vfs_vnops.c revision 253106
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: head/sys/kern/vfs_vnops.c 253106 2013-07-09 20:49:32Z kib $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/fcntl.h>
49#include <sys/file.h>
50#include <sys/kdb.h>
51#include <sys/stat.h>
52#include <sys/priv.h>
53#include <sys/proc.h>
54#include <sys/limits.h>
55#include <sys/lock.h>
56#include <sys/mount.h>
57#include <sys/mutex.h>
58#include <sys/namei.h>
59#include <sys/vnode.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/filio.h>
63#include <sys/resourcevar.h>
64#include <sys/rwlock.h>
65#include <sys/sx.h>
66#include <sys/sysctl.h>
67#include <sys/ttycom.h>
68#include <sys/conf.h>
69#include <sys/syslog.h>
70#include <sys/unistd.h>
71
72#include <security/audit/audit.h>
73#include <security/mac/mac_framework.h>
74
75#include <vm/vm.h>
76#include <vm/vm_extern.h>
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_object.h>
80#include <vm/vm_page.h>
81
82static fo_rdwr_t	vn_read;
83static fo_rdwr_t	vn_write;
84static fo_rdwr_t	vn_io_fault;
85static fo_truncate_t	vn_truncate;
86static fo_ioctl_t	vn_ioctl;
87static fo_poll_t	vn_poll;
88static fo_kqfilter_t	vn_kqfilter;
89static fo_stat_t	vn_statfile;
90static fo_close_t	vn_closefile;
91
92struct 	fileops vnops = {
93	.fo_read = vn_io_fault,
94	.fo_write = vn_io_fault,
95	.fo_truncate = vn_truncate,
96	.fo_ioctl = vn_ioctl,
97	.fo_poll = vn_poll,
98	.fo_kqfilter = vn_kqfilter,
99	.fo_stat = vn_statfile,
100	.fo_close = vn_closefile,
101	.fo_chmod = vn_chmod,
102	.fo_chown = vn_chown,
103	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
104};
105
106int
107vn_open(ndp, flagp, cmode, fp)
108	struct nameidata *ndp;
109	int *flagp, cmode;
110	struct file *fp;
111{
112	struct thread *td = ndp->ni_cnd.cn_thread;
113
114	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
115}
116
117/*
118 * Common code for vnode open operations via a name lookup.
119 * Lookup the vnode and invoke VOP_CREATE if needed.
120 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
121 *
122 * Note that this does NOT free nameidata for the successful case,
123 * due to the NDINIT being done elsewhere.
124 */
125int
126vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
127    struct ucred *cred, struct file *fp)
128{
129	struct vnode *vp;
130	struct mount *mp;
131	struct thread *td = ndp->ni_cnd.cn_thread;
132	struct vattr vat;
133	struct vattr *vap = &vat;
134	int fmode, error;
135
136restart:
137	fmode = *flagp;
138	if (fmode & O_CREAT) {
139		ndp->ni_cnd.cn_nameiop = CREATE;
140		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
141		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
142			ndp->ni_cnd.cn_flags |= FOLLOW;
143		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
144			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
145		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
146			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
147		bwillwrite();
148		if ((error = namei(ndp)) != 0)
149			return (error);
150		if (ndp->ni_vp == NULL) {
151			VATTR_NULL(vap);
152			vap->va_type = VREG;
153			vap->va_mode = cmode;
154			if (fmode & O_EXCL)
155				vap->va_vaflags |= VA_EXCLUSIVE;
156			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
157				NDFREE(ndp, NDF_ONLY_PNBUF);
158				vput(ndp->ni_dvp);
159				if ((error = vn_start_write(NULL, &mp,
160				    V_XSLEEP | PCATCH)) != 0)
161					return (error);
162				goto restart;
163			}
164#ifdef MAC
165			error = mac_vnode_check_create(cred, ndp->ni_dvp,
166			    &ndp->ni_cnd, vap);
167			if (error == 0)
168#endif
169				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
170						   &ndp->ni_cnd, vap);
171			vput(ndp->ni_dvp);
172			vn_finished_write(mp);
173			if (error) {
174				NDFREE(ndp, NDF_ONLY_PNBUF);
175				return (error);
176			}
177			fmode &= ~O_TRUNC;
178			vp = ndp->ni_vp;
179		} else {
180			if (ndp->ni_dvp == ndp->ni_vp)
181				vrele(ndp->ni_dvp);
182			else
183				vput(ndp->ni_dvp);
184			ndp->ni_dvp = NULL;
185			vp = ndp->ni_vp;
186			if (fmode & O_EXCL) {
187				error = EEXIST;
188				goto bad;
189			}
190			fmode &= ~O_CREAT;
191		}
192	} else {
193		ndp->ni_cnd.cn_nameiop = LOOKUP;
194		ndp->ni_cnd.cn_flags = ISOPEN |
195		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
196		if (!(fmode & FWRITE))
197			ndp->ni_cnd.cn_flags |= LOCKSHARED;
198		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
199			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
200		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
201			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
202		if ((error = namei(ndp)) != 0)
203			return (error);
204		vp = ndp->ni_vp;
205	}
206	error = vn_open_vnode(vp, fmode, cred, td, fp);
207	if (error)
208		goto bad;
209	*flagp = fmode;
210	return (0);
211bad:
212	NDFREE(ndp, NDF_ONLY_PNBUF);
213	vput(vp);
214	*flagp = fmode;
215	ndp->ni_vp = NULL;
216	return (error);
217}
218
219/*
220 * Common code for vnode open operations once a vnode is located.
221 * Check permissions, and call the VOP_OPEN routine.
222 */
223int
224vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
225    struct thread *td, struct file *fp)
226{
227	struct mount *mp;
228	accmode_t accmode;
229	struct flock lf;
230	int error, have_flock, lock_flags, type;
231
232	if (vp->v_type == VLNK)
233		return (EMLINK);
234	if (vp->v_type == VSOCK)
235		return (EOPNOTSUPP);
236	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
237		return (ENOTDIR);
238	accmode = 0;
239	if (fmode & (FWRITE | O_TRUNC)) {
240		if (vp->v_type == VDIR)
241			return (EISDIR);
242		accmode |= VWRITE;
243	}
244	if (fmode & FREAD)
245		accmode |= VREAD;
246	if (fmode & FEXEC)
247		accmode |= VEXEC;
248	if ((fmode & O_APPEND) && (fmode & FWRITE))
249		accmode |= VAPPEND;
250#ifdef MAC
251	error = mac_vnode_check_open(cred, vp, accmode);
252	if (error)
253		return (error);
254#endif
255	if ((fmode & O_CREAT) == 0) {
256		if (accmode & VWRITE) {
257			error = vn_writechk(vp);
258			if (error)
259				return (error);
260		}
261		if (accmode) {
262		        error = VOP_ACCESS(vp, accmode, cred, td);
263			if (error)
264				return (error);
265		}
266	}
267	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
268		return (error);
269
270	if (fmode & (O_EXLOCK | O_SHLOCK)) {
271		KASSERT(fp != NULL, ("open with flock requires fp"));
272		lock_flags = VOP_ISLOCKED(vp);
273		VOP_UNLOCK(vp, 0);
274		lf.l_whence = SEEK_SET;
275		lf.l_start = 0;
276		lf.l_len = 0;
277		if (fmode & O_EXLOCK)
278			lf.l_type = F_WRLCK;
279		else
280			lf.l_type = F_RDLCK;
281		type = F_FLOCK;
282		if ((fmode & FNONBLOCK) == 0)
283			type |= F_WAIT;
284		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
285		have_flock = (error == 0);
286		vn_lock(vp, lock_flags | LK_RETRY);
287		if (error == 0 && vp->v_iflag & VI_DOOMED)
288			error = ENOENT;
289		/*
290		 * Another thread might have used this vnode as an
291		 * executable while the vnode lock was dropped.
292		 * Ensure the vnode is still able to be opened for
293		 * writing after the lock has been obtained.
294		 */
295		if (error == 0 && accmode & VWRITE)
296			error = vn_writechk(vp);
297		if (error) {
298			VOP_UNLOCK(vp, 0);
299			if (have_flock) {
300				lf.l_whence = SEEK_SET;
301				lf.l_start = 0;
302				lf.l_len = 0;
303				lf.l_type = F_UNLCK;
304				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
305				    F_FLOCK);
306			}
307			vn_start_write(vp, &mp, V_WAIT);
308			vn_lock(vp, lock_flags | LK_RETRY);
309			(void)VOP_CLOSE(vp, fmode, cred, td);
310			vn_finished_write(mp);
311			return (error);
312		}
313		fp->f_flag |= FHASLOCK;
314	}
315	if (fmode & FWRITE) {
316		VOP_ADD_WRITECOUNT(vp, 1);
317		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
318		    __func__, vp, vp->v_writecount);
319	}
320	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
321	return (0);
322}
323
324/*
325 * Check for write permissions on the specified vnode.
326 * Prototype text segments cannot be written.
327 */
328int
329vn_writechk(vp)
330	register struct vnode *vp;
331{
332
333	ASSERT_VOP_LOCKED(vp, "vn_writechk");
334	/*
335	 * If there's shared text associated with
336	 * the vnode, try to free it up once.  If
337	 * we fail, we can't allow writing.
338	 */
339	if (VOP_IS_TEXT(vp))
340		return (ETXTBSY);
341
342	return (0);
343}
344
345/*
346 * Vnode close call
347 */
348int
349vn_close(vp, flags, file_cred, td)
350	register struct vnode *vp;
351	int flags;
352	struct ucred *file_cred;
353	struct thread *td;
354{
355	struct mount *mp;
356	int error, lock_flags;
357
358	if (!(flags & FWRITE) && vp->v_mount != NULL &&
359	    vp->v_mount->mnt_kern_flag & MNTK_EXTENDED_SHARED)
360		lock_flags = LK_SHARED;
361	else
362		lock_flags = LK_EXCLUSIVE;
363
364	vn_start_write(vp, &mp, V_WAIT);
365	vn_lock(vp, lock_flags | LK_RETRY);
366	if (flags & FWRITE) {
367		VNASSERT(vp->v_writecount > 0, vp,
368		    ("vn_close: negative writecount"));
369		VOP_ADD_WRITECOUNT(vp, -1);
370		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
371		    __func__, vp, vp->v_writecount);
372	}
373	error = VOP_CLOSE(vp, flags, file_cred, td);
374	vput(vp);
375	vn_finished_write(mp);
376	return (error);
377}
378
379/*
380 * Heuristic to detect sequential operation.
381 */
382static int
383sequential_heuristic(struct uio *uio, struct file *fp)
384{
385
386	if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
387		return (fp->f_seqcount << IO_SEQSHIFT);
388
389	/*
390	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
391	 * that the first I/O is normally considered to be slightly
392	 * sequential.  Seeking to offset 0 doesn't change sequentiality
393	 * unless previous seeks have reduced f_seqcount to 0, in which
394	 * case offset 0 is not special.
395	 */
396	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
397	    uio->uio_offset == fp->f_nextoff) {
398		/*
399		 * f_seqcount is in units of fixed-size blocks so that it
400		 * depends mainly on the amount of sequential I/O and not
401		 * much on the number of sequential I/O's.  The fixed size
402		 * of 16384 is hard-coded here since it is (not quite) just
403		 * a magic size that works well here.  This size is more
404		 * closely related to the best I/O size for real disks than
405		 * to any block size used by software.
406		 */
407		fp->f_seqcount += howmany(uio->uio_resid, 16384);
408		if (fp->f_seqcount > IO_SEQMAX)
409			fp->f_seqcount = IO_SEQMAX;
410		return (fp->f_seqcount << IO_SEQSHIFT);
411	}
412
413	/* Not sequential.  Quickly draw-down sequentiality. */
414	if (fp->f_seqcount > 1)
415		fp->f_seqcount = 1;
416	else
417		fp->f_seqcount = 0;
418	return (0);
419}
420
421/*
422 * Package up an I/O request on a vnode into a uio and do it.
423 */
424int
425vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
426    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
427    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
428{
429	struct uio auio;
430	struct iovec aiov;
431	struct mount *mp;
432	struct ucred *cred;
433	void *rl_cookie;
434	int error, lock_flags;
435
436	auio.uio_iov = &aiov;
437	auio.uio_iovcnt = 1;
438	aiov.iov_base = base;
439	aiov.iov_len = len;
440	auio.uio_resid = len;
441	auio.uio_offset = offset;
442	auio.uio_segflg = segflg;
443	auio.uio_rw = rw;
444	auio.uio_td = td;
445	error = 0;
446
447	if ((ioflg & IO_NODELOCKED) == 0) {
448		if (rw == UIO_READ) {
449			rl_cookie = vn_rangelock_rlock(vp, offset,
450			    offset + len);
451		} else {
452			rl_cookie = vn_rangelock_wlock(vp, offset,
453			    offset + len);
454		}
455		mp = NULL;
456		if (rw == UIO_WRITE) {
457			if (vp->v_type != VCHR &&
458			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
459			    != 0)
460				goto out;
461			if (MNT_SHARED_WRITES(mp) ||
462			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
463				lock_flags = LK_SHARED;
464			else
465				lock_flags = LK_EXCLUSIVE;
466		} else
467			lock_flags = LK_SHARED;
468		vn_lock(vp, lock_flags | LK_RETRY);
469	} else
470		rl_cookie = NULL;
471
472	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
473#ifdef MAC
474	if ((ioflg & IO_NOMACCHECK) == 0) {
475		if (rw == UIO_READ)
476			error = mac_vnode_check_read(active_cred, file_cred,
477			    vp);
478		else
479			error = mac_vnode_check_write(active_cred, file_cred,
480			    vp);
481	}
482#endif
483	if (error == 0) {
484		if (file_cred != NULL)
485			cred = file_cred;
486		else
487			cred = active_cred;
488		if (rw == UIO_READ)
489			error = VOP_READ(vp, &auio, ioflg, cred);
490		else
491			error = VOP_WRITE(vp, &auio, ioflg, cred);
492	}
493	if (aresid)
494		*aresid = auio.uio_resid;
495	else
496		if (auio.uio_resid && error == 0)
497			error = EIO;
498	if ((ioflg & IO_NODELOCKED) == 0) {
499		VOP_UNLOCK(vp, 0);
500		if (mp != NULL)
501			vn_finished_write(mp);
502	}
503 out:
504	if (rl_cookie != NULL)
505		vn_rangelock_unlock(vp, rl_cookie);
506	return (error);
507}
508
509/*
510 * Package up an I/O request on a vnode into a uio and do it.  The I/O
511 * request is split up into smaller chunks and we try to avoid saturating
512 * the buffer cache while potentially holding a vnode locked, so we
513 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
514 * to give other processes a chance to lock the vnode (either other processes
515 * core'ing the same binary, or unrelated processes scanning the directory).
516 */
517int
518vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
519    file_cred, aresid, td)
520	enum uio_rw rw;
521	struct vnode *vp;
522	void *base;
523	size_t len;
524	off_t offset;
525	enum uio_seg segflg;
526	int ioflg;
527	struct ucred *active_cred;
528	struct ucred *file_cred;
529	size_t *aresid;
530	struct thread *td;
531{
532	int error = 0;
533	ssize_t iaresid;
534
535	do {
536		int chunk;
537
538		/*
539		 * Force `offset' to a multiple of MAXBSIZE except possibly
540		 * for the first chunk, so that filesystems only need to
541		 * write full blocks except possibly for the first and last
542		 * chunks.
543		 */
544		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
545
546		if (chunk > len)
547			chunk = len;
548		if (rw != UIO_READ && vp->v_type == VREG)
549			bwillwrite();
550		iaresid = 0;
551		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
552		    ioflg, active_cred, file_cred, &iaresid, td);
553		len -= chunk;	/* aresid calc already includes length */
554		if (error)
555			break;
556		offset += chunk;
557		base = (char *)base + chunk;
558		kern_yield(PRI_USER);
559	} while (len);
560	if (aresid)
561		*aresid = len + iaresid;
562	return (error);
563}
564
565off_t
566foffset_lock(struct file *fp, int flags)
567{
568	struct mtx *mtxp;
569	off_t res;
570
571	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
572
573#if OFF_MAX <= LONG_MAX
574	/*
575	 * Caller only wants the current f_offset value.  Assume that
576	 * the long and shorter integer types reads are atomic.
577	 */
578	if ((flags & FOF_NOLOCK) != 0)
579		return (fp->f_offset);
580#endif
581
582	/*
583	 * According to McKusick the vn lock was protecting f_offset here.
584	 * It is now protected by the FOFFSET_LOCKED flag.
585	 */
586	mtxp = mtx_pool_find(mtxpool_sleep, fp);
587	mtx_lock(mtxp);
588	if ((flags & FOF_NOLOCK) == 0) {
589		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
590			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
591			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
592			    "vofflock", 0);
593		}
594		fp->f_vnread_flags |= FOFFSET_LOCKED;
595	}
596	res = fp->f_offset;
597	mtx_unlock(mtxp);
598	return (res);
599}
600
601void
602foffset_unlock(struct file *fp, off_t val, int flags)
603{
604	struct mtx *mtxp;
605
606	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
607
608#if OFF_MAX <= LONG_MAX
609	if ((flags & FOF_NOLOCK) != 0) {
610		if ((flags & FOF_NOUPDATE) == 0)
611			fp->f_offset = val;
612		if ((flags & FOF_NEXTOFF) != 0)
613			fp->f_nextoff = val;
614		return;
615	}
616#endif
617
618	mtxp = mtx_pool_find(mtxpool_sleep, fp);
619	mtx_lock(mtxp);
620	if ((flags & FOF_NOUPDATE) == 0)
621		fp->f_offset = val;
622	if ((flags & FOF_NEXTOFF) != 0)
623		fp->f_nextoff = val;
624	if ((flags & FOF_NOLOCK) == 0) {
625		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
626		    ("Lost FOFFSET_LOCKED"));
627		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
628			wakeup(&fp->f_vnread_flags);
629		fp->f_vnread_flags = 0;
630	}
631	mtx_unlock(mtxp);
632}
633
634void
635foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
636{
637
638	if ((flags & FOF_OFFSET) == 0)
639		uio->uio_offset = foffset_lock(fp, flags);
640}
641
642void
643foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
644{
645
646	if ((flags & FOF_OFFSET) == 0)
647		foffset_unlock(fp, uio->uio_offset, flags);
648}
649
650static int
651get_advice(struct file *fp, struct uio *uio)
652{
653	struct mtx *mtxp;
654	int ret;
655
656	ret = POSIX_FADV_NORMAL;
657	if (fp->f_advice == NULL)
658		return (ret);
659
660	mtxp = mtx_pool_find(mtxpool_sleep, fp);
661	mtx_lock(mtxp);
662	if (uio->uio_offset >= fp->f_advice->fa_start &&
663	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
664		ret = fp->f_advice->fa_advice;
665	mtx_unlock(mtxp);
666	return (ret);
667}
668
669/*
670 * File table vnode read routine.
671 */
672static int
673vn_read(fp, uio, active_cred, flags, td)
674	struct file *fp;
675	struct uio *uio;
676	struct ucred *active_cred;
677	int flags;
678	struct thread *td;
679{
680	struct vnode *vp;
681	struct mtx *mtxp;
682	int error, ioflag;
683	int advice;
684	off_t offset, start, end;
685
686	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
687	    uio->uio_td, td));
688	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
689	vp = fp->f_vnode;
690	ioflag = 0;
691	if (fp->f_flag & FNONBLOCK)
692		ioflag |= IO_NDELAY;
693	if (fp->f_flag & O_DIRECT)
694		ioflag |= IO_DIRECT;
695	advice = get_advice(fp, uio);
696	vn_lock(vp, LK_SHARED | LK_RETRY);
697
698	switch (advice) {
699	case POSIX_FADV_NORMAL:
700	case POSIX_FADV_SEQUENTIAL:
701	case POSIX_FADV_NOREUSE:
702		ioflag |= sequential_heuristic(uio, fp);
703		break;
704	case POSIX_FADV_RANDOM:
705		/* Disable read-ahead for random I/O. */
706		break;
707	}
708	offset = uio->uio_offset;
709
710#ifdef MAC
711	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
712	if (error == 0)
713#endif
714		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
715	fp->f_nextoff = uio->uio_offset;
716	VOP_UNLOCK(vp, 0);
717	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
718	    offset != uio->uio_offset) {
719		/*
720		 * Use POSIX_FADV_DONTNEED to flush clean pages and
721		 * buffers for the backing file after a
722		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
723		 * case of using POSIX_FADV_NOREUSE with sequential
724		 * access, track the previous implicit DONTNEED
725		 * request and grow this request to include the
726		 * current read(2) in addition to the previous
727		 * DONTNEED.  With purely sequential access this will
728		 * cause the DONTNEED requests to continously grow to
729		 * cover all of the previously read regions of the
730		 * file.  This allows filesystem blocks that are
731		 * accessed by multiple calls to read(2) to be flushed
732		 * once the last read(2) finishes.
733		 */
734		start = offset;
735		end = uio->uio_offset - 1;
736		mtxp = mtx_pool_find(mtxpool_sleep, fp);
737		mtx_lock(mtxp);
738		if (fp->f_advice != NULL &&
739		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
740			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
741				start = fp->f_advice->fa_prevstart;
742			else if (fp->f_advice->fa_prevstart != 0 &&
743			    fp->f_advice->fa_prevstart == end + 1)
744				end = fp->f_advice->fa_prevend;
745			fp->f_advice->fa_prevstart = start;
746			fp->f_advice->fa_prevend = end;
747		}
748		mtx_unlock(mtxp);
749		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
750	}
751	return (error);
752}
753
754/*
755 * File table vnode write routine.
756 */
757static int
758vn_write(fp, uio, active_cred, flags, td)
759	struct file *fp;
760	struct uio *uio;
761	struct ucred *active_cred;
762	int flags;
763	struct thread *td;
764{
765	struct vnode *vp;
766	struct mount *mp;
767	struct mtx *mtxp;
768	int error, ioflag, lock_flags;
769	int advice;
770	off_t offset, start, end;
771
772	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
773	    uio->uio_td, td));
774	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
775	vp = fp->f_vnode;
776	if (vp->v_type == VREG)
777		bwillwrite();
778	ioflag = IO_UNIT;
779	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
780		ioflag |= IO_APPEND;
781	if (fp->f_flag & FNONBLOCK)
782		ioflag |= IO_NDELAY;
783	if (fp->f_flag & O_DIRECT)
784		ioflag |= IO_DIRECT;
785	if ((fp->f_flag & O_FSYNC) ||
786	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
787		ioflag |= IO_SYNC;
788	mp = NULL;
789	if (vp->v_type != VCHR &&
790	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
791		goto unlock;
792
793	advice = get_advice(fp, uio);
794
795	if (MNT_SHARED_WRITES(mp) ||
796	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
797		lock_flags = LK_SHARED;
798	} else {
799		lock_flags = LK_EXCLUSIVE;
800	}
801
802	vn_lock(vp, lock_flags | LK_RETRY);
803	switch (advice) {
804	case POSIX_FADV_NORMAL:
805	case POSIX_FADV_SEQUENTIAL:
806	case POSIX_FADV_NOREUSE:
807		ioflag |= sequential_heuristic(uio, fp);
808		break;
809	case POSIX_FADV_RANDOM:
810		/* XXX: Is this correct? */
811		break;
812	}
813	offset = uio->uio_offset;
814
815#ifdef MAC
816	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
817	if (error == 0)
818#endif
819		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
820	fp->f_nextoff = uio->uio_offset;
821	VOP_UNLOCK(vp, 0);
822	if (vp->v_type != VCHR)
823		vn_finished_write(mp);
824	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
825	    offset != uio->uio_offset) {
826		/*
827		 * Use POSIX_FADV_DONTNEED to flush clean pages and
828		 * buffers for the backing file after a
829		 * POSIX_FADV_NOREUSE write(2).  To optimize the
830		 * common case of using POSIX_FADV_NOREUSE with
831		 * sequential access, track the previous implicit
832		 * DONTNEED request and grow this request to include
833		 * the current write(2) in addition to the previous
834		 * DONTNEED.  With purely sequential access this will
835		 * cause the DONTNEED requests to continously grow to
836		 * cover all of the previously written regions of the
837		 * file.
838		 *
839		 * Note that the blocks just written are almost
840		 * certainly still dirty, so this only works when
841		 * VOP_ADVISE() calls from subsequent writes push out
842		 * the data written by this write(2) once the backing
843		 * buffers are clean.  However, as compared to forcing
844		 * IO_DIRECT, this gives much saner behavior.  Write
845		 * clustering is still allowed, and clean pages are
846		 * merely moved to the cache page queue rather than
847		 * outright thrown away.  This means a subsequent
848		 * read(2) can still avoid hitting the disk if the
849		 * pages have not been reclaimed.
850		 *
851		 * This does make POSIX_FADV_NOREUSE largely useless
852		 * with non-sequential access.  However, sequential
853		 * access is the more common use case and the flag is
854		 * merely advisory.
855		 */
856		start = offset;
857		end = uio->uio_offset - 1;
858		mtxp = mtx_pool_find(mtxpool_sleep, fp);
859		mtx_lock(mtxp);
860		if (fp->f_advice != NULL &&
861		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
862			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
863				start = fp->f_advice->fa_prevstart;
864			else if (fp->f_advice->fa_prevstart != 0 &&
865			    fp->f_advice->fa_prevstart == end + 1)
866				end = fp->f_advice->fa_prevend;
867			fp->f_advice->fa_prevstart = start;
868			fp->f_advice->fa_prevend = end;
869		}
870		mtx_unlock(mtxp);
871		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
872	}
873
874unlock:
875	return (error);
876}
877
878static const int io_hold_cnt = 16;
879static int vn_io_fault_enable = 1;
880SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
881    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
882static u_long vn_io_faults_cnt;
883SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
884    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
885
886/*
887 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
888 * prevent the following deadlock:
889 *
890 * Assume that the thread A reads from the vnode vp1 into userspace
891 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
892 * currently not resident, then system ends up with the call chain
893 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
894 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
895 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
896 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
897 * backed by the pages of vnode vp1, and some page in buf2 is not
898 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
899 *
900 * To prevent the lock order reversal and deadlock, vn_io_fault() does
901 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
902 * Instead, it first tries to do the whole range i/o with pagefaults
903 * disabled. If all pages in the i/o buffer are resident and mapped,
904 * VOP will succeed (ignoring the genuine filesystem errors).
905 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
906 * i/o in chunks, with all pages in the chunk prefaulted and held
907 * using vm_fault_quick_hold_pages().
908 *
909 * Filesystems using this deadlock avoidance scheme should use the
910 * array of the held pages from uio, saved in the curthread->td_ma,
911 * instead of doing uiomove().  A helper function
912 * vn_io_fault_uiomove() converts uiomove request into
913 * uiomove_fromphys() over td_ma array.
914 *
915 * Since vnode locks do not cover the whole i/o anymore, rangelocks
916 * make the current i/o request atomic with respect to other i/os and
917 * truncations.
918 */
919static int
920vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
921    int flags, struct thread *td)
922{
923	vm_page_t ma[io_hold_cnt + 2];
924	struct uio *uio_clone, short_uio;
925	struct iovec short_iovec[1];
926	fo_rdwr_t *doio;
927	struct vnode *vp;
928	void *rl_cookie;
929	struct mount *mp;
930	vm_page_t *prev_td_ma;
931	int cnt, error, save, saveheld, prev_td_ma_cnt;
932	vm_offset_t addr, end;
933	vm_prot_t prot;
934	size_t len, resid;
935	ssize_t adv;
936
937	if (uio->uio_rw == UIO_READ)
938		doio = vn_read;
939	else
940		doio = vn_write;
941	vp = fp->f_vnode;
942	foffset_lock_uio(fp, uio, flags);
943
944	if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG ||
945	    ((mp = vp->v_mount) != NULL &&
946	    (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) ||
947	    !vn_io_fault_enable) {
948		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
949		goto out_last;
950	}
951
952	/*
953	 * The UFS follows IO_UNIT directive and replays back both
954	 * uio_offset and uio_resid if an error is encountered during the
955	 * operation.  But, since the iovec may be already advanced,
956	 * uio is still in an inconsistent state.
957	 *
958	 * Cache a copy of the original uio, which is advanced to the redo
959	 * point using UIO_NOCOPY below.
960	 */
961	uio_clone = cloneuio(uio);
962	resid = uio->uio_resid;
963
964	short_uio.uio_segflg = UIO_USERSPACE;
965	short_uio.uio_rw = uio->uio_rw;
966	short_uio.uio_td = uio->uio_td;
967
968	if (uio->uio_rw == UIO_READ) {
969		prot = VM_PROT_WRITE;
970		rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
971		    uio->uio_offset + uio->uio_resid);
972	} else {
973		prot = VM_PROT_READ;
974		if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0)
975			/* For appenders, punt and lock the whole range. */
976			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
977		else
978			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
979			    uio->uio_offset + uio->uio_resid);
980	}
981
982	save = vm_fault_disable_pagefaults();
983	error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
984	if (error != EFAULT)
985		goto out;
986
987	atomic_add_long(&vn_io_faults_cnt, 1);
988	uio_clone->uio_segflg = UIO_NOCOPY;
989	uiomove(NULL, resid - uio->uio_resid, uio_clone);
990	uio_clone->uio_segflg = uio->uio_segflg;
991
992	saveheld = curthread_pflags_set(TDP_UIOHELD);
993	prev_td_ma = td->td_ma;
994	prev_td_ma_cnt = td->td_ma_cnt;
995
996	while (uio_clone->uio_resid != 0) {
997		len = uio_clone->uio_iov->iov_len;
998		if (len == 0) {
999			KASSERT(uio_clone->uio_iovcnt >= 1,
1000			    ("iovcnt underflow"));
1001			uio_clone->uio_iov++;
1002			uio_clone->uio_iovcnt--;
1003			continue;
1004		}
1005
1006		addr = (vm_offset_t)uio_clone->uio_iov->iov_base;
1007		end = round_page(addr + len);
1008		cnt = howmany(end - trunc_page(addr), PAGE_SIZE);
1009		/*
1010		 * A perfectly misaligned address and length could cause
1011		 * both the start and the end of the chunk to use partial
1012		 * page.  +2 accounts for such a situation.
1013		 */
1014		if (cnt > io_hold_cnt + 2) {
1015			len = io_hold_cnt * PAGE_SIZE;
1016			KASSERT(howmany(round_page(addr + len) -
1017			    trunc_page(addr), PAGE_SIZE) <= io_hold_cnt + 2,
1018			    ("cnt overflow"));
1019		}
1020		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1021		    addr, len, prot, ma, io_hold_cnt + 2);
1022		if (cnt == -1) {
1023			error = EFAULT;
1024			break;
1025		}
1026		short_uio.uio_iov = &short_iovec[0];
1027		short_iovec[0].iov_base = (void *)addr;
1028		short_uio.uio_iovcnt = 1;
1029		short_uio.uio_resid = short_iovec[0].iov_len = len;
1030		short_uio.uio_offset = uio_clone->uio_offset;
1031		td->td_ma = ma;
1032		td->td_ma_cnt = cnt;
1033
1034		error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET,
1035		    td);
1036		vm_page_unhold_pages(ma, cnt);
1037		adv = len - short_uio.uio_resid;
1038
1039		uio_clone->uio_iov->iov_base =
1040		    (char *)uio_clone->uio_iov->iov_base + adv;
1041		uio_clone->uio_iov->iov_len -= adv;
1042		uio_clone->uio_resid -= adv;
1043		uio_clone->uio_offset += adv;
1044
1045		uio->uio_resid -= adv;
1046		uio->uio_offset += adv;
1047
1048		if (error != 0 || adv == 0)
1049			break;
1050	}
1051	td->td_ma = prev_td_ma;
1052	td->td_ma_cnt = prev_td_ma_cnt;
1053	curthread_pflags_restore(saveheld);
1054out:
1055	vm_fault_enable_pagefaults(save);
1056	vn_rangelock_unlock(vp, rl_cookie);
1057	free(uio_clone, M_IOV);
1058out_last:
1059	foffset_unlock_uio(fp, uio, flags);
1060	return (error);
1061}
1062
1063/*
1064 * Helper function to perform the requested uiomove operation using
1065 * the held pages for io->uio_iov[0].iov_base buffer instead of
1066 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1067 * instead of iov_base prevents page faults that could occur due to
1068 * pmap_collect() invalidating the mapping created by
1069 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1070 * object cleanup revoking the write access from page mappings.
1071 *
1072 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1073 * instead of plain uiomove().
1074 */
1075int
1076vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1077{
1078	struct uio transp_uio;
1079	struct iovec transp_iov[1];
1080	struct thread *td;
1081	size_t adv;
1082	int error, pgadv;
1083
1084	td = curthread;
1085	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1086	    uio->uio_segflg != UIO_USERSPACE)
1087		return (uiomove(data, xfersize, uio));
1088
1089	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1090	transp_iov[0].iov_base = data;
1091	transp_uio.uio_iov = &transp_iov[0];
1092	transp_uio.uio_iovcnt = 1;
1093	if (xfersize > uio->uio_resid)
1094		xfersize = uio->uio_resid;
1095	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1096	transp_uio.uio_offset = 0;
1097	transp_uio.uio_segflg = UIO_SYSSPACE;
1098	/*
1099	 * Since transp_iov points to data, and td_ma page array
1100	 * corresponds to original uio->uio_iov, we need to invert the
1101	 * direction of the i/o operation as passed to
1102	 * uiomove_fromphys().
1103	 */
1104	switch (uio->uio_rw) {
1105	case UIO_WRITE:
1106		transp_uio.uio_rw = UIO_READ;
1107		break;
1108	case UIO_READ:
1109		transp_uio.uio_rw = UIO_WRITE;
1110		break;
1111	}
1112	transp_uio.uio_td = uio->uio_td;
1113	error = uiomove_fromphys(td->td_ma,
1114	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1115	    xfersize, &transp_uio);
1116	adv = xfersize - transp_uio.uio_resid;
1117	pgadv =
1118	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1119	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1120	td->td_ma += pgadv;
1121	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1122	    pgadv));
1123	td->td_ma_cnt -= pgadv;
1124	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1125	uio->uio_iov->iov_len -= adv;
1126	uio->uio_resid -= adv;
1127	uio->uio_offset += adv;
1128	return (error);
1129}
1130
1131int
1132vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1133    struct uio *uio)
1134{
1135	struct thread *td;
1136	vm_offset_t iov_base;
1137	int cnt, pgadv;
1138
1139	td = curthread;
1140	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1141	    uio->uio_segflg != UIO_USERSPACE)
1142		return (uiomove_fromphys(ma, offset, xfersize, uio));
1143
1144	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1145	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1146	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1147	switch (uio->uio_rw) {
1148	case UIO_WRITE:
1149		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1150		    offset, cnt);
1151		break;
1152	case UIO_READ:
1153		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1154		    cnt);
1155		break;
1156	}
1157	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1158	td->td_ma += pgadv;
1159	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1160	    pgadv));
1161	td->td_ma_cnt -= pgadv;
1162	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1163	uio->uio_iov->iov_len -= cnt;
1164	uio->uio_resid -= cnt;
1165	uio->uio_offset += cnt;
1166	return (0);
1167}
1168
1169
1170/*
1171 * File table truncate routine.
1172 */
1173static int
1174vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1175    struct thread *td)
1176{
1177	struct vattr vattr;
1178	struct mount *mp;
1179	struct vnode *vp;
1180	void *rl_cookie;
1181	int error;
1182
1183	vp = fp->f_vnode;
1184
1185	/*
1186	 * Lock the whole range for truncation.  Otherwise split i/o
1187	 * might happen partly before and partly after the truncation.
1188	 */
1189	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1190	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1191	if (error)
1192		goto out1;
1193	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1194	if (vp->v_type == VDIR) {
1195		error = EISDIR;
1196		goto out;
1197	}
1198#ifdef MAC
1199	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1200	if (error)
1201		goto out;
1202#endif
1203	error = vn_writechk(vp);
1204	if (error == 0) {
1205		VATTR_NULL(&vattr);
1206		vattr.va_size = length;
1207		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1208	}
1209out:
1210	VOP_UNLOCK(vp, 0);
1211	vn_finished_write(mp);
1212out1:
1213	vn_rangelock_unlock(vp, rl_cookie);
1214	return (error);
1215}
1216
1217/*
1218 * File table vnode stat routine.
1219 */
1220static int
1221vn_statfile(fp, sb, active_cred, td)
1222	struct file *fp;
1223	struct stat *sb;
1224	struct ucred *active_cred;
1225	struct thread *td;
1226{
1227	struct vnode *vp = fp->f_vnode;
1228	int error;
1229
1230	vn_lock(vp, LK_SHARED | LK_RETRY);
1231	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1232	VOP_UNLOCK(vp, 0);
1233
1234	return (error);
1235}
1236
1237/*
1238 * Stat a vnode; implementation for the stat syscall
1239 */
1240int
1241vn_stat(vp, sb, active_cred, file_cred, td)
1242	struct vnode *vp;
1243	register struct stat *sb;
1244	struct ucred *active_cred;
1245	struct ucred *file_cred;
1246	struct thread *td;
1247{
1248	struct vattr vattr;
1249	register struct vattr *vap;
1250	int error;
1251	u_short mode;
1252
1253#ifdef MAC
1254	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1255	if (error)
1256		return (error);
1257#endif
1258
1259	vap = &vattr;
1260
1261	/*
1262	 * Initialize defaults for new and unusual fields, so that file
1263	 * systems which don't support these fields don't need to know
1264	 * about them.
1265	 */
1266	vap->va_birthtime.tv_sec = -1;
1267	vap->va_birthtime.tv_nsec = 0;
1268	vap->va_fsid = VNOVAL;
1269	vap->va_rdev = NODEV;
1270
1271	error = VOP_GETATTR(vp, vap, active_cred);
1272	if (error)
1273		return (error);
1274
1275	/*
1276	 * Zero the spare stat fields
1277	 */
1278	bzero(sb, sizeof *sb);
1279
1280	/*
1281	 * Copy from vattr table
1282	 */
1283	if (vap->va_fsid != VNOVAL)
1284		sb->st_dev = vap->va_fsid;
1285	else
1286		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1287	sb->st_ino = vap->va_fileid;
1288	mode = vap->va_mode;
1289	switch (vap->va_type) {
1290	case VREG:
1291		mode |= S_IFREG;
1292		break;
1293	case VDIR:
1294		mode |= S_IFDIR;
1295		break;
1296	case VBLK:
1297		mode |= S_IFBLK;
1298		break;
1299	case VCHR:
1300		mode |= S_IFCHR;
1301		break;
1302	case VLNK:
1303		mode |= S_IFLNK;
1304		break;
1305	case VSOCK:
1306		mode |= S_IFSOCK;
1307		break;
1308	case VFIFO:
1309		mode |= S_IFIFO;
1310		break;
1311	default:
1312		return (EBADF);
1313	};
1314	sb->st_mode = mode;
1315	sb->st_nlink = vap->va_nlink;
1316	sb->st_uid = vap->va_uid;
1317	sb->st_gid = vap->va_gid;
1318	sb->st_rdev = vap->va_rdev;
1319	if (vap->va_size > OFF_MAX)
1320		return (EOVERFLOW);
1321	sb->st_size = vap->va_size;
1322	sb->st_atim = vap->va_atime;
1323	sb->st_mtim = vap->va_mtime;
1324	sb->st_ctim = vap->va_ctime;
1325	sb->st_birthtim = vap->va_birthtime;
1326
1327        /*
1328	 * According to www.opengroup.org, the meaning of st_blksize is
1329	 *   "a filesystem-specific preferred I/O block size for this
1330	 *    object.  In some filesystem types, this may vary from file
1331	 *    to file"
1332	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1333	 */
1334
1335	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1336
1337	sb->st_flags = vap->va_flags;
1338	if (priv_check(td, PRIV_VFS_GENERATION))
1339		sb->st_gen = 0;
1340	else
1341		sb->st_gen = vap->va_gen;
1342
1343	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1344	return (0);
1345}
1346
1347/*
1348 * File table vnode ioctl routine.
1349 */
1350static int
1351vn_ioctl(fp, com, data, active_cred, td)
1352	struct file *fp;
1353	u_long com;
1354	void *data;
1355	struct ucred *active_cred;
1356	struct thread *td;
1357{
1358	struct vattr vattr;
1359	struct vnode *vp;
1360	int error;
1361
1362	vp = fp->f_vnode;
1363	switch (vp->v_type) {
1364	case VDIR:
1365	case VREG:
1366		switch (com) {
1367		case FIONREAD:
1368			vn_lock(vp, LK_SHARED | LK_RETRY);
1369			error = VOP_GETATTR(vp, &vattr, active_cred);
1370			VOP_UNLOCK(vp, 0);
1371			if (error == 0)
1372				*(int *)data = vattr.va_size - fp->f_offset;
1373			return (error);
1374		case FIONBIO:
1375		case FIOASYNC:
1376			return (0);
1377		default:
1378			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1379			    active_cred, td));
1380		}
1381	default:
1382		return (ENOTTY);
1383	}
1384}
1385
1386/*
1387 * File table vnode poll routine.
1388 */
1389static int
1390vn_poll(fp, events, active_cred, td)
1391	struct file *fp;
1392	int events;
1393	struct ucred *active_cred;
1394	struct thread *td;
1395{
1396	struct vnode *vp;
1397	int error;
1398
1399	vp = fp->f_vnode;
1400#ifdef MAC
1401	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1402	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1403	VOP_UNLOCK(vp, 0);
1404	if (!error)
1405#endif
1406
1407	error = VOP_POLL(vp, events, fp->f_cred, td);
1408	return (error);
1409}
1410
1411/*
1412 * Acquire the requested lock and then check for validity.  LK_RETRY
1413 * permits vn_lock to return doomed vnodes.
1414 */
1415int
1416_vn_lock(struct vnode *vp, int flags, char *file, int line)
1417{
1418	int error;
1419
1420	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1421	    ("vn_lock called with no locktype."));
1422	do {
1423#ifdef DEBUG_VFS_LOCKS
1424		KASSERT(vp->v_holdcnt != 0,
1425		    ("vn_lock %p: zero hold count", vp));
1426#endif
1427		error = VOP_LOCK1(vp, flags, file, line);
1428		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1429		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1430		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1431		    flags, error));
1432		/*
1433		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1434		 * If RETRY is not set, we return ENOENT instead.
1435		 */
1436		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1437		    (flags & LK_RETRY) == 0) {
1438			VOP_UNLOCK(vp, 0);
1439			error = ENOENT;
1440			break;
1441		}
1442	} while (flags & LK_RETRY && error != 0);
1443	return (error);
1444}
1445
1446/*
1447 * File table vnode close routine.
1448 */
1449static int
1450vn_closefile(fp, td)
1451	struct file *fp;
1452	struct thread *td;
1453{
1454	struct vnode *vp;
1455	struct flock lf;
1456	int error;
1457
1458	vp = fp->f_vnode;
1459	fp->f_ops = &badfileops;
1460
1461	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1462		vref(vp);
1463
1464	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1465
1466	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1467		lf.l_whence = SEEK_SET;
1468		lf.l_start = 0;
1469		lf.l_len = 0;
1470		lf.l_type = F_UNLCK;
1471		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1472		vrele(vp);
1473	}
1474	return (error);
1475}
1476
1477/*
1478 * Preparing to start a filesystem write operation. If the operation is
1479 * permitted, then we bump the count of operations in progress and
1480 * proceed. If a suspend request is in progress, we wait until the
1481 * suspension is over, and then proceed.
1482 */
1483static int
1484vn_start_write_locked(struct mount *mp, int flags)
1485{
1486	int error;
1487
1488	mtx_assert(MNT_MTX(mp), MA_OWNED);
1489	error = 0;
1490
1491	/*
1492	 * Check on status of suspension.
1493	 */
1494	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1495	    mp->mnt_susp_owner != curthread) {
1496		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1497			if (flags & V_NOWAIT) {
1498				error = EWOULDBLOCK;
1499				goto unlock;
1500			}
1501			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1502			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1503			if (error)
1504				goto unlock;
1505		}
1506	}
1507	if (flags & V_XSLEEP)
1508		goto unlock;
1509	mp->mnt_writeopcount++;
1510unlock:
1511	if (error != 0 || (flags & V_XSLEEP) != 0)
1512		MNT_REL(mp);
1513	MNT_IUNLOCK(mp);
1514	return (error);
1515}
1516
1517int
1518vn_start_write(vp, mpp, flags)
1519	struct vnode *vp;
1520	struct mount **mpp;
1521	int flags;
1522{
1523	struct mount *mp;
1524	int error;
1525
1526	error = 0;
1527	/*
1528	 * If a vnode is provided, get and return the mount point that
1529	 * to which it will write.
1530	 */
1531	if (vp != NULL) {
1532		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1533			*mpp = NULL;
1534			if (error != EOPNOTSUPP)
1535				return (error);
1536			return (0);
1537		}
1538	}
1539	if ((mp = *mpp) == NULL)
1540		return (0);
1541
1542	/*
1543	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1544	 * a vfs_ref().
1545	 * As long as a vnode is not provided we need to acquire a
1546	 * refcount for the provided mountpoint too, in order to
1547	 * emulate a vfs_ref().
1548	 */
1549	MNT_ILOCK(mp);
1550	if (vp == NULL)
1551		MNT_REF(mp);
1552
1553	return (vn_start_write_locked(mp, flags));
1554}
1555
1556/*
1557 * Secondary suspension. Used by operations such as vop_inactive
1558 * routines that are needed by the higher level functions. These
1559 * are allowed to proceed until all the higher level functions have
1560 * completed (indicated by mnt_writeopcount dropping to zero). At that
1561 * time, these operations are halted until the suspension is over.
1562 */
1563int
1564vn_start_secondary_write(vp, mpp, flags)
1565	struct vnode *vp;
1566	struct mount **mpp;
1567	int flags;
1568{
1569	struct mount *mp;
1570	int error;
1571
1572 retry:
1573	if (vp != NULL) {
1574		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1575			*mpp = NULL;
1576			if (error != EOPNOTSUPP)
1577				return (error);
1578			return (0);
1579		}
1580	}
1581	/*
1582	 * If we are not suspended or have not yet reached suspended
1583	 * mode, then let the operation proceed.
1584	 */
1585	if ((mp = *mpp) == NULL)
1586		return (0);
1587
1588	/*
1589	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1590	 * a vfs_ref().
1591	 * As long as a vnode is not provided we need to acquire a
1592	 * refcount for the provided mountpoint too, in order to
1593	 * emulate a vfs_ref().
1594	 */
1595	MNT_ILOCK(mp);
1596	if (vp == NULL)
1597		MNT_REF(mp);
1598	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1599		mp->mnt_secondary_writes++;
1600		mp->mnt_secondary_accwrites++;
1601		MNT_IUNLOCK(mp);
1602		return (0);
1603	}
1604	if (flags & V_NOWAIT) {
1605		MNT_REL(mp);
1606		MNT_IUNLOCK(mp);
1607		return (EWOULDBLOCK);
1608	}
1609	/*
1610	 * Wait for the suspension to finish.
1611	 */
1612	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1613		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1614	vfs_rel(mp);
1615	if (error == 0)
1616		goto retry;
1617	return (error);
1618}
1619
1620/*
1621 * Filesystem write operation has completed. If we are suspending and this
1622 * operation is the last one, notify the suspender that the suspension is
1623 * now in effect.
1624 */
1625void
1626vn_finished_write(mp)
1627	struct mount *mp;
1628{
1629	if (mp == NULL)
1630		return;
1631	MNT_ILOCK(mp);
1632	MNT_REL(mp);
1633	mp->mnt_writeopcount--;
1634	if (mp->mnt_writeopcount < 0)
1635		panic("vn_finished_write: neg cnt");
1636	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1637	    mp->mnt_writeopcount <= 0)
1638		wakeup(&mp->mnt_writeopcount);
1639	MNT_IUNLOCK(mp);
1640}
1641
1642
1643/*
1644 * Filesystem secondary write operation has completed. If we are
1645 * suspending and this operation is the last one, notify the suspender
1646 * that the suspension is now in effect.
1647 */
1648void
1649vn_finished_secondary_write(mp)
1650	struct mount *mp;
1651{
1652	if (mp == NULL)
1653		return;
1654	MNT_ILOCK(mp);
1655	MNT_REL(mp);
1656	mp->mnt_secondary_writes--;
1657	if (mp->mnt_secondary_writes < 0)
1658		panic("vn_finished_secondary_write: neg cnt");
1659	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1660	    mp->mnt_secondary_writes <= 0)
1661		wakeup(&mp->mnt_secondary_writes);
1662	MNT_IUNLOCK(mp);
1663}
1664
1665
1666
1667/*
1668 * Request a filesystem to suspend write operations.
1669 */
1670int
1671vfs_write_suspend(struct mount *mp, int flags)
1672{
1673	int error;
1674
1675	MNT_ILOCK(mp);
1676	if (mp->mnt_susp_owner == curthread) {
1677		MNT_IUNLOCK(mp);
1678		return (EALREADY);
1679	}
1680	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1681		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1682
1683	/*
1684	 * Unmount holds a write reference on the mount point.  If we
1685	 * own busy reference and drain for writers, we deadlock with
1686	 * the reference draining in the unmount path.  Callers of
1687	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1688	 * vfs_busy() reference is owned and caller is not in the
1689	 * unmount context.
1690	 */
1691	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1692	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1693		MNT_IUNLOCK(mp);
1694		return (EBUSY);
1695	}
1696
1697	mp->mnt_kern_flag |= MNTK_SUSPEND;
1698	mp->mnt_susp_owner = curthread;
1699	if (mp->mnt_writeopcount > 0)
1700		(void) msleep(&mp->mnt_writeopcount,
1701		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1702	else
1703		MNT_IUNLOCK(mp);
1704	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1705		vfs_write_resume(mp, 0);
1706	return (error);
1707}
1708
1709/*
1710 * Request a filesystem to resume write operations.
1711 */
1712void
1713vfs_write_resume(struct mount *mp, int flags)
1714{
1715
1716	MNT_ILOCK(mp);
1717	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1718		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1719		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1720				       MNTK_SUSPENDED);
1721		mp->mnt_susp_owner = NULL;
1722		wakeup(&mp->mnt_writeopcount);
1723		wakeup(&mp->mnt_flag);
1724		curthread->td_pflags &= ~TDP_IGNSUSP;
1725		if ((flags & VR_START_WRITE) != 0) {
1726			MNT_REF(mp);
1727			mp->mnt_writeopcount++;
1728		}
1729		MNT_IUNLOCK(mp);
1730		if ((flags & VR_NO_SUSPCLR) == 0)
1731			VFS_SUSP_CLEAN(mp);
1732	} else if ((flags & VR_START_WRITE) != 0) {
1733		MNT_REF(mp);
1734		vn_start_write_locked(mp, 0);
1735	} else {
1736		MNT_IUNLOCK(mp);
1737	}
1738}
1739
1740/*
1741 * Implement kqueues for files by translating it to vnode operation.
1742 */
1743static int
1744vn_kqfilter(struct file *fp, struct knote *kn)
1745{
1746
1747	return (VOP_KQFILTER(fp->f_vnode, kn));
1748}
1749
1750/*
1751 * Simplified in-kernel wrapper calls for extended attribute access.
1752 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1753 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1754 */
1755int
1756vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1757    const char *attrname, int *buflen, char *buf, struct thread *td)
1758{
1759	struct uio	auio;
1760	struct iovec	iov;
1761	int	error;
1762
1763	iov.iov_len = *buflen;
1764	iov.iov_base = buf;
1765
1766	auio.uio_iov = &iov;
1767	auio.uio_iovcnt = 1;
1768	auio.uio_rw = UIO_READ;
1769	auio.uio_segflg = UIO_SYSSPACE;
1770	auio.uio_td = td;
1771	auio.uio_offset = 0;
1772	auio.uio_resid = *buflen;
1773
1774	if ((ioflg & IO_NODELOCKED) == 0)
1775		vn_lock(vp, LK_SHARED | LK_RETRY);
1776
1777	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1778
1779	/* authorize attribute retrieval as kernel */
1780	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1781	    td);
1782
1783	if ((ioflg & IO_NODELOCKED) == 0)
1784		VOP_UNLOCK(vp, 0);
1785
1786	if (error == 0) {
1787		*buflen = *buflen - auio.uio_resid;
1788	}
1789
1790	return (error);
1791}
1792
1793/*
1794 * XXX failure mode if partially written?
1795 */
1796int
1797vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1798    const char *attrname, int buflen, char *buf, struct thread *td)
1799{
1800	struct uio	auio;
1801	struct iovec	iov;
1802	struct mount	*mp;
1803	int	error;
1804
1805	iov.iov_len = buflen;
1806	iov.iov_base = buf;
1807
1808	auio.uio_iov = &iov;
1809	auio.uio_iovcnt = 1;
1810	auio.uio_rw = UIO_WRITE;
1811	auio.uio_segflg = UIO_SYSSPACE;
1812	auio.uio_td = td;
1813	auio.uio_offset = 0;
1814	auio.uio_resid = buflen;
1815
1816	if ((ioflg & IO_NODELOCKED) == 0) {
1817		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1818			return (error);
1819		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1820	}
1821
1822	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1823
1824	/* authorize attribute setting as kernel */
1825	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1826
1827	if ((ioflg & IO_NODELOCKED) == 0) {
1828		vn_finished_write(mp);
1829		VOP_UNLOCK(vp, 0);
1830	}
1831
1832	return (error);
1833}
1834
1835int
1836vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1837    const char *attrname, struct thread *td)
1838{
1839	struct mount	*mp;
1840	int	error;
1841
1842	if ((ioflg & IO_NODELOCKED) == 0) {
1843		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1844			return (error);
1845		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1846	}
1847
1848	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1849
1850	/* authorize attribute removal as kernel */
1851	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1852	if (error == EOPNOTSUPP)
1853		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1854		    NULL, td);
1855
1856	if ((ioflg & IO_NODELOCKED) == 0) {
1857		vn_finished_write(mp);
1858		VOP_UNLOCK(vp, 0);
1859	}
1860
1861	return (error);
1862}
1863
1864int
1865vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1866{
1867	struct mount *mp;
1868	int ltype, error;
1869
1870	mp = vp->v_mount;
1871	ltype = VOP_ISLOCKED(vp);
1872	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
1873	    ("vn_vget_ino: vp not locked"));
1874	error = vfs_busy(mp, MBF_NOWAIT);
1875	if (error != 0) {
1876		vfs_ref(mp);
1877		VOP_UNLOCK(vp, 0);
1878		error = vfs_busy(mp, 0);
1879		vn_lock(vp, ltype | LK_RETRY);
1880		vfs_rel(mp);
1881		if (error != 0)
1882			return (ENOENT);
1883		if (vp->v_iflag & VI_DOOMED) {
1884			vfs_unbusy(mp);
1885			return (ENOENT);
1886		}
1887	}
1888	VOP_UNLOCK(vp, 0);
1889	error = VFS_VGET(mp, ino, lkflags, rvp);
1890	vfs_unbusy(mp);
1891	vn_lock(vp, ltype | LK_RETRY);
1892	if (vp->v_iflag & VI_DOOMED) {
1893		if (error == 0)
1894			vput(*rvp);
1895		error = ENOENT;
1896	}
1897	return (error);
1898}
1899
1900int
1901vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
1902    const struct thread *td)
1903{
1904
1905	if (vp->v_type != VREG || td == NULL)
1906		return (0);
1907	PROC_LOCK(td->td_proc);
1908	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1909	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
1910		kern_psignal(td->td_proc, SIGXFSZ);
1911		PROC_UNLOCK(td->td_proc);
1912		return (EFBIG);
1913	}
1914	PROC_UNLOCK(td->td_proc);
1915	return (0);
1916}
1917
1918int
1919vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1920    struct thread *td)
1921{
1922	struct vnode *vp;
1923
1924	vp = fp->f_vnode;
1925#ifdef AUDIT
1926	vn_lock(vp, LK_SHARED | LK_RETRY);
1927	AUDIT_ARG_VNODE1(vp);
1928	VOP_UNLOCK(vp, 0);
1929#endif
1930	return (setfmode(td, active_cred, vp, mode));
1931}
1932
1933int
1934vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1935    struct thread *td)
1936{
1937	struct vnode *vp;
1938
1939	vp = fp->f_vnode;
1940#ifdef AUDIT
1941	vn_lock(vp, LK_SHARED | LK_RETRY);
1942	AUDIT_ARG_VNODE1(vp);
1943	VOP_UNLOCK(vp, 0);
1944#endif
1945	return (setfown(td, active_cred, vp, uid, gid));
1946}
1947
1948void
1949vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
1950{
1951	vm_object_t object;
1952
1953	if ((object = vp->v_object) == NULL)
1954		return;
1955	VM_OBJECT_WLOCK(object);
1956	vm_object_page_remove(object, start, end, 0);
1957	VM_OBJECT_WUNLOCK(object);
1958}
1959
1960int
1961vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
1962{
1963	struct vattr va;
1964	daddr_t bn, bnp;
1965	uint64_t bsize;
1966	off_t noff;
1967	int error;
1968
1969	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
1970	    ("Wrong command %lu", cmd));
1971
1972	if (vn_lock(vp, LK_SHARED) != 0)
1973		return (EBADF);
1974	if (vp->v_type != VREG) {
1975		error = ENOTTY;
1976		goto unlock;
1977	}
1978	error = VOP_GETATTR(vp, &va, cred);
1979	if (error != 0)
1980		goto unlock;
1981	noff = *off;
1982	if (noff >= va.va_size) {
1983		error = ENXIO;
1984		goto unlock;
1985	}
1986	bsize = vp->v_mount->mnt_stat.f_iosize;
1987	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
1988		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
1989		if (error == EOPNOTSUPP) {
1990			error = ENOTTY;
1991			goto unlock;
1992		}
1993		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
1994		    (bnp != -1 && cmd == FIOSEEKDATA)) {
1995			noff = bn * bsize;
1996			if (noff < *off)
1997				noff = *off;
1998			goto unlock;
1999		}
2000	}
2001	if (noff > va.va_size)
2002		noff = va.va_size;
2003	/* noff == va.va_size. There is an implicit hole at the end of file. */
2004	if (cmd == FIOSEEKDATA)
2005		error = ENXIO;
2006unlock:
2007	VOP_UNLOCK(vp, 0);
2008	if (error == 0)
2009		*off = noff;
2010	return (error);
2011}
2012