subr_turnstile.c revision 201879
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of turnstiles used to hold queue of threads blocked on
34 * non-sleepable locks.  Sleepable locks use condition variables to
35 * implement their queues.  Turnstiles differ from a sleep queue in that
36 * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37 * when one thread is enqueued onto a turnstile, it can lend its priority
38 * to the owning thread.
39 *
40 * We wish to avoid bloating locks with an embedded turnstile and we do not
41 * want to use back-pointers in the locks for the same reason.  Thus, we
42 * use a similar approach to that of Solaris 7 as described in Solaris
43 * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44 * in a hash table based on the address of the lock.  Each entry in the
45 * hash table is a linked-lists of turnstiles and is called a turnstile
46 * chain.  Each chain contains a spin mutex that protects all of the
47 * turnstiles in the chain.
48 *
49 * Each time a thread is created, a turnstile is allocated from a UMA zone
50 * and attached to that thread.  When a thread blocks on a lock, if it is the
51 * first thread to block, it lends its turnstile to the lock.  If the lock
52 * already has a turnstile, then it gives its turnstile to the lock's
53 * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54 * the free list if there are any other waiters.  If it is the only thread
55 * blocked on the lock, then it reclaims the turnstile associated with the lock
56 * and removes it from the hash table.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/subr_turnstile.c 201879 2010-01-09 01:46:38Z attilio $");
61
62#include "opt_ddb.h"
63#include "opt_turnstile_profiling.h"
64#include "opt_sched.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/kernel.h>
69#include <sys/ktr.h>
70#include <sys/lock.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/queue.h>
74#include <sys/sched.h>
75#include <sys/sysctl.h>
76#include <sys/turnstile.h>
77
78#include <vm/uma.h>
79
80#ifdef DDB
81#include <sys/kdb.h>
82#include <ddb/ddb.h>
83#include <sys/lockmgr.h>
84#include <sys/sx.h>
85#endif
86
87/*
88 * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
89 * number chosen because the sleep queue's use the same value for the
90 * shift.  Basically, we ignore the lower 8 bits of the address.
91 * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
92 */
93#define	TC_TABLESIZE	128			/* Must be power of 2. */
94#define	TC_MASK		(TC_TABLESIZE - 1)
95#define	TC_SHIFT	8
96#define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
97#define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
98
99/*
100 * There are three different lists of turnstiles as follows.  The list
101 * connected by ts_link entries is a per-thread list of all the turnstiles
102 * attached to locks that we own.  This is used to fixup our priority when
103 * a lock is released.  The other two lists use the ts_hash entries.  The
104 * first of these two is the turnstile chain list that a turnstile is on
105 * when it is attached to a lock.  The second list to use ts_hash is the
106 * free list hung off of a turnstile that is attached to a lock.
107 *
108 * Each turnstile contains three lists of threads.  The two ts_blocked lists
109 * are linked list of threads blocked on the turnstile's lock.  One list is
110 * for exclusive waiters, and the other is for shared waiters.  The
111 * ts_pending list is a linked list of threads previously awakened by
112 * turnstile_signal() or turnstile_wait() that are waiting to be put on
113 * the run queue.
114 *
115 * Locking key:
116 *  c - turnstile chain lock
117 *  q - td_contested lock
118 */
119struct turnstile {
120	struct mtx ts_lock;			/* Spin lock for self. */
121	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
122	struct threadqueue ts_pending;		/* (c) Pending threads. */
123	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
124	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
125	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
126	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
127	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
128};
129
130struct turnstile_chain {
131	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
132	struct mtx tc_lock;			/* Spin lock for this chain. */
133#ifdef TURNSTILE_PROFILING
134	u_int	tc_depth;			/* Length of tc_queues. */
135	u_int	tc_max_depth;			/* Max length of tc_queues. */
136#endif
137};
138
139#ifdef TURNSTILE_PROFILING
140u_int turnstile_max_depth;
141SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling");
142SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
143    "turnstile chain stats");
144SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
145    &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain");
146#endif
147static struct mtx td_contested_lock;
148static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
149static uma_zone_t turnstile_zone;
150
151/*
152 * Prototypes for non-exported routines.
153 */
154static void	init_turnstile0(void *dummy);
155#ifdef TURNSTILE_PROFILING
156static void	init_turnstile_profiling(void *arg);
157#endif
158static void	propagate_priority(struct thread *td);
159static int	turnstile_adjust_thread(struct turnstile *ts,
160		    struct thread *td);
161static struct thread *turnstile_first_waiter(struct turnstile *ts);
162static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
163#ifdef INVARIANTS
164static void	turnstile_dtor(void *mem, int size, void *arg);
165#endif
166static int	turnstile_init(void *mem, int size, int flags);
167static void	turnstile_fini(void *mem, int size);
168
169/*
170 * Walks the chain of turnstiles and their owners to propagate the priority
171 * of the thread being blocked to all the threads holding locks that have to
172 * release their locks before this thread can run again.
173 */
174static void
175propagate_priority(struct thread *td)
176{
177	struct turnstile *ts;
178	int pri;
179
180	THREAD_LOCK_ASSERT(td, MA_OWNED);
181	pri = td->td_priority;
182	ts = td->td_blocked;
183	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
184	/*
185	 * Grab a recursive lock on this turnstile chain so it stays locked
186	 * for the whole operation.  The caller expects us to return with
187	 * the original lock held.  We only ever lock down the chain so
188	 * the lock order is constant.
189	 */
190	mtx_lock_spin(&ts->ts_lock);
191	for (;;) {
192		td = ts->ts_owner;
193
194		if (td == NULL) {
195			/*
196			 * This might be a read lock with no owner.  There's
197			 * not much we can do, so just bail.
198			 */
199			mtx_unlock_spin(&ts->ts_lock);
200			return;
201		}
202
203		thread_lock_flags(td, MTX_DUPOK);
204		mtx_unlock_spin(&ts->ts_lock);
205		MPASS(td->td_proc != NULL);
206		MPASS(td->td_proc->p_magic == P_MAGIC);
207
208		/*
209		 * If the thread is asleep, then we are probably about
210		 * to deadlock.  To make debugging this easier, just
211		 * panic and tell the user which thread misbehaved so
212		 * they can hopefully get a stack trace from the truly
213		 * misbehaving thread.
214		 */
215		if (TD_IS_SLEEPING(td)) {
216			printf(
217		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
218			    td->td_tid, td->td_proc->p_pid);
219#ifdef DDB
220			db_trace_thread(td, -1);
221#endif
222			panic("sleeping thread");
223		}
224
225		/*
226		 * If this thread already has higher priority than the
227		 * thread that is being blocked, we are finished.
228		 */
229		if (td->td_priority <= pri) {
230			thread_unlock(td);
231			return;
232		}
233
234		/*
235		 * Bump this thread's priority.
236		 */
237		sched_lend_prio(td, pri);
238
239		/*
240		 * If lock holder is actually running or on the run queue
241		 * then we are done.
242		 */
243		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
244			MPASS(td->td_blocked == NULL);
245			thread_unlock(td);
246			return;
247		}
248
249#ifndef SMP
250		/*
251		 * For UP, we check to see if td is curthread (this shouldn't
252		 * ever happen however as it would mean we are in a deadlock.)
253		 */
254		KASSERT(td != curthread, ("Deadlock detected"));
255#endif
256
257		/*
258		 * If we aren't blocked on a lock, we should be.
259		 */
260		KASSERT(TD_ON_LOCK(td), (
261		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
262		    td->td_tid, td->td_name, td->td_state,
263		    ts->ts_lockobj->lo_name));
264
265		/*
266		 * Pick up the lock that td is blocked on.
267		 */
268		ts = td->td_blocked;
269		MPASS(ts != NULL);
270		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
271		/* Resort td on the list if needed. */
272		if (!turnstile_adjust_thread(ts, td)) {
273			mtx_unlock_spin(&ts->ts_lock);
274			return;
275		}
276		/* The thread lock is released as ts lock above. */
277	}
278}
279
280/*
281 * Adjust the thread's position on a turnstile after its priority has been
282 * changed.
283 */
284static int
285turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
286{
287	struct thread *td1, *td2;
288	int queue;
289
290	THREAD_LOCK_ASSERT(td, MA_OWNED);
291	MPASS(TD_ON_LOCK(td));
292
293	/*
294	 * This thread may not be blocked on this turnstile anymore
295	 * but instead might already be woken up on another CPU
296	 * that is waiting on the thread lock in turnstile_unpend() to
297	 * finish waking this thread up.  We can detect this case
298	 * by checking to see if this thread has been given a
299	 * turnstile by either turnstile_signal() or
300	 * turnstile_broadcast().  In this case, treat the thread as
301	 * if it was already running.
302	 */
303	if (td->td_turnstile != NULL)
304		return (0);
305
306	/*
307	 * Check if the thread needs to be moved on the blocked chain.
308	 * It needs to be moved if either its priority is lower than
309	 * the previous thread or higher than the next thread.
310	 */
311	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
312	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
313	td2 = TAILQ_NEXT(td, td_lockq);
314	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
315	    (td2 != NULL && td->td_priority > td2->td_priority)) {
316
317		/*
318		 * Remove thread from blocked chain and determine where
319		 * it should be moved to.
320		 */
321		queue = td->td_tsqueue;
322		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
323		mtx_lock_spin(&td_contested_lock);
324		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
325		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
326			MPASS(td1->td_proc->p_magic == P_MAGIC);
327			if (td1->td_priority > td->td_priority)
328				break;
329		}
330
331		if (td1 == NULL)
332			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
333		else
334			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
335		mtx_unlock_spin(&td_contested_lock);
336		if (td1 == NULL)
337			CTR3(KTR_LOCK,
338		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
339			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
340		else
341			CTR4(KTR_LOCK,
342		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
343			    td->td_tid, td1->td_tid, ts->ts_lockobj,
344			    ts->ts_lockobj->lo_name);
345	}
346	return (1);
347}
348
349/*
350 * Early initialization of turnstiles.  This is not done via a SYSINIT()
351 * since this needs to be initialized very early when mutexes are first
352 * initialized.
353 */
354void
355init_turnstiles(void)
356{
357	int i;
358
359	for (i = 0; i < TC_TABLESIZE; i++) {
360		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
361		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
362		    NULL, MTX_SPIN);
363	}
364	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
365	LIST_INIT(&thread0.td_contested);
366	thread0.td_turnstile = NULL;
367}
368
369#ifdef TURNSTILE_PROFILING
370static void
371init_turnstile_profiling(void *arg)
372{
373	struct sysctl_oid *chain_oid;
374	char chain_name[10];
375	int i;
376
377	for (i = 0; i < TC_TABLESIZE; i++) {
378		snprintf(chain_name, sizeof(chain_name), "%d", i);
379		chain_oid = SYSCTL_ADD_NODE(NULL,
380		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
381		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
382		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
383		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
384		    NULL);
385		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
386		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
387		    0, NULL);
388	}
389}
390SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
391    init_turnstile_profiling, NULL);
392#endif
393
394static void
395init_turnstile0(void *dummy)
396{
397
398	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
399	    NULL,
400#ifdef INVARIANTS
401	    turnstile_dtor,
402#else
403	    NULL,
404#endif
405	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
406	thread0.td_turnstile = turnstile_alloc();
407}
408SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
409
410/*
411 * Update a thread on the turnstile list after it's priority has been changed.
412 * The old priority is passed in as an argument.
413 */
414void
415turnstile_adjust(struct thread *td, u_char oldpri)
416{
417	struct turnstile *ts;
418
419	MPASS(TD_ON_LOCK(td));
420
421	/*
422	 * Pick up the lock that td is blocked on.
423	 */
424	ts = td->td_blocked;
425	MPASS(ts != NULL);
426	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
427	mtx_assert(&ts->ts_lock, MA_OWNED);
428
429	/* Resort the turnstile on the list. */
430	if (!turnstile_adjust_thread(ts, td))
431		return;
432	/*
433	 * If our priority was lowered and we are at the head of the
434	 * turnstile, then propagate our new priority up the chain.
435	 * Note that we currently don't try to revoke lent priorities
436	 * when our priority goes up.
437	 */
438	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
439	    td->td_tsqueue == TS_SHARED_QUEUE);
440	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
441	    td->td_priority < oldpri) {
442		propagate_priority(td);
443	}
444}
445
446/*
447 * Set the owner of the lock this turnstile is attached to.
448 */
449static void
450turnstile_setowner(struct turnstile *ts, struct thread *owner)
451{
452
453	mtx_assert(&td_contested_lock, MA_OWNED);
454	MPASS(ts->ts_owner == NULL);
455
456	/* A shared lock might not have an owner. */
457	if (owner == NULL)
458		return;
459
460	MPASS(owner->td_proc->p_magic == P_MAGIC);
461	ts->ts_owner = owner;
462	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
463}
464
465#ifdef INVARIANTS
466/*
467 * UMA zone item deallocator.
468 */
469static void
470turnstile_dtor(void *mem, int size, void *arg)
471{
472	struct turnstile *ts;
473
474	ts = mem;
475	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
476	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
477	MPASS(TAILQ_EMPTY(&ts->ts_pending));
478}
479#endif
480
481/*
482 * UMA zone item initializer.
483 */
484static int
485turnstile_init(void *mem, int size, int flags)
486{
487	struct turnstile *ts;
488
489	bzero(mem, size);
490	ts = mem;
491	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
492	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
493	TAILQ_INIT(&ts->ts_pending);
494	LIST_INIT(&ts->ts_free);
495	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
496	return (0);
497}
498
499static void
500turnstile_fini(void *mem, int size)
501{
502	struct turnstile *ts;
503
504	ts = mem;
505	mtx_destroy(&ts->ts_lock);
506}
507
508/*
509 * Get a turnstile for a new thread.
510 */
511struct turnstile *
512turnstile_alloc(void)
513{
514
515	return (uma_zalloc(turnstile_zone, M_WAITOK));
516}
517
518/*
519 * Free a turnstile when a thread is destroyed.
520 */
521void
522turnstile_free(struct turnstile *ts)
523{
524
525	uma_zfree(turnstile_zone, ts);
526}
527
528/*
529 * Lock the turnstile chain associated with the specified lock.
530 */
531void
532turnstile_chain_lock(struct lock_object *lock)
533{
534	struct turnstile_chain *tc;
535
536	tc = TC_LOOKUP(lock);
537	mtx_lock_spin(&tc->tc_lock);
538}
539
540struct turnstile *
541turnstile_trywait(struct lock_object *lock)
542{
543	struct turnstile_chain *tc;
544	struct turnstile *ts;
545
546	tc = TC_LOOKUP(lock);
547	mtx_lock_spin(&tc->tc_lock);
548	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
549		if (ts->ts_lockobj == lock) {
550			mtx_lock_spin(&ts->ts_lock);
551			return (ts);
552		}
553
554	ts = curthread->td_turnstile;
555	MPASS(ts != NULL);
556	mtx_lock_spin(&ts->ts_lock);
557	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
558	ts->ts_lockobj = lock;
559
560	return (ts);
561}
562
563void
564turnstile_cancel(struct turnstile *ts)
565{
566	struct turnstile_chain *tc;
567	struct lock_object *lock;
568
569	mtx_assert(&ts->ts_lock, MA_OWNED);
570
571	mtx_unlock_spin(&ts->ts_lock);
572	lock = ts->ts_lockobj;
573	if (ts == curthread->td_turnstile)
574		ts->ts_lockobj = NULL;
575	tc = TC_LOOKUP(lock);
576	mtx_unlock_spin(&tc->tc_lock);
577}
578
579/*
580 * Look up the turnstile for a lock in the hash table locking the associated
581 * turnstile chain along the way.  If no turnstile is found in the hash
582 * table, NULL is returned.
583 */
584struct turnstile *
585turnstile_lookup(struct lock_object *lock)
586{
587	struct turnstile_chain *tc;
588	struct turnstile *ts;
589
590	tc = TC_LOOKUP(lock);
591	mtx_assert(&tc->tc_lock, MA_OWNED);
592	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
593		if (ts->ts_lockobj == lock) {
594			mtx_lock_spin(&ts->ts_lock);
595			return (ts);
596		}
597	return (NULL);
598}
599
600/*
601 * Unlock the turnstile chain associated with a given lock.
602 */
603void
604turnstile_chain_unlock(struct lock_object *lock)
605{
606	struct turnstile_chain *tc;
607
608	tc = TC_LOOKUP(lock);
609	mtx_unlock_spin(&tc->tc_lock);
610}
611
612/*
613 * Return a pointer to the thread waiting on this turnstile with the
614 * most important priority or NULL if the turnstile has no waiters.
615 */
616static struct thread *
617turnstile_first_waiter(struct turnstile *ts)
618{
619	struct thread *std, *xtd;
620
621	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
622	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
623	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
624		return (std);
625	return (xtd);
626}
627
628/*
629 * Take ownership of a turnstile and adjust the priority of the new
630 * owner appropriately.
631 */
632void
633turnstile_claim(struct turnstile *ts)
634{
635	struct thread *td, *owner;
636	struct turnstile_chain *tc;
637
638	mtx_assert(&ts->ts_lock, MA_OWNED);
639	MPASS(ts != curthread->td_turnstile);
640
641	owner = curthread;
642	mtx_lock_spin(&td_contested_lock);
643	turnstile_setowner(ts, owner);
644	mtx_unlock_spin(&td_contested_lock);
645
646	td = turnstile_first_waiter(ts);
647	MPASS(td != NULL);
648	MPASS(td->td_proc->p_magic == P_MAGIC);
649	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
650
651	/*
652	 * Update the priority of the new owner if needed.
653	 */
654	thread_lock(owner);
655	if (td->td_priority < owner->td_priority)
656		sched_lend_prio(owner, td->td_priority);
657	thread_unlock(owner);
658	tc = TC_LOOKUP(ts->ts_lockobj);
659	mtx_unlock_spin(&ts->ts_lock);
660	mtx_unlock_spin(&tc->tc_lock);
661}
662
663/*
664 * Block the current thread on the turnstile assicated with 'lock'.  This
665 * function will context switch and not return until this thread has been
666 * woken back up.  This function must be called with the appropriate
667 * turnstile chain locked and will return with it unlocked.
668 */
669void
670turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
671{
672	struct turnstile_chain *tc;
673	struct thread *td, *td1;
674	struct lock_object *lock;
675
676	td = curthread;
677	mtx_assert(&ts->ts_lock, MA_OWNED);
678	if (owner)
679		MPASS(owner->td_proc->p_magic == P_MAGIC);
680	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
681
682	/*
683	 * If the lock does not already have a turnstile, use this thread's
684	 * turnstile.  Otherwise insert the current thread into the
685	 * turnstile already in use by this lock.
686	 */
687	tc = TC_LOOKUP(ts->ts_lockobj);
688	if (ts == td->td_turnstile) {
689		mtx_assert(&tc->tc_lock, MA_OWNED);
690#ifdef TURNSTILE_PROFILING
691		tc->tc_depth++;
692		if (tc->tc_depth > tc->tc_max_depth) {
693			tc->tc_max_depth = tc->tc_depth;
694			if (tc->tc_max_depth > turnstile_max_depth)
695				turnstile_max_depth = tc->tc_max_depth;
696		}
697#endif
698		tc = TC_LOOKUP(ts->ts_lockobj);
699		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
700		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
701		    ("thread's turnstile has pending threads"));
702		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
703		    ("thread's turnstile has exclusive waiters"));
704		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
705		    ("thread's turnstile has shared waiters"));
706		KASSERT(LIST_EMPTY(&ts->ts_free),
707		    ("thread's turnstile has a non-empty free list"));
708		MPASS(ts->ts_lockobj != NULL);
709		mtx_lock_spin(&td_contested_lock);
710		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
711		turnstile_setowner(ts, owner);
712		mtx_unlock_spin(&td_contested_lock);
713	} else {
714		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
715			if (td1->td_priority > td->td_priority)
716				break;
717		mtx_lock_spin(&td_contested_lock);
718		if (td1 != NULL)
719			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
720		else
721			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
722		MPASS(owner == ts->ts_owner);
723		mtx_unlock_spin(&td_contested_lock);
724		MPASS(td->td_turnstile != NULL);
725		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
726	}
727	thread_lock(td);
728	thread_lock_set(td, &ts->ts_lock);
729	td->td_turnstile = NULL;
730
731	/* Save who we are blocked on and switch. */
732	lock = ts->ts_lockobj;
733	td->td_tsqueue = queue;
734	td->td_blocked = ts;
735	td->td_lockname = lock->lo_name;
736	td->td_blktick = ticks;
737	TD_SET_LOCK(td);
738	mtx_unlock_spin(&tc->tc_lock);
739	propagate_priority(td);
740
741	if (LOCK_LOG_TEST(lock, 0))
742		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
743		    td->td_tid, lock, lock->lo_name);
744
745	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
746	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
747
748	if (LOCK_LOG_TEST(lock, 0))
749		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
750		    __func__, td->td_tid, lock, lock->lo_name);
751	thread_unlock(td);
752}
753
754/*
755 * Pick the highest priority thread on this turnstile and put it on the
756 * pending list.  This must be called with the turnstile chain locked.
757 */
758int
759turnstile_signal(struct turnstile *ts, int queue)
760{
761	struct turnstile_chain *tc;
762	struct thread *td;
763	int empty;
764
765	MPASS(ts != NULL);
766	mtx_assert(&ts->ts_lock, MA_OWNED);
767	MPASS(curthread->td_proc->p_magic == P_MAGIC);
768	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
769	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
770
771	/*
772	 * Pick the highest priority thread blocked on this lock and
773	 * move it to the pending list.
774	 */
775	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
776	MPASS(td->td_proc->p_magic == P_MAGIC);
777	mtx_lock_spin(&td_contested_lock);
778	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
779	mtx_unlock_spin(&td_contested_lock);
780	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
781
782	/*
783	 * If the turnstile is now empty, remove it from its chain and
784	 * give it to the about-to-be-woken thread.  Otherwise take a
785	 * turnstile from the free list and give it to the thread.
786	 */
787	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
788	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
789	if (empty) {
790		tc = TC_LOOKUP(ts->ts_lockobj);
791		mtx_assert(&tc->tc_lock, MA_OWNED);
792		MPASS(LIST_EMPTY(&ts->ts_free));
793#ifdef TURNSTILE_PROFILING
794		tc->tc_depth--;
795#endif
796	} else
797		ts = LIST_FIRST(&ts->ts_free);
798	MPASS(ts != NULL);
799	LIST_REMOVE(ts, ts_hash);
800	td->td_turnstile = ts;
801
802	return (empty);
803}
804
805/*
806 * Put all blocked threads on the pending list.  This must be called with
807 * the turnstile chain locked.
808 */
809void
810turnstile_broadcast(struct turnstile *ts, int queue)
811{
812	struct turnstile_chain *tc;
813	struct turnstile *ts1;
814	struct thread *td;
815
816	MPASS(ts != NULL);
817	mtx_assert(&ts->ts_lock, MA_OWNED);
818	MPASS(curthread->td_proc->p_magic == P_MAGIC);
819	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
820	/*
821	 * We must have the chain locked so that we can remove the empty
822	 * turnstile from the hash queue.
823	 */
824	tc = TC_LOOKUP(ts->ts_lockobj);
825	mtx_assert(&tc->tc_lock, MA_OWNED);
826	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
827
828	/*
829	 * Transfer the blocked list to the pending list.
830	 */
831	mtx_lock_spin(&td_contested_lock);
832	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
833	mtx_unlock_spin(&td_contested_lock);
834
835	/*
836	 * Give a turnstile to each thread.  The last thread gets
837	 * this turnstile if the turnstile is empty.
838	 */
839	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
840		if (LIST_EMPTY(&ts->ts_free)) {
841			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
842			ts1 = ts;
843#ifdef TURNSTILE_PROFILING
844			tc->tc_depth--;
845#endif
846		} else
847			ts1 = LIST_FIRST(&ts->ts_free);
848		MPASS(ts1 != NULL);
849		LIST_REMOVE(ts1, ts_hash);
850		td->td_turnstile = ts1;
851	}
852}
853
854/*
855 * Wakeup all threads on the pending list and adjust the priority of the
856 * current thread appropriately.  This must be called with the turnstile
857 * chain locked.
858 */
859void
860turnstile_unpend(struct turnstile *ts, int owner_type)
861{
862	TAILQ_HEAD( ,thread) pending_threads;
863	struct turnstile *nts;
864	struct thread *td;
865	u_char cp, pri;
866
867	MPASS(ts != NULL);
868	mtx_assert(&ts->ts_lock, MA_OWNED);
869	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
870	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
871
872	/*
873	 * Move the list of pending threads out of the turnstile and
874	 * into a local variable.
875	 */
876	TAILQ_INIT(&pending_threads);
877	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
878#ifdef INVARIANTS
879	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
880	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
881		ts->ts_lockobj = NULL;
882#endif
883	/*
884	 * Adjust the priority of curthread based on other contested
885	 * locks it owns.  Don't lower the priority below the base
886	 * priority however.
887	 */
888	td = curthread;
889	pri = PRI_MAX;
890	thread_lock(td);
891	mtx_lock_spin(&td_contested_lock);
892	/*
893	 * Remove the turnstile from this thread's list of contested locks
894	 * since this thread doesn't own it anymore.  New threads will
895	 * not be blocking on the turnstile until it is claimed by a new
896	 * owner.  There might not be a current owner if this is a shared
897	 * lock.
898	 */
899	if (ts->ts_owner != NULL) {
900		ts->ts_owner = NULL;
901		LIST_REMOVE(ts, ts_link);
902	}
903	LIST_FOREACH(nts, &td->td_contested, ts_link) {
904		cp = turnstile_first_waiter(nts)->td_priority;
905		if (cp < pri)
906			pri = cp;
907	}
908	mtx_unlock_spin(&td_contested_lock);
909	sched_unlend_prio(td, pri);
910	thread_unlock(td);
911	/*
912	 * Wake up all the pending threads.  If a thread is not blocked
913	 * on a lock, then it is currently executing on another CPU in
914	 * turnstile_wait() or sitting on a run queue waiting to resume
915	 * in turnstile_wait().  Set a flag to force it to try to acquire
916	 * the lock again instead of blocking.
917	 */
918	while (!TAILQ_EMPTY(&pending_threads)) {
919		td = TAILQ_FIRST(&pending_threads);
920		TAILQ_REMOVE(&pending_threads, td, td_lockq);
921		thread_lock(td);
922		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
923		MPASS(td->td_proc->p_magic == P_MAGIC);
924		MPASS(TD_ON_LOCK(td));
925		TD_CLR_LOCK(td);
926		MPASS(TD_CAN_RUN(td));
927		td->td_blocked = NULL;
928		td->td_lockname = NULL;
929		td->td_blktick = 0;
930#ifdef INVARIANTS
931		td->td_tsqueue = 0xff;
932#endif
933		sched_add(td, SRQ_BORING);
934		thread_unlock(td);
935	}
936	mtx_unlock_spin(&ts->ts_lock);
937}
938
939/*
940 * Give up ownership of a turnstile.  This must be called with the
941 * turnstile chain locked.
942 */
943void
944turnstile_disown(struct turnstile *ts)
945{
946	struct thread *td;
947	u_char cp, pri;
948
949	MPASS(ts != NULL);
950	mtx_assert(&ts->ts_lock, MA_OWNED);
951	MPASS(ts->ts_owner == curthread);
952	MPASS(TAILQ_EMPTY(&ts->ts_pending));
953	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
954	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
955
956	/*
957	 * Remove the turnstile from this thread's list of contested locks
958	 * since this thread doesn't own it anymore.  New threads will
959	 * not be blocking on the turnstile until it is claimed by a new
960	 * owner.
961	 */
962	mtx_lock_spin(&td_contested_lock);
963	ts->ts_owner = NULL;
964	LIST_REMOVE(ts, ts_link);
965	mtx_unlock_spin(&td_contested_lock);
966
967	/*
968	 * Adjust the priority of curthread based on other contested
969	 * locks it owns.  Don't lower the priority below the base
970	 * priority however.
971	 */
972	td = curthread;
973	pri = PRI_MAX;
974	thread_lock(td);
975	mtx_unlock_spin(&ts->ts_lock);
976	mtx_lock_spin(&td_contested_lock);
977	LIST_FOREACH(ts, &td->td_contested, ts_link) {
978		cp = turnstile_first_waiter(ts)->td_priority;
979		if (cp < pri)
980			pri = cp;
981	}
982	mtx_unlock_spin(&td_contested_lock);
983	sched_unlend_prio(td, pri);
984	thread_unlock(td);
985}
986
987/*
988 * Return the first thread in a turnstile.
989 */
990struct thread *
991turnstile_head(struct turnstile *ts, int queue)
992{
993#ifdef INVARIANTS
994
995	MPASS(ts != NULL);
996	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
997	mtx_assert(&ts->ts_lock, MA_OWNED);
998#endif
999	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1000}
1001
1002/*
1003 * Returns true if a sub-queue of a turnstile is empty.
1004 */
1005int
1006turnstile_empty(struct turnstile *ts, int queue)
1007{
1008#ifdef INVARIANTS
1009
1010	MPASS(ts != NULL);
1011	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1012	mtx_assert(&ts->ts_lock, MA_OWNED);
1013#endif
1014	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1015}
1016
1017#ifdef DDB
1018static void
1019print_thread(struct thread *td, const char *prefix)
1020{
1021
1022	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1023	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1024	    td->td_name);
1025}
1026
1027static void
1028print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1029{
1030	struct thread *td;
1031
1032	db_printf("%s:\n", header);
1033	if (TAILQ_EMPTY(queue)) {
1034		db_printf("%sempty\n", prefix);
1035		return;
1036	}
1037	TAILQ_FOREACH(td, queue, td_lockq) {
1038		print_thread(td, prefix);
1039	}
1040}
1041
1042DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1043{
1044	struct turnstile_chain *tc;
1045	struct turnstile *ts;
1046	struct lock_object *lock;
1047	int i;
1048
1049	if (!have_addr)
1050		return;
1051
1052	/*
1053	 * First, see if there is an active turnstile for the lock indicated
1054	 * by the address.
1055	 */
1056	lock = (struct lock_object *)addr;
1057	tc = TC_LOOKUP(lock);
1058	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1059		if (ts->ts_lockobj == lock)
1060			goto found;
1061
1062	/*
1063	 * Second, see if there is an active turnstile at the address
1064	 * indicated.
1065	 */
1066	for (i = 0; i < TC_TABLESIZE; i++)
1067		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1068			if (ts == (struct turnstile *)addr)
1069				goto found;
1070		}
1071
1072	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1073	return;
1074found:
1075	lock = ts->ts_lockobj;
1076	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1077	    lock->lo_name);
1078	if (ts->ts_owner)
1079		print_thread(ts->ts_owner, "Lock Owner: ");
1080	else
1081		db_printf("Lock Owner: none\n");
1082	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1083	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1084	    "\t");
1085	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1086
1087}
1088
1089/*
1090 * Show all the threads a particular thread is waiting on based on
1091 * non-sleepable and non-spin locks.
1092 */
1093static void
1094print_lockchain(struct thread *td, const char *prefix)
1095{
1096	struct lock_object *lock;
1097	struct lock_class *class;
1098	struct turnstile *ts;
1099
1100	/*
1101	 * Follow the chain.  We keep walking as long as the thread is
1102	 * blocked on a turnstile that has an owner.
1103	 */
1104	while (!db_pager_quit) {
1105		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1106		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1107		    td->td_name);
1108		switch (td->td_state) {
1109		case TDS_INACTIVE:
1110			db_printf("is inactive\n");
1111			return;
1112		case TDS_CAN_RUN:
1113			db_printf("can run\n");
1114			return;
1115		case TDS_RUNQ:
1116			db_printf("is on a run queue\n");
1117			return;
1118		case TDS_RUNNING:
1119			db_printf("running on CPU %d\n", td->td_oncpu);
1120			return;
1121		case TDS_INHIBITED:
1122			if (TD_ON_LOCK(td)) {
1123				ts = td->td_blocked;
1124				lock = ts->ts_lockobj;
1125				class = LOCK_CLASS(lock);
1126				db_printf("blocked on lock %p (%s) \"%s\"\n",
1127				    lock, class->lc_name, lock->lo_name);
1128				if (ts->ts_owner == NULL)
1129					return;
1130				td = ts->ts_owner;
1131				break;
1132			}
1133			db_printf("inhibited\n");
1134			return;
1135		default:
1136			db_printf("??? (%#x)\n", td->td_state);
1137			return;
1138		}
1139	}
1140}
1141
1142DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1143{
1144	struct thread *td;
1145
1146	/* Figure out which thread to start with. */
1147	if (have_addr)
1148		td = db_lookup_thread(addr, TRUE);
1149	else
1150		td = kdb_thread;
1151
1152	print_lockchain(td, "");
1153}
1154
1155DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1156{
1157	struct thread *td;
1158	struct proc *p;
1159	int i;
1160
1161	i = 1;
1162	FOREACH_PROC_IN_SYSTEM(p) {
1163		FOREACH_THREAD_IN_PROC(p, td) {
1164			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1165				db_printf("chain %d:\n", i++);
1166				print_lockchain(td, " ");
1167			}
1168			if (db_pager_quit)
1169				return;
1170		}
1171	}
1172}
1173DB_SHOW_ALIAS(allchains, db_show_allchains)
1174
1175/*
1176 * Show all the threads a particular thread is waiting on based on
1177 * sleepable locks.
1178 */
1179static void
1180print_sleepchain(struct thread *td, const char *prefix)
1181{
1182	struct thread *owner;
1183
1184	/*
1185	 * Follow the chain.  We keep walking as long as the thread is
1186	 * blocked on a sleep lock that has an owner.
1187	 */
1188	while (!db_pager_quit) {
1189		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1190		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1191		    td->td_name);
1192		switch (td->td_state) {
1193		case TDS_INACTIVE:
1194			db_printf("is inactive\n");
1195			return;
1196		case TDS_CAN_RUN:
1197			db_printf("can run\n");
1198			return;
1199		case TDS_RUNQ:
1200			db_printf("is on a run queue\n");
1201			return;
1202		case TDS_RUNNING:
1203			db_printf("running on CPU %d\n", td->td_oncpu);
1204			return;
1205		case TDS_INHIBITED:
1206			if (TD_ON_SLEEPQ(td)) {
1207				if (lockmgr_chain(td, &owner) ||
1208				    sx_chain(td, &owner)) {
1209					if (owner == NULL)
1210						return;
1211					td = owner;
1212					break;
1213				}
1214				db_printf("sleeping on %p \"%s\"\n",
1215				    td->td_wchan, td->td_wmesg);
1216				return;
1217			}
1218			db_printf("inhibited\n");
1219			return;
1220		default:
1221			db_printf("??? (%#x)\n", td->td_state);
1222			return;
1223		}
1224	}
1225}
1226
1227DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1228{
1229	struct thread *td;
1230
1231	/* Figure out which thread to start with. */
1232	if (have_addr)
1233		td = db_lookup_thread(addr, TRUE);
1234	else
1235		td = kdb_thread;
1236
1237	print_sleepchain(td, "");
1238}
1239
1240static void	print_waiters(struct turnstile *ts, int indent);
1241
1242static void
1243print_waiter(struct thread *td, int indent)
1244{
1245	struct turnstile *ts;
1246	int i;
1247
1248	if (db_pager_quit)
1249		return;
1250	for (i = 0; i < indent; i++)
1251		db_printf(" ");
1252	print_thread(td, "thread ");
1253	LIST_FOREACH(ts, &td->td_contested, ts_link)
1254		print_waiters(ts, indent + 1);
1255}
1256
1257static void
1258print_waiters(struct turnstile *ts, int indent)
1259{
1260	struct lock_object *lock;
1261	struct lock_class *class;
1262	struct thread *td;
1263	int i;
1264
1265	if (db_pager_quit)
1266		return;
1267	lock = ts->ts_lockobj;
1268	class = LOCK_CLASS(lock);
1269	for (i = 0; i < indent; i++)
1270		db_printf(" ");
1271	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1272	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1273		print_waiter(td, indent + 1);
1274	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1275		print_waiter(td, indent + 1);
1276	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1277		print_waiter(td, indent + 1);
1278}
1279
1280DB_SHOW_COMMAND(locktree, db_show_locktree)
1281{
1282	struct lock_object *lock;
1283	struct lock_class *class;
1284	struct turnstile_chain *tc;
1285	struct turnstile *ts;
1286
1287	if (!have_addr)
1288		return;
1289	lock = (struct lock_object *)addr;
1290	tc = TC_LOOKUP(lock);
1291	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1292		if (ts->ts_lockobj == lock)
1293			break;
1294	if (ts == NULL) {
1295		class = LOCK_CLASS(lock);
1296		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1297		    lock->lo_name);
1298	} else
1299		print_waiters(ts, 0);
1300}
1301#endif
1302