subr_syscall.c revision 78636
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 78636 2001-06-22 23:05:11Z jhb $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_clock.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_isa.h"
49#include "opt_ktrace.h"
50#include "opt_npx.h"
51#include "opt_trap.h"
52
53#include <sys/param.h>
54#include <sys/bus.h>
55#include <sys/systm.h>
56#include <sys/proc.h>
57#include <sys/pioctl.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/mutex.h>
61#include <sys/resourcevar.h>
62#include <sys/signalvar.h>
63#include <sys/syscall.h>
64#include <sys/sysctl.h>
65#include <sys/sysent.h>
66#include <sys/uio.h>
67#include <sys/vmmeter.h>
68#ifdef KTRACE
69#include <sys/ktrace.h>
70#endif
71
72#include <vm/vm.h>
73#include <vm/vm_param.h>
74#include <sys/lock.h>
75#include <vm/pmap.h>
76#include <vm/vm_kern.h>
77#include <vm/vm_map.h>
78#include <vm/vm_page.h>
79#include <vm/vm_extern.h>
80
81#include <machine/cpu.h>
82#include <machine/md_var.h>
83#include <machine/pcb.h>
84#ifdef SMP
85#include <machine/smp.h>
86#endif
87#include <machine/tss.h>
88
89#include <i386/isa/icu.h>
90#include <i386/isa/intr_machdep.h>
91
92#ifdef POWERFAIL_NMI
93#include <sys/syslog.h>
94#include <machine/clock.h>
95#endif
96
97#include <machine/vm86.h>
98
99#include <ddb/ddb.h>
100
101#include <sys/sysctl.h>
102
103int (*pmath_emulate) __P((struct trapframe *));
104
105extern void trap __P((struct trapframe frame));
106extern int trapwrite __P((unsigned addr));
107extern void syscall __P((struct trapframe frame));
108extern void ast __P((struct trapframe *framep));
109
110static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
111static void trap_fatal __P((struct trapframe *, vm_offset_t));
112void dblfault_handler __P((void));
113
114extern inthand_t IDTVEC(lcall_syscall);
115
116#define MAX_TRAP_MSG		28
117static char *trap_msg[] = {
118	"",					/*  0 unused */
119	"privileged instruction fault",		/*  1 T_PRIVINFLT */
120	"",					/*  2 unused */
121	"breakpoint instruction fault",		/*  3 T_BPTFLT */
122	"",					/*  4 unused */
123	"",					/*  5 unused */
124	"arithmetic trap",			/*  6 T_ARITHTRAP */
125	"",					/*  7 unused */
126	"",					/*  8 unused */
127	"general protection fault",		/*  9 T_PROTFLT */
128	"trace trap",				/* 10 T_TRCTRAP */
129	"",					/* 11 unused */
130	"page fault",				/* 12 T_PAGEFLT */
131	"",					/* 13 unused */
132	"alignment fault",			/* 14 T_ALIGNFLT */
133	"",					/* 15 unused */
134	"",					/* 16 unused */
135	"",					/* 17 unused */
136	"integer divide fault",			/* 18 T_DIVIDE */
137	"non-maskable interrupt trap",		/* 19 T_NMI */
138	"overflow trap",			/* 20 T_OFLOW */
139	"FPU bounds check fault",		/* 21 T_BOUND */
140	"FPU device not available",		/* 22 T_DNA */
141	"double fault",				/* 23 T_DOUBLEFLT */
142	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
143	"invalid TSS fault",			/* 25 T_TSSFLT */
144	"segment not present fault",		/* 26 T_SEGNPFLT */
145	"stack fault",				/* 27 T_STKFLT */
146	"machine check trap",			/* 28 T_MCHK */
147};
148
149#if defined(I586_CPU) && !defined(NO_F00F_HACK)
150extern int has_f00f_bug;
151#endif
152
153#ifdef DDB
154static int ddb_on_nmi = 1;
155SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
156	&ddb_on_nmi, 0, "Go to DDB on NMI");
157#endif
158static int panic_on_nmi = 1;
159SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
160	&panic_on_nmi, 0, "Panic on NMI");
161
162#ifdef WITNESS
163extern char *syscallnames[];
164#endif
165
166void
167userret(p, frame, oticks)
168	struct proc *p;
169	struct trapframe *frame;
170	u_quad_t oticks;
171{
172	int sig;
173
174	PROC_LOCK(p);
175	while ((sig = CURSIG(p)) != 0)
176		postsig(sig);
177
178	mtx_lock_spin(&sched_lock);
179	PROC_UNLOCK_NOSWITCH(p);
180	p->p_pri.pri_level = p->p_pri.pri_user;
181	if (resched_wanted(p)) {
182		/*
183		 * Since we are curproc, clock will normally just change
184		 * our priority without moving us from one queue to another
185		 * (since the running process is not on a queue.)
186		 * If that happened after we setrunqueue ourselves but before we
187		 * mi_switch()'ed, we might not be on the queue indicated by
188		 * our priority.
189		 */
190		DROP_GIANT_NOSWITCH();
191		setrunqueue(p);
192		p->p_stats->p_ru.ru_nivcsw++;
193		mi_switch();
194		mtx_unlock_spin(&sched_lock);
195		PICKUP_GIANT();
196		PROC_LOCK(p);
197		while ((sig = CURSIG(p)) != 0)
198			postsig(sig);
199		mtx_lock_spin(&sched_lock);
200		PROC_UNLOCK_NOSWITCH(p);
201	}
202
203	/*
204	 * Charge system time if profiling.
205	 */
206	if (p->p_sflag & PS_PROFIL) {
207		mtx_unlock_spin(&sched_lock);
208		addupc_task(p, TRAPF_PC(frame),
209			    (u_int)(p->p_sticks - oticks) * psratio);
210	} else
211		mtx_unlock_spin(&sched_lock);
212}
213
214/*
215 * Exception, fault, and trap interface to the FreeBSD kernel.
216 * This common code is called from assembly language IDT gate entry
217 * routines that prepare a suitable stack frame, and restore this
218 * frame after the exception has been processed.
219 */
220
221void
222trap(frame)
223	struct trapframe frame;
224{
225	struct proc *p = curproc;
226	u_quad_t sticks = 0;
227	int i = 0, ucode = 0, type, code;
228	vm_offset_t eva;
229#ifdef POWERFAIL_NMI
230	static int lastalert = 0;
231#endif
232
233	atomic_add_int(&cnt.v_trap, 1);
234
235	if ((frame.tf_eflags & PSL_I) == 0) {
236		/*
237		 * Buggy application or kernel code has disabled
238		 * interrupts and then trapped.  Enabling interrupts
239		 * now is wrong, but it is better than running with
240		 * interrupts disabled until they are accidentally
241		 * enabled later.  XXX This is really bad if we trap
242		 * while holding a spin lock.
243		 */
244		type = frame.tf_trapno;
245		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
246			printf(
247			    "pid %ld (%s): trap %d with interrupts disabled\n",
248			    (long)curproc->p_pid, curproc->p_comm, type);
249		else if (type != T_BPTFLT && type != T_TRCTRAP) {
250			/*
251			 * XXX not quite right, since this may be for a
252			 * multiple fault in user mode.
253			 */
254			printf("kernel trap %d with interrupts disabled\n",
255			    type);
256			/*
257			 * We should walk p_heldmtx here and see if any are
258			 * spin mutexes, and not do this if so.
259			 */
260			enable_intr();
261		}
262	}
263
264	eva = 0;
265
266#if defined(I586_CPU) && !defined(NO_F00F_HACK)
267restart:
268#endif
269
270	type = frame.tf_trapno;
271	code = frame.tf_err;
272
273        if ((ISPL(frame.tf_cs) == SEL_UPL) ||
274	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
275		/* user trap */
276
277		mtx_lock_spin(&sched_lock);
278		sticks = p->p_sticks;
279		mtx_unlock_spin(&sched_lock);
280		p->p_md.md_regs = &frame;
281
282		switch (type) {
283		case T_PRIVINFLT:	/* privileged instruction fault */
284			ucode = type;
285			i = SIGILL;
286			break;
287
288		case T_BPTFLT:		/* bpt instruction fault */
289		case T_TRCTRAP:		/* trace trap */
290			frame.tf_eflags &= ~PSL_T;
291			i = SIGTRAP;
292			break;
293
294		case T_ARITHTRAP:	/* arithmetic trap */
295#ifdef DEV_NPX
296			ucode = npxtrap();
297			if (ucode == -1)
298				return;
299#else
300			ucode = code;
301#endif
302			i = SIGFPE;
303			break;
304
305			/*
306			 * The following two traps can happen in
307			 * vm86 mode, and, if so, we want to handle
308			 * them specially.
309			 */
310		case T_PROTFLT:		/* general protection fault */
311		case T_STKFLT:		/* stack fault */
312			if (frame.tf_eflags & PSL_VM) {
313				mtx_lock(&Giant);
314				i = vm86_emulate((struct vm86frame *)&frame);
315				mtx_unlock(&Giant);
316				if (i == 0)
317					goto user;
318				break;
319			}
320			/* FALL THROUGH */
321
322		case T_SEGNPFLT:	/* segment not present fault */
323		case T_TSSFLT:		/* invalid TSS fault */
324		case T_DOUBLEFLT:	/* double fault */
325		default:
326			ucode = code + BUS_SEGM_FAULT ;
327			i = SIGBUS;
328			break;
329
330		case T_PAGEFLT:		/* page fault */
331			/*
332			 * For some Cyrix CPUs, %cr2 is clobbered by
333			 * interrupts.  This problem is worked around by using
334			 * an interrupt gate for the pagefault handler.  We
335			 * are finally ready to read %cr2 and then must
336			 * reenable interrupts.
337			 */
338			eva = rcr2();
339			enable_intr();
340			i = trap_pfault(&frame, TRUE, eva);
341#if defined(I586_CPU) && !defined(NO_F00F_HACK)
342			if (i == -2) {
343				/*
344				 * f00f hack workaround has triggered, treat
345				 * as illegal instruction not page fault.
346				 */
347				frame.tf_trapno = T_PRIVINFLT;
348				goto restart;
349			}
350#endif
351			if (i == -1)
352				goto out;
353			if (i == 0)
354				goto user;
355
356			ucode = T_PAGEFLT;
357			break;
358
359		case T_DIVIDE:		/* integer divide fault */
360			ucode = FPE_INTDIV;
361			i = SIGFPE;
362			break;
363
364#ifdef DEV_ISA
365		case T_NMI:
366#ifdef POWERFAIL_NMI
367#ifndef TIMER_FREQ
368#  define TIMER_FREQ 1193182
369#endif
370			mtx_lock(&Giant);
371			if (time_second - lastalert > 10) {
372				log(LOG_WARNING, "NMI: power fail\n");
373				sysbeep(TIMER_FREQ/880, hz);
374				lastalert = time_second;
375			}
376			mtx_unlock(&Giant);
377			goto out;
378#else /* !POWERFAIL_NMI */
379			/* machine/parity/power fail/"kitchen sink" faults */
380			/* XXX Giant */
381			if (isa_nmi(code) == 0) {
382#ifdef DDB
383				/*
384				 * NMI can be hooked up to a pushbutton
385				 * for debugging.
386				 */
387				if (ddb_on_nmi) {
388					printf ("NMI ... going to debugger\n");
389					kdb_trap (type, 0, &frame);
390				}
391#endif /* DDB */
392				goto out;
393			} else if (panic_on_nmi)
394				panic("NMI indicates hardware failure");
395			break;
396#endif /* POWERFAIL_NMI */
397#endif /* DEV_ISA */
398
399		case T_OFLOW:		/* integer overflow fault */
400			ucode = FPE_INTOVF;
401			i = SIGFPE;
402			break;
403
404		case T_BOUND:		/* bounds check fault */
405			ucode = FPE_FLTSUB;
406			i = SIGFPE;
407			break;
408
409		case T_DNA:
410#ifdef DEV_NPX
411			/* transparent fault (due to context switch "late") */
412			if (npxdna())
413				goto out;
414#endif
415			if (!pmath_emulate) {
416				i = SIGFPE;
417				ucode = FPE_FPU_NP_TRAP;
418				break;
419			}
420			mtx_lock(&Giant);
421			i = (*pmath_emulate)(&frame);
422			mtx_unlock(&Giant);
423			if (i == 0) {
424				if (!(frame.tf_eflags & PSL_T))
425					goto out;
426				frame.tf_eflags &= ~PSL_T;
427				i = SIGTRAP;
428			}
429			/* else ucode = emulator_only_knows() XXX */
430			break;
431
432		case T_FPOPFLT:		/* FPU operand fetch fault */
433			ucode = T_FPOPFLT;
434			i = SIGILL;
435			break;
436		}
437	} else {
438		/* kernel trap */
439
440		switch (type) {
441		case T_PAGEFLT:			/* page fault */
442			/*
443			 * For some Cyrix CPUs, %cr2 is clobbered by
444			 * interrupts.  This problem is worked around by using
445			 * an interrupt gate for the pagefault handler.  We
446			 * are finally ready to read %cr2 and then must
447			 * reenable interrupts.
448			 */
449			eva = rcr2();
450			enable_intr();
451			(void) trap_pfault(&frame, FALSE, eva);
452			goto out;
453
454		case T_DNA:
455#ifdef DEV_NPX
456			/*
457			 * The kernel is apparently using npx for copying.
458			 * XXX this should be fatal unless the kernel has
459			 * registered such use.
460			 */
461			if (npxdna())
462				goto out;
463#endif
464			break;
465
466			/*
467			 * The following two traps can happen in
468			 * vm86 mode, and, if so, we want to handle
469			 * them specially.
470			 */
471		case T_PROTFLT:		/* general protection fault */
472		case T_STKFLT:		/* stack fault */
473			if (frame.tf_eflags & PSL_VM) {
474				mtx_lock(&Giant);
475				i = vm86_emulate((struct vm86frame *)&frame);
476				mtx_unlock(&Giant);
477				if (i != 0)
478					/*
479					 * returns to original process
480					 */
481					vm86_trap((struct vm86frame *)&frame);
482				goto out;
483			}
484			if (type == T_STKFLT)
485				break;
486
487			/* FALL THROUGH */
488
489		case T_SEGNPFLT:	/* segment not present fault */
490			if (in_vm86call)
491				break;
492
493			if (p->p_intr_nesting_level != 0)
494				break;
495
496			/*
497			 * Invalid %fs's and %gs's can be created using
498			 * procfs or PT_SETREGS or by invalidating the
499			 * underlying LDT entry.  This causes a fault
500			 * in kernel mode when the kernel attempts to
501			 * switch contexts.  Lose the bad context
502			 * (XXX) so that we can continue, and generate
503			 * a signal.
504			 */
505			if (frame.tf_eip == (int)cpu_switch_load_gs) {
506				PCPU_GET(curpcb)->pcb_gs = 0;
507				PROC_LOCK(p);
508				psignal(p, SIGBUS);
509				PROC_UNLOCK(p);
510				goto out;
511			}
512
513			/*
514			 * Invalid segment selectors and out of bounds
515			 * %eip's and %esp's can be set up in user mode.
516			 * This causes a fault in kernel mode when the
517			 * kernel tries to return to user mode.  We want
518			 * to get this fault so that we can fix the
519			 * problem here and not have to check all the
520			 * selectors and pointers when the user changes
521			 * them.
522			 */
523			if (frame.tf_eip == (int)doreti_iret) {
524				frame.tf_eip = (int)doreti_iret_fault;
525				goto out;
526			}
527			if (frame.tf_eip == (int)doreti_popl_ds) {
528				frame.tf_eip = (int)doreti_popl_ds_fault;
529				goto out;
530			}
531			if (frame.tf_eip == (int)doreti_popl_es) {
532				frame.tf_eip = (int)doreti_popl_es_fault;
533				goto out;
534			}
535			if (frame.tf_eip == (int)doreti_popl_fs) {
536				frame.tf_eip = (int)doreti_popl_fs_fault;
537				goto out;
538			}
539			if (PCPU_GET(curpcb) != NULL &&
540			    PCPU_GET(curpcb)->pcb_onfault != NULL) {
541				frame.tf_eip =
542				    (int)PCPU_GET(curpcb)->pcb_onfault;
543				goto out;
544			}
545			break;
546
547		case T_TSSFLT:
548			/*
549			 * PSL_NT can be set in user mode and isn't cleared
550			 * automatically when the kernel is entered.  This
551			 * causes a TSS fault when the kernel attempts to
552			 * `iret' because the TSS link is uninitialized.  We
553			 * want to get this fault so that we can fix the
554			 * problem here and not every time the kernel is
555			 * entered.
556			 */
557			if (frame.tf_eflags & PSL_NT) {
558				frame.tf_eflags &= ~PSL_NT;
559				goto out;
560			}
561			break;
562
563		case T_TRCTRAP:	 /* trace trap */
564			if (frame.tf_eip == (int)IDTVEC(lcall_syscall)) {
565				/*
566				 * We've just entered system mode via the
567				 * syscall lcall.  Continue single stepping
568				 * silently until the syscall handler has
569				 * saved the flags.
570				 */
571				goto out;
572			}
573			if (frame.tf_eip == (int)IDTVEC(lcall_syscall) + 1) {
574				/*
575				 * The syscall handler has now saved the
576				 * flags.  Stop single stepping it.
577				 */
578				frame.tf_eflags &= ~PSL_T;
579				goto out;
580			}
581			/*
582			 * Ignore debug register trace traps due to
583			 * accesses in the user's address space, which
584			 * can happen under several conditions such as
585			 * if a user sets a watchpoint on a buffer and
586			 * then passes that buffer to a system call.
587			 * We still want to get TRCTRAPS for addresses
588			 * in kernel space because that is useful when
589			 * debugging the kernel.
590			 */
591			/* XXX Giant */
592			if (user_dbreg_trap() && !in_vm86call) {
593				/*
594				 * Reset breakpoint bits because the
595				 * processor doesn't
596				 */
597				load_dr6(rdr6() & 0xfffffff0);
598				goto out;
599			}
600			/*
601			 * Fall through (TRCTRAP kernel mode, kernel address)
602			 */
603		case T_BPTFLT:
604			/*
605			 * If DDB is enabled, let it handle the debugger trap.
606			 * Otherwise, debugger traps "can't happen".
607			 */
608#ifdef DDB
609			/* XXX Giant */
610			if (kdb_trap (type, 0, &frame))
611				goto out;
612#endif
613			break;
614
615#ifdef DEV_ISA
616		case T_NMI:
617#ifdef POWERFAIL_NMI
618			mtx_lock(&Giant);
619			if (time_second - lastalert > 10) {
620				log(LOG_WARNING, "NMI: power fail\n");
621				sysbeep(TIMER_FREQ/880, hz);
622				lastalert = time_second;
623			}
624			mtx_unlock(&Giant);
625			goto out;
626#else /* !POWERFAIL_NMI */
627			/* XXX Giant */
628			/* machine/parity/power fail/"kitchen sink" faults */
629			if (isa_nmi(code) == 0) {
630#ifdef DDB
631				/*
632				 * NMI can be hooked up to a pushbutton
633				 * for debugging.
634				 */
635				if (ddb_on_nmi) {
636					printf ("NMI ... going to debugger\n");
637					kdb_trap (type, 0, &frame);
638				}
639#endif /* DDB */
640				goto out;
641			} else if (panic_on_nmi == 0)
642				goto out;
643			/* FALL THROUGH */
644#endif /* POWERFAIL_NMI */
645#endif /* DEV_ISA */
646		}
647
648		trap_fatal(&frame, eva);
649		goto out;
650	}
651
652	mtx_lock(&Giant);
653	/* Translate fault for emulators (e.g. Linux) */
654	if (*p->p_sysent->sv_transtrap)
655		i = (*p->p_sysent->sv_transtrap)(i, type);
656
657	trapsignal(p, i, ucode);
658
659#ifdef DEBUG
660	if (type <= MAX_TRAP_MSG) {
661		uprintf("fatal process exception: %s",
662			trap_msg[type]);
663		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
664			uprintf(", fault VA = 0x%lx", (u_long)eva);
665		uprintf("\n");
666	}
667#endif
668	mtx_unlock(&Giant);
669
670user:
671	userret(p, &frame, sticks);
672	if (mtx_owned(&Giant))
673		mtx_unlock(&Giant);
674out:
675	return;
676}
677
678#ifdef notyet
679/*
680 * This version doesn't allow a page fault to user space while
681 * in the kernel. The rest of the kernel needs to be made "safe"
682 * before this can be used. I think the only things remaining
683 * to be made safe are the iBCS2 code and the process tracing/
684 * debugging code.
685 */
686static int
687trap_pfault(frame, usermode, eva)
688	struct trapframe *frame;
689	int usermode;
690	vm_offset_t eva;
691{
692	vm_offset_t va;
693	struct vmspace *vm = NULL;
694	vm_map_t map = 0;
695	int rv = 0;
696	vm_prot_t ftype;
697	struct proc *p = curproc;
698
699	if (frame->tf_err & PGEX_W)
700		ftype = VM_PROT_WRITE;
701	else
702		ftype = VM_PROT_READ;
703
704	va = trunc_page(eva);
705	if (va < VM_MIN_KERNEL_ADDRESS) {
706		vm_offset_t v;
707		vm_page_t mpte;
708
709		if (p == NULL ||
710		    (!usermode && va < VM_MAXUSER_ADDRESS &&
711		     (p->p_intr_nesting_level != 0 ||
712		      PCPU_GET(curpcb) == NULL ||
713		      PCPU_GET(curpcb)->pcb_onfault == NULL))) {
714			trap_fatal(frame, eva);
715			return (-1);
716		}
717
718		/*
719		 * This is a fault on non-kernel virtual memory.
720		 * vm is initialized above to NULL. If curproc is NULL
721		 * or curproc->p_vmspace is NULL the fault is fatal.
722		 */
723		vm = p->p_vmspace;
724		if (vm == NULL)
725			goto nogo;
726
727		map = &vm->vm_map;
728
729		/*
730		 * Keep swapout from messing with us during this
731		 *	critical time.
732		 */
733		PROC_LOCK(p);
734		++p->p_lock;
735		PROC_UNLOCK(p);
736
737		/*
738		 * Grow the stack if necessary
739		 */
740		/* grow_stack returns false only if va falls into
741		 * a growable stack region and the stack growth
742		 * fails.  It returns true if va was not within
743		 * a growable stack region, or if the stack
744		 * growth succeeded.
745		 */
746		if (!grow_stack (p, va))
747			rv = KERN_FAILURE;
748		else
749			/* Fault in the user page: */
750			rv = vm_fault(map, va, ftype,
751			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
752						      : VM_FAULT_NORMAL);
753
754		PROC_LOCK(p);
755		--p->p_lock;
756		PROC_UNLOCK(p);
757	} else {
758		/*
759		 * Don't allow user-mode faults in kernel address space.
760		 */
761		if (usermode)
762			goto nogo;
763
764		/*
765		 * Since we know that kernel virtual address addresses
766		 * always have pte pages mapped, we just have to fault
767		 * the page.
768		 */
769		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
770	}
771
772	if (rv == KERN_SUCCESS)
773		return (0);
774nogo:
775	if (!usermode) {
776		if (p->p_intr_nesting_level == 0 &&
777		    PCPU_GET(curpcb) != NULL &&
778		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
779			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
780			return (0);
781		}
782		trap_fatal(frame, eva);
783		return (-1);
784	}
785
786	/* kludge to pass faulting virtual address to sendsig */
787	frame->tf_err = eva;
788
789	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
790}
791#endif
792
793int
794trap_pfault(frame, usermode, eva)
795	struct trapframe *frame;
796	int usermode;
797	vm_offset_t eva;
798{
799	vm_offset_t va;
800	struct vmspace *vm = NULL;
801	vm_map_t map = 0;
802	int rv = 0;
803	vm_prot_t ftype;
804	struct proc *p = curproc;
805
806	va = trunc_page(eva);
807	if (va >= KERNBASE) {
808		/*
809		 * Don't allow user-mode faults in kernel address space.
810		 * An exception:  if the faulting address is the invalid
811		 * instruction entry in the IDT, then the Intel Pentium
812		 * F00F bug workaround was triggered, and we need to
813		 * treat it is as an illegal instruction, and not a page
814		 * fault.
815		 */
816#if defined(I586_CPU) && !defined(NO_F00F_HACK)
817		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
818			return -2;
819#endif
820		if (usermode)
821			goto nogo;
822
823		map = kernel_map;
824	} else {
825		/*
826		 * This is a fault on non-kernel virtual memory.
827		 * vm is initialized above to NULL. If curproc is NULL
828		 * or curproc->p_vmspace is NULL the fault is fatal.
829		 */
830		if (p != NULL)
831			vm = p->p_vmspace;
832
833		if (vm == NULL)
834			goto nogo;
835
836		map = &vm->vm_map;
837	}
838
839	if (frame->tf_err & PGEX_W)
840		ftype = VM_PROT_WRITE;
841	else
842		ftype = VM_PROT_READ;
843
844	if (map != kernel_map) {
845		/*
846		 * Keep swapout from messing with us during this
847		 *	critical time.
848		 */
849		PROC_LOCK(p);
850		++p->p_lock;
851		PROC_UNLOCK(p);
852
853		/*
854		 * Grow the stack if necessary
855		 */
856		/* grow_stack returns false only if va falls into
857		 * a growable stack region and the stack growth
858		 * fails.  It returns true if va was not within
859		 * a growable stack region, or if the stack
860		 * growth succeeded.
861		 */
862		if (!grow_stack (p, va))
863			rv = KERN_FAILURE;
864		else
865			/* Fault in the user page: */
866			rv = vm_fault(map, va, ftype,
867			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
868						      : VM_FAULT_NORMAL);
869
870		PROC_LOCK(p);
871		--p->p_lock;
872		PROC_UNLOCK(p);
873	} else {
874		/*
875		 * Don't have to worry about process locking or stacks in the
876		 * kernel.
877		 */
878		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
879	}
880
881	if (rv == KERN_SUCCESS)
882		return (0);
883nogo:
884	if (!usermode) {
885		if (p->p_intr_nesting_level == 0 &&
886		    PCPU_GET(curpcb) != NULL &&
887		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
888			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
889			return (0);
890		}
891		trap_fatal(frame, eva);
892		return (-1);
893	}
894
895	/* kludge to pass faulting virtual address to sendsig */
896	frame->tf_err = eva;
897
898	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
899}
900
901static void
902trap_fatal(frame, eva)
903	struct trapframe *frame;
904	vm_offset_t eva;
905{
906	int code, type, ss, esp;
907	struct soft_segment_descriptor softseg;
908
909	code = frame->tf_err;
910	type = frame->tf_trapno;
911	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
912
913	if (type <= MAX_TRAP_MSG)
914		printf("\n\nFatal trap %d: %s while in %s mode\n",
915			type, trap_msg[type],
916        		frame->tf_eflags & PSL_VM ? "vm86" :
917			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
918#ifdef SMP
919	/* two separate prints in case of a trap on an unmapped page */
920	printf("cpuid = %d; ", PCPU_GET(cpuid));
921	printf("lapic.id = %08x\n", lapic.id);
922#endif
923	if (type == T_PAGEFLT) {
924		printf("fault virtual address	= 0x%x\n", eva);
925		printf("fault code		= %s %s, %s\n",
926			code & PGEX_U ? "user" : "supervisor",
927			code & PGEX_W ? "write" : "read",
928			code & PGEX_P ? "protection violation" : "page not present");
929	}
930	printf("instruction pointer	= 0x%x:0x%x\n",
931	       frame->tf_cs & 0xffff, frame->tf_eip);
932        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
933		ss = frame->tf_ss & 0xffff;
934		esp = frame->tf_esp;
935	} else {
936		ss = GSEL(GDATA_SEL, SEL_KPL);
937		esp = (int)&frame->tf_esp;
938	}
939	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
940	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
941	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
942	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
943	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
944	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
945	       softseg.ssd_gran);
946	printf("processor eflags	= ");
947	if (frame->tf_eflags & PSL_T)
948		printf("trace trap, ");
949	if (frame->tf_eflags & PSL_I)
950		printf("interrupt enabled, ");
951	if (frame->tf_eflags & PSL_NT)
952		printf("nested task, ");
953	if (frame->tf_eflags & PSL_RF)
954		printf("resume, ");
955	if (frame->tf_eflags & PSL_VM)
956		printf("vm86, ");
957	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
958	printf("current process		= ");
959	if (curproc) {
960		printf("%lu (%s)\n",
961		    (u_long)curproc->p_pid, curproc->p_comm ?
962		    curproc->p_comm : "");
963	} else {
964		printf("Idle\n");
965	}
966
967#ifdef KDB
968	if (kdb_trap(&psl))
969		return;
970#endif
971#ifdef DDB
972	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
973		return;
974#endif
975	printf("trap number		= %d\n", type);
976	if (type <= MAX_TRAP_MSG)
977		panic(trap_msg[type]);
978	else
979		panic("unknown/reserved trap");
980}
981
982/*
983 * Double fault handler. Called when a fault occurs while writing
984 * a frame for a trap/exception onto the stack. This usually occurs
985 * when the stack overflows (such is the case with infinite recursion,
986 * for example).
987 *
988 * XXX Note that the current PTD gets replaced by IdlePTD when the
989 * task switch occurs. This means that the stack that was active at
990 * the time of the double fault is not available at <kstack> unless
991 * the machine was idle when the double fault occurred. The downside
992 * of this is that "trace <ebp>" in ddb won't work.
993 */
994void
995dblfault_handler()
996{
997	printf("\nFatal double fault:\n");
998	printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip));
999	printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp));
1000	printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp));
1001#ifdef SMP
1002	/* two separate prints in case of a trap on an unmapped page */
1003	printf("cpuid = %d; ", PCPU_GET(cpuid));
1004	printf("lapic.id = %08x\n", lapic.id);
1005#endif
1006	panic("double fault");
1007}
1008
1009/*
1010 * Compensate for 386 brain damage (missing URKR).
1011 * This is a little simpler than the pagefault handler in trap() because
1012 * it the page tables have already been faulted in and high addresses
1013 * are thrown out early for other reasons.
1014 */
1015int trapwrite(addr)
1016	unsigned addr;
1017{
1018	struct proc *p;
1019	vm_offset_t va;
1020	struct vmspace *vm;
1021	int rv;
1022
1023	va = trunc_page((vm_offset_t)addr);
1024	/*
1025	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1026	 */
1027	if (va >= VM_MAXUSER_ADDRESS)
1028		return (1);
1029
1030	p = curproc;
1031	vm = p->p_vmspace;
1032
1033	PROC_LOCK(p);
1034	++p->p_lock;
1035	PROC_UNLOCK(p);
1036
1037	if (!grow_stack (p, va))
1038		rv = KERN_FAILURE;
1039	else
1040		/*
1041		 * fault the data page
1042		 */
1043		rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1044
1045	PROC_LOCK(p);
1046	--p->p_lock;
1047	PROC_UNLOCK(p);
1048
1049	if (rv != KERN_SUCCESS)
1050		return 1;
1051
1052	return (0);
1053}
1054
1055/*
1056 *	syscall -	MP aware system call request C handler
1057 *
1058 *	A system call is essentially treated as a trap except that the
1059 *	MP lock is not held on entry or return.  We are responsible for
1060 *	obtaining the MP lock if necessary and for handling ASTs
1061 *	(e.g. a task switch) prior to return.
1062 *
1063 *	In general, only simple access and manipulation of curproc and
1064 *	the current stack is allowed without having to hold MP lock.
1065 */
1066void
1067syscall(frame)
1068	struct trapframe frame;
1069{
1070	caddr_t params;
1071	int i;
1072	struct sysent *callp;
1073	struct proc *p = curproc;
1074	u_quad_t sticks;
1075	int error;
1076	int narg;
1077	int args[8];
1078	u_int code;
1079
1080	atomic_add_int(&cnt.v_syscall, 1);
1081
1082#ifdef DIAGNOSTIC
1083	if (ISPL(frame.tf_cs) != SEL_UPL) {
1084		mtx_lock(&Giant);
1085		panic("syscall");
1086		/* NOT REACHED */
1087	}
1088#endif
1089
1090	mtx_lock_spin(&sched_lock);
1091	sticks = p->p_sticks;
1092	mtx_unlock_spin(&sched_lock);
1093
1094	p->p_md.md_regs = &frame;
1095	params = (caddr_t)frame.tf_esp + sizeof(int);
1096	code = frame.tf_eax;
1097
1098	if (p->p_sysent->sv_prepsyscall) {
1099		/*
1100		 * The prep code is not MP aware.
1101		 */
1102		mtx_lock(&Giant);
1103		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1104		mtx_unlock(&Giant);
1105	} else {
1106		/*
1107		 * Need to check if this is a 32 bit or 64 bit syscall.
1108		 * fuword is MP aware.
1109		 */
1110		if (code == SYS_syscall) {
1111			/*
1112			 * Code is first argument, followed by actual args.
1113			 */
1114			code = fuword(params);
1115			params += sizeof(int);
1116		} else if (code == SYS___syscall) {
1117			/*
1118			 * Like syscall, but code is a quad, so as to maintain
1119			 * quad alignment for the rest of the arguments.
1120			 */
1121			code = fuword(params);
1122			params += sizeof(quad_t);
1123		}
1124	}
1125
1126 	if (p->p_sysent->sv_mask)
1127 		code &= p->p_sysent->sv_mask;
1128
1129 	if (code >= p->p_sysent->sv_size)
1130 		callp = &p->p_sysent->sv_table[0];
1131  	else
1132 		callp = &p->p_sysent->sv_table[code];
1133
1134	narg = callp->sy_narg & SYF_ARGMASK;
1135
1136	/*
1137	 * copyin is MP aware, but the tracing code is not
1138	 */
1139	if (params && (i = narg * sizeof(int)) &&
1140	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1141		mtx_lock(&Giant);
1142#ifdef KTRACE
1143		if (KTRPOINT(p, KTR_SYSCALL))
1144			ktrsyscall(p->p_tracep, code, narg, args);
1145#endif
1146		goto bad;
1147	}
1148
1149	/*
1150	 * Try to run the syscall without the MP lock if the syscall
1151	 * is MP safe.
1152	 */
1153	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1154		mtx_lock(&Giant);
1155	}
1156
1157#ifdef KTRACE
1158	/*
1159	 * We have to obtain the MP lock no matter what if
1160	 * we are ktracing
1161	 */
1162	if (KTRPOINT(p, KTR_SYSCALL)) {
1163		if (!mtx_owned(&Giant))
1164			mtx_lock(&Giant);
1165		ktrsyscall(p->p_tracep, code, narg, args);
1166	}
1167#endif
1168	p->p_retval[0] = 0;
1169	p->p_retval[1] = frame.tf_edx;
1170
1171	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1172
1173	error = (*callp->sy_call)(p, args);
1174
1175	/*
1176	 * MP SAFE (we may or may not have the MP lock at this point)
1177	 */
1178	switch (error) {
1179	case 0:
1180		frame.tf_eax = p->p_retval[0];
1181		frame.tf_edx = p->p_retval[1];
1182		frame.tf_eflags &= ~PSL_C;
1183		break;
1184
1185	case ERESTART:
1186		/*
1187		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1188		 * int 0x80 is 2 bytes. We saved this in tf_err.
1189		 */
1190		frame.tf_eip -= frame.tf_err;
1191		break;
1192
1193	case EJUSTRETURN:
1194		break;
1195
1196	default:
1197bad:
1198 		if (p->p_sysent->sv_errsize) {
1199 			if (error >= p->p_sysent->sv_errsize)
1200  				error = -1;	/* XXX */
1201   			else
1202  				error = p->p_sysent->sv_errtbl[error];
1203		}
1204		frame.tf_eax = error;
1205		frame.tf_eflags |= PSL_C;
1206		break;
1207	}
1208
1209	/*
1210	 * Traced syscall.  trapsignal() is not MP aware.
1211	 */
1212	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1213		if (!mtx_owned(&Giant))
1214			mtx_lock(&Giant);
1215		frame.tf_eflags &= ~PSL_T;
1216		trapsignal(p, SIGTRAP, 0);
1217	}
1218
1219	/*
1220	 * Handle reschedule and other end-of-syscall issues
1221	 */
1222	userret(p, &frame, sticks);
1223
1224#ifdef KTRACE
1225	if (KTRPOINT(p, KTR_SYSRET)) {
1226		if (!mtx_owned(&Giant))
1227			mtx_lock(&Giant);
1228		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1229	}
1230#endif
1231
1232	/*
1233	 * Release Giant if we had to get it
1234	 */
1235	if (mtx_owned(&Giant))
1236		mtx_unlock(&Giant);
1237
1238	/*
1239	 * This works because errno is findable through the
1240	 * register set.  If we ever support an emulation where this
1241	 * is not the case, this code will need to be revisited.
1242	 */
1243	STOPEVENT(p, S_SCX, code);
1244
1245#ifdef WITNESS
1246	if (witness_list(p)) {
1247		panic("system call %s returning with mutex(s) held\n",
1248		    syscallnames[code]);
1249	}
1250#endif
1251	mtx_assert(&sched_lock, MA_NOTOWNED);
1252	mtx_assert(&Giant, MA_NOTOWNED);
1253}
1254
1255void
1256ast(framep)
1257	struct trapframe *framep;
1258{
1259	struct proc *p = CURPROC;
1260	u_quad_t sticks;
1261#if defined(DEV_NPX) && !defined(SMP)
1262	int ucode;
1263#endif
1264
1265	KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
1266
1267	/*
1268	 * We check for a pending AST here rather than in the assembly as
1269	 * acquiring and releasing mutexes in assembly is not fun.
1270	 */
1271	mtx_lock_spin(&sched_lock);
1272	if (!(astpending(p) || resched_wanted(p))) {
1273		mtx_unlock_spin(&sched_lock);
1274		return;
1275	}
1276
1277	sticks = p->p_sticks;
1278	p->p_md.md_regs = framep;
1279
1280	astoff(p);
1281	cnt.v_soft++;
1282	mtx_intr_enable(&sched_lock);
1283	if (p->p_sflag & PS_OWEUPC) {
1284		p->p_sflag &= ~PS_OWEUPC;
1285		mtx_unlock_spin(&sched_lock);
1286		mtx_lock(&Giant);
1287		addupc_task(p, p->p_stats->p_prof.pr_addr,
1288			    p->p_stats->p_prof.pr_ticks);
1289		mtx_lock_spin(&sched_lock);
1290	}
1291	if (p->p_sflag & PS_ALRMPEND) {
1292		p->p_sflag &= ~PS_ALRMPEND;
1293		mtx_unlock_spin(&sched_lock);
1294		PROC_LOCK(p);
1295		psignal(p, SIGVTALRM);
1296		PROC_UNLOCK(p);
1297		mtx_lock_spin(&sched_lock);
1298	}
1299#if defined(DEV_NPX) && !defined(SMP)
1300	if (PCPU_GET(curpcb)->pcb_flags & PCB_NPXTRAP) {
1301		PCPU_GET(curpcb)->pcb_flags &= ~PCB_NPXTRAP;
1302		mtx_unlock_spin(&sched_lock);
1303		ucode = npxtrap();
1304		if (ucode != -1) {
1305			if (!mtx_owned(&Giant))
1306				mtx_lock(&Giant);
1307			trapsignal(p, SIGFPE, ucode);
1308		}
1309		mtx_lock_spin(&sched_lock);
1310	}
1311#endif
1312	if (p->p_sflag & PS_PROFPEND) {
1313		p->p_sflag &= ~PS_PROFPEND;
1314		mtx_unlock_spin(&sched_lock);
1315		PROC_LOCK(p);
1316		psignal(p, SIGPROF);
1317		PROC_UNLOCK(p);
1318	} else
1319		mtx_unlock_spin(&sched_lock);
1320
1321	userret(p, framep, sticks);
1322
1323	if (mtx_owned(&Giant))
1324		mtx_unlock(&Giant);
1325}
1326