
902
903	/* VID numbers 0x0 and 0xFFF are reserved */
904	if (tag == 0 || tag == 0xFFF)
905		return (EINVAL);
906	if (p->if_type != IFT_ETHER)
907		return (EPROTONOSUPPORT);
908	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
909		return (EPROTONOSUPPORT);
910	if (ifv->ifv_trunk)
911		return (EBUSY);
912
913	if (p->if_vlantrunk == NULL) {
914		trunk = malloc(sizeof(struct ifvlantrunk),
915		    M_VLAN, M_WAITOK | M_ZERO);
916#ifndef VLAN_ARRAY
917		vlan_inithash(trunk);
918#endif
919		VLAN_LOCK();
920		if (p->if_vlantrunk != NULL) {
921			/* A race that that is very unlikely to be hit. */
922#ifndef VLAN_ARRAY
923			vlan_freehash(trunk);
924#endif
925			free(trunk, M_VLAN);
926			goto exists;
927		}
928		TRUNK_LOCK_INIT(trunk);
929		LIST_INSERT_HEAD(&trunk_list, trunk, trunk_entry);
930		TRUNK_LOCK(trunk);
931		p->if_vlantrunk = trunk;
932		trunk->parent = p;
933	} else {
934		VLAN_LOCK();
935exists:
936		trunk = p->if_vlantrunk;
937		TRUNK_LOCK(trunk);
938	}
939
940	ifv->ifv_tag = tag;
941#ifdef VLAN_ARRAY
942	if (trunk->vlans[tag] != NULL)
943		error = EEXIST;
944#else
945	error = vlan_inshash(trunk, ifv);
946#endif
947	if (error)
948		goto done;
949
950	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
951	ifv->ifv_mintu = ETHERMIN;
952	ifv->ifv_pflags = 0;
953
954	/*
955	 * If the parent supports the VLAN_MTU capability,
956	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
957	 * use it.
958	 */
959	if (p->if_capenable & IFCAP_VLAN_MTU) {
960		/*
961		 * No need to fudge the MTU since the parent can
962		 * handle extended frames.
963		 */
964		ifv->ifv_mtufudge = 0;
965	} else {
966		/*
967		 * Fudge the MTU by the encapsulation size.  This
968		 * makes us incompatible with strictly compliant
969		 * 802.1Q implementations, but allows us to use
970		 * the feature with other NetBSD implementations,
971		 * which might still be useful.
972		 */
973		ifv->ifv_mtufudge = ifv->ifv_encaplen;
974	}
975
976	ifv->ifv_trunk = trunk;
977	ifp = ifv->ifv_ifp;
978	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
979	ifp->if_baudrate = p->if_baudrate;
980	/*
981	 * Copy only a selected subset of flags from the parent.
982	 * Other flags are none of our business.
983	 */
984#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
985	ifp->if_flags &= ~VLAN_COPY_FLAGS;
986	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
987#undef VLAN_COPY_FLAGS
988
989	ifp->if_link_state = p->if_link_state;
990
991	vlan_capabilities(ifv);
992
993	/*
994	 * Set up our ``Ethernet address'' to reflect the underlying
995	 * physical interface's.
996	 */
997	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
998
999	/*
1000	 * Configure multicast addresses that may already be
1001	 * joined on the vlan device.
1002	 */
1003	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1004
1005#ifdef VLAN_ARRAY
1006	atomic_store_rel_ptr((uintptr_t *)&trunk->vlans[tag], (uintptr_t)ifv);
1007	trunk->refcnt++;
1008#endif
1009done:
1010	TRUNK_UNLOCK(trunk);
1011	VLAN_UNLOCK();
1012
1013	return (error);
1014}
1015
1016static int
1017vlan_unconfig(struct ifnet *ifp)
1018{
1019	struct ifvlantrunk *trunk;
1020	struct vlan_mc_entry *mc;
1021	struct ifvlan *ifv;
1022	int error;
1023
1024	VLAN_LOCK();
1025
1026	ifv = ifp->if_softc;
1027	trunk = ifv->ifv_trunk;
1028
1029	if (trunk) {
1030		struct sockaddr_dl sdl;
1031		struct ifnet *p = trunk->parent;
1032
1033		TRUNK_LOCK(trunk);
1034#ifdef VLAN_ARRAY
1035		atomic_store_rel_ptr((uintptr_t *)&trunk->vlans[ifv->ifv_tag],
1036		    (uintptr_t)NULL);
1037		trunk->refcnt--;
1038#endif
1039
1040		/*
1041		 * Since the interface is being unconfigured, we need to
1042		 * empty the list of multicast groups that we may have joined
1043		 * while we were alive from the parent's list.
1044		 */
1045		bzero((char *)&sdl, sizeof(sdl));
1046		sdl.sdl_len = sizeof(sdl);
1047		sdl.sdl_family = AF_LINK;
1048		sdl.sdl_index = p->if_index;
1049		sdl.sdl_type = IFT_ETHER;
1050		sdl.sdl_alen = ETHER_ADDR_LEN;
1051
1052		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
1053			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
1054			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1055			    ETHER_ADDR_LEN);
1056			error = if_delmulti(p, (struct sockaddr *)&sdl);
1057			if (error)
1058				return (error);
1059			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1060			free(mc, M_VLAN);
1061		}
1062
1063		vlan_setflags(ifp, 0); /* clear special flags on parent */
1064#ifndef VLAN_ARRAY
1065		vlan_remhash(trunk, ifv);
1066#endif
1067		ifv->ifv_trunk = NULL;
1068
1069		/*
1070		 * Check if we were the last.
1071		 */
1072		if (trunk->refcnt == 0) {
1073			atomic_store_rel_ptr((uintptr_t *)
1074			    &trunk->parent->if_vlantrunk,
1075			    (uintptr_t)NULL);
1076			/*
1077			 * XXXGL: If some ithread has already entered
1078			 * vlan_input() and is now blocked on the trunk
1079			 * lock, then it should preempt us right after
1080			 * unlock and finish its work. Then we will acquire
1081			 * lock again in trunk_destroy().
1082			 * XXX: not true in case of VLAN_ARRAY
1083			 */
1084			TRUNK_UNLOCK(trunk);
1085			trunk_destroy(trunk);
1086		} else
1087			TRUNK_UNLOCK(trunk);
1088	}
1089
1090	/* Disconnect from parent. */
1091	if (ifv->ifv_pflags)
1092		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1093	ifv->ifv_ifp->if_mtu = ETHERMTU;		/* XXX why not 0? */
1094	ifv->ifv_ifp->if_link_state = LINK_STATE_UNKNOWN;
1095
1096	/* Clear our MAC address. */
1097	bzero(IF_LLADDR(ifv->ifv_ifp), ETHER_ADDR_LEN);
1098
1099	VLAN_UNLOCK();
1100
1101	return (0);
1102}
1103
1104/* Handle a reference counted flag that should be set on the parent as well */
1105static int
1106vlan_setflag(struct ifnet *ifp, int flag, int status,
1107	     int (*func)(struct ifnet *, int))
1108{
1109	struct ifvlan *ifv;
1110	int error;
1111
1112	/* XXX VLAN_LOCK_ASSERT(); */
1113
1114	ifv = ifp->if_softc;
1115	status = status ? (ifp->if_flags & flag) : 0;
1116	/* Now "status" contains the flag value or 0 */
1117
1118	/*
1119	 * See if recorded parent's status is different from what
1120	 * we want it to be.  If it is, flip it.  We record parent's
1121	 * status in ifv_pflags so that we won't clear parent's flag
1122	 * we haven't set.  In fact, we don't clear or set parent's
1123	 * flags directly, but get or release references to them.
1124	 * That's why we can be sure that recorded flags still are
1125	 * in accord with actual parent's flags.
1126	 */
1127	if (status != (ifv->ifv_pflags & flag)) {
1128		error = (*func)(PARENT(ifv), status);
1129		if (error)
1130			return (error);
1131		ifv->ifv_pflags &= ~flag;
1132		ifv->ifv_pflags |= status;
1133	}
1134	return (0);
1135}
1136
1137/*
1138 * Handle IFF_* flags that require certain changes on the parent:
1139 * if "status" is true, update parent's flags respective to our if_flags;
1140 * if "status" is false, forcedly clear the flags set on parent.
1141 */
1142static int
1143vlan_setflags(struct ifnet *ifp, int status)
1144{
1145	int error, i;
1146
1147	for (i = 0; vlan_pflags[i].flag; i++) {
1148		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1149				     status, vlan_pflags[i].func);
1150		if (error)
1151			return (error);
1152	}
1153	return (0);
1154}
1155
1156/* Inform all vlans that their parent has changed link state */
1157static void
1158vlan_link_state(struct ifnet *ifp, int link)
1159{
1160	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1161	struct ifvlan *ifv;
1162	int i;
1163
1164	TRUNK_LOCK(trunk);
1165#ifdef VLAN_ARRAY
1166	for (i = 0; i < EVL_VLID_MASK+1; i++)
1167		if (trunk->vlans[i] != NULL) {
1168			ifv = trunk->vlans[i];
1169#else
1170	for (i = 0; i < (1 << trunk->hwidth); i++) {
1171		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1172#endif
1173			if_link_state_change(ifv->ifv_ifp,
1174			    trunk->parent->if_link_state);
1175	}
1176	TRUNK_UNLOCK(trunk);
1177}
1178
1179static void
1180vlan_capabilities(struct ifvlan *ifv)
1181{
1182	struct ifnet *p = PARENT(ifv);
1183	struct ifnet *ifp = ifv->ifv_ifp;
1184
1185	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1186
1187	/*
1188	 * If the parent interface can do checksum offloading
1189	 * on VLANs, then propagate its hardware-assisted
1190	 * checksumming flags. Also assert that checksum
1191	 * offloading requires hardware VLAN tagging.
1192	 */
1193	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1194		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1195
1196	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1197	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1198		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1199		ifp->if_hwassist = p->if_hwassist;
1200	} else {
1201		ifp->if_capenable = 0;
1202		ifp->if_hwassist = 0;
1203	}
1204}
1205
1206static void
1207vlan_trunk_capabilities(struct ifnet *ifp)
1208{
1209	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1210	struct ifvlan *ifv;
1211	int i;
1212
1213	TRUNK_LOCK(trunk);
1214#ifdef VLAN_ARRAY
1215	for (i = 0; i < EVL_VLID_MASK+1; i++)
1216		if (trunk->vlans[i] != NULL) {
1217			ifv = trunk->vlans[i];
1218#else
1219	for (i = 0; i < (1 << trunk->hwidth); i++) {
1220		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1221#endif
1222			vlan_capabilities(ifv);
1223	}
1224	TRUNK_UNLOCK(trunk);
1225}
1226
1227static int
1228vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1229{
1230	struct ifaddr *ifa;
1231	struct ifnet *p;
1232	struct ifreq *ifr;
1233	struct ifvlan *ifv;
1234	struct vlanreq vlr;
1235	int error = 0;
1236
1237	ifr = (struct ifreq *)data;
1238	ifa = (struct ifaddr *)data;
1239	ifv = ifp->if_softc;
1240
1241	switch (cmd) {
1242	case SIOCSIFADDR:
1243		ifp->if_flags |= IFF_UP;
1244
1245		switch (ifa->ifa_addr->sa_family) {
1246#ifdef INET
1247		case AF_INET:
1248			arp_ifinit(ifv->ifv_ifp, ifa);
1249			break;
1250#endif
1251		default:
1252			break;
1253		}
1254		break;
1255
1256	case SIOCGIFADDR:
1257		{
1258			struct sockaddr *sa;
1259
1260			sa = (struct sockaddr *) &ifr->ifr_data;
1261			bcopy(IF_LLADDR(ifp), (caddr_t)sa->sa_data,
1262			    ETHER_ADDR_LEN);
1263		}
1264		break;
1265
1266	case SIOCGIFMEDIA:
1267		VLAN_LOCK();
1268		if (TRUNK(ifv) != NULL) {
1269			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1270					SIOCGIFMEDIA, data);
1271			VLAN_UNLOCK();
1272			/* Limit the result to the parent's current config. */
1273			if (error == 0) {
1274				struct ifmediareq *ifmr;
1275
1276				ifmr = (struct ifmediareq *)data;
1277				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1278					ifmr->ifm_count = 1;
1279					error = copyout(&ifmr->ifm_current,
1280						ifmr->ifm_ulist,
1281						sizeof(int));
1282				}
1283			}
1284		} else {
1285			VLAN_UNLOCK();
1286			error = EINVAL;
1287		}
1288		break;
1289
1290	case SIOCSIFMEDIA:
1291		error = EINVAL;
1292		break;
1293
1294	case SIOCSIFMTU:
1295		/*
1296		 * Set the interface MTU.
1297		 */
1298		VLAN_LOCK();
1299		if (TRUNK(ifv) != NULL) {
1300			if (ifr->ifr_mtu >
1301			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1302			    ifr->ifr_mtu <
1303			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1304				error = EINVAL;
1305			else
1306				ifp->if_mtu = ifr->ifr_mtu;
1307		} else
1308			error = EINVAL;
1309		VLAN_UNLOCK();
1310		break;
1311
1312	case SIOCSETVLAN:
1313		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1314		if (error)
1315			break;
1316		if (vlr.vlr_parent[0] == '\0') {
1317			VLAN_LOCK();
1318			vlan_unconfig(ifp);
1319			if (ifp->if_flags & IFF_UP)
1320				if_down(ifp);
1321			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1322			VLAN_UNLOCK();
1323			break;
1324		}
1325		p = ifunit(vlr.vlr_parent);
1326		if (p == 0) {
1327			error = ENOENT;
1328			break;
1329		}
1330		/*
1331		 * Don't let the caller set up a VLAN tag with
1332		 * anything except VLID bits.
1333		 */
1334		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1335			error = EINVAL;
1336			break;
1337		}
1338		error = vlan_config(ifv, p, vlr.vlr_tag);
1339		if (error)
1340			break;
1341		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1342
1343		/* Update flags on the parent, if necessary. */
1344		vlan_setflags(ifp, 1);
1345		break;
1346
1347	case SIOCGETVLAN:
1348		bzero(&vlr, sizeof(vlr));
1349		VLAN_LOCK();
1350		if (TRUNK(ifv) != NULL) {
1351			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1352			    sizeof(vlr.vlr_parent));
1353			vlr.vlr_tag = ifv->ifv_tag;
1354		}
1355		VLAN_UNLOCK();
1356		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1357		break;
1358
1359	case SIOCSIFFLAGS:
1360		/*
1361		 * We should propagate selected flags to the parent,
1362		 * e.g., promiscuous mode.
1363		 */
1364		if (TRUNK(ifv) != NULL)
1365			error = vlan_setflags(ifp, 1);
1366		break;
1367
1368	case SIOCADDMULTI:
1369	case SIOCDELMULTI:
1370		/*
1371		 * If we don't have a parent, just remember the membership for
1372		 * when we do.
1373		 */
1374		if (TRUNK(ifv) != NULL)
1375			error = vlan_setmulti(ifp);
1376		break;
1377
1378	default:
1379		error = EINVAL;
1380	}
1381
1382	return (error);
1383}
1384