vfs_vnops.c revision 244925
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/vfs_vnops.c 244925 2013-01-01 16:14:48Z kib $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/fcntl.h>
43#include <sys/file.h>
44#include <sys/kdb.h>
45#include <sys/stat.h>
46#include <sys/priv.h>
47#include <sys/proc.h>
48#include <sys/limits.h>
49#include <sys/lock.h>
50#include <sys/mount.h>
51#include <sys/mutex.h>
52#include <sys/namei.h>
53#include <sys/vnode.h>
54#include <sys/bio.h>
55#include <sys/buf.h>
56#include <sys/filio.h>
57#include <sys/resourcevar.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/ttycom.h>
61#include <sys/conf.h>
62#include <sys/syslog.h>
63#include <sys/unistd.h>
64
65#include <security/audit/audit.h>
66#include <security/mac/mac_framework.h>
67
68#include <vm/vm.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_object.h>
73#include <vm/vm_page.h>
74
75static fo_rdwr_t	vn_read;
76static fo_rdwr_t	vn_write;
77static fo_rdwr_t	vn_io_fault;
78static fo_truncate_t	vn_truncate;
79static fo_ioctl_t	vn_ioctl;
80static fo_poll_t	vn_poll;
81static fo_kqfilter_t	vn_kqfilter;
82static fo_stat_t	vn_statfile;
83static fo_close_t	vn_closefile;
84
85struct 	fileops vnops = {
86	.fo_read = vn_io_fault,
87	.fo_write = vn_io_fault,
88	.fo_truncate = vn_truncate,
89	.fo_ioctl = vn_ioctl,
90	.fo_poll = vn_poll,
91	.fo_kqfilter = vn_kqfilter,
92	.fo_stat = vn_statfile,
93	.fo_close = vn_closefile,
94	.fo_chmod = vn_chmod,
95	.fo_chown = vn_chown,
96	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
97};
98
99int
100vn_open(ndp, flagp, cmode, fp)
101	struct nameidata *ndp;
102	int *flagp, cmode;
103	struct file *fp;
104{
105	struct thread *td = ndp->ni_cnd.cn_thread;
106
107	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
108}
109
110/*
111 * Common code for vnode open operations via a name lookup.
112 * Lookup the vnode and invoke VOP_CREATE if needed.
113 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
114 *
115 * Note that this does NOT free nameidata for the successful case,
116 * due to the NDINIT being done elsewhere.
117 */
118int
119vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
120    struct ucred *cred, struct file *fp)
121{
122	struct vnode *vp;
123	struct mount *mp;
124	struct thread *td = ndp->ni_cnd.cn_thread;
125	struct vattr vat;
126	struct vattr *vap = &vat;
127	int fmode, error;
128
129restart:
130	fmode = *flagp;
131	if (fmode & O_CREAT) {
132		ndp->ni_cnd.cn_nameiop = CREATE;
133		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
134		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
135			ndp->ni_cnd.cn_flags |= FOLLOW;
136		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
137			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
138		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
139			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
140		bwillwrite();
141		if ((error = namei(ndp)) != 0)
142			return (error);
143		if (ndp->ni_vp == NULL) {
144			VATTR_NULL(vap);
145			vap->va_type = VREG;
146			vap->va_mode = cmode;
147			if (fmode & O_EXCL)
148				vap->va_vaflags |= VA_EXCLUSIVE;
149			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
150				NDFREE(ndp, NDF_ONLY_PNBUF);
151				vput(ndp->ni_dvp);
152				if ((error = vn_start_write(NULL, &mp,
153				    V_XSLEEP | PCATCH)) != 0)
154					return (error);
155				goto restart;
156			}
157#ifdef MAC
158			error = mac_vnode_check_create(cred, ndp->ni_dvp,
159			    &ndp->ni_cnd, vap);
160			if (error == 0)
161#endif
162				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
163						   &ndp->ni_cnd, vap);
164			vput(ndp->ni_dvp);
165			vn_finished_write(mp);
166			if (error) {
167				NDFREE(ndp, NDF_ONLY_PNBUF);
168				return (error);
169			}
170			fmode &= ~O_TRUNC;
171			vp = ndp->ni_vp;
172		} else {
173			if (ndp->ni_dvp == ndp->ni_vp)
174				vrele(ndp->ni_dvp);
175			else
176				vput(ndp->ni_dvp);
177			ndp->ni_dvp = NULL;
178			vp = ndp->ni_vp;
179			if (fmode & O_EXCL) {
180				error = EEXIST;
181				goto bad;
182			}
183			fmode &= ~O_CREAT;
184		}
185	} else {
186		ndp->ni_cnd.cn_nameiop = LOOKUP;
187		ndp->ni_cnd.cn_flags = ISOPEN |
188		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
189		if (!(fmode & FWRITE))
190			ndp->ni_cnd.cn_flags |= LOCKSHARED;
191		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
192			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
193		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
194			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
195		if ((error = namei(ndp)) != 0)
196			return (error);
197		vp = ndp->ni_vp;
198	}
199	error = vn_open_vnode(vp, fmode, cred, td, fp);
200	if (error)
201		goto bad;
202	*flagp = fmode;
203	return (0);
204bad:
205	NDFREE(ndp, NDF_ONLY_PNBUF);
206	vput(vp);
207	*flagp = fmode;
208	ndp->ni_vp = NULL;
209	return (error);
210}
211
212/*
213 * Common code for vnode open operations once a vnode is located.
214 * Check permissions, and call the VOP_OPEN routine.
215 */
216int
217vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
218    struct thread *td, struct file *fp)
219{
220	struct mount *mp;
221	accmode_t accmode;
222	struct flock lf;
223	int error, have_flock, lock_flags, type;
224
225	if (vp->v_type == VLNK)
226		return (EMLINK);
227	if (vp->v_type == VSOCK)
228		return (EOPNOTSUPP);
229	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
230		return (ENOTDIR);
231	accmode = 0;
232	if (fmode & (FWRITE | O_TRUNC)) {
233		if (vp->v_type == VDIR)
234			return (EISDIR);
235		accmode |= VWRITE;
236	}
237	if (fmode & FREAD)
238		accmode |= VREAD;
239	if (fmode & FEXEC)
240		accmode |= VEXEC;
241	if ((fmode & O_APPEND) && (fmode & FWRITE))
242		accmode |= VAPPEND;
243#ifdef MAC
244	error = mac_vnode_check_open(cred, vp, accmode);
245	if (error)
246		return (error);
247#endif
248	if ((fmode & O_CREAT) == 0) {
249		if (accmode & VWRITE) {
250			error = vn_writechk(vp);
251			if (error)
252				return (error);
253		}
254		if (accmode) {
255		        error = VOP_ACCESS(vp, accmode, cred, td);
256			if (error)
257				return (error);
258		}
259	}
260	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
261		return (error);
262
263	if (fmode & (O_EXLOCK | O_SHLOCK)) {
264		KASSERT(fp != NULL, ("open with flock requires fp"));
265		lock_flags = VOP_ISLOCKED(vp);
266		VOP_UNLOCK(vp, 0);
267		lf.l_whence = SEEK_SET;
268		lf.l_start = 0;
269		lf.l_len = 0;
270		if (fmode & O_EXLOCK)
271			lf.l_type = F_WRLCK;
272		else
273			lf.l_type = F_RDLCK;
274		type = F_FLOCK;
275		if ((fmode & FNONBLOCK) == 0)
276			type |= F_WAIT;
277		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
278		have_flock = (error == 0);
279		vn_lock(vp, lock_flags | LK_RETRY);
280		if (error == 0 && vp->v_iflag & VI_DOOMED)
281			error = ENOENT;
282		/*
283		 * Another thread might have used this vnode as an
284		 * executable while the vnode lock was dropped.
285		 * Ensure the vnode is still able to be opened for
286		 * writing after the lock has been obtained.
287		 */
288		if (error == 0 && accmode & VWRITE)
289			error = vn_writechk(vp);
290		if (error) {
291			VOP_UNLOCK(vp, 0);
292			if (have_flock) {
293				lf.l_whence = SEEK_SET;
294				lf.l_start = 0;
295				lf.l_len = 0;
296				lf.l_type = F_UNLCK;
297				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
298				    F_FLOCK);
299			}
300			vn_start_write(vp, &mp, V_WAIT);
301			vn_lock(vp, lock_flags | LK_RETRY);
302			(void)VOP_CLOSE(vp, fmode, cred, td);
303			vn_finished_write(mp);
304			return (error);
305		}
306		fp->f_flag |= FHASLOCK;
307	}
308	if (fmode & FWRITE) {
309		VOP_ADD_WRITECOUNT(vp, 1);
310		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
311		    __func__, vp, vp->v_writecount);
312	}
313	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
314	return (0);
315}
316
317/*
318 * Check for write permissions on the specified vnode.
319 * Prototype text segments cannot be written.
320 */
321int
322vn_writechk(vp)
323	register struct vnode *vp;
324{
325
326	ASSERT_VOP_LOCKED(vp, "vn_writechk");
327	/*
328	 * If there's shared text associated with
329	 * the vnode, try to free it up once.  If
330	 * we fail, we can't allow writing.
331	 */
332	if (VOP_IS_TEXT(vp))
333		return (ETXTBSY);
334
335	return (0);
336}
337
338/*
339 * Vnode close call
340 */
341int
342vn_close(vp, flags, file_cred, td)
343	register struct vnode *vp;
344	int flags;
345	struct ucred *file_cred;
346	struct thread *td;
347{
348	struct mount *mp;
349	int error, lock_flags;
350
351	if (!(flags & FWRITE) && vp->v_mount != NULL &&
352	    vp->v_mount->mnt_kern_flag & MNTK_EXTENDED_SHARED)
353		lock_flags = LK_SHARED;
354	else
355		lock_flags = LK_EXCLUSIVE;
356
357	vn_start_write(vp, &mp, V_WAIT);
358	vn_lock(vp, lock_flags | LK_RETRY);
359	if (flags & FWRITE) {
360		VNASSERT(vp->v_writecount > 0, vp,
361		    ("vn_close: negative writecount"));
362		VOP_ADD_WRITECOUNT(vp, -1);
363		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
364		    __func__, vp, vp->v_writecount);
365	}
366	error = VOP_CLOSE(vp, flags, file_cred, td);
367	vput(vp);
368	vn_finished_write(mp);
369	return (error);
370}
371
372/*
373 * Heuristic to detect sequential operation.
374 */
375static int
376sequential_heuristic(struct uio *uio, struct file *fp)
377{
378
379	if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
380		return (fp->f_seqcount << IO_SEQSHIFT);
381
382	/*
383	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
384	 * that the first I/O is normally considered to be slightly
385	 * sequential.  Seeking to offset 0 doesn't change sequentiality
386	 * unless previous seeks have reduced f_seqcount to 0, in which
387	 * case offset 0 is not special.
388	 */
389	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
390	    uio->uio_offset == fp->f_nextoff) {
391		/*
392		 * f_seqcount is in units of fixed-size blocks so that it
393		 * depends mainly on the amount of sequential I/O and not
394		 * much on the number of sequential I/O's.  The fixed size
395		 * of 16384 is hard-coded here since it is (not quite) just
396		 * a magic size that works well here.  This size is more
397		 * closely related to the best I/O size for real disks than
398		 * to any block size used by software.
399		 */
400		fp->f_seqcount += howmany(uio->uio_resid, 16384);
401		if (fp->f_seqcount > IO_SEQMAX)
402			fp->f_seqcount = IO_SEQMAX;
403		return (fp->f_seqcount << IO_SEQSHIFT);
404	}
405
406	/* Not sequential.  Quickly draw-down sequentiality. */
407	if (fp->f_seqcount > 1)
408		fp->f_seqcount = 1;
409	else
410		fp->f_seqcount = 0;
411	return (0);
412}
413
414/*
415 * Package up an I/O request on a vnode into a uio and do it.
416 */
417int
418vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
419    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
420    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
421{
422	struct uio auio;
423	struct iovec aiov;
424	struct mount *mp;
425	struct ucred *cred;
426	void *rl_cookie;
427	int error, lock_flags;
428
429	auio.uio_iov = &aiov;
430	auio.uio_iovcnt = 1;
431	aiov.iov_base = base;
432	aiov.iov_len = len;
433	auio.uio_resid = len;
434	auio.uio_offset = offset;
435	auio.uio_segflg = segflg;
436	auio.uio_rw = rw;
437	auio.uio_td = td;
438	error = 0;
439
440	if ((ioflg & IO_NODELOCKED) == 0) {
441		if (rw == UIO_READ) {
442			rl_cookie = vn_rangelock_rlock(vp, offset,
443			    offset + len);
444		} else {
445			rl_cookie = vn_rangelock_wlock(vp, offset,
446			    offset + len);
447		}
448		mp = NULL;
449		if (rw == UIO_WRITE) {
450			if (vp->v_type != VCHR &&
451			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
452			    != 0)
453				goto out;
454			if (MNT_SHARED_WRITES(mp) ||
455			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
456				lock_flags = LK_SHARED;
457			else
458				lock_flags = LK_EXCLUSIVE;
459		} else
460			lock_flags = LK_SHARED;
461		vn_lock(vp, lock_flags | LK_RETRY);
462	} else
463		rl_cookie = NULL;
464
465	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
466#ifdef MAC
467	if ((ioflg & IO_NOMACCHECK) == 0) {
468		if (rw == UIO_READ)
469			error = mac_vnode_check_read(active_cred, file_cred,
470			    vp);
471		else
472			error = mac_vnode_check_write(active_cred, file_cred,
473			    vp);
474	}
475#endif
476	if (error == 0) {
477		if (file_cred != NULL)
478			cred = file_cred;
479		else
480			cred = active_cred;
481		if (rw == UIO_READ)
482			error = VOP_READ(vp, &auio, ioflg, cred);
483		else
484			error = VOP_WRITE(vp, &auio, ioflg, cred);
485	}
486	if (aresid)
487		*aresid = auio.uio_resid;
488	else
489		if (auio.uio_resid && error == 0)
490			error = EIO;
491	if ((ioflg & IO_NODELOCKED) == 0) {
492		VOP_UNLOCK(vp, 0);
493		if (mp != NULL)
494			vn_finished_write(mp);
495	}
496 out:
497	if (rl_cookie != NULL)
498		vn_rangelock_unlock(vp, rl_cookie);
499	return (error);
500}
501
502/*
503 * Package up an I/O request on a vnode into a uio and do it.  The I/O
504 * request is split up into smaller chunks and we try to avoid saturating
505 * the buffer cache while potentially holding a vnode locked, so we
506 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
507 * to give other processes a chance to lock the vnode (either other processes
508 * core'ing the same binary, or unrelated processes scanning the directory).
509 */
510int
511vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
512    file_cred, aresid, td)
513	enum uio_rw rw;
514	struct vnode *vp;
515	void *base;
516	size_t len;
517	off_t offset;
518	enum uio_seg segflg;
519	int ioflg;
520	struct ucred *active_cred;
521	struct ucred *file_cred;
522	size_t *aresid;
523	struct thread *td;
524{
525	int error = 0;
526	ssize_t iaresid;
527
528	do {
529		int chunk;
530
531		/*
532		 * Force `offset' to a multiple of MAXBSIZE except possibly
533		 * for the first chunk, so that filesystems only need to
534		 * write full blocks except possibly for the first and last
535		 * chunks.
536		 */
537		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
538
539		if (chunk > len)
540			chunk = len;
541		if (rw != UIO_READ && vp->v_type == VREG)
542			bwillwrite();
543		iaresid = 0;
544		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
545		    ioflg, active_cred, file_cred, &iaresid, td);
546		len -= chunk;	/* aresid calc already includes length */
547		if (error)
548			break;
549		offset += chunk;
550		base = (char *)base + chunk;
551		kern_yield(PRI_USER);
552	} while (len);
553	if (aresid)
554		*aresid = len + iaresid;
555	return (error);
556}
557
558off_t
559foffset_lock(struct file *fp, int flags)
560{
561	struct mtx *mtxp;
562	off_t res;
563
564	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
565
566#if OFF_MAX <= LONG_MAX
567	/*
568	 * Caller only wants the current f_offset value.  Assume that
569	 * the long and shorter integer types reads are atomic.
570	 */
571	if ((flags & FOF_NOLOCK) != 0)
572		return (fp->f_offset);
573#endif
574
575	/*
576	 * According to McKusick the vn lock was protecting f_offset here.
577	 * It is now protected by the FOFFSET_LOCKED flag.
578	 */
579	mtxp = mtx_pool_find(mtxpool_sleep, fp);
580	mtx_lock(mtxp);
581	if ((flags & FOF_NOLOCK) == 0) {
582		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
583			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
584			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
585			    "vofflock", 0);
586		}
587		fp->f_vnread_flags |= FOFFSET_LOCKED;
588	}
589	res = fp->f_offset;
590	mtx_unlock(mtxp);
591	return (res);
592}
593
594void
595foffset_unlock(struct file *fp, off_t val, int flags)
596{
597	struct mtx *mtxp;
598
599	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
600
601#if OFF_MAX <= LONG_MAX
602	if ((flags & FOF_NOLOCK) != 0) {
603		if ((flags & FOF_NOUPDATE) == 0)
604			fp->f_offset = val;
605		if ((flags & FOF_NEXTOFF) != 0)
606			fp->f_nextoff = val;
607		return;
608	}
609#endif
610
611	mtxp = mtx_pool_find(mtxpool_sleep, fp);
612	mtx_lock(mtxp);
613	if ((flags & FOF_NOUPDATE) == 0)
614		fp->f_offset = val;
615	if ((flags & FOF_NEXTOFF) != 0)
616		fp->f_nextoff = val;
617	if ((flags & FOF_NOLOCK) == 0) {
618		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
619		    ("Lost FOFFSET_LOCKED"));
620		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
621			wakeup(&fp->f_vnread_flags);
622		fp->f_vnread_flags = 0;
623	}
624	mtx_unlock(mtxp);
625}
626
627void
628foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
629{
630
631	if ((flags & FOF_OFFSET) == 0)
632		uio->uio_offset = foffset_lock(fp, flags);
633}
634
635void
636foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
637{
638
639	if ((flags & FOF_OFFSET) == 0)
640		foffset_unlock(fp, uio->uio_offset, flags);
641}
642
643static int
644get_advice(struct file *fp, struct uio *uio)
645{
646	struct mtx *mtxp;
647	int ret;
648
649	ret = POSIX_FADV_NORMAL;
650	if (fp->f_advice == NULL)
651		return (ret);
652
653	mtxp = mtx_pool_find(mtxpool_sleep, fp);
654	mtx_lock(mtxp);
655	if (uio->uio_offset >= fp->f_advice->fa_start &&
656	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
657		ret = fp->f_advice->fa_advice;
658	mtx_unlock(mtxp);
659	return (ret);
660}
661
662/*
663 * File table vnode read routine.
664 */
665static int
666vn_read(fp, uio, active_cred, flags, td)
667	struct file *fp;
668	struct uio *uio;
669	struct ucred *active_cred;
670	int flags;
671	struct thread *td;
672{
673	struct vnode *vp;
674	struct mtx *mtxp;
675	int error, ioflag;
676	int advice;
677	off_t offset, start, end;
678
679	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
680	    uio->uio_td, td));
681	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
682	vp = fp->f_vnode;
683	ioflag = 0;
684	if (fp->f_flag & FNONBLOCK)
685		ioflag |= IO_NDELAY;
686	if (fp->f_flag & O_DIRECT)
687		ioflag |= IO_DIRECT;
688	advice = get_advice(fp, uio);
689	vn_lock(vp, LK_SHARED | LK_RETRY);
690
691	switch (advice) {
692	case POSIX_FADV_NORMAL:
693	case POSIX_FADV_SEQUENTIAL:
694	case POSIX_FADV_NOREUSE:
695		ioflag |= sequential_heuristic(uio, fp);
696		break;
697	case POSIX_FADV_RANDOM:
698		/* Disable read-ahead for random I/O. */
699		break;
700	}
701	offset = uio->uio_offset;
702
703#ifdef MAC
704	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
705	if (error == 0)
706#endif
707		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
708	fp->f_nextoff = uio->uio_offset;
709	VOP_UNLOCK(vp, 0);
710	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
711	    offset != uio->uio_offset) {
712		/*
713		 * Use POSIX_FADV_DONTNEED to flush clean pages and
714		 * buffers for the backing file after a
715		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
716		 * case of using POSIX_FADV_NOREUSE with sequential
717		 * access, track the previous implicit DONTNEED
718		 * request and grow this request to include the
719		 * current read(2) in addition to the previous
720		 * DONTNEED.  With purely sequential access this will
721		 * cause the DONTNEED requests to continously grow to
722		 * cover all of the previously read regions of the
723		 * file.  This allows filesystem blocks that are
724		 * accessed by multiple calls to read(2) to be flushed
725		 * once the last read(2) finishes.
726		 */
727		start = offset;
728		end = uio->uio_offset - 1;
729		mtxp = mtx_pool_find(mtxpool_sleep, fp);
730		mtx_lock(mtxp);
731		if (fp->f_advice != NULL &&
732		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
733			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
734				start = fp->f_advice->fa_prevstart;
735			else if (fp->f_advice->fa_prevstart != 0 &&
736			    fp->f_advice->fa_prevstart == end + 1)
737				end = fp->f_advice->fa_prevend;
738			fp->f_advice->fa_prevstart = start;
739			fp->f_advice->fa_prevend = end;
740		}
741		mtx_unlock(mtxp);
742		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
743	}
744	return (error);
745}
746
747/*
748 * File table vnode write routine.
749 */
750static int
751vn_write(fp, uio, active_cred, flags, td)
752	struct file *fp;
753	struct uio *uio;
754	struct ucred *active_cred;
755	int flags;
756	struct thread *td;
757{
758	struct vnode *vp;
759	struct mount *mp;
760	struct mtx *mtxp;
761	int error, ioflag, lock_flags;
762	int advice;
763	off_t offset, start, end;
764
765	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
766	    uio->uio_td, td));
767	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
768	vp = fp->f_vnode;
769	if (vp->v_type == VREG)
770		bwillwrite();
771	ioflag = IO_UNIT;
772	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
773		ioflag |= IO_APPEND;
774	if (fp->f_flag & FNONBLOCK)
775		ioflag |= IO_NDELAY;
776	if (fp->f_flag & O_DIRECT)
777		ioflag |= IO_DIRECT;
778	if ((fp->f_flag & O_FSYNC) ||
779	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
780		ioflag |= IO_SYNC;
781	mp = NULL;
782	if (vp->v_type != VCHR &&
783	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
784		goto unlock;
785
786	advice = get_advice(fp, uio);
787
788	if (MNT_SHARED_WRITES(mp) ||
789	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
790		lock_flags = LK_SHARED;
791	} else {
792		lock_flags = LK_EXCLUSIVE;
793	}
794
795	vn_lock(vp, lock_flags | LK_RETRY);
796	switch (advice) {
797	case POSIX_FADV_NORMAL:
798	case POSIX_FADV_SEQUENTIAL:
799	case POSIX_FADV_NOREUSE:
800		ioflag |= sequential_heuristic(uio, fp);
801		break;
802	case POSIX_FADV_RANDOM:
803		/* XXX: Is this correct? */
804		break;
805	}
806	offset = uio->uio_offset;
807
808#ifdef MAC
809	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
810	if (error == 0)
811#endif
812		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
813	fp->f_nextoff = uio->uio_offset;
814	VOP_UNLOCK(vp, 0);
815	if (vp->v_type != VCHR)
816		vn_finished_write(mp);
817	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
818	    offset != uio->uio_offset) {
819		/*
820		 * Use POSIX_FADV_DONTNEED to flush clean pages and
821		 * buffers for the backing file after a
822		 * POSIX_FADV_NOREUSE write(2).  To optimize the
823		 * common case of using POSIX_FADV_NOREUSE with
824		 * sequential access, track the previous implicit
825		 * DONTNEED request and grow this request to include
826		 * the current write(2) in addition to the previous
827		 * DONTNEED.  With purely sequential access this will
828		 * cause the DONTNEED requests to continously grow to
829		 * cover all of the previously written regions of the
830		 * file.
831		 *
832		 * Note that the blocks just written are almost
833		 * certainly still dirty, so this only works when
834		 * VOP_ADVISE() calls from subsequent writes push out
835		 * the data written by this write(2) once the backing
836		 * buffers are clean.  However, as compared to forcing
837		 * IO_DIRECT, this gives much saner behavior.  Write
838		 * clustering is still allowed, and clean pages are
839		 * merely moved to the cache page queue rather than
840		 * outright thrown away.  This means a subsequent
841		 * read(2) can still avoid hitting the disk if the
842		 * pages have not been reclaimed.
843		 *
844		 * This does make POSIX_FADV_NOREUSE largely useless
845		 * with non-sequential access.  However, sequential
846		 * access is the more common use case and the flag is
847		 * merely advisory.
848		 */
849		start = offset;
850		end = uio->uio_offset - 1;
851		mtxp = mtx_pool_find(mtxpool_sleep, fp);
852		mtx_lock(mtxp);
853		if (fp->f_advice != NULL &&
854		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
855			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
856				start = fp->f_advice->fa_prevstart;
857			else if (fp->f_advice->fa_prevstart != 0 &&
858			    fp->f_advice->fa_prevstart == end + 1)
859				end = fp->f_advice->fa_prevend;
860			fp->f_advice->fa_prevstart = start;
861			fp->f_advice->fa_prevend = end;
862		}
863		mtx_unlock(mtxp);
864		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
865	}
866
867unlock:
868	return (error);
869}
870
871static const int io_hold_cnt = 16;
872static int vn_io_fault_enable = 1;
873SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
874    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
875static unsigned long vn_io_faults_cnt;
876SYSCTL_LONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
877    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
878
879/*
880 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
881 * prevent the following deadlock:
882 *
883 * Assume that the thread A reads from the vnode vp1 into userspace
884 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
885 * currently not resident, then system ends up with the call chain
886 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
887 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
888 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
889 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
890 * backed by the pages of vnode vp1, and some page in buf2 is not
891 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
892 *
893 * To prevent the lock order reversal and deadlock, vn_io_fault() does
894 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
895 * Instead, it first tries to do the whole range i/o with pagefaults
896 * disabled. If all pages in the i/o buffer are resident and mapped,
897 * VOP will succeed (ignoring the genuine filesystem errors).
898 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
899 * i/o in chunks, with all pages in the chunk prefaulted and held
900 * using vm_fault_quick_hold_pages().
901 *
902 * Filesystems using this deadlock avoidance scheme should use the
903 * array of the held pages from uio, saved in the curthread->td_ma,
904 * instead of doing uiomove().  A helper function
905 * vn_io_fault_uiomove() converts uiomove request into
906 * uiomove_fromphys() over td_ma array.
907 *
908 * Since vnode locks do not cover the whole i/o anymore, rangelocks
909 * make the current i/o request atomic with respect to other i/os and
910 * truncations.
911 */
912static int
913vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
914    int flags, struct thread *td)
915{
916	vm_page_t ma[io_hold_cnt + 2];
917	struct uio *uio_clone, short_uio;
918	struct iovec short_iovec[1];
919	fo_rdwr_t *doio;
920	struct vnode *vp;
921	void *rl_cookie;
922	struct mount *mp;
923	vm_page_t *prev_td_ma;
924	int cnt, error, save, saveheld, prev_td_ma_cnt;
925	vm_offset_t addr, end;
926	vm_prot_t prot;
927	size_t len, resid;
928	ssize_t adv;
929
930	if (uio->uio_rw == UIO_READ)
931		doio = vn_read;
932	else
933		doio = vn_write;
934	vp = fp->f_vnode;
935	foffset_lock_uio(fp, uio, flags);
936
937	if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG ||
938	    ((mp = vp->v_mount) != NULL &&
939	    (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) ||
940	    !vn_io_fault_enable) {
941		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
942		goto out_last;
943	}
944
945	/*
946	 * The UFS follows IO_UNIT directive and replays back both
947	 * uio_offset and uio_resid if an error is encountered during the
948	 * operation.  But, since the iovec may be already advanced,
949	 * uio is still in an inconsistent state.
950	 *
951	 * Cache a copy of the original uio, which is advanced to the redo
952	 * point using UIO_NOCOPY below.
953	 */
954	uio_clone = cloneuio(uio);
955	resid = uio->uio_resid;
956
957	short_uio.uio_segflg = UIO_USERSPACE;
958	short_uio.uio_rw = uio->uio_rw;
959	short_uio.uio_td = uio->uio_td;
960
961	if (uio->uio_rw == UIO_READ) {
962		prot = VM_PROT_WRITE;
963		rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
964		    uio->uio_offset + uio->uio_resid);
965	} else {
966		prot = VM_PROT_READ;
967		if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0)
968			/* For appenders, punt and lock the whole range. */
969			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
970		else
971			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
972			    uio->uio_offset + uio->uio_resid);
973	}
974
975	save = vm_fault_disable_pagefaults();
976	error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
977	if (error != EFAULT)
978		goto out;
979
980	atomic_add_long(&vn_io_faults_cnt, 1);
981	uio_clone->uio_segflg = UIO_NOCOPY;
982	uiomove(NULL, resid - uio->uio_resid, uio_clone);
983	uio_clone->uio_segflg = uio->uio_segflg;
984
985	saveheld = curthread_pflags_set(TDP_UIOHELD);
986	prev_td_ma = td->td_ma;
987	prev_td_ma_cnt = td->td_ma_cnt;
988
989	while (uio_clone->uio_resid != 0) {
990		len = uio_clone->uio_iov->iov_len;
991		if (len == 0) {
992			KASSERT(uio_clone->uio_iovcnt >= 1,
993			    ("iovcnt underflow"));
994			uio_clone->uio_iov++;
995			uio_clone->uio_iovcnt--;
996			continue;
997		}
998
999		addr = (vm_offset_t)uio_clone->uio_iov->iov_base;
1000		end = round_page(addr + len);
1001		cnt = howmany(end - trunc_page(addr), PAGE_SIZE);
1002		/*
1003		 * A perfectly misaligned address and length could cause
1004		 * both the start and the end of the chunk to use partial
1005		 * page.  +2 accounts for such a situation.
1006		 */
1007		if (cnt > io_hold_cnt + 2) {
1008			len = io_hold_cnt * PAGE_SIZE;
1009			KASSERT(howmany(round_page(addr + len) -
1010			    trunc_page(addr), PAGE_SIZE) <= io_hold_cnt + 2,
1011			    ("cnt overflow"));
1012		}
1013		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1014		    addr, len, prot, ma, io_hold_cnt + 2);
1015		if (cnt == -1) {
1016			error = EFAULT;
1017			break;
1018		}
1019		short_uio.uio_iov = &short_iovec[0];
1020		short_iovec[0].iov_base = (void *)addr;
1021		short_uio.uio_iovcnt = 1;
1022		short_uio.uio_resid = short_iovec[0].iov_len = len;
1023		short_uio.uio_offset = uio_clone->uio_offset;
1024		td->td_ma = ma;
1025		td->td_ma_cnt = cnt;
1026
1027		error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET,
1028		    td);
1029		vm_page_unhold_pages(ma, cnt);
1030		adv = len - short_uio.uio_resid;
1031
1032		uio_clone->uio_iov->iov_base =
1033		    (char *)uio_clone->uio_iov->iov_base + adv;
1034		uio_clone->uio_iov->iov_len -= adv;
1035		uio_clone->uio_resid -= adv;
1036		uio_clone->uio_offset += adv;
1037
1038		uio->uio_resid -= adv;
1039		uio->uio_offset += adv;
1040
1041		if (error != 0 || adv == 0)
1042			break;
1043	}
1044	td->td_ma = prev_td_ma;
1045	td->td_ma_cnt = prev_td_ma_cnt;
1046	curthread_pflags_restore(saveheld);
1047out:
1048	vm_fault_enable_pagefaults(save);
1049	vn_rangelock_unlock(vp, rl_cookie);
1050	free(uio_clone, M_IOV);
1051out_last:
1052	foffset_unlock_uio(fp, uio, flags);
1053	return (error);
1054}
1055
1056/*
1057 * Helper function to perform the requested uiomove operation using
1058 * the held pages for io->uio_iov[0].iov_base buffer instead of
1059 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1060 * instead of iov_base prevents page faults that could occur due to
1061 * pmap_collect() invalidating the mapping created by
1062 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1063 * object cleanup revoking the write access from page mappings.
1064 *
1065 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1066 * instead of plain uiomove().
1067 */
1068int
1069vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1070{
1071	struct uio transp_uio;
1072	struct iovec transp_iov[1];
1073	struct thread *td;
1074	size_t adv;
1075	int error, pgadv;
1076
1077	td = curthread;
1078	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1079	    uio->uio_segflg != UIO_USERSPACE)
1080		return (uiomove(data, xfersize, uio));
1081
1082	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1083	transp_iov[0].iov_base = data;
1084	transp_uio.uio_iov = &transp_iov[0];
1085	transp_uio.uio_iovcnt = 1;
1086	if (xfersize > uio->uio_resid)
1087		xfersize = uio->uio_resid;
1088	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1089	transp_uio.uio_offset = 0;
1090	transp_uio.uio_segflg = UIO_SYSSPACE;
1091	/*
1092	 * Since transp_iov points to data, and td_ma page array
1093	 * corresponds to original uio->uio_iov, we need to invert the
1094	 * direction of the i/o operation as passed to
1095	 * uiomove_fromphys().
1096	 */
1097	switch (uio->uio_rw) {
1098	case UIO_WRITE:
1099		transp_uio.uio_rw = UIO_READ;
1100		break;
1101	case UIO_READ:
1102		transp_uio.uio_rw = UIO_WRITE;
1103		break;
1104	}
1105	transp_uio.uio_td = uio->uio_td;
1106	error = uiomove_fromphys(td->td_ma,
1107	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1108	    xfersize, &transp_uio);
1109	adv = xfersize - transp_uio.uio_resid;
1110	pgadv =
1111	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1112	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1113	td->td_ma += pgadv;
1114	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1115	    pgadv));
1116	td->td_ma_cnt -= pgadv;
1117	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1118	uio->uio_iov->iov_len -= adv;
1119	uio->uio_resid -= adv;
1120	uio->uio_offset += adv;
1121	return (error);
1122}
1123
1124/*
1125 * File table truncate routine.
1126 */
1127static int
1128vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1129    struct thread *td)
1130{
1131	struct vattr vattr;
1132	struct mount *mp;
1133	struct vnode *vp;
1134	void *rl_cookie;
1135	int error;
1136
1137	vp = fp->f_vnode;
1138
1139	/*
1140	 * Lock the whole range for truncation.  Otherwise split i/o
1141	 * might happen partly before and partly after the truncation.
1142	 */
1143	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1144	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1145	if (error)
1146		goto out1;
1147	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1148	if (vp->v_type == VDIR) {
1149		error = EISDIR;
1150		goto out;
1151	}
1152#ifdef MAC
1153	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1154	if (error)
1155		goto out;
1156#endif
1157	error = vn_writechk(vp);
1158	if (error == 0) {
1159		VATTR_NULL(&vattr);
1160		vattr.va_size = length;
1161		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1162	}
1163out:
1164	VOP_UNLOCK(vp, 0);
1165	vn_finished_write(mp);
1166out1:
1167	vn_rangelock_unlock(vp, rl_cookie);
1168	return (error);
1169}
1170
1171/*
1172 * File table vnode stat routine.
1173 */
1174static int
1175vn_statfile(fp, sb, active_cred, td)
1176	struct file *fp;
1177	struct stat *sb;
1178	struct ucred *active_cred;
1179	struct thread *td;
1180{
1181	struct vnode *vp = fp->f_vnode;
1182	int error;
1183
1184	vn_lock(vp, LK_SHARED | LK_RETRY);
1185	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1186	VOP_UNLOCK(vp, 0);
1187
1188	return (error);
1189}
1190
1191/*
1192 * Stat a vnode; implementation for the stat syscall
1193 */
1194int
1195vn_stat(vp, sb, active_cred, file_cred, td)
1196	struct vnode *vp;
1197	register struct stat *sb;
1198	struct ucred *active_cred;
1199	struct ucred *file_cred;
1200	struct thread *td;
1201{
1202	struct vattr vattr;
1203	register struct vattr *vap;
1204	int error;
1205	u_short mode;
1206
1207#ifdef MAC
1208	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1209	if (error)
1210		return (error);
1211#endif
1212
1213	vap = &vattr;
1214
1215	/*
1216	 * Initialize defaults for new and unusual fields, so that file
1217	 * systems which don't support these fields don't need to know
1218	 * about them.
1219	 */
1220	vap->va_birthtime.tv_sec = -1;
1221	vap->va_birthtime.tv_nsec = 0;
1222	vap->va_fsid = VNOVAL;
1223	vap->va_rdev = NODEV;
1224
1225	error = VOP_GETATTR(vp, vap, active_cred);
1226	if (error)
1227		return (error);
1228
1229	/*
1230	 * Zero the spare stat fields
1231	 */
1232	bzero(sb, sizeof *sb);
1233
1234	/*
1235	 * Copy from vattr table
1236	 */
1237	if (vap->va_fsid != VNOVAL)
1238		sb->st_dev = vap->va_fsid;
1239	else
1240		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1241	sb->st_ino = vap->va_fileid;
1242	mode = vap->va_mode;
1243	switch (vap->va_type) {
1244	case VREG:
1245		mode |= S_IFREG;
1246		break;
1247	case VDIR:
1248		mode |= S_IFDIR;
1249		break;
1250	case VBLK:
1251		mode |= S_IFBLK;
1252		break;
1253	case VCHR:
1254		mode |= S_IFCHR;
1255		break;
1256	case VLNK:
1257		mode |= S_IFLNK;
1258		break;
1259	case VSOCK:
1260		mode |= S_IFSOCK;
1261		break;
1262	case VFIFO:
1263		mode |= S_IFIFO;
1264		break;
1265	default:
1266		return (EBADF);
1267	};
1268	sb->st_mode = mode;
1269	sb->st_nlink = vap->va_nlink;
1270	sb->st_uid = vap->va_uid;
1271	sb->st_gid = vap->va_gid;
1272	sb->st_rdev = vap->va_rdev;
1273	if (vap->va_size > OFF_MAX)
1274		return (EOVERFLOW);
1275	sb->st_size = vap->va_size;
1276	sb->st_atim = vap->va_atime;
1277	sb->st_mtim = vap->va_mtime;
1278	sb->st_ctim = vap->va_ctime;
1279	sb->st_birthtim = vap->va_birthtime;
1280
1281        /*
1282	 * According to www.opengroup.org, the meaning of st_blksize is
1283	 *   "a filesystem-specific preferred I/O block size for this
1284	 *    object.  In some filesystem types, this may vary from file
1285	 *    to file"
1286	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1287	 */
1288
1289	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1290
1291	sb->st_flags = vap->va_flags;
1292	if (priv_check(td, PRIV_VFS_GENERATION))
1293		sb->st_gen = 0;
1294	else
1295		sb->st_gen = vap->va_gen;
1296
1297	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1298	return (0);
1299}
1300
1301/*
1302 * File table vnode ioctl routine.
1303 */
1304static int
1305vn_ioctl(fp, com, data, active_cred, td)
1306	struct file *fp;
1307	u_long com;
1308	void *data;
1309	struct ucred *active_cred;
1310	struct thread *td;
1311{
1312	struct vnode *vp = fp->f_vnode;
1313	struct vattr vattr;
1314	int error;
1315
1316	error = ENOTTY;
1317	switch (vp->v_type) {
1318	case VREG:
1319	case VDIR:
1320		if (com == FIONREAD) {
1321			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1322			error = VOP_GETATTR(vp, &vattr, active_cred);
1323			VOP_UNLOCK(vp, 0);
1324			if (!error)
1325				*(int *)data = vattr.va_size - fp->f_offset;
1326		}
1327		if (com == FIONBIO || com == FIOASYNC)	/* XXX */
1328			error = 0;
1329		else
1330			error = VOP_IOCTL(vp, com, data, fp->f_flag,
1331			    active_cred, td);
1332		break;
1333
1334	default:
1335		break;
1336	}
1337	return (error);
1338}
1339
1340/*
1341 * File table vnode poll routine.
1342 */
1343static int
1344vn_poll(fp, events, active_cred, td)
1345	struct file *fp;
1346	int events;
1347	struct ucred *active_cred;
1348	struct thread *td;
1349{
1350	struct vnode *vp;
1351	int error;
1352
1353	vp = fp->f_vnode;
1354#ifdef MAC
1355	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1356	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1357	VOP_UNLOCK(vp, 0);
1358	if (!error)
1359#endif
1360
1361	error = VOP_POLL(vp, events, fp->f_cred, td);
1362	return (error);
1363}
1364
1365/*
1366 * Acquire the requested lock and then check for validity.  LK_RETRY
1367 * permits vn_lock to return doomed vnodes.
1368 */
1369int
1370_vn_lock(struct vnode *vp, int flags, char *file, int line)
1371{
1372	int error;
1373
1374	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1375	    ("vn_lock called with no locktype."));
1376	do {
1377#ifdef DEBUG_VFS_LOCKS
1378		KASSERT(vp->v_holdcnt != 0,
1379		    ("vn_lock %p: zero hold count", vp));
1380#endif
1381		error = VOP_LOCK1(vp, flags, file, line);
1382		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1383		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1384		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1385		    flags, error));
1386		/*
1387		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1388		 * If RETRY is not set, we return ENOENT instead.
1389		 */
1390		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1391		    (flags & LK_RETRY) == 0) {
1392			VOP_UNLOCK(vp, 0);
1393			error = ENOENT;
1394			break;
1395		}
1396	} while (flags & LK_RETRY && error != 0);
1397	return (error);
1398}
1399
1400/*
1401 * File table vnode close routine.
1402 */
1403static int
1404vn_closefile(fp, td)
1405	struct file *fp;
1406	struct thread *td;
1407{
1408	struct vnode *vp;
1409	struct flock lf;
1410	int error;
1411
1412	vp = fp->f_vnode;
1413	fp->f_ops = &badfileops;
1414
1415	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1416		vref(vp);
1417
1418	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1419
1420	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1421		lf.l_whence = SEEK_SET;
1422		lf.l_start = 0;
1423		lf.l_len = 0;
1424		lf.l_type = F_UNLCK;
1425		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1426		vrele(vp);
1427	}
1428	return (error);
1429}
1430
1431/*
1432 * Preparing to start a filesystem write operation. If the operation is
1433 * permitted, then we bump the count of operations in progress and
1434 * proceed. If a suspend request is in progress, we wait until the
1435 * suspension is over, and then proceed.
1436 */
1437static int
1438vn_start_write_locked(struct mount *mp, int flags)
1439{
1440	int error;
1441
1442	mtx_assert(MNT_MTX(mp), MA_OWNED);
1443	error = 0;
1444
1445	/*
1446	 * Check on status of suspension.
1447	 */
1448	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1449	    mp->mnt_susp_owner != curthread) {
1450		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1451			if (flags & V_NOWAIT) {
1452				error = EWOULDBLOCK;
1453				goto unlock;
1454			}
1455			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1456			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1457			if (error)
1458				goto unlock;
1459		}
1460	}
1461	if (flags & V_XSLEEP)
1462		goto unlock;
1463	mp->mnt_writeopcount++;
1464unlock:
1465	if (error != 0 || (flags & V_XSLEEP) != 0)
1466		MNT_REL(mp);
1467	MNT_IUNLOCK(mp);
1468	return (error);
1469}
1470
1471int
1472vn_start_write(vp, mpp, flags)
1473	struct vnode *vp;
1474	struct mount **mpp;
1475	int flags;
1476{
1477	struct mount *mp;
1478	int error;
1479
1480	error = 0;
1481	/*
1482	 * If a vnode is provided, get and return the mount point that
1483	 * to which it will write.
1484	 */
1485	if (vp != NULL) {
1486		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1487			*mpp = NULL;
1488			if (error != EOPNOTSUPP)
1489				return (error);
1490			return (0);
1491		}
1492	}
1493	if ((mp = *mpp) == NULL)
1494		return (0);
1495
1496	/*
1497	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1498	 * a vfs_ref().
1499	 * As long as a vnode is not provided we need to acquire a
1500	 * refcount for the provided mountpoint too, in order to
1501	 * emulate a vfs_ref().
1502	 */
1503	MNT_ILOCK(mp);
1504	if (vp == NULL)
1505		MNT_REF(mp);
1506
1507	return (vn_start_write_locked(mp, flags));
1508}
1509
1510/*
1511 * Secondary suspension. Used by operations such as vop_inactive
1512 * routines that are needed by the higher level functions. These
1513 * are allowed to proceed until all the higher level functions have
1514 * completed (indicated by mnt_writeopcount dropping to zero). At that
1515 * time, these operations are halted until the suspension is over.
1516 */
1517int
1518vn_start_secondary_write(vp, mpp, flags)
1519	struct vnode *vp;
1520	struct mount **mpp;
1521	int flags;
1522{
1523	struct mount *mp;
1524	int error;
1525
1526 retry:
1527	if (vp != NULL) {
1528		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1529			*mpp = NULL;
1530			if (error != EOPNOTSUPP)
1531				return (error);
1532			return (0);
1533		}
1534	}
1535	/*
1536	 * If we are not suspended or have not yet reached suspended
1537	 * mode, then let the operation proceed.
1538	 */
1539	if ((mp = *mpp) == NULL)
1540		return (0);
1541
1542	/*
1543	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1544	 * a vfs_ref().
1545	 * As long as a vnode is not provided we need to acquire a
1546	 * refcount for the provided mountpoint too, in order to
1547	 * emulate a vfs_ref().
1548	 */
1549	MNT_ILOCK(mp);
1550	if (vp == NULL)
1551		MNT_REF(mp);
1552	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1553		mp->mnt_secondary_writes++;
1554		mp->mnt_secondary_accwrites++;
1555		MNT_IUNLOCK(mp);
1556		return (0);
1557	}
1558	if (flags & V_NOWAIT) {
1559		MNT_REL(mp);
1560		MNT_IUNLOCK(mp);
1561		return (EWOULDBLOCK);
1562	}
1563	/*
1564	 * Wait for the suspension to finish.
1565	 */
1566	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1567		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1568	vfs_rel(mp);
1569	if (error == 0)
1570		goto retry;
1571	return (error);
1572}
1573
1574/*
1575 * Filesystem write operation has completed. If we are suspending and this
1576 * operation is the last one, notify the suspender that the suspension is
1577 * now in effect.
1578 */
1579void
1580vn_finished_write(mp)
1581	struct mount *mp;
1582{
1583	if (mp == NULL)
1584		return;
1585	MNT_ILOCK(mp);
1586	MNT_REL(mp);
1587	mp->mnt_writeopcount--;
1588	if (mp->mnt_writeopcount < 0)
1589		panic("vn_finished_write: neg cnt");
1590	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1591	    mp->mnt_writeopcount <= 0)
1592		wakeup(&mp->mnt_writeopcount);
1593	MNT_IUNLOCK(mp);
1594}
1595
1596
1597/*
1598 * Filesystem secondary write operation has completed. If we are
1599 * suspending and this operation is the last one, notify the suspender
1600 * that the suspension is now in effect.
1601 */
1602void
1603vn_finished_secondary_write(mp)
1604	struct mount *mp;
1605{
1606	if (mp == NULL)
1607		return;
1608	MNT_ILOCK(mp);
1609	MNT_REL(mp);
1610	mp->mnt_secondary_writes--;
1611	if (mp->mnt_secondary_writes < 0)
1612		panic("vn_finished_secondary_write: neg cnt");
1613	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1614	    mp->mnt_secondary_writes <= 0)
1615		wakeup(&mp->mnt_secondary_writes);
1616	MNT_IUNLOCK(mp);
1617}
1618
1619
1620
1621/*
1622 * Request a filesystem to suspend write operations.
1623 */
1624int
1625vfs_write_suspend(mp)
1626	struct mount *mp;
1627{
1628	int error;
1629
1630	MNT_ILOCK(mp);
1631	if (mp->mnt_susp_owner == curthread) {
1632		MNT_IUNLOCK(mp);
1633		return (EALREADY);
1634	}
1635	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1636		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1637	mp->mnt_kern_flag |= MNTK_SUSPEND;
1638	mp->mnt_susp_owner = curthread;
1639	if (mp->mnt_writeopcount > 0)
1640		(void) msleep(&mp->mnt_writeopcount,
1641		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1642	else
1643		MNT_IUNLOCK(mp);
1644	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1645		vfs_write_resume(mp);
1646	return (error);
1647}
1648
1649/*
1650 * Request a filesystem to resume write operations.
1651 */
1652void
1653vfs_write_resume_flags(struct mount *mp, int flags)
1654{
1655
1656	MNT_ILOCK(mp);
1657	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1658		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1659		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1660				       MNTK_SUSPENDED);
1661		mp->mnt_susp_owner = NULL;
1662		wakeup(&mp->mnt_writeopcount);
1663		wakeup(&mp->mnt_flag);
1664		curthread->td_pflags &= ~TDP_IGNSUSP;
1665		if ((flags & VR_START_WRITE) != 0) {
1666			MNT_REF(mp);
1667			mp->mnt_writeopcount++;
1668		}
1669		MNT_IUNLOCK(mp);
1670		if ((flags & VR_NO_SUSPCLR) == 0)
1671			VFS_SUSP_CLEAN(mp);
1672	} else if ((flags & VR_START_WRITE) != 0) {
1673		MNT_REF(mp);
1674		vn_start_write_locked(mp, 0);
1675	} else {
1676		MNT_IUNLOCK(mp);
1677	}
1678}
1679
1680void
1681vfs_write_resume(struct mount *mp)
1682{
1683
1684	vfs_write_resume_flags(mp, 0);
1685}
1686
1687/*
1688 * Implement kqueues for files by translating it to vnode operation.
1689 */
1690static int
1691vn_kqfilter(struct file *fp, struct knote *kn)
1692{
1693	int error;
1694
1695	error = VOP_KQFILTER(fp->f_vnode, kn);
1696	return (error);
1697}
1698
1699/*
1700 * Simplified in-kernel wrapper calls for extended attribute access.
1701 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1702 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1703 */
1704int
1705vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1706    const char *attrname, int *buflen, char *buf, struct thread *td)
1707{
1708	struct uio	auio;
1709	struct iovec	iov;
1710	int	error;
1711
1712	iov.iov_len = *buflen;
1713	iov.iov_base = buf;
1714
1715	auio.uio_iov = &iov;
1716	auio.uio_iovcnt = 1;
1717	auio.uio_rw = UIO_READ;
1718	auio.uio_segflg = UIO_SYSSPACE;
1719	auio.uio_td = td;
1720	auio.uio_offset = 0;
1721	auio.uio_resid = *buflen;
1722
1723	if ((ioflg & IO_NODELOCKED) == 0)
1724		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1725
1726	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1727
1728	/* authorize attribute retrieval as kernel */
1729	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1730	    td);
1731
1732	if ((ioflg & IO_NODELOCKED) == 0)
1733		VOP_UNLOCK(vp, 0);
1734
1735	if (error == 0) {
1736		*buflen = *buflen - auio.uio_resid;
1737	}
1738
1739	return (error);
1740}
1741
1742/*
1743 * XXX failure mode if partially written?
1744 */
1745int
1746vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1747    const char *attrname, int buflen, char *buf, struct thread *td)
1748{
1749	struct uio	auio;
1750	struct iovec	iov;
1751	struct mount	*mp;
1752	int	error;
1753
1754	iov.iov_len = buflen;
1755	iov.iov_base = buf;
1756
1757	auio.uio_iov = &iov;
1758	auio.uio_iovcnt = 1;
1759	auio.uio_rw = UIO_WRITE;
1760	auio.uio_segflg = UIO_SYSSPACE;
1761	auio.uio_td = td;
1762	auio.uio_offset = 0;
1763	auio.uio_resid = buflen;
1764
1765	if ((ioflg & IO_NODELOCKED) == 0) {
1766		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1767			return (error);
1768		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1769	}
1770
1771	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1772
1773	/* authorize attribute setting as kernel */
1774	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1775
1776	if ((ioflg & IO_NODELOCKED) == 0) {
1777		vn_finished_write(mp);
1778		VOP_UNLOCK(vp, 0);
1779	}
1780
1781	return (error);
1782}
1783
1784int
1785vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1786    const char *attrname, struct thread *td)
1787{
1788	struct mount	*mp;
1789	int	error;
1790
1791	if ((ioflg & IO_NODELOCKED) == 0) {
1792		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1793			return (error);
1794		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1795	}
1796
1797	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1798
1799	/* authorize attribute removal as kernel */
1800	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1801	if (error == EOPNOTSUPP)
1802		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1803		    NULL, td);
1804
1805	if ((ioflg & IO_NODELOCKED) == 0) {
1806		vn_finished_write(mp);
1807		VOP_UNLOCK(vp, 0);
1808	}
1809
1810	return (error);
1811}
1812
1813int
1814vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1815{
1816	struct mount *mp;
1817	int ltype, error;
1818
1819	mp = vp->v_mount;
1820	ltype = VOP_ISLOCKED(vp);
1821	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
1822	    ("vn_vget_ino: vp not locked"));
1823	error = vfs_busy(mp, MBF_NOWAIT);
1824	if (error != 0) {
1825		vfs_ref(mp);
1826		VOP_UNLOCK(vp, 0);
1827		error = vfs_busy(mp, 0);
1828		vn_lock(vp, ltype | LK_RETRY);
1829		vfs_rel(mp);
1830		if (error != 0)
1831			return (ENOENT);
1832		if (vp->v_iflag & VI_DOOMED) {
1833			vfs_unbusy(mp);
1834			return (ENOENT);
1835		}
1836	}
1837	VOP_UNLOCK(vp, 0);
1838	error = VFS_VGET(mp, ino, lkflags, rvp);
1839	vfs_unbusy(mp);
1840	vn_lock(vp, ltype | LK_RETRY);
1841	if (vp->v_iflag & VI_DOOMED) {
1842		if (error == 0)
1843			vput(*rvp);
1844		error = ENOENT;
1845	}
1846	return (error);
1847}
1848
1849int
1850vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
1851    const struct thread *td)
1852{
1853
1854	if (vp->v_type != VREG || td == NULL)
1855		return (0);
1856	PROC_LOCK(td->td_proc);
1857	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1858	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
1859		kern_psignal(td->td_proc, SIGXFSZ);
1860		PROC_UNLOCK(td->td_proc);
1861		return (EFBIG);
1862	}
1863	PROC_UNLOCK(td->td_proc);
1864	return (0);
1865}
1866
1867int
1868vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1869    struct thread *td)
1870{
1871	struct vnode *vp;
1872	int error;
1873
1874	vp = fp->f_vnode;
1875#ifdef AUDIT
1876	vn_lock(vp, LK_SHARED | LK_RETRY);
1877	AUDIT_ARG_VNODE1(vp);
1878	VOP_UNLOCK(vp, 0);
1879#endif
1880	error = setfmode(td, active_cred, vp, mode);
1881	return (error);
1882}
1883
1884int
1885vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1886    struct thread *td)
1887{
1888	struct vnode *vp;
1889	int error;
1890
1891	vp = fp->f_vnode;
1892#ifdef AUDIT
1893	vn_lock(vp, LK_SHARED | LK_RETRY);
1894	AUDIT_ARG_VNODE1(vp);
1895	VOP_UNLOCK(vp, 0);
1896#endif
1897	error = setfown(td, active_cred, vp, uid, gid);
1898	return (error);
1899}
1900
1901void
1902vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
1903{
1904	vm_object_t object;
1905
1906	if ((object = vp->v_object) == NULL)
1907		return;
1908	VM_OBJECT_LOCK(object);
1909	vm_object_page_remove(object, start, end, 0);
1910	VM_OBJECT_UNLOCK(object);
1911}
1912
1913int
1914vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
1915{
1916	struct vattr va;
1917	daddr_t bn, bnp;
1918	uint64_t bsize;
1919	off_t noff;
1920	int error;
1921
1922	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
1923	    ("Wrong command %lu", cmd));
1924
1925	if (vn_lock(vp, LK_SHARED) != 0)
1926		return (EBADF);
1927	if (vp->v_type != VREG) {
1928		error = ENOTTY;
1929		goto unlock;
1930	}
1931	error = VOP_GETATTR(vp, &va, cred);
1932	if (error != 0)
1933		goto unlock;
1934	noff = *off;
1935	if (noff >= va.va_size) {
1936		error = ENXIO;
1937		goto unlock;
1938	}
1939	bsize = vp->v_mount->mnt_stat.f_iosize;
1940	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
1941		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
1942		if (error == EOPNOTSUPP) {
1943			error = ENOTTY;
1944			goto unlock;
1945		}
1946		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
1947		    (bnp != -1 && cmd == FIOSEEKDATA)) {
1948			noff = bn * bsize;
1949			if (noff < *off)
1950				noff = *off;
1951			goto unlock;
1952		}
1953	}
1954	if (noff > va.va_size)
1955		noff = va.va_size;
1956	/* noff == va.va_size. There is an implicit hole at the end of file. */
1957	if (cmd == FIOSEEKDATA)
1958		error = ENXIO;
1959unlock:
1960	VOP_UNLOCK(vp, 0);
1961	if (error == 0)
1962		*off = noff;
1963	return (error);
1964}
1965