subr_turnstile.c revision 170295
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of turnstiles used to hold queue of threads blocked on
34 * non-sleepable locks.  Sleepable locks use condition variables to
35 * implement their queues.  Turnstiles differ from a sleep queue in that
36 * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37 * when one thread is enqueued onto a turnstile, it can lend its priority
38 * to the owning thread.
39 *
40 * We wish to avoid bloating locks with an embedded turnstile and we do not
41 * want to use back-pointers in the locks for the same reason.  Thus, we
42 * use a similar approach to that of Solaris 7 as described in Solaris
43 * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44 * in a hash table based on the address of the lock.  Each entry in the
45 * hash table is a linked-lists of turnstiles and is called a turnstile
46 * chain.  Each chain contains a spin mutex that protects all of the
47 * turnstiles in the chain.
48 *
49 * Each time a thread is created, a turnstile is allocated from a UMA zone
50 * and attached to that thread.  When a thread blocks on a lock, if it is the
51 * first thread to block, it lends its turnstile to the lock.  If the lock
52 * already has a turnstile, then it gives its turnstile to the lock's
53 * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54 * the free list if there are any other waiters.  If it is the only thread
55 * blocked on the lock, then it reclaims the turnstile associated with the lock
56 * and removes it from the hash table.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/subr_turnstile.c 170295 2007-06-04 23:51:44Z jeff $");
61
62#include "opt_ddb.h"
63#include "opt_turnstile_profiling.h"
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/kernel.h>
68#include <sys/ktr.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/queue.h>
73#include <sys/sched.h>
74#include <sys/sysctl.h>
75#include <sys/turnstile.h>
76
77#include <vm/uma.h>
78
79#ifdef DDB
80#include <sys/kdb.h>
81#include <ddb/ddb.h>
82#include <sys/lockmgr.h>
83#include <sys/sx.h>
84#endif
85
86/*
87 * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
88 * number chosen because the sleep queue's use the same value for the
89 * shift.  Basically, we ignore the lower 8 bits of the address.
90 * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
91 */
92#define	TC_TABLESIZE	128			/* Must be power of 2. */
93#define	TC_MASK		(TC_TABLESIZE - 1)
94#define	TC_SHIFT	8
95#define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
96#define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
97
98/*
99 * There are three different lists of turnstiles as follows.  The list
100 * connected by ts_link entries is a per-thread list of all the turnstiles
101 * attached to locks that we own.  This is used to fixup our priority when
102 * a lock is released.  The other two lists use the ts_hash entries.  The
103 * first of these two is the turnstile chain list that a turnstile is on
104 * when it is attached to a lock.  The second list to use ts_hash is the
105 * free list hung off of a turnstile that is attached to a lock.
106 *
107 * Each turnstile contains three lists of threads.  The two ts_blocked lists
108 * are linked list of threads blocked on the turnstile's lock.  One list is
109 * for exclusive waiters, and the other is for shared waiters.  The
110 * ts_pending list is a linked list of threads previously awakened by
111 * turnstile_signal() or turnstile_wait() that are waiting to be put on
112 * the run queue.
113 *
114 * Locking key:
115 *  c - turnstile chain lock
116 *  q - td_contested lock
117 */
118struct turnstile {
119	struct mtx ts_lock;			/* Spin lock for self. */
120	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
121	struct threadqueue ts_pending;		/* (c) Pending threads. */
122	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
123	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
124	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
125	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
126	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
127};
128
129struct turnstile_chain {
130	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
131	struct mtx tc_lock;			/* Spin lock for this chain. */
132#ifdef TURNSTILE_PROFILING
133	u_int	tc_depth;			/* Length of tc_queues. */
134	u_int	tc_max_depth;			/* Max length of tc_queues. */
135#endif
136};
137
138#ifdef TURNSTILE_PROFILING
139u_int turnstile_max_depth;
140SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling");
141SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
142    "turnstile chain stats");
143SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
144    &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain");
145#endif
146static struct mtx td_contested_lock;
147static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
148static uma_zone_t turnstile_zone;
149
150/*
151 * Prototypes for non-exported routines.
152 */
153static void	init_turnstile0(void *dummy);
154#ifdef TURNSTILE_PROFILING
155static void	init_turnstile_profiling(void *arg);
156#endif
157static void	propagate_priority(struct thread *td);
158static int	turnstile_adjust_thread(struct turnstile *ts,
159		    struct thread *td);
160static struct thread *turnstile_first_waiter(struct turnstile *ts);
161static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
162#ifdef INVARIANTS
163static void	turnstile_dtor(void *mem, int size, void *arg);
164#endif
165static int	turnstile_init(void *mem, int size, int flags);
166static void	turnstile_fini(void *mem, int size);
167
168/*
169 * Walks the chain of turnstiles and their owners to propagate the priority
170 * of the thread being blocked to all the threads holding locks that have to
171 * release their locks before this thread can run again.
172 */
173static void
174propagate_priority(struct thread *td)
175{
176	struct turnstile *ts;
177	int pri;
178
179	THREAD_LOCK_ASSERT(td, MA_OWNED);
180	pri = td->td_priority;
181	ts = td->td_blocked;
182	MPASS(td->td_lock == &ts->ts_lock);
183	/*
184	 * Grab a recursive lock on this turnstile chain so it stays locked
185	 * for the whole operation.  The caller expects us to return with
186	 * the original lock held.  We only ever lock down the chain so
187	 * the lock order is constant.
188	 */
189	mtx_lock_spin(&ts->ts_lock);
190	for (;;) {
191		td = ts->ts_owner;
192
193		if (td == NULL) {
194			/*
195			 * This might be a read lock with no owner.  There's
196			 * not much we can do, so just bail.
197			 */
198			mtx_unlock_spin(&ts->ts_lock);
199			return;
200		}
201
202		thread_lock_flags(td, MTX_DUPOK);
203		mtx_unlock_spin(&ts->ts_lock);
204		MPASS(td->td_proc != NULL);
205		MPASS(td->td_proc->p_magic == P_MAGIC);
206
207		/*
208		 * If the thread is asleep, then we are probably about
209		 * to deadlock.  To make debugging this easier, just
210		 * panic and tell the user which thread misbehaved so
211		 * they can hopefully get a stack trace from the truly
212		 * misbehaving thread.
213		 */
214		if (TD_IS_SLEEPING(td)) {
215			printf(
216		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
217			    td->td_tid, td->td_proc->p_pid);
218#ifdef DDB
219			db_trace_thread(td, -1);
220#endif
221			panic("sleeping thread");
222		}
223
224		/*
225		 * If this thread already has higher priority than the
226		 * thread that is being blocked, we are finished.
227		 */
228		if (td->td_priority <= pri) {
229			thread_unlock(td);
230			return;
231		}
232
233		/*
234		 * Bump this thread's priority.
235		 */
236		sched_lend_prio(td, pri);
237
238		/*
239		 * If lock holder is actually running or on the run queue
240		 * then we are done.
241		 */
242		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
243			MPASS(td->td_blocked == NULL);
244			thread_unlock(td);
245			return;
246		}
247
248#ifndef SMP
249		/*
250		 * For UP, we check to see if td is curthread (this shouldn't
251		 * ever happen however as it would mean we are in a deadlock.)
252		 */
253		KASSERT(td != curthread, ("Deadlock detected"));
254#endif
255
256		/*
257		 * If we aren't blocked on a lock, we should be.
258		 */
259		KASSERT(TD_ON_LOCK(td), (
260		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
261		    td->td_tid, td->td_proc->p_comm, td->td_state,
262		    ts->ts_lockobj->lo_name));
263
264		/*
265		 * Pick up the lock that td is blocked on.
266		 */
267		ts = td->td_blocked;
268		MPASS(ts != NULL);
269		MPASS(td->td_lock == &ts->ts_lock);
270		/* Resort td on the list if needed. */
271		if (!turnstile_adjust_thread(ts, td)) {
272			mtx_unlock_spin(&ts->ts_lock);
273			return;
274		}
275		/* The thread lock is released as ts lock above. */
276	}
277}
278
279/*
280 * Adjust the thread's position on a turnstile after its priority has been
281 * changed.
282 */
283static int
284turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
285{
286	struct thread *td1, *td2;
287	int queue;
288
289	THREAD_LOCK_ASSERT(td, MA_OWNED);
290	MPASS(TD_ON_LOCK(td));
291
292	/*
293	 * This thread may not be blocked on this turnstile anymore
294	 * but instead might already be woken up on another CPU
295	 * that is waiting on the thread lock in turnstile_unpend() to
296	 * finish waking this thread up.  We can detect this case
297	 * by checking to see if this thread has been given a
298	 * turnstile by either turnstile_signal() or
299	 * turnstile_broadcast().  In this case, treat the thread as
300	 * if it was already running.
301	 */
302	if (td->td_turnstile != NULL)
303		return (0);
304
305	/*
306	 * Check if the thread needs to be moved on the blocked chain.
307	 * It needs to be moved if either its priority is lower than
308	 * the previous thread or higher than the next thread.
309	 */
310	MPASS(td->td_lock == &ts->ts_lock);
311	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
312	td2 = TAILQ_NEXT(td, td_lockq);
313	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
314	    (td2 != NULL && td->td_priority > td2->td_priority)) {
315
316		/*
317		 * Remove thread from blocked chain and determine where
318		 * it should be moved to.
319		 */
320		queue = td->td_tsqueue;
321		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
322		mtx_lock_spin(&td_contested_lock);
323		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
324		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
325			MPASS(td1->td_proc->p_magic == P_MAGIC);
326			if (td1->td_priority > td->td_priority)
327				break;
328		}
329
330		if (td1 == NULL)
331			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
332		else
333			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
334		mtx_unlock_spin(&td_contested_lock);
335		if (td1 == NULL)
336			CTR3(KTR_LOCK,
337		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
338			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
339		else
340			CTR4(KTR_LOCK,
341		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
342			    td->td_tid, td1->td_tid, ts->ts_lockobj,
343			    ts->ts_lockobj->lo_name);
344	}
345	return (1);
346}
347
348/*
349 * Early initialization of turnstiles.  This is not done via a SYSINIT()
350 * since this needs to be initialized very early when mutexes are first
351 * initialized.
352 */
353void
354init_turnstiles(void)
355{
356	int i;
357
358	for (i = 0; i < TC_TABLESIZE; i++) {
359		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
360		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
361		    NULL, MTX_SPIN);
362	}
363	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
364	LIST_INIT(&thread0.td_contested);
365	thread0.td_turnstile = NULL;
366}
367
368#ifdef TURNSTILE_PROFILING
369static void
370init_turnstile_profiling(void *arg)
371{
372	struct sysctl_oid *chain_oid;
373	char chain_name[10];
374	int i;
375
376	for (i = 0; i < TC_TABLESIZE; i++) {
377		snprintf(chain_name, sizeof(chain_name), "%d", i);
378		chain_oid = SYSCTL_ADD_NODE(NULL,
379		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
380		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
381		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
382		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
383		    NULL);
384		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
385		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
386		    0, NULL);
387	}
388}
389SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
390    init_turnstile_profiling, NULL);
391#endif
392
393static void
394init_turnstile0(void *dummy)
395{
396
397	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
398#ifdef INVARIANTS
399	    NULL, turnstile_dtor, turnstile_init, turnstile_fini,
400	    UMA_ALIGN_CACHE, 0);
401#else
402	    NULL, NULL, turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, 0);
403#endif
404	thread0.td_turnstile = turnstile_alloc();
405}
406SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
407
408/*
409 * Update a thread on the turnstile list after it's priority has been changed.
410 * The old priority is passed in as an argument.
411 */
412void
413turnstile_adjust(struct thread *td, u_char oldpri)
414{
415	struct turnstile *ts;
416
417	MPASS(TD_ON_LOCK(td));
418
419	/*
420	 * Pick up the lock that td is blocked on.
421	 */
422	ts = td->td_blocked;
423	MPASS(ts != NULL);
424	MPASS(td->td_lock == &ts->ts_lock);
425	mtx_assert(&ts->ts_lock, MA_OWNED);
426
427	/* Resort the turnstile on the list. */
428	if (!turnstile_adjust_thread(ts, td))
429		return;
430	/*
431	 * If our priority was lowered and we are at the head of the
432	 * turnstile, then propagate our new priority up the chain.
433	 * Note that we currently don't try to revoke lent priorities
434	 * when our priority goes up.
435	 */
436	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
437	    td->td_tsqueue == TS_SHARED_QUEUE);
438	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
439	    td->td_priority < oldpri) {
440		propagate_priority(td);
441	}
442}
443
444/*
445 * Set the owner of the lock this turnstile is attached to.
446 */
447static void
448turnstile_setowner(struct turnstile *ts, struct thread *owner)
449{
450
451	mtx_assert(&td_contested_lock, MA_OWNED);
452	MPASS(ts->ts_owner == NULL);
453
454	/* A shared lock might not have an owner. */
455	if (owner == NULL)
456		return;
457
458	MPASS(owner->td_proc->p_magic == P_MAGIC);
459	ts->ts_owner = owner;
460	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
461}
462
463#ifdef INVARIANTS
464/*
465 * UMA zone item deallocator.
466 */
467static void
468turnstile_dtor(void *mem, int size, void *arg)
469{
470	struct turnstile *ts;
471
472	ts = mem;
473	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
474	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
475	MPASS(TAILQ_EMPTY(&ts->ts_pending));
476}
477#endif
478
479/*
480 * UMA zone item initializer.
481 */
482static int
483turnstile_init(void *mem, int size, int flags)
484{
485	struct turnstile *ts;
486
487	bzero(mem, size);
488	ts = mem;
489	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
490	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
491	TAILQ_INIT(&ts->ts_pending);
492	LIST_INIT(&ts->ts_free);
493	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
494	return (0);
495}
496
497static void
498turnstile_fini(void *mem, int size)
499{
500	struct turnstile *ts;
501
502	ts = mem;
503	mtx_destroy(&ts->ts_lock);
504}
505
506/*
507 * Get a turnstile for a new thread.
508 */
509struct turnstile *
510turnstile_alloc(void)
511{
512
513	return (uma_zalloc(turnstile_zone, M_WAITOK));
514}
515
516/*
517 * Free a turnstile when a thread is destroyed.
518 */
519void
520turnstile_free(struct turnstile *ts)
521{
522
523	uma_zfree(turnstile_zone, ts);
524}
525
526/*
527 * Lock the turnstile chain associated with the specified lock.
528 */
529void
530turnstile_chain_lock(struct lock_object *lock)
531{
532	struct turnstile_chain *tc;
533
534	tc = TC_LOOKUP(lock);
535	mtx_lock_spin(&tc->tc_lock);
536}
537
538struct turnstile *
539turnstile_trywait(struct lock_object *lock)
540{
541	struct turnstile_chain *tc;
542	struct turnstile *ts;
543
544	tc = TC_LOOKUP(lock);
545	mtx_lock_spin(&tc->tc_lock);
546	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
547		if (ts->ts_lockobj == lock) {
548			mtx_lock_spin(&ts->ts_lock);
549			return (ts);
550		}
551
552	ts = curthread->td_turnstile;
553	MPASS(ts != NULL);
554	mtx_lock_spin(&ts->ts_lock);
555	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
556	ts->ts_lockobj = lock;
557
558	return (ts);
559}
560
561void
562turnstile_cancel(struct turnstile *ts)
563{
564	struct turnstile_chain *tc;
565	struct lock_object *lock;
566
567	mtx_assert(&ts->ts_lock, MA_OWNED);
568
569	mtx_unlock_spin(&ts->ts_lock);
570	lock = ts->ts_lockobj;
571	if (ts == curthread->td_turnstile)
572		ts->ts_lockobj = NULL;
573	tc = TC_LOOKUP(lock);
574	mtx_unlock_spin(&tc->tc_lock);
575}
576
577/*
578 * Look up the turnstile for a lock in the hash table locking the associated
579 * turnstile chain along the way.  If no turnstile is found in the hash
580 * table, NULL is returned.
581 */
582struct turnstile *
583turnstile_lookup(struct lock_object *lock)
584{
585	struct turnstile_chain *tc;
586	struct turnstile *ts;
587
588	tc = TC_LOOKUP(lock);
589	mtx_assert(&tc->tc_lock, MA_OWNED);
590	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
591		if (ts->ts_lockobj == lock) {
592			mtx_lock_spin(&ts->ts_lock);
593			return (ts);
594		}
595	return (NULL);
596}
597
598/*
599 * Unlock the turnstile chain associated with a given lock.
600 */
601void
602turnstile_chain_unlock(struct lock_object *lock)
603{
604	struct turnstile_chain *tc;
605
606	tc = TC_LOOKUP(lock);
607	mtx_unlock_spin(&tc->tc_lock);
608}
609
610/*
611 * Return a pointer to the thread waiting on this turnstile with the
612 * most important priority or NULL if the turnstile has no waiters.
613 */
614static struct thread *
615turnstile_first_waiter(struct turnstile *ts)
616{
617	struct thread *std, *xtd;
618
619	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
620	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
621	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
622		return (std);
623	return (xtd);
624}
625
626/*
627 * Take ownership of a turnstile and adjust the priority of the new
628 * owner appropriately.
629 */
630void
631turnstile_claim(struct turnstile *ts)
632{
633	struct thread *td, *owner;
634	struct turnstile_chain *tc;
635
636	mtx_assert(&ts->ts_lock, MA_OWNED);
637	MPASS(ts != curthread->td_turnstile);
638
639	owner = curthread;
640	mtx_lock_spin(&td_contested_lock);
641	turnstile_setowner(ts, owner);
642	mtx_unlock_spin(&td_contested_lock);
643
644	td = turnstile_first_waiter(ts);
645	MPASS(td != NULL);
646	MPASS(td->td_proc->p_magic == P_MAGIC);
647	MPASS(td->td_lock == &ts->ts_lock);
648
649	/*
650	 * Update the priority of the new owner if needed.
651	 */
652	thread_lock(owner);
653	if (td->td_priority < owner->td_priority)
654		sched_lend_prio(owner, td->td_priority);
655	thread_unlock(owner);
656	tc = TC_LOOKUP(ts->ts_lockobj);
657	mtx_unlock_spin(&ts->ts_lock);
658	mtx_unlock_spin(&tc->tc_lock);
659}
660
661/*
662 * Block the current thread on the turnstile assicated with 'lock'.  This
663 * function will context switch and not return until this thread has been
664 * woken back up.  This function must be called with the appropriate
665 * turnstile chain locked and will return with it unlocked.
666 */
667void
668turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
669{
670	struct turnstile_chain *tc;
671	struct thread *td, *td1;
672	struct lock_object *lock;
673
674	td = curthread;
675	mtx_assert(&ts->ts_lock, MA_OWNED);
676	if (queue == TS_SHARED_QUEUE)
677		MPASS(owner != NULL);
678	if (owner)
679		MPASS(owner->td_proc->p_magic == P_MAGIC);
680	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
681
682	/*
683	 * If the lock does not already have a turnstile, use this thread's
684	 * turnstile.  Otherwise insert the current thread into the
685	 * turnstile already in use by this lock.
686	 */
687	tc = TC_LOOKUP(ts->ts_lockobj);
688	if (ts == td->td_turnstile) {
689	mtx_assert(&tc->tc_lock, MA_OWNED);
690#ifdef TURNSTILE_PROFILING
691		tc->tc_depth++;
692		if (tc->tc_depth > tc->tc_max_depth) {
693			tc->tc_max_depth = tc->tc_depth;
694			if (tc->tc_max_depth > turnstile_max_depth)
695				turnstile_max_depth = tc->tc_max_depth;
696		}
697#endif
698		tc = TC_LOOKUP(ts->ts_lockobj);
699		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
700		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
701		    ("thread's turnstile has pending threads"));
702		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
703		    ("thread's turnstile has exclusive waiters"));
704		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
705		    ("thread's turnstile has shared waiters"));
706		KASSERT(LIST_EMPTY(&ts->ts_free),
707		    ("thread's turnstile has a non-empty free list"));
708		MPASS(ts->ts_lockobj != NULL);
709		mtx_lock_spin(&td_contested_lock);
710		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
711		turnstile_setowner(ts, owner);
712		mtx_unlock_spin(&td_contested_lock);
713	} else {
714		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
715			if (td1->td_priority > td->td_priority)
716				break;
717		mtx_lock_spin(&td_contested_lock);
718		if (td1 != NULL)
719			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
720		else
721			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
722		MPASS(owner == ts->ts_owner);
723		mtx_unlock_spin(&td_contested_lock);
724		MPASS(td->td_turnstile != NULL);
725		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
726	}
727	thread_lock(td);
728	thread_lock_set(td, &ts->ts_lock);
729	td->td_turnstile = NULL;
730
731	/* Save who we are blocked on and switch. */
732	lock = ts->ts_lockobj;
733	td->td_tsqueue = queue;
734	td->td_blocked = ts;
735	td->td_lockname = lock->lo_name;
736	TD_SET_LOCK(td);
737	mtx_unlock_spin(&tc->tc_lock);
738	propagate_priority(td);
739
740	if (LOCK_LOG_TEST(lock, 0))
741		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
742		    td->td_tid, lock, lock->lo_name);
743
744	MPASS(td->td_lock == &ts->ts_lock);
745	SCHED_STAT_INC(switch_turnstile);
746	mi_switch(SW_VOL, NULL);
747
748	if (LOCK_LOG_TEST(lock, 0))
749		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
750		    __func__, td->td_tid, lock, lock->lo_name);
751	thread_unlock(td);
752}
753
754/*
755 * Pick the highest priority thread on this turnstile and put it on the
756 * pending list.  This must be called with the turnstile chain locked.
757 */
758int
759turnstile_signal(struct turnstile *ts, int queue)
760{
761	struct turnstile_chain *tc;
762	struct thread *td;
763	int empty;
764
765	MPASS(ts != NULL);
766	mtx_assert(&ts->ts_lock, MA_OWNED);
767	MPASS(curthread->td_proc->p_magic == P_MAGIC);
768	MPASS(ts->ts_owner == curthread ||
769	    (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
770	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
771
772	/*
773	 * Pick the highest priority thread blocked on this lock and
774	 * move it to the pending list.
775	 */
776	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
777	MPASS(td->td_proc->p_magic == P_MAGIC);
778	mtx_lock_spin(&td_contested_lock);
779	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
780	mtx_unlock_spin(&td_contested_lock);
781	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
782
783	/*
784	 * If the turnstile is now empty, remove it from its chain and
785	 * give it to the about-to-be-woken thread.  Otherwise take a
786	 * turnstile from the free list and give it to the thread.
787	 */
788	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
789	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
790	if (empty) {
791		tc = TC_LOOKUP(ts->ts_lockobj);
792		mtx_assert(&tc->tc_lock, MA_OWNED);
793		MPASS(LIST_EMPTY(&ts->ts_free));
794#ifdef TURNSTILE_PROFILING
795		tc->tc_depth--;
796#endif
797	} else
798		ts = LIST_FIRST(&ts->ts_free);
799	MPASS(ts != NULL);
800	LIST_REMOVE(ts, ts_hash);
801	td->td_turnstile = ts;
802
803	return (empty);
804}
805
806/*
807 * Put all blocked threads on the pending list.  This must be called with
808 * the turnstile chain locked.
809 */
810void
811turnstile_broadcast(struct turnstile *ts, int queue)
812{
813	struct turnstile_chain *tc;
814	struct turnstile *ts1;
815	struct thread *td;
816
817	MPASS(ts != NULL);
818	mtx_assert(&ts->ts_lock, MA_OWNED);
819	MPASS(curthread->td_proc->p_magic == P_MAGIC);
820	MPASS(ts->ts_owner == curthread ||
821	    (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
822	/*
823	 * We must have the chain locked so that we can remove the empty
824	 * turnstile from the hash queue.
825	 */
826	tc = TC_LOOKUP(ts->ts_lockobj);
827	mtx_assert(&tc->tc_lock, MA_OWNED);
828	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
829
830	/*
831	 * Transfer the blocked list to the pending list.
832	 */
833	mtx_lock_spin(&td_contested_lock);
834	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
835	mtx_unlock_spin(&td_contested_lock);
836
837	/*
838	 * Give a turnstile to each thread.  The last thread gets
839	 * this turnstile if the turnstile is empty.
840	 */
841	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
842		if (LIST_EMPTY(&ts->ts_free)) {
843			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
844			ts1 = ts;
845#ifdef TURNSTILE_PROFILING
846			tc->tc_depth--;
847#endif
848		} else
849			ts1 = LIST_FIRST(&ts->ts_free);
850		MPASS(ts1 != NULL);
851		LIST_REMOVE(ts1, ts_hash);
852		td->td_turnstile = ts1;
853	}
854}
855
856/*
857 * Wakeup all threads on the pending list and adjust the priority of the
858 * current thread appropriately.  This must be called with the turnstile
859 * chain locked.
860 */
861void
862turnstile_unpend(struct turnstile *ts, int owner_type)
863{
864	TAILQ_HEAD( ,thread) pending_threads;
865	struct turnstile *nts;
866	struct thread *td;
867	u_char cp, pri;
868
869	MPASS(ts != NULL);
870	mtx_assert(&ts->ts_lock, MA_OWNED);
871	MPASS(ts->ts_owner == curthread ||
872	    (owner_type == TS_SHARED_LOCK && ts->ts_owner == NULL));
873	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
874
875	/*
876	 * Move the list of pending threads out of the turnstile and
877	 * into a local variable.
878	 */
879	TAILQ_INIT(&pending_threads);
880	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
881#ifdef INVARIANTS
882	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
883	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
884		ts->ts_lockobj = NULL;
885#endif
886	/*
887	 * Adjust the priority of curthread based on other contested
888	 * locks it owns.  Don't lower the priority below the base
889	 * priority however.
890	 */
891	td = curthread;
892	pri = PRI_MAX;
893	thread_lock(td);
894	mtx_lock_spin(&td_contested_lock);
895	/*
896	 * Remove the turnstile from this thread's list of contested locks
897	 * since this thread doesn't own it anymore.  New threads will
898	 * not be blocking on the turnstile until it is claimed by a new
899	 * owner.  There might not be a current owner if this is a shared
900	 * lock.
901	 */
902	if (ts->ts_owner != NULL) {
903		ts->ts_owner = NULL;
904		LIST_REMOVE(ts, ts_link);
905	}
906	LIST_FOREACH(nts, &td->td_contested, ts_link) {
907		cp = turnstile_first_waiter(nts)->td_priority;
908		if (cp < pri)
909			pri = cp;
910	}
911	mtx_unlock_spin(&td_contested_lock);
912	sched_unlend_prio(td, pri);
913	thread_unlock(td);
914	/*
915	 * Wake up all the pending threads.  If a thread is not blocked
916	 * on a lock, then it is currently executing on another CPU in
917	 * turnstile_wait() or sitting on a run queue waiting to resume
918	 * in turnstile_wait().  Set a flag to force it to try to acquire
919	 * the lock again instead of blocking.
920	 */
921	while (!TAILQ_EMPTY(&pending_threads)) {
922		td = TAILQ_FIRST(&pending_threads);
923		TAILQ_REMOVE(&pending_threads, td, td_lockq);
924		thread_lock(td);
925		MPASS(td->td_lock == &ts->ts_lock);
926		MPASS(td->td_proc->p_magic == P_MAGIC);
927		MPASS(TD_ON_LOCK(td));
928		TD_CLR_LOCK(td);
929		MPASS(TD_CAN_RUN(td));
930		td->td_blocked = NULL;
931		td->td_lockname = NULL;
932#ifdef INVARIANTS
933		td->td_tsqueue = 0xff;
934#endif
935		sched_add(td, SRQ_BORING);
936		thread_unlock(td);
937	}
938	mtx_unlock_spin(&ts->ts_lock);
939}
940
941/*
942 * Give up ownership of a turnstile.  This must be called with the
943 * turnstile chain locked.
944 */
945void
946turnstile_disown(struct turnstile *ts)
947{
948	struct thread *td;
949	u_char cp, pri;
950
951	MPASS(ts != NULL);
952	mtx_assert(&ts->ts_lock, MA_OWNED);
953	MPASS(ts->ts_owner == curthread);
954	MPASS(TAILQ_EMPTY(&ts->ts_pending));
955	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
956	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
957
958	/*
959	 * Remove the turnstile from this thread's list of contested locks
960	 * since this thread doesn't own it anymore.  New threads will
961	 * not be blocking on the turnstile until it is claimed by a new
962	 * owner.
963	 */
964	mtx_lock_spin(&td_contested_lock);
965	ts->ts_owner = NULL;
966	LIST_REMOVE(ts, ts_link);
967	mtx_unlock_spin(&td_contested_lock);
968
969	/*
970	 * Adjust the priority of curthread based on other contested
971	 * locks it owns.  Don't lower the priority below the base
972	 * priority however.
973	 */
974	td = curthread;
975	pri = PRI_MAX;
976	thread_lock(td);
977	mtx_unlock_spin(&ts->ts_lock);
978	mtx_lock_spin(&td_contested_lock);
979	LIST_FOREACH(ts, &td->td_contested, ts_link) {
980		cp = turnstile_first_waiter(ts)->td_priority;
981		if (cp < pri)
982			pri = cp;
983	}
984	mtx_unlock_spin(&td_contested_lock);
985	sched_unlend_prio(td, pri);
986	thread_unlock(td);
987}
988
989/*
990 * Return the first thread in a turnstile.
991 */
992struct thread *
993turnstile_head(struct turnstile *ts, int queue)
994{
995#ifdef INVARIANTS
996
997	MPASS(ts != NULL);
998	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
999	mtx_assert(&ts->ts_lock, MA_OWNED);
1000#endif
1001	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1002}
1003
1004/*
1005 * Returns true if a sub-queue of a turnstile is empty.
1006 */
1007int
1008turnstile_empty(struct turnstile *ts, int queue)
1009{
1010#ifdef INVARIANTS
1011
1012	MPASS(ts != NULL);
1013	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1014	mtx_assert(&ts->ts_lock, MA_OWNED);
1015#endif
1016	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1017}
1018
1019#ifdef DDB
1020static void
1021print_thread(struct thread *td, const char *prefix)
1022{
1023
1024	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1025	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1026	    td->td_proc->p_comm);
1027}
1028
1029static void
1030print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1031{
1032	struct thread *td;
1033
1034	db_printf("%s:\n", header);
1035	if (TAILQ_EMPTY(queue)) {
1036		db_printf("%sempty\n", prefix);
1037		return;
1038	}
1039	TAILQ_FOREACH(td, queue, td_lockq) {
1040		print_thread(td, prefix);
1041	}
1042}
1043
1044DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1045{
1046	struct turnstile_chain *tc;
1047	struct turnstile *ts;
1048	struct lock_object *lock;
1049	int i;
1050
1051	if (!have_addr)
1052		return;
1053
1054	/*
1055	 * First, see if there is an active turnstile for the lock indicated
1056	 * by the address.
1057	 */
1058	lock = (struct lock_object *)addr;
1059	tc = TC_LOOKUP(lock);
1060	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1061		if (ts->ts_lockobj == lock)
1062			goto found;
1063
1064	/*
1065	 * Second, see if there is an active turnstile at the address
1066	 * indicated.
1067	 */
1068	for (i = 0; i < TC_TABLESIZE; i++)
1069		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1070			if (ts == (struct turnstile *)addr)
1071				goto found;
1072		}
1073
1074	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1075	return;
1076found:
1077	lock = ts->ts_lockobj;
1078	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1079	    lock->lo_name);
1080	if (ts->ts_owner)
1081		print_thread(ts->ts_owner, "Lock Owner: ");
1082	else
1083		db_printf("Lock Owner: none\n");
1084	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1085	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1086	    "\t");
1087	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1088
1089}
1090
1091/*
1092 * Show all the threads a particular thread is waiting on based on
1093 * non-sleepable and non-spin locks.
1094 */
1095static void
1096print_lockchain(struct thread *td, const char *prefix)
1097{
1098	struct lock_object *lock;
1099	struct lock_class *class;
1100	struct turnstile *ts;
1101
1102	/*
1103	 * Follow the chain.  We keep walking as long as the thread is
1104	 * blocked on a turnstile that has an owner.
1105	 */
1106	while (!db_pager_quit) {
1107		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1108		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1109		    td->td_proc->p_comm);
1110		switch (td->td_state) {
1111		case TDS_INACTIVE:
1112			db_printf("is inactive\n");
1113			return;
1114		case TDS_CAN_RUN:
1115			db_printf("can run\n");
1116			return;
1117		case TDS_RUNQ:
1118			db_printf("is on a run queue\n");
1119			return;
1120		case TDS_RUNNING:
1121			db_printf("running on CPU %d\n", td->td_oncpu);
1122			return;
1123		case TDS_INHIBITED:
1124			if (TD_ON_LOCK(td)) {
1125				ts = td->td_blocked;
1126				lock = ts->ts_lockobj;
1127				class = LOCK_CLASS(lock);
1128				db_printf("blocked on lock %p (%s) \"%s\"\n",
1129				    lock, class->lc_name, lock->lo_name);
1130				if (ts->ts_owner == NULL)
1131					return;
1132				td = ts->ts_owner;
1133				break;
1134			}
1135			db_printf("inhibited\n");
1136			return;
1137		default:
1138			db_printf("??? (%#x)\n", td->td_state);
1139			return;
1140		}
1141	}
1142}
1143
1144DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1145{
1146	struct thread *td;
1147
1148	/* Figure out which thread to start with. */
1149	if (have_addr)
1150		td = db_lookup_thread(addr, TRUE);
1151	else
1152		td = kdb_thread;
1153
1154	print_lockchain(td, "");
1155}
1156
1157DB_SHOW_COMMAND(allchains, db_show_allchains)
1158{
1159	struct thread *td;
1160	struct proc *p;
1161	int i;
1162
1163	i = 1;
1164	FOREACH_PROC_IN_SYSTEM(p) {
1165		FOREACH_THREAD_IN_PROC(p, td) {
1166			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1167				db_printf("chain %d:\n", i++);
1168				print_lockchain(td, " ");
1169			}
1170			if (db_pager_quit)
1171				return;
1172		}
1173	}
1174}
1175
1176/*
1177 * Show all the threads a particular thread is waiting on based on
1178 * sleepable locks.
1179 */
1180static void
1181print_sleepchain(struct thread *td, const char *prefix)
1182{
1183	struct thread *owner;
1184
1185	/*
1186	 * Follow the chain.  We keep walking as long as the thread is
1187	 * blocked on a sleep lock that has an owner.
1188	 */
1189	while (!db_pager_quit) {
1190		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1191		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1192		    td->td_proc->p_comm);
1193		switch (td->td_state) {
1194		case TDS_INACTIVE:
1195			db_printf("is inactive\n");
1196			return;
1197		case TDS_CAN_RUN:
1198			db_printf("can run\n");
1199			return;
1200		case TDS_RUNQ:
1201			db_printf("is on a run queue\n");
1202			return;
1203		case TDS_RUNNING:
1204			db_printf("running on CPU %d\n", td->td_oncpu);
1205			return;
1206		case TDS_INHIBITED:
1207			if (TD_ON_SLEEPQ(td)) {
1208				if (lockmgr_chain(td, &owner) ||
1209				    sx_chain(td, &owner)) {
1210					if (owner == NULL)
1211						return;
1212					td = owner;
1213					break;
1214				}
1215				db_printf("sleeping on %p \"%s\"\n",
1216				    td->td_wchan, td->td_wmesg);
1217				return;
1218			}
1219			db_printf("inhibited\n");
1220			return;
1221		default:
1222			db_printf("??? (%#x)\n", td->td_state);
1223			return;
1224		}
1225	}
1226}
1227
1228DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1229{
1230	struct thread *td;
1231
1232	/* Figure out which thread to start with. */
1233	if (have_addr)
1234		td = db_lookup_thread(addr, TRUE);
1235	else
1236		td = kdb_thread;
1237
1238	print_sleepchain(td, "");
1239}
1240
1241static void	print_waiters(struct turnstile *ts, int indent);
1242
1243static void
1244print_waiter(struct thread *td, int indent)
1245{
1246	struct turnstile *ts;
1247	int i;
1248
1249	if (db_pager_quit)
1250		return;
1251	for (i = 0; i < indent; i++)
1252		db_printf(" ");
1253	print_thread(td, "thread ");
1254	LIST_FOREACH(ts, &td->td_contested, ts_link)
1255		print_waiters(ts, indent + 1);
1256}
1257
1258static void
1259print_waiters(struct turnstile *ts, int indent)
1260{
1261	struct lock_object *lock;
1262	struct lock_class *class;
1263	struct thread *td;
1264	int i;
1265
1266	if (db_pager_quit)
1267		return;
1268	lock = ts->ts_lockobj;
1269	class = LOCK_CLASS(lock);
1270	for (i = 0; i < indent; i++)
1271		db_printf(" ");
1272	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1273	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1274		print_waiter(td, indent + 1);
1275	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1276		print_waiter(td, indent + 1);
1277	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1278		print_waiter(td, indent + 1);
1279}
1280
1281DB_SHOW_COMMAND(locktree, db_show_locktree)
1282{
1283	struct lock_object *lock;
1284	struct lock_class *class;
1285	struct turnstile_chain *tc;
1286	struct turnstile *ts;
1287
1288	if (!have_addr)
1289		return;
1290	lock = (struct lock_object *)addr;
1291	tc = TC_LOOKUP(lock);
1292	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1293		if (ts->ts_lockobj == lock)
1294			break;
1295	if (ts == NULL) {
1296		class = LOCK_CLASS(lock);
1297		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1298		    lock->lo_name);
1299	} else
1300		print_waiters(ts, 0);
1301}
1302#endif
1303