vfs_vnops.c revision 256281
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_vnops.c 255510 2013-09-13 06:52:23Z kib $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/disk.h>
49#include <sys/fcntl.h>
50#include <sys/file.h>
51#include <sys/kdb.h>
52#include <sys/stat.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/limits.h>
56#include <sys/lock.h>
57#include <sys/mount.h>
58#include <sys/mutex.h>
59#include <sys/namei.h>
60#include <sys/vnode.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/filio.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sx.h>
67#include <sys/sysctl.h>
68#include <sys/ttycom.h>
69#include <sys/conf.h>
70#include <sys/syslog.h>
71#include <sys/unistd.h>
72
73#include <security/audit/audit.h>
74#include <security/mac/mac_framework.h>
75
76#include <vm/vm.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82
83static fo_rdwr_t	vn_read;
84static fo_rdwr_t	vn_write;
85static fo_rdwr_t	vn_io_fault;
86static fo_truncate_t	vn_truncate;
87static fo_ioctl_t	vn_ioctl;
88static fo_poll_t	vn_poll;
89static fo_kqfilter_t	vn_kqfilter;
90static fo_stat_t	vn_statfile;
91static fo_close_t	vn_closefile;
92
93struct 	fileops vnops = {
94	.fo_read = vn_io_fault,
95	.fo_write = vn_io_fault,
96	.fo_truncate = vn_truncate,
97	.fo_ioctl = vn_ioctl,
98	.fo_poll = vn_poll,
99	.fo_kqfilter = vn_kqfilter,
100	.fo_stat = vn_statfile,
101	.fo_close = vn_closefile,
102	.fo_chmod = vn_chmod,
103	.fo_chown = vn_chown,
104	.fo_sendfile = vn_sendfile,
105	.fo_seek = vn_seek,
106	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107};
108
109int
110vn_open(ndp, flagp, cmode, fp)
111	struct nameidata *ndp;
112	int *flagp, cmode;
113	struct file *fp;
114{
115	struct thread *td = ndp->ni_cnd.cn_thread;
116
117	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
118}
119
120/*
121 * Common code for vnode open operations via a name lookup.
122 * Lookup the vnode and invoke VOP_CREATE if needed.
123 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
124 *
125 * Note that this does NOT free nameidata for the successful case,
126 * due to the NDINIT being done elsewhere.
127 */
128int
129vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
130    struct ucred *cred, struct file *fp)
131{
132	struct vnode *vp;
133	struct mount *mp;
134	struct thread *td = ndp->ni_cnd.cn_thread;
135	struct vattr vat;
136	struct vattr *vap = &vat;
137	int fmode, error;
138
139restart:
140	fmode = *flagp;
141	if (fmode & O_CREAT) {
142		ndp->ni_cnd.cn_nameiop = CREATE;
143		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
144		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
145			ndp->ni_cnd.cn_flags |= FOLLOW;
146		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
147			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
148		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
149			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
150		bwillwrite();
151		if ((error = namei(ndp)) != 0)
152			return (error);
153		if (ndp->ni_vp == NULL) {
154			VATTR_NULL(vap);
155			vap->va_type = VREG;
156			vap->va_mode = cmode;
157			if (fmode & O_EXCL)
158				vap->va_vaflags |= VA_EXCLUSIVE;
159			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
160				NDFREE(ndp, NDF_ONLY_PNBUF);
161				vput(ndp->ni_dvp);
162				if ((error = vn_start_write(NULL, &mp,
163				    V_XSLEEP | PCATCH)) != 0)
164					return (error);
165				goto restart;
166			}
167#ifdef MAC
168			error = mac_vnode_check_create(cred, ndp->ni_dvp,
169			    &ndp->ni_cnd, vap);
170			if (error == 0)
171#endif
172				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
173						   &ndp->ni_cnd, vap);
174			vput(ndp->ni_dvp);
175			vn_finished_write(mp);
176			if (error) {
177				NDFREE(ndp, NDF_ONLY_PNBUF);
178				return (error);
179			}
180			fmode &= ~O_TRUNC;
181			vp = ndp->ni_vp;
182		} else {
183			if (ndp->ni_dvp == ndp->ni_vp)
184				vrele(ndp->ni_dvp);
185			else
186				vput(ndp->ni_dvp);
187			ndp->ni_dvp = NULL;
188			vp = ndp->ni_vp;
189			if (fmode & O_EXCL) {
190				error = EEXIST;
191				goto bad;
192			}
193			fmode &= ~O_CREAT;
194		}
195	} else {
196		ndp->ni_cnd.cn_nameiop = LOOKUP;
197		ndp->ni_cnd.cn_flags = ISOPEN |
198		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
199		if (!(fmode & FWRITE))
200			ndp->ni_cnd.cn_flags |= LOCKSHARED;
201		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
202			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
203		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
204			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
205		if ((error = namei(ndp)) != 0)
206			return (error);
207		vp = ndp->ni_vp;
208	}
209	error = vn_open_vnode(vp, fmode, cred, td, fp);
210	if (error)
211		goto bad;
212	*flagp = fmode;
213	return (0);
214bad:
215	NDFREE(ndp, NDF_ONLY_PNBUF);
216	vput(vp);
217	*flagp = fmode;
218	ndp->ni_vp = NULL;
219	return (error);
220}
221
222/*
223 * Common code for vnode open operations once a vnode is located.
224 * Check permissions, and call the VOP_OPEN routine.
225 */
226int
227vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
228    struct thread *td, struct file *fp)
229{
230	struct mount *mp;
231	accmode_t accmode;
232	struct flock lf;
233	int error, have_flock, lock_flags, type;
234
235	if (vp->v_type == VLNK)
236		return (EMLINK);
237	if (vp->v_type == VSOCK)
238		return (EOPNOTSUPP);
239	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
240		return (ENOTDIR);
241	accmode = 0;
242	if (fmode & (FWRITE | O_TRUNC)) {
243		if (vp->v_type == VDIR)
244			return (EISDIR);
245		accmode |= VWRITE;
246	}
247	if (fmode & FREAD)
248		accmode |= VREAD;
249	if (fmode & FEXEC)
250		accmode |= VEXEC;
251	if ((fmode & O_APPEND) && (fmode & FWRITE))
252		accmode |= VAPPEND;
253#ifdef MAC
254	error = mac_vnode_check_open(cred, vp, accmode);
255	if (error)
256		return (error);
257#endif
258	if ((fmode & O_CREAT) == 0) {
259		if (accmode & VWRITE) {
260			error = vn_writechk(vp);
261			if (error)
262				return (error);
263		}
264		if (accmode) {
265		        error = VOP_ACCESS(vp, accmode, cred, td);
266			if (error)
267				return (error);
268		}
269	}
270	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
271		vn_lock(vp, LK_UPGRADE | LK_RETRY);
272	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
273		return (error);
274
275	if (fmode & (O_EXLOCK | O_SHLOCK)) {
276		KASSERT(fp != NULL, ("open with flock requires fp"));
277		lock_flags = VOP_ISLOCKED(vp);
278		VOP_UNLOCK(vp, 0);
279		lf.l_whence = SEEK_SET;
280		lf.l_start = 0;
281		lf.l_len = 0;
282		if (fmode & O_EXLOCK)
283			lf.l_type = F_WRLCK;
284		else
285			lf.l_type = F_RDLCK;
286		type = F_FLOCK;
287		if ((fmode & FNONBLOCK) == 0)
288			type |= F_WAIT;
289		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
290		have_flock = (error == 0);
291		vn_lock(vp, lock_flags | LK_RETRY);
292		if (error == 0 && vp->v_iflag & VI_DOOMED)
293			error = ENOENT;
294		/*
295		 * Another thread might have used this vnode as an
296		 * executable while the vnode lock was dropped.
297		 * Ensure the vnode is still able to be opened for
298		 * writing after the lock has been obtained.
299		 */
300		if (error == 0 && accmode & VWRITE)
301			error = vn_writechk(vp);
302		if (error) {
303			VOP_UNLOCK(vp, 0);
304			if (have_flock) {
305				lf.l_whence = SEEK_SET;
306				lf.l_start = 0;
307				lf.l_len = 0;
308				lf.l_type = F_UNLCK;
309				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
310				    F_FLOCK);
311			}
312			vn_start_write(vp, &mp, V_WAIT);
313			vn_lock(vp, lock_flags | LK_RETRY);
314			(void)VOP_CLOSE(vp, fmode, cred, td);
315			vn_finished_write(mp);
316			return (error);
317		}
318		fp->f_flag |= FHASLOCK;
319	}
320	if (fmode & FWRITE) {
321		VOP_ADD_WRITECOUNT(vp, 1);
322		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
323		    __func__, vp, vp->v_writecount);
324	}
325	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
326	return (0);
327}
328
329/*
330 * Check for write permissions on the specified vnode.
331 * Prototype text segments cannot be written.
332 */
333int
334vn_writechk(vp)
335	register struct vnode *vp;
336{
337
338	ASSERT_VOP_LOCKED(vp, "vn_writechk");
339	/*
340	 * If there's shared text associated with
341	 * the vnode, try to free it up once.  If
342	 * we fail, we can't allow writing.
343	 */
344	if (VOP_IS_TEXT(vp))
345		return (ETXTBSY);
346
347	return (0);
348}
349
350/*
351 * Vnode close call
352 */
353int
354vn_close(vp, flags, file_cred, td)
355	register struct vnode *vp;
356	int flags;
357	struct ucred *file_cred;
358	struct thread *td;
359{
360	struct mount *mp;
361	int error, lock_flags;
362
363	if (vp->v_type != VFIFO && !(flags & FWRITE) && vp->v_mount != NULL &&
364	    vp->v_mount->mnt_kern_flag & MNTK_EXTENDED_SHARED)
365		lock_flags = LK_SHARED;
366	else
367		lock_flags = LK_EXCLUSIVE;
368
369	vn_start_write(vp, &mp, V_WAIT);
370	vn_lock(vp, lock_flags | LK_RETRY);
371	if (flags & FWRITE) {
372		VNASSERT(vp->v_writecount > 0, vp,
373		    ("vn_close: negative writecount"));
374		VOP_ADD_WRITECOUNT(vp, -1);
375		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
376		    __func__, vp, vp->v_writecount);
377	}
378	error = VOP_CLOSE(vp, flags, file_cred, td);
379	vput(vp);
380	vn_finished_write(mp);
381	return (error);
382}
383
384/*
385 * Heuristic to detect sequential operation.
386 */
387static int
388sequential_heuristic(struct uio *uio, struct file *fp)
389{
390
391	if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
392		return (fp->f_seqcount << IO_SEQSHIFT);
393
394	/*
395	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
396	 * that the first I/O is normally considered to be slightly
397	 * sequential.  Seeking to offset 0 doesn't change sequentiality
398	 * unless previous seeks have reduced f_seqcount to 0, in which
399	 * case offset 0 is not special.
400	 */
401	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
402	    uio->uio_offset == fp->f_nextoff) {
403		/*
404		 * f_seqcount is in units of fixed-size blocks so that it
405		 * depends mainly on the amount of sequential I/O and not
406		 * much on the number of sequential I/O's.  The fixed size
407		 * of 16384 is hard-coded here since it is (not quite) just
408		 * a magic size that works well here.  This size is more
409		 * closely related to the best I/O size for real disks than
410		 * to any block size used by software.
411		 */
412		fp->f_seqcount += howmany(uio->uio_resid, 16384);
413		if (fp->f_seqcount > IO_SEQMAX)
414			fp->f_seqcount = IO_SEQMAX;
415		return (fp->f_seqcount << IO_SEQSHIFT);
416	}
417
418	/* Not sequential.  Quickly draw-down sequentiality. */
419	if (fp->f_seqcount > 1)
420		fp->f_seqcount = 1;
421	else
422		fp->f_seqcount = 0;
423	return (0);
424}
425
426/*
427 * Package up an I/O request on a vnode into a uio and do it.
428 */
429int
430vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
431    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
432    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
433{
434	struct uio auio;
435	struct iovec aiov;
436	struct mount *mp;
437	struct ucred *cred;
438	void *rl_cookie;
439	int error, lock_flags;
440
441	auio.uio_iov = &aiov;
442	auio.uio_iovcnt = 1;
443	aiov.iov_base = base;
444	aiov.iov_len = len;
445	auio.uio_resid = len;
446	auio.uio_offset = offset;
447	auio.uio_segflg = segflg;
448	auio.uio_rw = rw;
449	auio.uio_td = td;
450	error = 0;
451
452	if ((ioflg & IO_NODELOCKED) == 0) {
453		if (rw == UIO_READ) {
454			rl_cookie = vn_rangelock_rlock(vp, offset,
455			    offset + len);
456		} else {
457			rl_cookie = vn_rangelock_wlock(vp, offset,
458			    offset + len);
459		}
460		mp = NULL;
461		if (rw == UIO_WRITE) {
462			if (vp->v_type != VCHR &&
463			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
464			    != 0)
465				goto out;
466			if (MNT_SHARED_WRITES(mp) ||
467			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
468				lock_flags = LK_SHARED;
469			else
470				lock_flags = LK_EXCLUSIVE;
471		} else
472			lock_flags = LK_SHARED;
473		vn_lock(vp, lock_flags | LK_RETRY);
474	} else
475		rl_cookie = NULL;
476
477	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
478#ifdef MAC
479	if ((ioflg & IO_NOMACCHECK) == 0) {
480		if (rw == UIO_READ)
481			error = mac_vnode_check_read(active_cred, file_cred,
482			    vp);
483		else
484			error = mac_vnode_check_write(active_cred, file_cred,
485			    vp);
486	}
487#endif
488	if (error == 0) {
489		if (file_cred != NULL)
490			cred = file_cred;
491		else
492			cred = active_cred;
493		if (rw == UIO_READ)
494			error = VOP_READ(vp, &auio, ioflg, cred);
495		else
496			error = VOP_WRITE(vp, &auio, ioflg, cred);
497	}
498	if (aresid)
499		*aresid = auio.uio_resid;
500	else
501		if (auio.uio_resid && error == 0)
502			error = EIO;
503	if ((ioflg & IO_NODELOCKED) == 0) {
504		VOP_UNLOCK(vp, 0);
505		if (mp != NULL)
506			vn_finished_write(mp);
507	}
508 out:
509	if (rl_cookie != NULL)
510		vn_rangelock_unlock(vp, rl_cookie);
511	return (error);
512}
513
514/*
515 * Package up an I/O request on a vnode into a uio and do it.  The I/O
516 * request is split up into smaller chunks and we try to avoid saturating
517 * the buffer cache while potentially holding a vnode locked, so we
518 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
519 * to give other processes a chance to lock the vnode (either other processes
520 * core'ing the same binary, or unrelated processes scanning the directory).
521 */
522int
523vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
524    file_cred, aresid, td)
525	enum uio_rw rw;
526	struct vnode *vp;
527	void *base;
528	size_t len;
529	off_t offset;
530	enum uio_seg segflg;
531	int ioflg;
532	struct ucred *active_cred;
533	struct ucred *file_cred;
534	size_t *aresid;
535	struct thread *td;
536{
537	int error = 0;
538	ssize_t iaresid;
539
540	do {
541		int chunk;
542
543		/*
544		 * Force `offset' to a multiple of MAXBSIZE except possibly
545		 * for the first chunk, so that filesystems only need to
546		 * write full blocks except possibly for the first and last
547		 * chunks.
548		 */
549		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
550
551		if (chunk > len)
552			chunk = len;
553		if (rw != UIO_READ && vp->v_type == VREG)
554			bwillwrite();
555		iaresid = 0;
556		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
557		    ioflg, active_cred, file_cred, &iaresid, td);
558		len -= chunk;	/* aresid calc already includes length */
559		if (error)
560			break;
561		offset += chunk;
562		base = (char *)base + chunk;
563		kern_yield(PRI_USER);
564	} while (len);
565	if (aresid)
566		*aresid = len + iaresid;
567	return (error);
568}
569
570off_t
571foffset_lock(struct file *fp, int flags)
572{
573	struct mtx *mtxp;
574	off_t res;
575
576	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
577
578#if OFF_MAX <= LONG_MAX
579	/*
580	 * Caller only wants the current f_offset value.  Assume that
581	 * the long and shorter integer types reads are atomic.
582	 */
583	if ((flags & FOF_NOLOCK) != 0)
584		return (fp->f_offset);
585#endif
586
587	/*
588	 * According to McKusick the vn lock was protecting f_offset here.
589	 * It is now protected by the FOFFSET_LOCKED flag.
590	 */
591	mtxp = mtx_pool_find(mtxpool_sleep, fp);
592	mtx_lock(mtxp);
593	if ((flags & FOF_NOLOCK) == 0) {
594		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
595			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
596			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
597			    "vofflock", 0);
598		}
599		fp->f_vnread_flags |= FOFFSET_LOCKED;
600	}
601	res = fp->f_offset;
602	mtx_unlock(mtxp);
603	return (res);
604}
605
606void
607foffset_unlock(struct file *fp, off_t val, int flags)
608{
609	struct mtx *mtxp;
610
611	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
612
613#if OFF_MAX <= LONG_MAX
614	if ((flags & FOF_NOLOCK) != 0) {
615		if ((flags & FOF_NOUPDATE) == 0)
616			fp->f_offset = val;
617		if ((flags & FOF_NEXTOFF) != 0)
618			fp->f_nextoff = val;
619		return;
620	}
621#endif
622
623	mtxp = mtx_pool_find(mtxpool_sleep, fp);
624	mtx_lock(mtxp);
625	if ((flags & FOF_NOUPDATE) == 0)
626		fp->f_offset = val;
627	if ((flags & FOF_NEXTOFF) != 0)
628		fp->f_nextoff = val;
629	if ((flags & FOF_NOLOCK) == 0) {
630		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
631		    ("Lost FOFFSET_LOCKED"));
632		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
633			wakeup(&fp->f_vnread_flags);
634		fp->f_vnread_flags = 0;
635	}
636	mtx_unlock(mtxp);
637}
638
639void
640foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
641{
642
643	if ((flags & FOF_OFFSET) == 0)
644		uio->uio_offset = foffset_lock(fp, flags);
645}
646
647void
648foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
649{
650
651	if ((flags & FOF_OFFSET) == 0)
652		foffset_unlock(fp, uio->uio_offset, flags);
653}
654
655static int
656get_advice(struct file *fp, struct uio *uio)
657{
658	struct mtx *mtxp;
659	int ret;
660
661	ret = POSIX_FADV_NORMAL;
662	if (fp->f_advice == NULL)
663		return (ret);
664
665	mtxp = mtx_pool_find(mtxpool_sleep, fp);
666	mtx_lock(mtxp);
667	if (uio->uio_offset >= fp->f_advice->fa_start &&
668	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
669		ret = fp->f_advice->fa_advice;
670	mtx_unlock(mtxp);
671	return (ret);
672}
673
674/*
675 * File table vnode read routine.
676 */
677static int
678vn_read(fp, uio, active_cred, flags, td)
679	struct file *fp;
680	struct uio *uio;
681	struct ucred *active_cred;
682	int flags;
683	struct thread *td;
684{
685	struct vnode *vp;
686	struct mtx *mtxp;
687	int error, ioflag;
688	int advice;
689	off_t offset, start, end;
690
691	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
692	    uio->uio_td, td));
693	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
694	vp = fp->f_vnode;
695	ioflag = 0;
696	if (fp->f_flag & FNONBLOCK)
697		ioflag |= IO_NDELAY;
698	if (fp->f_flag & O_DIRECT)
699		ioflag |= IO_DIRECT;
700	advice = get_advice(fp, uio);
701	vn_lock(vp, LK_SHARED | LK_RETRY);
702
703	switch (advice) {
704	case POSIX_FADV_NORMAL:
705	case POSIX_FADV_SEQUENTIAL:
706	case POSIX_FADV_NOREUSE:
707		ioflag |= sequential_heuristic(uio, fp);
708		break;
709	case POSIX_FADV_RANDOM:
710		/* Disable read-ahead for random I/O. */
711		break;
712	}
713	offset = uio->uio_offset;
714
715#ifdef MAC
716	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
717	if (error == 0)
718#endif
719		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
720	fp->f_nextoff = uio->uio_offset;
721	VOP_UNLOCK(vp, 0);
722	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
723	    offset != uio->uio_offset) {
724		/*
725		 * Use POSIX_FADV_DONTNEED to flush clean pages and
726		 * buffers for the backing file after a
727		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
728		 * case of using POSIX_FADV_NOREUSE with sequential
729		 * access, track the previous implicit DONTNEED
730		 * request and grow this request to include the
731		 * current read(2) in addition to the previous
732		 * DONTNEED.  With purely sequential access this will
733		 * cause the DONTNEED requests to continously grow to
734		 * cover all of the previously read regions of the
735		 * file.  This allows filesystem blocks that are
736		 * accessed by multiple calls to read(2) to be flushed
737		 * once the last read(2) finishes.
738		 */
739		start = offset;
740		end = uio->uio_offset - 1;
741		mtxp = mtx_pool_find(mtxpool_sleep, fp);
742		mtx_lock(mtxp);
743		if (fp->f_advice != NULL &&
744		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
745			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
746				start = fp->f_advice->fa_prevstart;
747			else if (fp->f_advice->fa_prevstart != 0 &&
748			    fp->f_advice->fa_prevstart == end + 1)
749				end = fp->f_advice->fa_prevend;
750			fp->f_advice->fa_prevstart = start;
751			fp->f_advice->fa_prevend = end;
752		}
753		mtx_unlock(mtxp);
754		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
755	}
756	return (error);
757}
758
759/*
760 * File table vnode write routine.
761 */
762static int
763vn_write(fp, uio, active_cred, flags, td)
764	struct file *fp;
765	struct uio *uio;
766	struct ucred *active_cred;
767	int flags;
768	struct thread *td;
769{
770	struct vnode *vp;
771	struct mount *mp;
772	struct mtx *mtxp;
773	int error, ioflag, lock_flags;
774	int advice;
775	off_t offset, start, end;
776
777	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
778	    uio->uio_td, td));
779	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
780	vp = fp->f_vnode;
781	if (vp->v_type == VREG)
782		bwillwrite();
783	ioflag = IO_UNIT;
784	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
785		ioflag |= IO_APPEND;
786	if (fp->f_flag & FNONBLOCK)
787		ioflag |= IO_NDELAY;
788	if (fp->f_flag & O_DIRECT)
789		ioflag |= IO_DIRECT;
790	if ((fp->f_flag & O_FSYNC) ||
791	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
792		ioflag |= IO_SYNC;
793	mp = NULL;
794	if (vp->v_type != VCHR &&
795	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
796		goto unlock;
797
798	advice = get_advice(fp, uio);
799
800	if (MNT_SHARED_WRITES(mp) ||
801	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
802		lock_flags = LK_SHARED;
803	} else {
804		lock_flags = LK_EXCLUSIVE;
805	}
806
807	vn_lock(vp, lock_flags | LK_RETRY);
808	switch (advice) {
809	case POSIX_FADV_NORMAL:
810	case POSIX_FADV_SEQUENTIAL:
811	case POSIX_FADV_NOREUSE:
812		ioflag |= sequential_heuristic(uio, fp);
813		break;
814	case POSIX_FADV_RANDOM:
815		/* XXX: Is this correct? */
816		break;
817	}
818	offset = uio->uio_offset;
819
820#ifdef MAC
821	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
822	if (error == 0)
823#endif
824		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
825	fp->f_nextoff = uio->uio_offset;
826	VOP_UNLOCK(vp, 0);
827	if (vp->v_type != VCHR)
828		vn_finished_write(mp);
829	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
830	    offset != uio->uio_offset) {
831		/*
832		 * Use POSIX_FADV_DONTNEED to flush clean pages and
833		 * buffers for the backing file after a
834		 * POSIX_FADV_NOREUSE write(2).  To optimize the
835		 * common case of using POSIX_FADV_NOREUSE with
836		 * sequential access, track the previous implicit
837		 * DONTNEED request and grow this request to include
838		 * the current write(2) in addition to the previous
839		 * DONTNEED.  With purely sequential access this will
840		 * cause the DONTNEED requests to continously grow to
841		 * cover all of the previously written regions of the
842		 * file.
843		 *
844		 * Note that the blocks just written are almost
845		 * certainly still dirty, so this only works when
846		 * VOP_ADVISE() calls from subsequent writes push out
847		 * the data written by this write(2) once the backing
848		 * buffers are clean.  However, as compared to forcing
849		 * IO_DIRECT, this gives much saner behavior.  Write
850		 * clustering is still allowed, and clean pages are
851		 * merely moved to the cache page queue rather than
852		 * outright thrown away.  This means a subsequent
853		 * read(2) can still avoid hitting the disk if the
854		 * pages have not been reclaimed.
855		 *
856		 * This does make POSIX_FADV_NOREUSE largely useless
857		 * with non-sequential access.  However, sequential
858		 * access is the more common use case and the flag is
859		 * merely advisory.
860		 */
861		start = offset;
862		end = uio->uio_offset - 1;
863		mtxp = mtx_pool_find(mtxpool_sleep, fp);
864		mtx_lock(mtxp);
865		if (fp->f_advice != NULL &&
866		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
867			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
868				start = fp->f_advice->fa_prevstart;
869			else if (fp->f_advice->fa_prevstart != 0 &&
870			    fp->f_advice->fa_prevstart == end + 1)
871				end = fp->f_advice->fa_prevend;
872			fp->f_advice->fa_prevstart = start;
873			fp->f_advice->fa_prevend = end;
874		}
875		mtx_unlock(mtxp);
876		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
877	}
878
879unlock:
880	return (error);
881}
882
883static const int io_hold_cnt = 16;
884static int vn_io_fault_enable = 1;
885SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
886    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
887static u_long vn_io_faults_cnt;
888SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
889    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
890
891/*
892 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
893 * prevent the following deadlock:
894 *
895 * Assume that the thread A reads from the vnode vp1 into userspace
896 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
897 * currently not resident, then system ends up with the call chain
898 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
899 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
900 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
901 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
902 * backed by the pages of vnode vp1, and some page in buf2 is not
903 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
904 *
905 * To prevent the lock order reversal and deadlock, vn_io_fault() does
906 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
907 * Instead, it first tries to do the whole range i/o with pagefaults
908 * disabled. If all pages in the i/o buffer are resident and mapped,
909 * VOP will succeed (ignoring the genuine filesystem errors).
910 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
911 * i/o in chunks, with all pages in the chunk prefaulted and held
912 * using vm_fault_quick_hold_pages().
913 *
914 * Filesystems using this deadlock avoidance scheme should use the
915 * array of the held pages from uio, saved in the curthread->td_ma,
916 * instead of doing uiomove().  A helper function
917 * vn_io_fault_uiomove() converts uiomove request into
918 * uiomove_fromphys() over td_ma array.
919 *
920 * Since vnode locks do not cover the whole i/o anymore, rangelocks
921 * make the current i/o request atomic with respect to other i/os and
922 * truncations.
923 */
924static int
925vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
926    int flags, struct thread *td)
927{
928	vm_page_t ma[io_hold_cnt + 2];
929	struct uio *uio_clone, short_uio;
930	struct iovec short_iovec[1];
931	fo_rdwr_t *doio;
932	struct vnode *vp;
933	void *rl_cookie;
934	struct mount *mp;
935	vm_page_t *prev_td_ma;
936	int cnt, error, save, saveheld, prev_td_ma_cnt;
937	vm_offset_t addr, end;
938	vm_prot_t prot;
939	size_t len, resid;
940	ssize_t adv;
941
942	if (uio->uio_rw == UIO_READ)
943		doio = vn_read;
944	else
945		doio = vn_write;
946	vp = fp->f_vnode;
947	foffset_lock_uio(fp, uio, flags);
948
949	if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG ||
950	    ((mp = vp->v_mount) != NULL &&
951	    (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) ||
952	    !vn_io_fault_enable) {
953		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
954		goto out_last;
955	}
956
957	/*
958	 * The UFS follows IO_UNIT directive and replays back both
959	 * uio_offset and uio_resid if an error is encountered during the
960	 * operation.  But, since the iovec may be already advanced,
961	 * uio is still in an inconsistent state.
962	 *
963	 * Cache a copy of the original uio, which is advanced to the redo
964	 * point using UIO_NOCOPY below.
965	 */
966	uio_clone = cloneuio(uio);
967	resid = uio->uio_resid;
968
969	short_uio.uio_segflg = UIO_USERSPACE;
970	short_uio.uio_rw = uio->uio_rw;
971	short_uio.uio_td = uio->uio_td;
972
973	if (uio->uio_rw == UIO_READ) {
974		prot = VM_PROT_WRITE;
975		rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
976		    uio->uio_offset + uio->uio_resid);
977	} else {
978		prot = VM_PROT_READ;
979		if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0)
980			/* For appenders, punt and lock the whole range. */
981			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
982		else
983			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
984			    uio->uio_offset + uio->uio_resid);
985	}
986
987	save = vm_fault_disable_pagefaults();
988	error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
989	if (error != EFAULT)
990		goto out;
991
992	atomic_add_long(&vn_io_faults_cnt, 1);
993	uio_clone->uio_segflg = UIO_NOCOPY;
994	uiomove(NULL, resid - uio->uio_resid, uio_clone);
995	uio_clone->uio_segflg = uio->uio_segflg;
996
997	saveheld = curthread_pflags_set(TDP_UIOHELD);
998	prev_td_ma = td->td_ma;
999	prev_td_ma_cnt = td->td_ma_cnt;
1000
1001	while (uio_clone->uio_resid != 0) {
1002		len = uio_clone->uio_iov->iov_len;
1003		if (len == 0) {
1004			KASSERT(uio_clone->uio_iovcnt >= 1,
1005			    ("iovcnt underflow"));
1006			uio_clone->uio_iov++;
1007			uio_clone->uio_iovcnt--;
1008			continue;
1009		}
1010
1011		addr = (vm_offset_t)uio_clone->uio_iov->iov_base;
1012		end = round_page(addr + len);
1013		cnt = howmany(end - trunc_page(addr), PAGE_SIZE);
1014		/*
1015		 * A perfectly misaligned address and length could cause
1016		 * both the start and the end of the chunk to use partial
1017		 * page.  +2 accounts for such a situation.
1018		 */
1019		if (cnt > io_hold_cnt + 2) {
1020			len = io_hold_cnt * PAGE_SIZE;
1021			KASSERT(howmany(round_page(addr + len) -
1022			    trunc_page(addr), PAGE_SIZE) <= io_hold_cnt + 2,
1023			    ("cnt overflow"));
1024		}
1025		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1026		    addr, len, prot, ma, io_hold_cnt + 2);
1027		if (cnt == -1) {
1028			error = EFAULT;
1029			break;
1030		}
1031		short_uio.uio_iov = &short_iovec[0];
1032		short_iovec[0].iov_base = (void *)addr;
1033		short_uio.uio_iovcnt = 1;
1034		short_uio.uio_resid = short_iovec[0].iov_len = len;
1035		short_uio.uio_offset = uio_clone->uio_offset;
1036		td->td_ma = ma;
1037		td->td_ma_cnt = cnt;
1038
1039		error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET,
1040		    td);
1041		vm_page_unhold_pages(ma, cnt);
1042		adv = len - short_uio.uio_resid;
1043
1044		uio_clone->uio_iov->iov_base =
1045		    (char *)uio_clone->uio_iov->iov_base + adv;
1046		uio_clone->uio_iov->iov_len -= adv;
1047		uio_clone->uio_resid -= adv;
1048		uio_clone->uio_offset += adv;
1049
1050		uio->uio_resid -= adv;
1051		uio->uio_offset += adv;
1052
1053		if (error != 0 || adv == 0)
1054			break;
1055	}
1056	td->td_ma = prev_td_ma;
1057	td->td_ma_cnt = prev_td_ma_cnt;
1058	curthread_pflags_restore(saveheld);
1059out:
1060	vm_fault_enable_pagefaults(save);
1061	vn_rangelock_unlock(vp, rl_cookie);
1062	free(uio_clone, M_IOV);
1063out_last:
1064	foffset_unlock_uio(fp, uio, flags);
1065	return (error);
1066}
1067
1068/*
1069 * Helper function to perform the requested uiomove operation using
1070 * the held pages for io->uio_iov[0].iov_base buffer instead of
1071 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1072 * instead of iov_base prevents page faults that could occur due to
1073 * pmap_collect() invalidating the mapping created by
1074 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1075 * object cleanup revoking the write access from page mappings.
1076 *
1077 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1078 * instead of plain uiomove().
1079 */
1080int
1081vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1082{
1083	struct uio transp_uio;
1084	struct iovec transp_iov[1];
1085	struct thread *td;
1086	size_t adv;
1087	int error, pgadv;
1088
1089	td = curthread;
1090	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1091	    uio->uio_segflg != UIO_USERSPACE)
1092		return (uiomove(data, xfersize, uio));
1093
1094	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1095	transp_iov[0].iov_base = data;
1096	transp_uio.uio_iov = &transp_iov[0];
1097	transp_uio.uio_iovcnt = 1;
1098	if (xfersize > uio->uio_resid)
1099		xfersize = uio->uio_resid;
1100	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1101	transp_uio.uio_offset = 0;
1102	transp_uio.uio_segflg = UIO_SYSSPACE;
1103	/*
1104	 * Since transp_iov points to data, and td_ma page array
1105	 * corresponds to original uio->uio_iov, we need to invert the
1106	 * direction of the i/o operation as passed to
1107	 * uiomove_fromphys().
1108	 */
1109	switch (uio->uio_rw) {
1110	case UIO_WRITE:
1111		transp_uio.uio_rw = UIO_READ;
1112		break;
1113	case UIO_READ:
1114		transp_uio.uio_rw = UIO_WRITE;
1115		break;
1116	}
1117	transp_uio.uio_td = uio->uio_td;
1118	error = uiomove_fromphys(td->td_ma,
1119	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1120	    xfersize, &transp_uio);
1121	adv = xfersize - transp_uio.uio_resid;
1122	pgadv =
1123	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1124	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1125	td->td_ma += pgadv;
1126	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1127	    pgadv));
1128	td->td_ma_cnt -= pgadv;
1129	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1130	uio->uio_iov->iov_len -= adv;
1131	uio->uio_resid -= adv;
1132	uio->uio_offset += adv;
1133	return (error);
1134}
1135
1136int
1137vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1138    struct uio *uio)
1139{
1140	struct thread *td;
1141	vm_offset_t iov_base;
1142	int cnt, pgadv;
1143
1144	td = curthread;
1145	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1146	    uio->uio_segflg != UIO_USERSPACE)
1147		return (uiomove_fromphys(ma, offset, xfersize, uio));
1148
1149	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1150	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1151	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1152	switch (uio->uio_rw) {
1153	case UIO_WRITE:
1154		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1155		    offset, cnt);
1156		break;
1157	case UIO_READ:
1158		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1159		    cnt);
1160		break;
1161	}
1162	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1163	td->td_ma += pgadv;
1164	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1165	    pgadv));
1166	td->td_ma_cnt -= pgadv;
1167	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1168	uio->uio_iov->iov_len -= cnt;
1169	uio->uio_resid -= cnt;
1170	uio->uio_offset += cnt;
1171	return (0);
1172}
1173
1174
1175/*
1176 * File table truncate routine.
1177 */
1178static int
1179vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1180    struct thread *td)
1181{
1182	struct vattr vattr;
1183	struct mount *mp;
1184	struct vnode *vp;
1185	void *rl_cookie;
1186	int error;
1187
1188	vp = fp->f_vnode;
1189
1190	/*
1191	 * Lock the whole range for truncation.  Otherwise split i/o
1192	 * might happen partly before and partly after the truncation.
1193	 */
1194	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1195	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1196	if (error)
1197		goto out1;
1198	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1199	if (vp->v_type == VDIR) {
1200		error = EISDIR;
1201		goto out;
1202	}
1203#ifdef MAC
1204	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1205	if (error)
1206		goto out;
1207#endif
1208	error = vn_writechk(vp);
1209	if (error == 0) {
1210		VATTR_NULL(&vattr);
1211		vattr.va_size = length;
1212		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1213	}
1214out:
1215	VOP_UNLOCK(vp, 0);
1216	vn_finished_write(mp);
1217out1:
1218	vn_rangelock_unlock(vp, rl_cookie);
1219	return (error);
1220}
1221
1222/*
1223 * File table vnode stat routine.
1224 */
1225static int
1226vn_statfile(fp, sb, active_cred, td)
1227	struct file *fp;
1228	struct stat *sb;
1229	struct ucred *active_cred;
1230	struct thread *td;
1231{
1232	struct vnode *vp = fp->f_vnode;
1233	int error;
1234
1235	vn_lock(vp, LK_SHARED | LK_RETRY);
1236	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1237	VOP_UNLOCK(vp, 0);
1238
1239	return (error);
1240}
1241
1242/*
1243 * Stat a vnode; implementation for the stat syscall
1244 */
1245int
1246vn_stat(vp, sb, active_cred, file_cred, td)
1247	struct vnode *vp;
1248	register struct stat *sb;
1249	struct ucred *active_cred;
1250	struct ucred *file_cred;
1251	struct thread *td;
1252{
1253	struct vattr vattr;
1254	register struct vattr *vap;
1255	int error;
1256	u_short mode;
1257
1258#ifdef MAC
1259	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1260	if (error)
1261		return (error);
1262#endif
1263
1264	vap = &vattr;
1265
1266	/*
1267	 * Initialize defaults for new and unusual fields, so that file
1268	 * systems which don't support these fields don't need to know
1269	 * about them.
1270	 */
1271	vap->va_birthtime.tv_sec = -1;
1272	vap->va_birthtime.tv_nsec = 0;
1273	vap->va_fsid = VNOVAL;
1274	vap->va_rdev = NODEV;
1275
1276	error = VOP_GETATTR(vp, vap, active_cred);
1277	if (error)
1278		return (error);
1279
1280	/*
1281	 * Zero the spare stat fields
1282	 */
1283	bzero(sb, sizeof *sb);
1284
1285	/*
1286	 * Copy from vattr table
1287	 */
1288	if (vap->va_fsid != VNOVAL)
1289		sb->st_dev = vap->va_fsid;
1290	else
1291		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1292	sb->st_ino = vap->va_fileid;
1293	mode = vap->va_mode;
1294	switch (vap->va_type) {
1295	case VREG:
1296		mode |= S_IFREG;
1297		break;
1298	case VDIR:
1299		mode |= S_IFDIR;
1300		break;
1301	case VBLK:
1302		mode |= S_IFBLK;
1303		break;
1304	case VCHR:
1305		mode |= S_IFCHR;
1306		break;
1307	case VLNK:
1308		mode |= S_IFLNK;
1309		break;
1310	case VSOCK:
1311		mode |= S_IFSOCK;
1312		break;
1313	case VFIFO:
1314		mode |= S_IFIFO;
1315		break;
1316	default:
1317		return (EBADF);
1318	};
1319	sb->st_mode = mode;
1320	sb->st_nlink = vap->va_nlink;
1321	sb->st_uid = vap->va_uid;
1322	sb->st_gid = vap->va_gid;
1323	sb->st_rdev = vap->va_rdev;
1324	if (vap->va_size > OFF_MAX)
1325		return (EOVERFLOW);
1326	sb->st_size = vap->va_size;
1327	sb->st_atim = vap->va_atime;
1328	sb->st_mtim = vap->va_mtime;
1329	sb->st_ctim = vap->va_ctime;
1330	sb->st_birthtim = vap->va_birthtime;
1331
1332        /*
1333	 * According to www.opengroup.org, the meaning of st_blksize is
1334	 *   "a filesystem-specific preferred I/O block size for this
1335	 *    object.  In some filesystem types, this may vary from file
1336	 *    to file"
1337	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1338	 */
1339
1340	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1341
1342	sb->st_flags = vap->va_flags;
1343	if (priv_check(td, PRIV_VFS_GENERATION))
1344		sb->st_gen = 0;
1345	else
1346		sb->st_gen = vap->va_gen;
1347
1348	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1349	return (0);
1350}
1351
1352/*
1353 * File table vnode ioctl routine.
1354 */
1355static int
1356vn_ioctl(fp, com, data, active_cred, td)
1357	struct file *fp;
1358	u_long com;
1359	void *data;
1360	struct ucred *active_cred;
1361	struct thread *td;
1362{
1363	struct vattr vattr;
1364	struct vnode *vp;
1365	int error;
1366
1367	vp = fp->f_vnode;
1368	switch (vp->v_type) {
1369	case VDIR:
1370	case VREG:
1371		switch (com) {
1372		case FIONREAD:
1373			vn_lock(vp, LK_SHARED | LK_RETRY);
1374			error = VOP_GETATTR(vp, &vattr, active_cred);
1375			VOP_UNLOCK(vp, 0);
1376			if (error == 0)
1377				*(int *)data = vattr.va_size - fp->f_offset;
1378			return (error);
1379		case FIONBIO:
1380		case FIOASYNC:
1381			return (0);
1382		default:
1383			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1384			    active_cred, td));
1385		}
1386	default:
1387		return (ENOTTY);
1388	}
1389}
1390
1391/*
1392 * File table vnode poll routine.
1393 */
1394static int
1395vn_poll(fp, events, active_cred, td)
1396	struct file *fp;
1397	int events;
1398	struct ucred *active_cred;
1399	struct thread *td;
1400{
1401	struct vnode *vp;
1402	int error;
1403
1404	vp = fp->f_vnode;
1405#ifdef MAC
1406	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1407	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1408	VOP_UNLOCK(vp, 0);
1409	if (!error)
1410#endif
1411
1412	error = VOP_POLL(vp, events, fp->f_cred, td);
1413	return (error);
1414}
1415
1416/*
1417 * Acquire the requested lock and then check for validity.  LK_RETRY
1418 * permits vn_lock to return doomed vnodes.
1419 */
1420int
1421_vn_lock(struct vnode *vp, int flags, char *file, int line)
1422{
1423	int error;
1424
1425	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1426	    ("vn_lock called with no locktype."));
1427	do {
1428#ifdef DEBUG_VFS_LOCKS
1429		KASSERT(vp->v_holdcnt != 0,
1430		    ("vn_lock %p: zero hold count", vp));
1431#endif
1432		error = VOP_LOCK1(vp, flags, file, line);
1433		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1434		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1435		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1436		    flags, error));
1437		/*
1438		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1439		 * If RETRY is not set, we return ENOENT instead.
1440		 */
1441		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1442		    (flags & LK_RETRY) == 0) {
1443			VOP_UNLOCK(vp, 0);
1444			error = ENOENT;
1445			break;
1446		}
1447	} while (flags & LK_RETRY && error != 0);
1448	return (error);
1449}
1450
1451/*
1452 * File table vnode close routine.
1453 */
1454static int
1455vn_closefile(fp, td)
1456	struct file *fp;
1457	struct thread *td;
1458{
1459	struct vnode *vp;
1460	struct flock lf;
1461	int error;
1462
1463	vp = fp->f_vnode;
1464	fp->f_ops = &badfileops;
1465
1466	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1467		vref(vp);
1468
1469	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1470
1471	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1472		lf.l_whence = SEEK_SET;
1473		lf.l_start = 0;
1474		lf.l_len = 0;
1475		lf.l_type = F_UNLCK;
1476		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1477		vrele(vp);
1478	}
1479	return (error);
1480}
1481
1482/*
1483 * Preparing to start a filesystem write operation. If the operation is
1484 * permitted, then we bump the count of operations in progress and
1485 * proceed. If a suspend request is in progress, we wait until the
1486 * suspension is over, and then proceed.
1487 */
1488static int
1489vn_start_write_locked(struct mount *mp, int flags)
1490{
1491	int error;
1492
1493	mtx_assert(MNT_MTX(mp), MA_OWNED);
1494	error = 0;
1495
1496	/*
1497	 * Check on status of suspension.
1498	 */
1499	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1500	    mp->mnt_susp_owner != curthread) {
1501		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1502			if (flags & V_NOWAIT) {
1503				error = EWOULDBLOCK;
1504				goto unlock;
1505			}
1506			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1507			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1508			if (error)
1509				goto unlock;
1510		}
1511	}
1512	if (flags & V_XSLEEP)
1513		goto unlock;
1514	mp->mnt_writeopcount++;
1515unlock:
1516	if (error != 0 || (flags & V_XSLEEP) != 0)
1517		MNT_REL(mp);
1518	MNT_IUNLOCK(mp);
1519	return (error);
1520}
1521
1522int
1523vn_start_write(vp, mpp, flags)
1524	struct vnode *vp;
1525	struct mount **mpp;
1526	int flags;
1527{
1528	struct mount *mp;
1529	int error;
1530
1531	error = 0;
1532	/*
1533	 * If a vnode is provided, get and return the mount point that
1534	 * to which it will write.
1535	 */
1536	if (vp != NULL) {
1537		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1538			*mpp = NULL;
1539			if (error != EOPNOTSUPP)
1540				return (error);
1541			return (0);
1542		}
1543	}
1544	if ((mp = *mpp) == NULL)
1545		return (0);
1546
1547	/*
1548	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1549	 * a vfs_ref().
1550	 * As long as a vnode is not provided we need to acquire a
1551	 * refcount for the provided mountpoint too, in order to
1552	 * emulate a vfs_ref().
1553	 */
1554	MNT_ILOCK(mp);
1555	if (vp == NULL)
1556		MNT_REF(mp);
1557
1558	return (vn_start_write_locked(mp, flags));
1559}
1560
1561/*
1562 * Secondary suspension. Used by operations such as vop_inactive
1563 * routines that are needed by the higher level functions. These
1564 * are allowed to proceed until all the higher level functions have
1565 * completed (indicated by mnt_writeopcount dropping to zero). At that
1566 * time, these operations are halted until the suspension is over.
1567 */
1568int
1569vn_start_secondary_write(vp, mpp, flags)
1570	struct vnode *vp;
1571	struct mount **mpp;
1572	int flags;
1573{
1574	struct mount *mp;
1575	int error;
1576
1577 retry:
1578	if (vp != NULL) {
1579		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1580			*mpp = NULL;
1581			if (error != EOPNOTSUPP)
1582				return (error);
1583			return (0);
1584		}
1585	}
1586	/*
1587	 * If we are not suspended or have not yet reached suspended
1588	 * mode, then let the operation proceed.
1589	 */
1590	if ((mp = *mpp) == NULL)
1591		return (0);
1592
1593	/*
1594	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1595	 * a vfs_ref().
1596	 * As long as a vnode is not provided we need to acquire a
1597	 * refcount for the provided mountpoint too, in order to
1598	 * emulate a vfs_ref().
1599	 */
1600	MNT_ILOCK(mp);
1601	if (vp == NULL)
1602		MNT_REF(mp);
1603	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1604		mp->mnt_secondary_writes++;
1605		mp->mnt_secondary_accwrites++;
1606		MNT_IUNLOCK(mp);
1607		return (0);
1608	}
1609	if (flags & V_NOWAIT) {
1610		MNT_REL(mp);
1611		MNT_IUNLOCK(mp);
1612		return (EWOULDBLOCK);
1613	}
1614	/*
1615	 * Wait for the suspension to finish.
1616	 */
1617	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1618		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1619	vfs_rel(mp);
1620	if (error == 0)
1621		goto retry;
1622	return (error);
1623}
1624
1625/*
1626 * Filesystem write operation has completed. If we are suspending and this
1627 * operation is the last one, notify the suspender that the suspension is
1628 * now in effect.
1629 */
1630void
1631vn_finished_write(mp)
1632	struct mount *mp;
1633{
1634	if (mp == NULL)
1635		return;
1636	MNT_ILOCK(mp);
1637	MNT_REL(mp);
1638	mp->mnt_writeopcount--;
1639	if (mp->mnt_writeopcount < 0)
1640		panic("vn_finished_write: neg cnt");
1641	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1642	    mp->mnt_writeopcount <= 0)
1643		wakeup(&mp->mnt_writeopcount);
1644	MNT_IUNLOCK(mp);
1645}
1646
1647
1648/*
1649 * Filesystem secondary write operation has completed. If we are
1650 * suspending and this operation is the last one, notify the suspender
1651 * that the suspension is now in effect.
1652 */
1653void
1654vn_finished_secondary_write(mp)
1655	struct mount *mp;
1656{
1657	if (mp == NULL)
1658		return;
1659	MNT_ILOCK(mp);
1660	MNT_REL(mp);
1661	mp->mnt_secondary_writes--;
1662	if (mp->mnt_secondary_writes < 0)
1663		panic("vn_finished_secondary_write: neg cnt");
1664	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1665	    mp->mnt_secondary_writes <= 0)
1666		wakeup(&mp->mnt_secondary_writes);
1667	MNT_IUNLOCK(mp);
1668}
1669
1670
1671
1672/*
1673 * Request a filesystem to suspend write operations.
1674 */
1675int
1676vfs_write_suspend(struct mount *mp, int flags)
1677{
1678	int error;
1679
1680	MNT_ILOCK(mp);
1681	if (mp->mnt_susp_owner == curthread) {
1682		MNT_IUNLOCK(mp);
1683		return (EALREADY);
1684	}
1685	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1686		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1687
1688	/*
1689	 * Unmount holds a write reference on the mount point.  If we
1690	 * own busy reference and drain for writers, we deadlock with
1691	 * the reference draining in the unmount path.  Callers of
1692	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1693	 * vfs_busy() reference is owned and caller is not in the
1694	 * unmount context.
1695	 */
1696	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1697	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1698		MNT_IUNLOCK(mp);
1699		return (EBUSY);
1700	}
1701
1702	mp->mnt_kern_flag |= MNTK_SUSPEND;
1703	mp->mnt_susp_owner = curthread;
1704	if (mp->mnt_writeopcount > 0)
1705		(void) msleep(&mp->mnt_writeopcount,
1706		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1707	else
1708		MNT_IUNLOCK(mp);
1709	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1710		vfs_write_resume(mp, 0);
1711	return (error);
1712}
1713
1714/*
1715 * Request a filesystem to resume write operations.
1716 */
1717void
1718vfs_write_resume(struct mount *mp, int flags)
1719{
1720
1721	MNT_ILOCK(mp);
1722	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1723		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1724		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1725				       MNTK_SUSPENDED);
1726		mp->mnt_susp_owner = NULL;
1727		wakeup(&mp->mnt_writeopcount);
1728		wakeup(&mp->mnt_flag);
1729		curthread->td_pflags &= ~TDP_IGNSUSP;
1730		if ((flags & VR_START_WRITE) != 0) {
1731			MNT_REF(mp);
1732			mp->mnt_writeopcount++;
1733		}
1734		MNT_IUNLOCK(mp);
1735		if ((flags & VR_NO_SUSPCLR) == 0)
1736			VFS_SUSP_CLEAN(mp);
1737	} else if ((flags & VR_START_WRITE) != 0) {
1738		MNT_REF(mp);
1739		vn_start_write_locked(mp, 0);
1740	} else {
1741		MNT_IUNLOCK(mp);
1742	}
1743}
1744
1745/*
1746 * Implement kqueues for files by translating it to vnode operation.
1747 */
1748static int
1749vn_kqfilter(struct file *fp, struct knote *kn)
1750{
1751
1752	return (VOP_KQFILTER(fp->f_vnode, kn));
1753}
1754
1755/*
1756 * Simplified in-kernel wrapper calls for extended attribute access.
1757 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1758 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1759 */
1760int
1761vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1762    const char *attrname, int *buflen, char *buf, struct thread *td)
1763{
1764	struct uio	auio;
1765	struct iovec	iov;
1766	int	error;
1767
1768	iov.iov_len = *buflen;
1769	iov.iov_base = buf;
1770
1771	auio.uio_iov = &iov;
1772	auio.uio_iovcnt = 1;
1773	auio.uio_rw = UIO_READ;
1774	auio.uio_segflg = UIO_SYSSPACE;
1775	auio.uio_td = td;
1776	auio.uio_offset = 0;
1777	auio.uio_resid = *buflen;
1778
1779	if ((ioflg & IO_NODELOCKED) == 0)
1780		vn_lock(vp, LK_SHARED | LK_RETRY);
1781
1782	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1783
1784	/* authorize attribute retrieval as kernel */
1785	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1786	    td);
1787
1788	if ((ioflg & IO_NODELOCKED) == 0)
1789		VOP_UNLOCK(vp, 0);
1790
1791	if (error == 0) {
1792		*buflen = *buflen - auio.uio_resid;
1793	}
1794
1795	return (error);
1796}
1797
1798/*
1799 * XXX failure mode if partially written?
1800 */
1801int
1802vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1803    const char *attrname, int buflen, char *buf, struct thread *td)
1804{
1805	struct uio	auio;
1806	struct iovec	iov;
1807	struct mount	*mp;
1808	int	error;
1809
1810	iov.iov_len = buflen;
1811	iov.iov_base = buf;
1812
1813	auio.uio_iov = &iov;
1814	auio.uio_iovcnt = 1;
1815	auio.uio_rw = UIO_WRITE;
1816	auio.uio_segflg = UIO_SYSSPACE;
1817	auio.uio_td = td;
1818	auio.uio_offset = 0;
1819	auio.uio_resid = buflen;
1820
1821	if ((ioflg & IO_NODELOCKED) == 0) {
1822		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1823			return (error);
1824		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1825	}
1826
1827	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1828
1829	/* authorize attribute setting as kernel */
1830	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1831
1832	if ((ioflg & IO_NODELOCKED) == 0) {
1833		vn_finished_write(mp);
1834		VOP_UNLOCK(vp, 0);
1835	}
1836
1837	return (error);
1838}
1839
1840int
1841vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1842    const char *attrname, struct thread *td)
1843{
1844	struct mount	*mp;
1845	int	error;
1846
1847	if ((ioflg & IO_NODELOCKED) == 0) {
1848		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1849			return (error);
1850		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1851	}
1852
1853	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1854
1855	/* authorize attribute removal as kernel */
1856	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1857	if (error == EOPNOTSUPP)
1858		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1859		    NULL, td);
1860
1861	if ((ioflg & IO_NODELOCKED) == 0) {
1862		vn_finished_write(mp);
1863		VOP_UNLOCK(vp, 0);
1864	}
1865
1866	return (error);
1867}
1868
1869int
1870vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1871{
1872	struct mount *mp;
1873	int ltype, error;
1874
1875	mp = vp->v_mount;
1876	ltype = VOP_ISLOCKED(vp);
1877	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
1878	    ("vn_vget_ino: vp not locked"));
1879	error = vfs_busy(mp, MBF_NOWAIT);
1880	if (error != 0) {
1881		vfs_ref(mp);
1882		VOP_UNLOCK(vp, 0);
1883		error = vfs_busy(mp, 0);
1884		vn_lock(vp, ltype | LK_RETRY);
1885		vfs_rel(mp);
1886		if (error != 0)
1887			return (ENOENT);
1888		if (vp->v_iflag & VI_DOOMED) {
1889			vfs_unbusy(mp);
1890			return (ENOENT);
1891		}
1892	}
1893	VOP_UNLOCK(vp, 0);
1894	error = VFS_VGET(mp, ino, lkflags, rvp);
1895	vfs_unbusy(mp);
1896	vn_lock(vp, ltype | LK_RETRY);
1897	if (vp->v_iflag & VI_DOOMED) {
1898		if (error == 0)
1899			vput(*rvp);
1900		error = ENOENT;
1901	}
1902	return (error);
1903}
1904
1905int
1906vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
1907    const struct thread *td)
1908{
1909
1910	if (vp->v_type != VREG || td == NULL)
1911		return (0);
1912	PROC_LOCK(td->td_proc);
1913	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1914	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
1915		kern_psignal(td->td_proc, SIGXFSZ);
1916		PROC_UNLOCK(td->td_proc);
1917		return (EFBIG);
1918	}
1919	PROC_UNLOCK(td->td_proc);
1920	return (0);
1921}
1922
1923int
1924vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1925    struct thread *td)
1926{
1927	struct vnode *vp;
1928
1929	vp = fp->f_vnode;
1930#ifdef AUDIT
1931	vn_lock(vp, LK_SHARED | LK_RETRY);
1932	AUDIT_ARG_VNODE1(vp);
1933	VOP_UNLOCK(vp, 0);
1934#endif
1935	return (setfmode(td, active_cred, vp, mode));
1936}
1937
1938int
1939vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1940    struct thread *td)
1941{
1942	struct vnode *vp;
1943
1944	vp = fp->f_vnode;
1945#ifdef AUDIT
1946	vn_lock(vp, LK_SHARED | LK_RETRY);
1947	AUDIT_ARG_VNODE1(vp);
1948	VOP_UNLOCK(vp, 0);
1949#endif
1950	return (setfown(td, active_cred, vp, uid, gid));
1951}
1952
1953void
1954vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
1955{
1956	vm_object_t object;
1957
1958	if ((object = vp->v_object) == NULL)
1959		return;
1960	VM_OBJECT_WLOCK(object);
1961	vm_object_page_remove(object, start, end, 0);
1962	VM_OBJECT_WUNLOCK(object);
1963}
1964
1965int
1966vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
1967{
1968	struct vattr va;
1969	daddr_t bn, bnp;
1970	uint64_t bsize;
1971	off_t noff;
1972	int error;
1973
1974	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
1975	    ("Wrong command %lu", cmd));
1976
1977	if (vn_lock(vp, LK_SHARED) != 0)
1978		return (EBADF);
1979	if (vp->v_type != VREG) {
1980		error = ENOTTY;
1981		goto unlock;
1982	}
1983	error = VOP_GETATTR(vp, &va, cred);
1984	if (error != 0)
1985		goto unlock;
1986	noff = *off;
1987	if (noff >= va.va_size) {
1988		error = ENXIO;
1989		goto unlock;
1990	}
1991	bsize = vp->v_mount->mnt_stat.f_iosize;
1992	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
1993		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
1994		if (error == EOPNOTSUPP) {
1995			error = ENOTTY;
1996			goto unlock;
1997		}
1998		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
1999		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2000			noff = bn * bsize;
2001			if (noff < *off)
2002				noff = *off;
2003			goto unlock;
2004		}
2005	}
2006	if (noff > va.va_size)
2007		noff = va.va_size;
2008	/* noff == va.va_size. There is an implicit hole at the end of file. */
2009	if (cmd == FIOSEEKDATA)
2010		error = ENXIO;
2011unlock:
2012	VOP_UNLOCK(vp, 0);
2013	if (error == 0)
2014		*off = noff;
2015	return (error);
2016}
2017
2018int
2019vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2020{
2021	struct ucred *cred;
2022	struct vnode *vp;
2023	struct vattr vattr;
2024	off_t foffset, size;
2025	int error, noneg;
2026
2027	cred = td->td_ucred;
2028	vp = fp->f_vnode;
2029	foffset = foffset_lock(fp, 0);
2030	noneg = (vp->v_type != VCHR);
2031	error = 0;
2032	switch (whence) {
2033	case L_INCR:
2034		if (noneg &&
2035		    (foffset < 0 ||
2036		    (offset > 0 && foffset > OFF_MAX - offset))) {
2037			error = EOVERFLOW;
2038			break;
2039		}
2040		offset += foffset;
2041		break;
2042	case L_XTND:
2043		vn_lock(vp, LK_SHARED | LK_RETRY);
2044		error = VOP_GETATTR(vp, &vattr, cred);
2045		VOP_UNLOCK(vp, 0);
2046		if (error)
2047			break;
2048
2049		/*
2050		 * If the file references a disk device, then fetch
2051		 * the media size and use that to determine the ending
2052		 * offset.
2053		 */
2054		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2055		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2056			vattr.va_size = size;
2057		if (noneg &&
2058		    (vattr.va_size > OFF_MAX ||
2059		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2060			error = EOVERFLOW;
2061			break;
2062		}
2063		offset += vattr.va_size;
2064		break;
2065	case L_SET:
2066		break;
2067	case SEEK_DATA:
2068		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2069		break;
2070	case SEEK_HOLE:
2071		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2072		break;
2073	default:
2074		error = EINVAL;
2075	}
2076	if (error == 0 && noneg && offset < 0)
2077		error = EINVAL;
2078	if (error != 0)
2079		goto drop;
2080	VFS_KNOTE_UNLOCKED(vp, 0);
2081	*(off_t *)(td->td_retval) = offset;
2082drop:
2083	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2084	return (error);
2085}
2086