subr_turnstile.c revision 158031
1145436Sdavidxu/*-
2145436Sdavidxu * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3145436Sdavidxu *
4212516Simp * Redistribution and use in source and binary forms, with or without
5212516Simp * modification, are permitted provided that the following conditions
6212516Simp * are met:
7212516Simp * 1. Redistributions of source code must retain the above copyright
8145436Sdavidxu *    notice, this list of conditions and the following disclaimer.
9145436Sdavidxu * 2. Redistributions in binary form must reproduce the above copyright
10212516Simp *    notice, this list of conditions and the following disclaimer in the
11212516Simp *    documentation and/or other materials provided with the distribution.
12212516Simp * 3. Berkeley Software Design Inc's name may not be used to endorse or
13212516Simp *    promote products derived from this software without specific prior
14145436Sdavidxu *    written permission.
15145436Sdavidxu *
16145436Sdavidxu * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17145436Sdavidxu * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18145436Sdavidxu * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19145436Sdavidxu * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20145436Sdavidxu * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21145436Sdavidxu * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22145436Sdavidxu * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23145436Sdavidxu * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24145436Sdavidxu * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25145436Sdavidxu * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26145436Sdavidxu * SUCH DAMAGE.
27145436Sdavidxu *
28145436Sdavidxu *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29145436Sdavidxu *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of turnstiles used to hold queue of threads blocked on
34 * non-sleepable locks.  Sleepable locks use condition variables to
35 * implement their queues.  Turnstiles differ from a sleep queue in that
36 * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37 * when one thread is enqueued onto a turnstile, it can lend its priority
38 * to the owning thread.
39 *
40 * We wish to avoid bloating locks with an embedded turnstile and we do not
41 * want to use back-pointers in the locks for the same reason.  Thus, we
42 * use a similar approach to that of Solaris 7 as described in Solaris
43 * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44 * in a hash table based on the address of the lock.  Each entry in the
45 * hash table is a linked-lists of turnstiles and is called a turnstile
46 * chain.  Each chain contains a spin mutex that protects all of the
47 * turnstiles in the chain.
48 *
49 * Each time a thread is created, a turnstile is malloc'd and attached to
50 * that thread.  When a thread blocks on a lock, if it is the first thread
51 * to block, it lends its turnstile to the lock.  If the lock already has
52 * a turnstile, then it gives its turnstile to the lock's turnstile's free
53 * list.  When a thread is woken up, it takes a turnstile from the free list
54 * if there are any other waiters.  If it is the only thread blocked on the
55 * lock, then it reclaims the turnstile associated with the lock and removes
56 * it from the hash table.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/subr_turnstile.c 158031 2006-04-25 20:28:17Z jhb $");
61
62#include "opt_ddb.h"
63#include "opt_turnstile_profiling.h"
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/kernel.h>
68#include <sys/ktr.h>
69#include <sys/lock.h>
70#include <sys/malloc.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/queue.h>
74#include <sys/sched.h>
75#include <sys/sysctl.h>
76#include <sys/turnstile.h>
77
78#ifdef DDB
79#include <sys/kdb.h>
80#include <ddb/ddb.h>
81#endif
82
83/*
84 * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
85 * number chosen because the sleep queue's use the same value for the
86 * shift.  Basically, we ignore the lower 8 bits of the address.
87 * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
88 */
89#define	TC_TABLESIZE	128			/* Must be power of 2. */
90#define	TC_MASK		(TC_TABLESIZE - 1)
91#define	TC_SHIFT	8
92#define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
93#define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
94
95/*
96 * There are three different lists of turnstiles as follows.  The list
97 * connected by ts_link entries is a per-thread list of all the turnstiles
98 * attached to locks that we own.  This is used to fixup our priority when
99 * a lock is released.  The other two lists use the ts_hash entries.  The
100 * first of these two is the turnstile chain list that a turnstile is on
101 * when it is attached to a lock.  The second list to use ts_hash is the
102 * free list hung off of a turnstile that is attached to a lock.
103 *
104 * Each turnstile contains three lists of threads.  The two ts_blocked lists
105 * are linked list of threads blocked on the turnstile's lock.  One list is
106 * for exclusive waiters, and the other is for shared waiters.  The
107 * ts_pending list is a linked list of threads previously awakened by
108 * turnstile_signal() or turnstile_wait() that are waiting to be put on
109 * the run queue.
110 *
111 * Locking key:
112 *  c - turnstile chain lock
113 *  q - td_contested lock
114 */
115struct turnstile {
116	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
117	struct threadqueue ts_pending;		/* (c) Pending threads. */
118	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
119	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
120	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
121	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
122	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
123};
124
125struct turnstile_chain {
126	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
127	struct mtx tc_lock;			/* Spin lock for this chain. */
128#ifdef TURNSTILE_PROFILING
129	u_int	tc_depth;			/* Length of tc_queues. */
130	u_int	tc_max_depth;			/* Max length of tc_queues. */
131#endif
132};
133
134#ifdef TURNSTILE_PROFILING
135u_int turnstile_max_depth;
136SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling");
137SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
138    "turnstile chain stats");
139SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
140    &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain");
141#endif
142static struct mtx td_contested_lock;
143static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
144
145static MALLOC_DEFINE(M_TURNSTILE, "turnstiles", "turnstiles");
146
147/*
148 * Prototypes for non-exported routines.
149 */
150static void	init_turnstile0(void *dummy);
151#ifdef TURNSTILE_PROFILING
152static void	init_turnstile_profiling(void *arg);
153#endif
154static void	propagate_priority(struct thread *td);
155static int	turnstile_adjust_thread(struct turnstile *ts,
156		    struct thread *td);
157static struct thread *turnstile_first_waiter(struct turnstile *ts);
158static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
159
160/*
161 * Walks the chain of turnstiles and their owners to propagate the priority
162 * of the thread being blocked to all the threads holding locks that have to
163 * release their locks before this thread can run again.
164 */
165static void
166propagate_priority(struct thread *td)
167{
168	struct turnstile_chain *tc;
169	struct turnstile *ts;
170	int pri;
171
172	mtx_assert(&sched_lock, MA_OWNED);
173	pri = td->td_priority;
174	ts = td->td_blocked;
175	for (;;) {
176		td = ts->ts_owner;
177
178		if (td == NULL) {
179			/*
180			 * This might be a read lock with no owner.  There's
181			 * not much we can do, so just bail.
182			 */
183			return;
184		}
185
186		MPASS(td->td_proc != NULL);
187		MPASS(td->td_proc->p_magic == P_MAGIC);
188
189		/*
190		 * If the thread is asleep, then we are probably about
191		 * to deadlock.  To make debugging this easier, just
192		 * panic and tell the user which thread misbehaved so
193		 * they can hopefully get a stack trace from the truly
194		 * misbehaving thread.
195		 */
196		if (TD_IS_SLEEPING(td)) {
197			printf(
198		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
199			    td->td_tid, td->td_proc->p_pid);
200#ifdef DDB
201			db_trace_thread(td, -1);
202#endif
203			panic("sleeping thread");
204		}
205
206		/*
207		 * If this thread already has higher priority than the
208		 * thread that is being blocked, we are finished.
209		 */
210		if (td->td_priority <= pri)
211			return;
212
213		/*
214		 * Bump this thread's priority.
215		 */
216		sched_lend_prio(td, pri);
217
218		/*
219		 * If lock holder is actually running or on the run queue
220		 * then we are done.
221		 */
222		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
223			MPASS(td->td_blocked == NULL);
224			return;
225		}
226
227#ifndef SMP
228		/*
229		 * For UP, we check to see if td is curthread (this shouldn't
230		 * ever happen however as it would mean we are in a deadlock.)
231		 */
232		KASSERT(td != curthread, ("Deadlock detected"));
233#endif
234
235		/*
236		 * If we aren't blocked on a lock, we should be.
237		 */
238		KASSERT(TD_ON_LOCK(td), (
239		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
240		    td->td_tid, td->td_proc->p_comm, td->td_state,
241		    ts->ts_lockobj->lo_name));
242
243		/*
244		 * Pick up the lock that td is blocked on.
245		 */
246		ts = td->td_blocked;
247		MPASS(ts != NULL);
248		tc = TC_LOOKUP(ts->ts_lockobj);
249		mtx_lock_spin(&tc->tc_lock);
250
251		/* Resort td on the list if needed. */
252		if (!turnstile_adjust_thread(ts, td)) {
253			mtx_unlock_spin(&tc->tc_lock);
254			return;
255		}
256		mtx_unlock_spin(&tc->tc_lock);
257	}
258}
259
260/*
261 * Adjust the thread's position on a turnstile after its priority has been
262 * changed.
263 */
264static int
265turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
266{
267	struct turnstile_chain *tc;
268	struct thread *td1, *td2;
269	int queue;
270
271	mtx_assert(&sched_lock, MA_OWNED);
272	MPASS(TD_ON_LOCK(td));
273
274	/*
275	 * This thread may not be blocked on this turnstile anymore
276	 * but instead might already be woken up on another CPU
277	 * that is waiting on sched_lock in turnstile_unpend() to
278	 * finish waking this thread up.  We can detect this case
279	 * by checking to see if this thread has been given a
280	 * turnstile by either turnstile_signal() or
281	 * turnstile_broadcast().  In this case, treat the thread as
282	 * if it was already running.
283	 */
284	if (td->td_turnstile != NULL)
285		return (0);
286
287	/*
288	 * Check if the thread needs to be moved on the blocked chain.
289	 * It needs to be moved if either its priority is lower than
290	 * the previous thread or higher than the next thread.
291	 */
292	tc = TC_LOOKUP(ts->ts_lockobj);
293	mtx_assert(&tc->tc_lock, MA_OWNED);
294	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
295	td2 = TAILQ_NEXT(td, td_lockq);
296	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
297	    (td2 != NULL && td->td_priority > td2->td_priority)) {
298
299		/*
300		 * Remove thread from blocked chain and determine where
301		 * it should be moved to.
302		 */
303		queue = td->td_tsqueue;
304		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
305		mtx_lock_spin(&td_contested_lock);
306		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
307		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
308			MPASS(td1->td_proc->p_magic == P_MAGIC);
309			if (td1->td_priority > td->td_priority)
310				break;
311		}
312
313		if (td1 == NULL)
314			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
315		else
316			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
317		mtx_unlock_spin(&td_contested_lock);
318		if (td1 == NULL)
319			CTR3(KTR_LOCK,
320		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
321			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
322		else
323			CTR4(KTR_LOCK,
324		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
325			    td->td_tid, td1->td_tid, ts->ts_lockobj,
326			    ts->ts_lockobj->lo_name);
327	}
328	return (1);
329}
330
331/*
332 * Early initialization of turnstiles.  This is not done via a SYSINIT()
333 * since this needs to be initialized very early when mutexes are first
334 * initialized.
335 */
336void
337init_turnstiles(void)
338{
339	int i;
340
341	for (i = 0; i < TC_TABLESIZE; i++) {
342		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
343		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
344		    NULL, MTX_SPIN);
345	}
346	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
347	LIST_INIT(&thread0.td_contested);
348	thread0.td_turnstile = NULL;
349}
350
351#ifdef TURNSTILE_PROFILING
352static void
353init_turnstile_profiling(void *arg)
354{
355	struct sysctl_oid *chain_oid;
356	char chain_name[10];
357	int i;
358
359	for (i = 0; i < TC_TABLESIZE; i++) {
360		snprintf(chain_name, sizeof(chain_name), "%d", i);
361		chain_oid = SYSCTL_ADD_NODE(NULL,
362		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
363		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
364		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
365		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
366		    NULL);
367		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
368		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
369		    0, NULL);
370	}
371}
372SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
373    init_turnstile_profiling, NULL);
374#endif
375
376static void
377init_turnstile0(void *dummy)
378{
379
380	thread0.td_turnstile = turnstile_alloc();
381}
382SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
383
384/*
385 * Update a thread on the turnstile list after it's priority has been changed.
386 * The old priority is passed in as an argument.
387 */
388void
389turnstile_adjust(struct thread *td, u_char oldpri)
390{
391	struct turnstile_chain *tc;
392	struct turnstile *ts;
393
394	mtx_assert(&sched_lock, MA_OWNED);
395	MPASS(TD_ON_LOCK(td));
396
397	/*
398	 * Pick up the lock that td is blocked on.
399	 */
400	ts = td->td_blocked;
401	MPASS(ts != NULL);
402	tc = TC_LOOKUP(ts->ts_lockobj);
403	mtx_lock_spin(&tc->tc_lock);
404
405	/* Resort the turnstile on the list. */
406	if (!turnstile_adjust_thread(ts, td)) {
407		mtx_unlock_spin(&tc->tc_lock);
408		return;
409	}
410
411	/*
412	 * If our priority was lowered and we are at the head of the
413	 * turnstile, then propagate our new priority up the chain.
414	 * Note that we currently don't try to revoke lent priorities
415	 * when our priority goes up.
416	 */
417	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
418	    td->td_tsqueue == TS_SHARED_QUEUE);
419	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
420	    td->td_priority < oldpri) {
421		mtx_unlock_spin(&tc->tc_lock);
422		propagate_priority(td);
423	} else
424		mtx_unlock_spin(&tc->tc_lock);
425}
426
427/*
428 * Set the owner of the lock this turnstile is attached to.
429 */
430static void
431turnstile_setowner(struct turnstile *ts, struct thread *owner)
432{
433
434	mtx_assert(&td_contested_lock, MA_OWNED);
435	MPASS(ts->ts_owner == NULL);
436
437	/* A shared lock might not have an owner. */
438	if (owner == NULL)
439		return;
440
441	MPASS(owner->td_proc->p_magic == P_MAGIC);
442	ts->ts_owner = owner;
443	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
444}
445
446/*
447 * Malloc a turnstile for a new thread, initialize it and return it.
448 */
449struct turnstile *
450turnstile_alloc(void)
451{
452	struct turnstile *ts;
453
454	ts = malloc(sizeof(struct turnstile), M_TURNSTILE, M_WAITOK | M_ZERO);
455	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
456	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
457	TAILQ_INIT(&ts->ts_pending);
458	LIST_INIT(&ts->ts_free);
459	return (ts);
460}
461
462/*
463 * Free a turnstile when a thread is destroyed.
464 */
465void
466turnstile_free(struct turnstile *ts)
467{
468
469	MPASS(ts != NULL);
470	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
471	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
472	MPASS(TAILQ_EMPTY(&ts->ts_pending));
473	free(ts, M_TURNSTILE);
474}
475
476/*
477 * Lock the turnstile chain associated with the specified lock.
478 */
479void
480turnstile_lock(struct lock_object *lock)
481{
482	struct turnstile_chain *tc;
483
484	tc = TC_LOOKUP(lock);
485	mtx_lock_spin(&tc->tc_lock);
486}
487
488/*
489 * Look up the turnstile for a lock in the hash table locking the associated
490 * turnstile chain along the way.  If no turnstile is found in the hash
491 * table, NULL is returned.
492 */
493struct turnstile *
494turnstile_lookup(struct lock_object *lock)
495{
496	struct turnstile_chain *tc;
497	struct turnstile *ts;
498
499	tc = TC_LOOKUP(lock);
500	mtx_assert(&tc->tc_lock, MA_OWNED);
501	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
502		if (ts->ts_lockobj == lock)
503			return (ts);
504	return (NULL);
505}
506
507/*
508 * Unlock the turnstile chain associated with a given lock.
509 */
510void
511turnstile_release(struct lock_object *lock)
512{
513	struct turnstile_chain *tc;
514
515	tc = TC_LOOKUP(lock);
516	mtx_unlock_spin(&tc->tc_lock);
517}
518
519/*
520 * Return a pointer to the thread waiting on this turnstile with the
521 * most important priority or NULL if the turnstile has no waiters.
522 */
523static struct thread *
524turnstile_first_waiter(struct turnstile *ts)
525{
526	struct thread *std, *xtd;
527
528	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
529	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
530	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
531		return (std);
532	return (xtd);
533}
534
535/*
536 * Take ownership of a turnstile and adjust the priority of the new
537 * owner appropriately.
538 */
539void
540turnstile_claim(struct lock_object *lock)
541{
542	struct turnstile_chain *tc;
543	struct turnstile *ts;
544	struct thread *td, *owner;
545
546	tc = TC_LOOKUP(lock);
547	mtx_assert(&tc->tc_lock, MA_OWNED);
548	ts = turnstile_lookup(lock);
549	MPASS(ts != NULL);
550
551	owner = curthread;
552	mtx_lock_spin(&td_contested_lock);
553	turnstile_setowner(ts, owner);
554	mtx_unlock_spin(&td_contested_lock);
555
556	td = turnstile_first_waiter(ts);
557	MPASS(td != NULL);
558	MPASS(td->td_proc->p_magic == P_MAGIC);
559	mtx_unlock_spin(&tc->tc_lock);
560
561	/*
562	 * Update the priority of the new owner if needed.
563	 */
564	mtx_lock_spin(&sched_lock);
565	if (td->td_priority < owner->td_priority)
566		sched_lend_prio(owner, td->td_priority);
567	mtx_unlock_spin(&sched_lock);
568}
569
570/*
571 * Block the current thread on the turnstile assicated with 'lock'.  This
572 * function will context switch and not return until this thread has been
573 * woken back up.  This function must be called with the appropriate
574 * turnstile chain locked and will return with it unlocked.
575 */
576void
577turnstile_wait(struct lock_object *lock, struct thread *owner, int queue)
578{
579	struct turnstile_chain *tc;
580	struct turnstile *ts;
581	struct thread *td, *td1;
582
583	td = curthread;
584	tc = TC_LOOKUP(lock);
585	mtx_assert(&tc->tc_lock, MA_OWNED);
586	MPASS(td->td_turnstile != NULL);
587	if (queue == TS_SHARED_QUEUE)
588		MPASS(owner != NULL);
589	if (owner)
590		MPASS(owner->td_proc->p_magic == P_MAGIC);
591	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
592
593	/* Look up the turnstile associated with the lock 'lock'. */
594	ts = turnstile_lookup(lock);
595
596	/*
597	 * If the lock does not already have a turnstile, use this thread's
598	 * turnstile.  Otherwise insert the current thread into the
599	 * turnstile already in use by this lock.
600	 */
601	if (ts == NULL) {
602#ifdef TURNSTILE_PROFILING
603		tc->tc_depth++;
604		if (tc->tc_depth > tc->tc_max_depth) {
605			tc->tc_max_depth = tc->tc_depth;
606			if (tc->tc_max_depth > turnstile_max_depth)
607				turnstile_max_depth = tc->tc_max_depth;
608		}
609#endif
610		ts = td->td_turnstile;
611		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
612		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
613		    ("thread's turnstile has pending threads"));
614		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
615		    ("thread's turnstile has exclusive waiters"));
616		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
617		    ("thread's turnstile has shared waiters"));
618		KASSERT(LIST_EMPTY(&ts->ts_free),
619		    ("thread's turnstile has a non-empty free list"));
620		KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
621		ts->ts_lockobj = lock;
622		mtx_lock_spin(&td_contested_lock);
623		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
624		turnstile_setowner(ts, owner);
625		mtx_unlock_spin(&td_contested_lock);
626	} else {
627		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
628			if (td1->td_priority > td->td_priority)
629				break;
630		mtx_lock_spin(&td_contested_lock);
631		if (td1 != NULL)
632			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
633		else
634			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
635		MPASS(owner == ts->ts_owner);
636		mtx_unlock_spin(&td_contested_lock);
637		MPASS(td->td_turnstile != NULL);
638		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
639	}
640	td->td_turnstile = NULL;
641	mtx_unlock_spin(&tc->tc_lock);
642
643	mtx_lock_spin(&sched_lock);
644	/*
645	 * Handle race condition where a thread on another CPU that owns
646	 * lock 'lock' could have woken us in between us dropping the
647	 * turnstile chain lock and acquiring the sched_lock.
648	 */
649	if (td->td_flags & TDF_TSNOBLOCK) {
650		td->td_flags &= ~TDF_TSNOBLOCK;
651		mtx_unlock_spin(&sched_lock);
652		return;
653	}
654
655#ifdef notyet
656	/*
657	 * If we're borrowing an interrupted thread's VM context, we
658	 * must clean up before going to sleep.
659	 */
660	if (td->td_ithd != NULL) {
661		struct ithd *it = td->td_ithd;
662
663		if (it->it_interrupted) {
664			if (LOCK_LOG_TEST(lock, 0))
665				CTR3(KTR_LOCK, "%s: %p interrupted %p",
666				    __func__, it, it->it_interrupted);
667			intr_thd_fixup(it);
668		}
669	}
670#endif
671
672	/* Save who we are blocked on and switch. */
673	td->td_tsqueue = queue;
674	td->td_blocked = ts;
675	td->td_lockname = lock->lo_name;
676	TD_SET_LOCK(td);
677	propagate_priority(td);
678
679	if (LOCK_LOG_TEST(lock, 0))
680		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
681		    td->td_tid, lock, lock->lo_name);
682
683	mi_switch(SW_VOL, NULL);
684
685	if (LOCK_LOG_TEST(lock, 0))
686		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
687		    __func__, td->td_tid, lock, lock->lo_name);
688
689	mtx_unlock_spin(&sched_lock);
690}
691
692/*
693 * Pick the highest priority thread on this turnstile and put it on the
694 * pending list.  This must be called with the turnstile chain locked.
695 */
696int
697turnstile_signal(struct turnstile *ts, int queue)
698{
699	struct turnstile_chain *tc;
700	struct thread *td;
701	int empty;
702
703	MPASS(ts != NULL);
704	MPASS(curthread->td_proc->p_magic == P_MAGIC);
705	MPASS(ts->ts_owner == curthread ||
706	    (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
707	tc = TC_LOOKUP(ts->ts_lockobj);
708	mtx_assert(&tc->tc_lock, MA_OWNED);
709	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
710
711	/*
712	 * Pick the highest priority thread blocked on this lock and
713	 * move it to the pending list.
714	 */
715	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
716	MPASS(td->td_proc->p_magic == P_MAGIC);
717	mtx_lock_spin(&td_contested_lock);
718	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
719	mtx_unlock_spin(&td_contested_lock);
720	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
721
722	/*
723	 * If the turnstile is now empty, remove it from its chain and
724	 * give it to the about-to-be-woken thread.  Otherwise take a
725	 * turnstile from the free list and give it to the thread.
726	 */
727	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
728	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
729	if (empty) {
730		MPASS(LIST_EMPTY(&ts->ts_free));
731#ifdef TURNSTILE_PROFILING
732		tc->tc_depth--;
733#endif
734	} else
735		ts = LIST_FIRST(&ts->ts_free);
736	MPASS(ts != NULL);
737	LIST_REMOVE(ts, ts_hash);
738	td->td_turnstile = ts;
739
740	return (empty);
741}
742
743/*
744 * Put all blocked threads on the pending list.  This must be called with
745 * the turnstile chain locked.
746 */
747void
748turnstile_broadcast(struct turnstile *ts, int queue)
749{
750	struct turnstile_chain *tc;
751	struct turnstile *ts1;
752	struct thread *td;
753
754	MPASS(ts != NULL);
755	MPASS(curthread->td_proc->p_magic == P_MAGIC);
756	MPASS(ts->ts_owner == curthread ||
757	    (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
758	tc = TC_LOOKUP(ts->ts_lockobj);
759	mtx_assert(&tc->tc_lock, MA_OWNED);
760	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
761
762	/*
763	 * Transfer the blocked list to the pending list.
764	 */
765	mtx_lock_spin(&td_contested_lock);
766	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
767	mtx_unlock_spin(&td_contested_lock);
768
769	/*
770	 * Give a turnstile to each thread.  The last thread gets
771	 * this turnstile if the turnstile is empty.
772	 */
773	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
774		if (LIST_EMPTY(&ts->ts_free)) {
775			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
776			ts1 = ts;
777#ifdef TURNSTILE_PROFILING
778			tc->tc_depth--;
779#endif
780		} else
781			ts1 = LIST_FIRST(&ts->ts_free);
782		MPASS(ts1 != NULL);
783		LIST_REMOVE(ts1, ts_hash);
784		td->td_turnstile = ts1;
785	}
786}
787
788/*
789 * Wakeup all threads on the pending list and adjust the priority of the
790 * current thread appropriately.  This must be called with the turnstile
791 * chain locked.
792 */
793void
794turnstile_unpend(struct turnstile *ts, int owner_type)
795{
796	TAILQ_HEAD( ,thread) pending_threads;
797	struct turnstile_chain *tc;
798	struct thread *td;
799	u_char cp, pri;
800
801	MPASS(ts != NULL);
802	MPASS(ts->ts_owner == curthread ||
803	    (owner_type == TS_SHARED_LOCK && ts->ts_owner == NULL));
804	tc = TC_LOOKUP(ts->ts_lockobj);
805	mtx_assert(&tc->tc_lock, MA_OWNED);
806	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
807
808	/*
809	 * Move the list of pending threads out of the turnstile and
810	 * into a local variable.
811	 */
812	TAILQ_INIT(&pending_threads);
813	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
814#ifdef INVARIANTS
815	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
816	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
817		ts->ts_lockobj = NULL;
818#endif
819
820	/*
821	 * Remove the turnstile from this thread's list of contested locks
822	 * since this thread doesn't own it anymore.  New threads will
823	 * not be blocking on the turnstile until it is claimed by a new
824	 * owner.  There might not be a current owner if this is a shared
825	 * lock.
826	 */
827	if (ts->ts_owner != NULL) {
828		mtx_lock_spin(&td_contested_lock);
829		ts->ts_owner = NULL;
830		LIST_REMOVE(ts, ts_link);
831		mtx_unlock_spin(&td_contested_lock);
832	}
833	critical_enter();
834	mtx_unlock_spin(&tc->tc_lock);
835
836	/*
837	 * Adjust the priority of curthread based on other contested
838	 * locks it owns.  Don't lower the priority below the base
839	 * priority however.
840	 */
841	td = curthread;
842	pri = PRI_MAX;
843	mtx_lock_spin(&sched_lock);
844	mtx_lock_spin(&td_contested_lock);
845	LIST_FOREACH(ts, &td->td_contested, ts_link) {
846		cp = turnstile_first_waiter(ts)->td_priority;
847		if (cp < pri)
848			pri = cp;
849	}
850	mtx_unlock_spin(&td_contested_lock);
851	sched_unlend_prio(td, pri);
852
853	/*
854	 * Wake up all the pending threads.  If a thread is not blocked
855	 * on a lock, then it is currently executing on another CPU in
856	 * turnstile_wait() or sitting on a run queue waiting to resume
857	 * in turnstile_wait().  Set a flag to force it to try to acquire
858	 * the lock again instead of blocking.
859	 */
860	while (!TAILQ_EMPTY(&pending_threads)) {
861		td = TAILQ_FIRST(&pending_threads);
862		TAILQ_REMOVE(&pending_threads, td, td_lockq);
863		MPASS(td->td_proc->p_magic == P_MAGIC);
864		if (TD_ON_LOCK(td)) {
865			td->td_blocked = NULL;
866			td->td_lockname = NULL;
867#ifdef INVARIANTS
868			td->td_tsqueue = 0xff;
869#endif
870			TD_CLR_LOCK(td);
871			MPASS(TD_CAN_RUN(td));
872			setrunqueue(td, SRQ_BORING);
873		} else {
874			td->td_flags |= TDF_TSNOBLOCK;
875			MPASS(TD_IS_RUNNING(td) || TD_ON_RUNQ(td));
876		}
877	}
878	critical_exit();
879	mtx_unlock_spin(&sched_lock);
880}
881
882/*
883 * Give up ownership of a turnstile.  This must be called with the
884 * turnstile chain locked.
885 */
886void
887turnstile_disown(struct turnstile *ts)
888{
889	struct turnstile_chain *tc;
890	struct thread *td;
891	u_char cp, pri;
892
893	MPASS(ts != NULL);
894	MPASS(ts->ts_owner == curthread);
895	tc = TC_LOOKUP(ts->ts_lockobj);
896	mtx_assert(&tc->tc_lock, MA_OWNED);
897	MPASS(TAILQ_EMPTY(&ts->ts_pending));
898	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
899	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
900
901	/*
902	 * Remove the turnstile from this thread's list of contested locks
903	 * since this thread doesn't own it anymore.  New threads will
904	 * not be blocking on the turnstile until it is claimed by a new
905	 * owner.
906	 */
907	mtx_lock_spin(&td_contested_lock);
908	ts->ts_owner = NULL;
909	LIST_REMOVE(ts, ts_link);
910	mtx_unlock_spin(&td_contested_lock);
911	mtx_unlock_spin(&tc->tc_lock);
912
913	/*
914	 * Adjust the priority of curthread based on other contested
915	 * locks it owns.  Don't lower the priority below the base
916	 * priority however.
917	 */
918	td = curthread;
919	pri = PRI_MAX;
920	mtx_lock_spin(&sched_lock);
921	mtx_lock_spin(&td_contested_lock);
922	LIST_FOREACH(ts, &td->td_contested, ts_link) {
923		cp = turnstile_first_waiter(ts)->td_priority;
924		if (cp < pri)
925			pri = cp;
926	}
927	mtx_unlock_spin(&td_contested_lock);
928	sched_unlend_prio(td, pri);
929	mtx_unlock_spin(&sched_lock);
930}
931
932/*
933 * Return the first thread in a turnstile.
934 */
935struct thread *
936turnstile_head(struct turnstile *ts, int queue)
937{
938#ifdef INVARIANTS
939	struct turnstile_chain *tc;
940
941	MPASS(ts != NULL);
942	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
943	tc = TC_LOOKUP(ts->ts_lockobj);
944	mtx_assert(&tc->tc_lock, MA_OWNED);
945#endif
946	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
947}
948
949/*
950 * Returns true if a sub-queue of a turnstile is empty.
951 */
952int
953turnstile_empty(struct turnstile *ts, int queue)
954{
955#ifdef INVARIANTS
956	struct turnstile_chain *tc;
957
958	MPASS(ts != NULL);
959	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
960	tc = TC_LOOKUP(ts->ts_lockobj);
961	mtx_assert(&tc->tc_lock, MA_OWNED);
962#endif
963	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
964}
965
966#ifdef DDB
967static void
968print_thread(struct thread *td, const char *prefix)
969{
970
971	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
972	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
973	    td->td_proc->p_comm);
974}
975
976static void
977print_queue(struct threadqueue *queue, const char *header, const char *prefix)
978{
979	struct thread *td;
980
981	db_printf("%s:\n", header);
982	if (TAILQ_EMPTY(queue)) {
983		db_printf("%sempty\n", prefix);
984		return;
985	}
986	TAILQ_FOREACH(td, queue, td_lockq) {
987		print_thread(td, prefix);
988	}
989}
990
991DB_SHOW_COMMAND(turnstile, db_show_turnstile)
992{
993	struct turnstile_chain *tc;
994	struct turnstile *ts;
995	struct lock_object *lock;
996	int i;
997
998	if (!have_addr)
999		return;
1000
1001	/*
1002	 * First, see if there is an active turnstile for the lock indicated
1003	 * by the address.
1004	 */
1005	lock = (struct lock_object *)addr;
1006	tc = TC_LOOKUP(lock);
1007	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1008		if (ts->ts_lockobj == lock)
1009			goto found;
1010
1011	/*
1012	 * Second, see if there is an active turnstile at the address
1013	 * indicated.
1014	 */
1015	for (i = 0; i < TC_TABLESIZE; i++)
1016		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1017			if (ts == (struct turnstile *)addr)
1018				goto found;
1019		}
1020
1021	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1022	return;
1023found:
1024	lock = ts->ts_lockobj;
1025	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1026	    lock->lo_name);
1027	if (ts->ts_owner)
1028		print_thread(ts->ts_owner, "Lock Owner: ");
1029	else
1030		db_printf("Lock Owner: none\n");
1031	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1032	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1033	    "\t");
1034	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1035
1036}
1037
1038static void
1039print_threadchain(struct thread *td, const char *prefix)
1040{
1041	struct lock_object *lock;
1042	struct lock_class *class;
1043	struct turnstile *ts;
1044
1045	/*
1046	 * Follow the chain.  We keep walking as long as the thread is
1047	 * blocked on a turnstile that has an owner.
1048	 */
1049	for (;;) {
1050		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1051		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1052		    td->td_proc->p_comm);
1053		switch (td->td_state) {
1054		case TDS_INACTIVE:
1055			db_printf("is inactive\n");
1056			return;
1057		case TDS_CAN_RUN:
1058			db_printf("can run\n");
1059			return;
1060		case TDS_RUNQ:
1061			db_printf("is on a run queue\n");
1062			return;
1063		case TDS_RUNNING:
1064			db_printf("running on CPU %d\n", td->td_oncpu);
1065			return;
1066		case TDS_INHIBITED:
1067			if (TD_ON_LOCK(td)) {
1068				ts = td->td_blocked;
1069				lock = ts->ts_lockobj;
1070				class = LOCK_CLASS(lock);
1071				db_printf("blocked on lock %p (%s) \"%s\"\n",
1072				    lock, class->lc_name, lock->lo_name);
1073				if (ts->ts_owner == NULL)
1074					return;
1075				td = ts->ts_owner;
1076				break;
1077			}
1078			db_printf("inhibited\n");
1079			return;
1080		default:
1081			db_printf("??? (%#x)\n", td->td_state);
1082			return;
1083		}
1084	}
1085}
1086
1087DB_SHOW_COMMAND(threadchain, db_show_threadchain)
1088{
1089	struct thread *td;
1090
1091	/* Figure out which thread to start with. */
1092	if (have_addr)
1093		td = db_lookup_thread(addr, TRUE);
1094	else
1095		td = kdb_thread;
1096
1097	print_threadchain(td, "");
1098}
1099
1100DB_SHOW_COMMAND(allchains, db_show_allchains)
1101{
1102	struct thread *td;
1103	struct proc *p;
1104	int i;
1105
1106	i = 1;
1107	LIST_FOREACH(p, &allproc, p_list) {
1108		FOREACH_THREAD_IN_PROC(p, td) {
1109			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1110				db_printf("chain %d:\n", i++);
1111				print_threadchain(td, " ");
1112			}
1113		}
1114	}
1115}
1116
1117static void	print_waiters(struct turnstile *ts, int indent);
1118
1119static void
1120print_waiter(struct thread *td, int indent)
1121{
1122	struct turnstile *ts;
1123	int i;
1124
1125	for (i = 0; i < indent; i++)
1126		db_printf(" ");
1127	print_thread(td, "thread ");
1128	LIST_FOREACH(ts, &td->td_contested, ts_link)
1129		print_waiters(ts, indent + 1);
1130}
1131
1132static void
1133print_waiters(struct turnstile *ts, int indent)
1134{
1135	struct lock_object *lock;
1136	struct lock_class *class;
1137	struct thread *td;
1138	int i;
1139
1140	lock = ts->ts_lockobj;
1141	class = LOCK_CLASS(lock);
1142	for (i = 0; i < indent; i++)
1143		db_printf(" ");
1144	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1145	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1146		print_waiter(td, indent + 1);
1147	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1148		print_waiter(td, indent + 1);
1149	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1150		print_waiter(td, indent + 1);
1151}
1152
1153DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1154{
1155	struct lock_object *lock;
1156	struct lock_class *class;
1157	struct turnstile_chain *tc;
1158	struct turnstile *ts;
1159
1160	if (!have_addr)
1161		return;
1162	lock = (struct lock_object *)addr;
1163	tc = TC_LOOKUP(lock);
1164	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1165		if (ts->ts_lockobj == lock)
1166			break;
1167	if (ts == NULL) {
1168		class = LOCK_CLASS(lock);
1169		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1170		    lock->lo_name);
1171	} else
1172		print_waiters(ts, 0);
1173}
1174#endif
1175