subr_syscall.c revision 76494
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 76494 2001-05-11 23:50:08Z jhb $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_clock.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_isa.h"
49#include "opt_ktrace.h"
50#include "opt_npx.h"
51#include "opt_trap.h"
52
53#include <sys/param.h>
54#include <sys/bus.h>
55#include <sys/systm.h>
56#include <sys/proc.h>
57#include <sys/pioctl.h>
58#include <sys/ipl.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/mutex.h>
62#include <sys/resourcevar.h>
63#include <sys/signalvar.h>
64#include <sys/syscall.h>
65#include <sys/sysctl.h>
66#include <sys/sysent.h>
67#include <sys/uio.h>
68#include <sys/vmmeter.h>
69#ifdef KTRACE
70#include <sys/ktrace.h>
71#endif
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <sys/lock.h>
76#include <vm/pmap.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_extern.h>
81
82#include <machine/cpu.h>
83#include <machine/md_var.h>
84#include <machine/pcb.h>
85#ifdef SMP
86#include <machine/smp.h>
87#endif
88#include <machine/tss.h>
89
90#include <i386/isa/icu.h>
91#include <i386/isa/intr_machdep.h>
92
93#ifdef POWERFAIL_NMI
94#include <sys/syslog.h>
95#include <machine/clock.h>
96#endif
97
98#include <machine/vm86.h>
99
100#include <ddb/ddb.h>
101
102#include <sys/sysctl.h>
103
104int (*pmath_emulate) __P((struct trapframe *));
105
106extern void trap __P((struct trapframe frame));
107extern int trapwrite __P((unsigned addr));
108extern void syscall __P((struct trapframe frame));
109extern void ast __P((struct trapframe *framep));
110
111static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
112static void trap_fatal __P((struct trapframe *, vm_offset_t));
113void dblfault_handler __P((void));
114
115extern inthand_t IDTVEC(lcall_syscall);
116
117#define MAX_TRAP_MSG		28
118static char *trap_msg[] = {
119	"",					/*  0 unused */
120	"privileged instruction fault",		/*  1 T_PRIVINFLT */
121	"",					/*  2 unused */
122	"breakpoint instruction fault",		/*  3 T_BPTFLT */
123	"",					/*  4 unused */
124	"",					/*  5 unused */
125	"arithmetic trap",			/*  6 T_ARITHTRAP */
126	"",					/*  7 unused */
127	"",					/*  8 unused */
128	"general protection fault",		/*  9 T_PROTFLT */
129	"trace trap",				/* 10 T_TRCTRAP */
130	"",					/* 11 unused */
131	"page fault",				/* 12 T_PAGEFLT */
132	"",					/* 13 unused */
133	"alignment fault",			/* 14 T_ALIGNFLT */
134	"",					/* 15 unused */
135	"",					/* 16 unused */
136	"",					/* 17 unused */
137	"integer divide fault",			/* 18 T_DIVIDE */
138	"non-maskable interrupt trap",		/* 19 T_NMI */
139	"overflow trap",			/* 20 T_OFLOW */
140	"FPU bounds check fault",		/* 21 T_BOUND */
141	"FPU device not available",		/* 22 T_DNA */
142	"double fault",				/* 23 T_DOUBLEFLT */
143	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
144	"invalid TSS fault",			/* 25 T_TSSFLT */
145	"segment not present fault",		/* 26 T_SEGNPFLT */
146	"stack fault",				/* 27 T_STKFLT */
147	"machine check trap",			/* 28 T_MCHK */
148};
149
150#if defined(I586_CPU) && !defined(NO_F00F_HACK)
151extern int has_f00f_bug;
152#endif
153
154#ifdef DDB
155static int ddb_on_nmi = 1;
156SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
157	&ddb_on_nmi, 0, "Go to DDB on NMI");
158#endif
159static int panic_on_nmi = 1;
160SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
161	&panic_on_nmi, 0, "Panic on NMI");
162
163#ifdef WITNESS
164extern char *syscallnames[];
165#endif
166
167void
168userret(p, frame, oticks)
169	struct proc *p;
170	struct trapframe *frame;
171	u_quad_t oticks;
172{
173	int sig;
174
175	while ((sig = CURSIG(p)) != 0)
176		postsig(sig);
177
178	mtx_lock_spin(&sched_lock);
179	p->p_pri.pri_level = p->p_pri.pri_user;
180	if (resched_wanted(p)) {
181		/*
182		 * Since we are curproc, clock will normally just change
183		 * our priority without moving us from one queue to another
184		 * (since the running process is not on a queue.)
185		 * If that happened after we setrunqueue ourselves but before we
186		 * mi_switch()'ed, we might not be on the queue indicated by
187		 * our priority.
188		 */
189		DROP_GIANT_NOSWITCH();
190		setrunqueue(p);
191		p->p_stats->p_ru.ru_nivcsw++;
192		mi_switch();
193		mtx_unlock_spin(&sched_lock);
194		PICKUP_GIANT();
195		while ((sig = CURSIG(p)) != 0)
196			postsig(sig);
197		mtx_lock_spin(&sched_lock);
198	}
199
200	/*
201	 * Charge system time if profiling.
202	 */
203	if (p->p_sflag & PS_PROFIL) {
204		mtx_unlock_spin(&sched_lock);
205		/* XXX - do we need Giant? */
206		if (!mtx_owned(&Giant))
207			mtx_lock(&Giant);
208		addupc_task(p, TRAPF_PC(frame),
209			    (u_int)(p->p_sticks - oticks) * psratio);
210	} else
211		mtx_unlock_spin(&sched_lock);
212}
213
214/*
215 * Exception, fault, and trap interface to the FreeBSD kernel.
216 * This common code is called from assembly language IDT gate entry
217 * routines that prepare a suitable stack frame, and restore this
218 * frame after the exception has been processed.
219 */
220
221void
222trap(frame)
223	struct trapframe frame;
224{
225	struct proc *p = curproc;
226	u_quad_t sticks = 0;
227	int i = 0, ucode = 0, type, code;
228	vm_offset_t eva;
229#ifdef POWERFAIL_NMI
230	static int lastalert = 0;
231#endif
232
233	atomic_add_int(&cnt.v_trap, 1);
234
235	if ((frame.tf_eflags & PSL_I) == 0) {
236		/*
237		 * Buggy application or kernel code has disabled
238		 * interrupts and then trapped.  Enabling interrupts
239		 * now is wrong, but it is better than running with
240		 * interrupts disabled until they are accidentally
241		 * enabled later.  XXX This is really bad if we trap
242		 * while holding a spin lock.
243		 */
244		type = frame.tf_trapno;
245		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
246			printf(
247			    "pid %ld (%s): trap %d with interrupts disabled\n",
248			    (long)curproc->p_pid, curproc->p_comm, type);
249		else if (type != T_BPTFLT && type != T_TRCTRAP) {
250			/*
251			 * XXX not quite right, since this may be for a
252			 * multiple fault in user mode.
253			 */
254			printf("kernel trap %d with interrupts disabled\n",
255			    type);
256			/*
257			 * We should walk p_heldmtx here and see if any are
258			 * spin mutexes, and not do this if so.
259			 */
260			enable_intr();
261		}
262	}
263
264	eva = 0;
265
266#if defined(I586_CPU) && !defined(NO_F00F_HACK)
267restart:
268#endif
269
270	type = frame.tf_trapno;
271	code = frame.tf_err;
272
273        if ((ISPL(frame.tf_cs) == SEL_UPL) ||
274	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
275		/* user trap */
276
277		mtx_lock_spin(&sched_lock);
278		sticks = p->p_sticks;
279		mtx_unlock_spin(&sched_lock);
280		p->p_md.md_regs = &frame;
281
282		switch (type) {
283		case T_PRIVINFLT:	/* privileged instruction fault */
284			ucode = type;
285			i = SIGILL;
286			break;
287
288		case T_BPTFLT:		/* bpt instruction fault */
289		case T_TRCTRAP:		/* trace trap */
290			frame.tf_eflags &= ~PSL_T;
291			i = SIGTRAP;
292			break;
293
294		case T_ARITHTRAP:	/* arithmetic trap */
295			ucode = code;
296			i = SIGFPE;
297			break;
298
299			/*
300			 * The following two traps can happen in
301			 * vm86 mode, and, if so, we want to handle
302			 * them specially.
303			 */
304		case T_PROTFLT:		/* general protection fault */
305		case T_STKFLT:		/* stack fault */
306			if (frame.tf_eflags & PSL_VM) {
307				mtx_lock(&Giant);
308				i = vm86_emulate((struct vm86frame *)&frame);
309				mtx_unlock(&Giant);
310				if (i == 0)
311					goto user;
312				break;
313			}
314			/* FALL THROUGH */
315
316		case T_SEGNPFLT:	/* segment not present fault */
317		case T_TSSFLT:		/* invalid TSS fault */
318		case T_DOUBLEFLT:	/* double fault */
319		default:
320			ucode = code + BUS_SEGM_FAULT ;
321			i = SIGBUS;
322			break;
323
324		case T_PAGEFLT:		/* page fault */
325			/*
326			 * For some Cyrix CPUs, %cr2 is clobbered by
327			 * interrupts.  This problem is worked around by using
328			 * an interrupt gate for the pagefault handler.  We
329			 * are finally ready to read %cr2 and then must
330			 * reenable interrupts.
331			 */
332			eva = rcr2();
333			enable_intr();
334			mtx_lock(&Giant);
335			i = trap_pfault(&frame, TRUE, eva);
336			mtx_unlock(&Giant);
337#if defined(I586_CPU) && !defined(NO_F00F_HACK)
338			if (i == -2) {
339				/*
340				 * f00f hack workaround has triggered, treat
341				 * as illegal instruction not page fault.
342				 */
343				frame.tf_trapno = T_PRIVINFLT;
344				goto restart;
345			}
346#endif
347			if (i == -1)
348				goto out;
349			if (i == 0)
350				goto user;
351
352			ucode = T_PAGEFLT;
353			break;
354
355		case T_DIVIDE:		/* integer divide fault */
356			ucode = FPE_INTDIV;
357			i = SIGFPE;
358			break;
359
360#ifdef DEV_ISA
361		case T_NMI:
362#ifdef POWERFAIL_NMI
363#ifndef TIMER_FREQ
364#  define TIMER_FREQ 1193182
365#endif
366			mtx_lock(&Giant);
367			if (time_second - lastalert > 10) {
368				log(LOG_WARNING, "NMI: power fail\n");
369				sysbeep(TIMER_FREQ/880, hz);
370				lastalert = time_second;
371			}
372			mtx_unlock(&Giant);
373			goto out;
374#else /* !POWERFAIL_NMI */
375			/* machine/parity/power fail/"kitchen sink" faults */
376			/* XXX Giant */
377			if (isa_nmi(code) == 0) {
378#ifdef DDB
379				/*
380				 * NMI can be hooked up to a pushbutton
381				 * for debugging.
382				 */
383				if (ddb_on_nmi) {
384					printf ("NMI ... going to debugger\n");
385					kdb_trap (type, 0, &frame);
386				}
387#endif /* DDB */
388				goto out;
389			} else if (panic_on_nmi)
390				panic("NMI indicates hardware failure");
391			break;
392#endif /* POWERFAIL_NMI */
393#endif /* DEV_ISA */
394
395		case T_OFLOW:		/* integer overflow fault */
396			ucode = FPE_INTOVF;
397			i = SIGFPE;
398			break;
399
400		case T_BOUND:		/* bounds check fault */
401			ucode = FPE_FLTSUB;
402			i = SIGFPE;
403			break;
404
405		case T_DNA:
406#ifdef DEV_NPX
407			/* transparent fault (due to context switch "late") */
408			if (npxdna())
409				goto out;
410#endif
411			if (!pmath_emulate) {
412				i = SIGFPE;
413				ucode = FPE_FPU_NP_TRAP;
414				break;
415			}
416			mtx_lock(&Giant);
417			i = (*pmath_emulate)(&frame);
418			mtx_unlock(&Giant);
419			if (i == 0) {
420				if (!(frame.tf_eflags & PSL_T))
421					goto out;
422				frame.tf_eflags &= ~PSL_T;
423				i = SIGTRAP;
424			}
425			/* else ucode = emulator_only_knows() XXX */
426			break;
427
428		case T_FPOPFLT:		/* FPU operand fetch fault */
429			ucode = T_FPOPFLT;
430			i = SIGILL;
431			break;
432		}
433	} else {
434		/* kernel trap */
435
436		switch (type) {
437		case T_PAGEFLT:			/* page fault */
438			/*
439			 * For some Cyrix CPUs, %cr2 is clobbered by
440			 * interrupts.  This problem is worked around by using
441			 * an interrupt gate for the pagefault handler.  We
442			 * are finally ready to read %cr2 and then must
443			 * reenable interrupts.
444			 */
445			eva = rcr2();
446			enable_intr();
447			mtx_lock(&Giant);
448			(void) trap_pfault(&frame, FALSE, eva);
449			mtx_unlock(&Giant);
450			goto out;
451
452		case T_DNA:
453#ifdef DEV_NPX
454			/*
455			 * The kernel is apparently using npx for copying.
456			 * XXX this should be fatal unless the kernel has
457			 * registered such use.
458			 */
459			if (npxdna())
460				goto out;
461#endif
462			break;
463
464			/*
465			 * The following two traps can happen in
466			 * vm86 mode, and, if so, we want to handle
467			 * them specially.
468			 */
469		case T_PROTFLT:		/* general protection fault */
470		case T_STKFLT:		/* stack fault */
471			if (frame.tf_eflags & PSL_VM) {
472				mtx_lock(&Giant);
473				i = vm86_emulate((struct vm86frame *)&frame);
474				mtx_unlock(&Giant);
475				if (i != 0)
476					/*
477					 * returns to original process
478					 */
479					vm86_trap((struct vm86frame *)&frame);
480				goto out;
481			}
482			if (type == T_STKFLT)
483				break;
484
485			/* FALL THROUGH */
486
487		case T_SEGNPFLT:	/* segment not present fault */
488			if (in_vm86call)
489				break;
490
491			if (p->p_intr_nesting_level != 0)
492				break;
493
494			/*
495			 * Invalid %fs's and %gs's can be created using
496			 * procfs or PT_SETREGS or by invalidating the
497			 * underlying LDT entry.  This causes a fault
498			 * in kernel mode when the kernel attempts to
499			 * switch contexts.  Lose the bad context
500			 * (XXX) so that we can continue, and generate
501			 * a signal.
502			 */
503			if (frame.tf_eip == (int)cpu_switch_load_gs) {
504				PCPU_GET(curpcb)->pcb_gs = 0;
505				PROC_LOCK(p);
506				psignal(p, SIGBUS);
507				PROC_UNLOCK(p);
508				goto out;
509			}
510
511			/*
512			 * Invalid segment selectors and out of bounds
513			 * %eip's and %esp's can be set up in user mode.
514			 * This causes a fault in kernel mode when the
515			 * kernel tries to return to user mode.  We want
516			 * to get this fault so that we can fix the
517			 * problem here and not have to check all the
518			 * selectors and pointers when the user changes
519			 * them.
520			 */
521			if (frame.tf_eip == (int)doreti_iret) {
522				frame.tf_eip = (int)doreti_iret_fault;
523				goto out;
524			}
525			if (frame.tf_eip == (int)doreti_popl_ds) {
526				frame.tf_eip = (int)doreti_popl_ds_fault;
527				goto out;
528			}
529			if (frame.tf_eip == (int)doreti_popl_es) {
530				frame.tf_eip = (int)doreti_popl_es_fault;
531				goto out;
532			}
533			if (frame.tf_eip == (int)doreti_popl_fs) {
534				frame.tf_eip = (int)doreti_popl_fs_fault;
535				goto out;
536			}
537			if (PCPU_GET(curpcb) != NULL &&
538			    PCPU_GET(curpcb)->pcb_onfault != NULL) {
539				frame.tf_eip =
540				    (int)PCPU_GET(curpcb)->pcb_onfault;
541				goto out;
542			}
543			break;
544
545		case T_TSSFLT:
546			/*
547			 * PSL_NT can be set in user mode and isn't cleared
548			 * automatically when the kernel is entered.  This
549			 * causes a TSS fault when the kernel attempts to
550			 * `iret' because the TSS link is uninitialized.  We
551			 * want to get this fault so that we can fix the
552			 * problem here and not every time the kernel is
553			 * entered.
554			 */
555			if (frame.tf_eflags & PSL_NT) {
556				frame.tf_eflags &= ~PSL_NT;
557				goto out;
558			}
559			break;
560
561		case T_TRCTRAP:	 /* trace trap */
562			if (frame.tf_eip == (int)IDTVEC(lcall_syscall)) {
563				/*
564				 * We've just entered system mode via the
565				 * syscall lcall.  Continue single stepping
566				 * silently until the syscall handler has
567				 * saved the flags.
568				 */
569				goto out;
570			}
571			if (frame.tf_eip == (int)IDTVEC(lcall_syscall) + 1) {
572				/*
573				 * The syscall handler has now saved the
574				 * flags.  Stop single stepping it.
575				 */
576				frame.tf_eflags &= ~PSL_T;
577				goto out;
578			}
579			/*
580			 * Ignore debug register trace traps due to
581			 * accesses in the user's address space, which
582			 * can happen under several conditions such as
583			 * if a user sets a watchpoint on a buffer and
584			 * then passes that buffer to a system call.
585			 * We still want to get TRCTRAPS for addresses
586			 * in kernel space because that is useful when
587			 * debugging the kernel.
588			 */
589			/* XXX Giant */
590			if (user_dbreg_trap() && !in_vm86call) {
591				/*
592				 * Reset breakpoint bits because the
593				 * processor doesn't
594				 */
595				load_dr6(rdr6() & 0xfffffff0);
596				goto out;
597			}
598			/*
599			 * Fall through (TRCTRAP kernel mode, kernel address)
600			 */
601		case T_BPTFLT:
602			/*
603			 * If DDB is enabled, let it handle the debugger trap.
604			 * Otherwise, debugger traps "can't happen".
605			 */
606#ifdef DDB
607			/* XXX Giant */
608			if (kdb_trap (type, 0, &frame))
609				goto out;
610#endif
611			break;
612
613#ifdef DEV_ISA
614		case T_NMI:
615#ifdef POWERFAIL_NMI
616			mtx_lock(&Giant);
617			if (time_second - lastalert > 10) {
618				log(LOG_WARNING, "NMI: power fail\n");
619				sysbeep(TIMER_FREQ/880, hz);
620				lastalert = time_second;
621			}
622			mtx_unlock(&Giant);
623			goto out;
624#else /* !POWERFAIL_NMI */
625			/* XXX Giant */
626			/* machine/parity/power fail/"kitchen sink" faults */
627			if (isa_nmi(code) == 0) {
628#ifdef DDB
629				/*
630				 * NMI can be hooked up to a pushbutton
631				 * for debugging.
632				 */
633				if (ddb_on_nmi) {
634					printf ("NMI ... going to debugger\n");
635					kdb_trap (type, 0, &frame);
636				}
637#endif /* DDB */
638				goto out;
639			} else if (panic_on_nmi == 0)
640				goto out;
641			/* FALL THROUGH */
642#endif /* POWERFAIL_NMI */
643#endif /* DEV_ISA */
644		}
645
646		mtx_lock(&Giant);
647		trap_fatal(&frame, eva);
648		mtx_unlock(&Giant);
649		goto out;
650	}
651
652	mtx_lock(&Giant);
653	/* Translate fault for emulators (e.g. Linux) */
654	if (*p->p_sysent->sv_transtrap)
655		i = (*p->p_sysent->sv_transtrap)(i, type);
656
657	trapsignal(p, i, ucode);
658
659#ifdef DEBUG
660	if (type <= MAX_TRAP_MSG) {
661		uprintf("fatal process exception: %s",
662			trap_msg[type]);
663		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
664			uprintf(", fault VA = 0x%lx", (u_long)eva);
665		uprintf("\n");
666	}
667#endif
668	mtx_unlock(&Giant);
669
670user:
671	userret(p, &frame, sticks);
672	if (mtx_owned(&Giant))
673		mtx_unlock(&Giant);
674out:
675	return;
676}
677
678#ifdef notyet
679/*
680 * This version doesn't allow a page fault to user space while
681 * in the kernel. The rest of the kernel needs to be made "safe"
682 * before this can be used. I think the only things remaining
683 * to be made safe are the iBCS2 code and the process tracing/
684 * debugging code.
685 */
686static int
687trap_pfault(frame, usermode, eva)
688	struct trapframe *frame;
689	int usermode;
690	vm_offset_t eva;
691{
692	vm_offset_t va;
693	struct vmspace *vm = NULL;
694	vm_map_t map = 0;
695	int rv = 0;
696	vm_prot_t ftype;
697	struct proc *p = curproc;
698
699	if (frame->tf_err & PGEX_W)
700		ftype = VM_PROT_WRITE;
701	else
702		ftype = VM_PROT_READ;
703
704	va = trunc_page(eva);
705	if (va < VM_MIN_KERNEL_ADDRESS) {
706		vm_offset_t v;
707		vm_page_t mpte;
708
709		if (p == NULL ||
710		    (!usermode && va < VM_MAXUSER_ADDRESS &&
711		     (p->p_intr_nesting_level != 0 ||
712		      PCPU_GET(curpcb) == NULL ||
713		      PCPU_GET(curpcb)->pcb_onfault == NULL))) {
714			trap_fatal(frame, eva);
715			return (-1);
716		}
717
718		/*
719		 * This is a fault on non-kernel virtual memory.
720		 * vm is initialized above to NULL. If curproc is NULL
721		 * or curproc->p_vmspace is NULL the fault is fatal.
722		 */
723		vm = p->p_vmspace;
724		if (vm == NULL)
725			goto nogo;
726
727		map = &vm->vm_map;
728
729		/*
730		 * Keep swapout from messing with us during this
731		 *	critical time.
732		 */
733		PROC_LOCK(p);
734		++p->p_lock;
735		PROC_UNLOCK(p);
736
737		/*
738		 * Grow the stack if necessary
739		 */
740		/* grow_stack returns false only if va falls into
741		 * a growable stack region and the stack growth
742		 * fails.  It returns true if va was not within
743		 * a growable stack region, or if the stack
744		 * growth succeeded.
745		 */
746		if (!grow_stack (p, va))
747			rv = KERN_FAILURE;
748		else
749			/* Fault in the user page: */
750			rv = vm_fault(map, va, ftype,
751			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
752						      : VM_FAULT_NORMAL);
753
754		PROC_LOCK(p);
755		--p->p_lock;
756		PROC_UNLOCK(p);
757	} else {
758		/*
759		 * Don't allow user-mode faults in kernel address space.
760		 */
761		if (usermode)
762			goto nogo;
763
764		/*
765		 * Since we know that kernel virtual address addresses
766		 * always have pte pages mapped, we just have to fault
767		 * the page.
768		 */
769		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
770	}
771
772	if (rv == KERN_SUCCESS)
773		return (0);
774nogo:
775	if (!usermode) {
776		if (p->p_intr_nesting_level == 0 &&
777		    PCPU_GET(curpcb) != NULL &&
778		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
779			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
780			return (0);
781		}
782		trap_fatal(frame, eva);
783		return (-1);
784	}
785
786	/* kludge to pass faulting virtual address to sendsig */
787	frame->tf_err = eva;
788
789	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
790}
791#endif
792
793int
794trap_pfault(frame, usermode, eva)
795	struct trapframe *frame;
796	int usermode;
797	vm_offset_t eva;
798{
799	vm_offset_t va;
800	struct vmspace *vm = NULL;
801	vm_map_t map = 0;
802	int rv = 0;
803	vm_prot_t ftype;
804	struct proc *p = curproc;
805
806	va = trunc_page(eva);
807	if (va >= KERNBASE) {
808		/*
809		 * Don't allow user-mode faults in kernel address space.
810		 * An exception:  if the faulting address is the invalid
811		 * instruction entry in the IDT, then the Intel Pentium
812		 * F00F bug workaround was triggered, and we need to
813		 * treat it is as an illegal instruction, and not a page
814		 * fault.
815		 */
816#if defined(I586_CPU) && !defined(NO_F00F_HACK)
817		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
818			return -2;
819#endif
820		if (usermode)
821			goto nogo;
822
823		map = kernel_map;
824	} else {
825		/*
826		 * This is a fault on non-kernel virtual memory.
827		 * vm is initialized above to NULL. If curproc is NULL
828		 * or curproc->p_vmspace is NULL the fault is fatal.
829		 */
830		if (p != NULL)
831			vm = p->p_vmspace;
832
833		if (vm == NULL)
834			goto nogo;
835
836		map = &vm->vm_map;
837	}
838
839	if (frame->tf_err & PGEX_W)
840		ftype = VM_PROT_WRITE;
841	else
842		ftype = VM_PROT_READ;
843
844	if (map != kernel_map) {
845		/*
846		 * Keep swapout from messing with us during this
847		 *	critical time.
848		 */
849		PROC_LOCK(p);
850		++p->p_lock;
851		PROC_UNLOCK(p);
852
853		/*
854		 * Grow the stack if necessary
855		 */
856		/* grow_stack returns false only if va falls into
857		 * a growable stack region and the stack growth
858		 * fails.  It returns true if va was not within
859		 * a growable stack region, or if the stack
860		 * growth succeeded.
861		 */
862		if (!grow_stack (p, va))
863			rv = KERN_FAILURE;
864		else
865			/* Fault in the user page: */
866			rv = vm_fault(map, va, ftype,
867			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
868						      : VM_FAULT_NORMAL);
869
870		PROC_LOCK(p);
871		--p->p_lock;
872		PROC_UNLOCK(p);
873	} else {
874		/*
875		 * Don't have to worry about process locking or stacks in the
876		 * kernel.
877		 */
878		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
879	}
880
881	if (rv == KERN_SUCCESS)
882		return (0);
883nogo:
884	if (!usermode) {
885		if (p->p_intr_nesting_level == 0 &&
886		    PCPU_GET(curpcb) != NULL &&
887		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
888			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
889			return (0);
890		}
891		trap_fatal(frame, eva);
892		return (-1);
893	}
894
895	/* kludge to pass faulting virtual address to sendsig */
896	frame->tf_err = eva;
897
898	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
899}
900
901static void
902trap_fatal(frame, eva)
903	struct trapframe *frame;
904	vm_offset_t eva;
905{
906	int code, type, ss, esp;
907	struct soft_segment_descriptor softseg;
908
909	code = frame->tf_err;
910	type = frame->tf_trapno;
911	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
912
913	if (type <= MAX_TRAP_MSG)
914		printf("\n\nFatal trap %d: %s while in %s mode\n",
915			type, trap_msg[type],
916        		frame->tf_eflags & PSL_VM ? "vm86" :
917			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
918#ifdef SMP
919	/* two separate prints in case of a trap on an unmapped page */
920	printf("cpuid = %d; ", PCPU_GET(cpuid));
921	printf("lapic.id = %08x\n", lapic.id);
922#endif
923	if (type == T_PAGEFLT) {
924		printf("fault virtual address	= 0x%x\n", eva);
925		printf("fault code		= %s %s, %s\n",
926			code & PGEX_U ? "user" : "supervisor",
927			code & PGEX_W ? "write" : "read",
928			code & PGEX_P ? "protection violation" : "page not present");
929	}
930	printf("instruction pointer	= 0x%x:0x%x\n",
931	       frame->tf_cs & 0xffff, frame->tf_eip);
932        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
933		ss = frame->tf_ss & 0xffff;
934		esp = frame->tf_esp;
935	} else {
936		ss = GSEL(GDATA_SEL, SEL_KPL);
937		esp = (int)&frame->tf_esp;
938	}
939	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
940	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
941	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
942	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
943	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
944	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
945	       softseg.ssd_gran);
946	printf("processor eflags	= ");
947	if (frame->tf_eflags & PSL_T)
948		printf("trace trap, ");
949	if (frame->tf_eflags & PSL_I)
950		printf("interrupt enabled, ");
951	if (frame->tf_eflags & PSL_NT)
952		printf("nested task, ");
953	if (frame->tf_eflags & PSL_RF)
954		printf("resume, ");
955	if (frame->tf_eflags & PSL_VM)
956		printf("vm86, ");
957	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
958	printf("current process		= ");
959	if (curproc) {
960		printf("%lu (%s)\n",
961		    (u_long)curproc->p_pid, curproc->p_comm ?
962		    curproc->p_comm : "");
963	} else {
964		printf("Idle\n");
965	}
966
967#ifdef KDB
968	if (kdb_trap(&psl))
969		return;
970#endif
971#ifdef DDB
972	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
973		return;
974#endif
975	printf("trap number		= %d\n", type);
976	if (type <= MAX_TRAP_MSG)
977		panic(trap_msg[type]);
978	else
979		panic("unknown/reserved trap");
980}
981
982/*
983 * Double fault handler. Called when a fault occurs while writing
984 * a frame for a trap/exception onto the stack. This usually occurs
985 * when the stack overflows (such is the case with infinite recursion,
986 * for example).
987 *
988 * XXX Note that the current PTD gets replaced by IdlePTD when the
989 * task switch occurs. This means that the stack that was active at
990 * the time of the double fault is not available at <kstack> unless
991 * the machine was idle when the double fault occurred. The downside
992 * of this is that "trace <ebp>" in ddb won't work.
993 */
994void
995dblfault_handler()
996{
997	printf("\nFatal double fault:\n");
998	printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip));
999	printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp));
1000	printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp));
1001#ifdef SMP
1002	/* two separate prints in case of a trap on an unmapped page */
1003	printf("cpuid = %d; ", PCPU_GET(cpuid));
1004	printf("lapic.id = %08x\n", lapic.id);
1005#endif
1006	panic("double fault");
1007}
1008
1009/*
1010 * Compensate for 386 brain damage (missing URKR).
1011 * This is a little simpler than the pagefault handler in trap() because
1012 * it the page tables have already been faulted in and high addresses
1013 * are thrown out early for other reasons.
1014 */
1015int trapwrite(addr)
1016	unsigned addr;
1017{
1018	struct proc *p;
1019	vm_offset_t va;
1020	struct vmspace *vm;
1021	int rv;
1022
1023	va = trunc_page((vm_offset_t)addr);
1024	/*
1025	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1026	 */
1027	if (va >= VM_MAXUSER_ADDRESS)
1028		return (1);
1029
1030	p = curproc;
1031	vm = p->p_vmspace;
1032
1033	PROC_LOCK(p);
1034	++p->p_lock;
1035	PROC_UNLOCK(p);
1036
1037	if (!grow_stack (p, va))
1038		rv = KERN_FAILURE;
1039	else
1040		/*
1041		 * fault the data page
1042		 */
1043		rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1044
1045	PROC_LOCK(p);
1046	--p->p_lock;
1047	PROC_UNLOCK(p);
1048
1049	if (rv != KERN_SUCCESS)
1050		return 1;
1051
1052	return (0);
1053}
1054
1055/*
1056 *	syscall -	MP aware system call request C handler
1057 *
1058 *	A system call is essentially treated as a trap except that the
1059 *	MP lock is not held on entry or return.  We are responsible for
1060 *	obtaining the MP lock if necessary and for handling ASTs
1061 *	(e.g. a task switch) prior to return.
1062 *
1063 *	In general, only simple access and manipulation of curproc and
1064 *	the current stack is allowed without having to hold MP lock.
1065 */
1066void
1067syscall(frame)
1068	struct trapframe frame;
1069{
1070	caddr_t params;
1071	int i;
1072	struct sysent *callp;
1073	struct proc *p = curproc;
1074	u_quad_t sticks;
1075	int error;
1076	int narg;
1077	int args[8];
1078	u_int code;
1079
1080	atomic_add_int(&cnt.v_syscall, 1);
1081
1082#ifdef DIAGNOSTIC
1083	if (ISPL(frame.tf_cs) != SEL_UPL) {
1084		mtx_lock(&Giant);
1085		panic("syscall");
1086		/* NOT REACHED */
1087	}
1088#endif
1089
1090	mtx_lock_spin(&sched_lock);
1091	sticks = p->p_sticks;
1092	mtx_unlock_spin(&sched_lock);
1093
1094	p->p_md.md_regs = &frame;
1095	params = (caddr_t)frame.tf_esp + sizeof(int);
1096	code = frame.tf_eax;
1097
1098	if (p->p_sysent->sv_prepsyscall) {
1099		/*
1100		 * The prep code is not MP aware.
1101		 */
1102		mtx_lock(&Giant);
1103		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1104		mtx_unlock(&Giant);
1105	} else {
1106		/*
1107		 * Need to check if this is a 32 bit or 64 bit syscall.
1108		 * fuword is MP aware.
1109		 */
1110		if (code == SYS_syscall) {
1111			/*
1112			 * Code is first argument, followed by actual args.
1113			 */
1114			code = fuword(params);
1115			params += sizeof(int);
1116		} else if (code == SYS___syscall) {
1117			/*
1118			 * Like syscall, but code is a quad, so as to maintain
1119			 * quad alignment for the rest of the arguments.
1120			 */
1121			code = fuword(params);
1122			params += sizeof(quad_t);
1123		}
1124	}
1125
1126 	if (p->p_sysent->sv_mask)
1127 		code &= p->p_sysent->sv_mask;
1128
1129 	if (code >= p->p_sysent->sv_size)
1130 		callp = &p->p_sysent->sv_table[0];
1131  	else
1132 		callp = &p->p_sysent->sv_table[code];
1133
1134	narg = callp->sy_narg & SYF_ARGMASK;
1135
1136	/*
1137	 * copyin is MP aware, but the tracing code is not
1138	 */
1139	if (params && (i = narg * sizeof(int)) &&
1140	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1141		mtx_lock(&Giant);
1142#ifdef KTRACE
1143		if (KTRPOINT(p, KTR_SYSCALL))
1144			ktrsyscall(p->p_tracep, code, narg, args);
1145#endif
1146		goto bad;
1147	}
1148
1149	/*
1150	 * Try to run the syscall without the MP lock if the syscall
1151	 * is MP safe.  We have to obtain the MP lock no matter what if
1152	 * we are ktracing
1153	 */
1154	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1155		mtx_lock(&Giant);
1156	}
1157
1158#ifdef KTRACE
1159	if (KTRPOINT(p, KTR_SYSCALL)) {
1160		if (!mtx_owned(&Giant))
1161			mtx_lock(&Giant);
1162		ktrsyscall(p->p_tracep, code, narg, args);
1163	}
1164#endif
1165	p->p_retval[0] = 0;
1166	p->p_retval[1] = frame.tf_edx;
1167
1168	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1169
1170	error = (*callp->sy_call)(p, args);
1171
1172	/*
1173	 * MP SAFE (we may or may not have the MP lock at this point)
1174	 */
1175	switch (error) {
1176	case 0:
1177		frame.tf_eax = p->p_retval[0];
1178		frame.tf_edx = p->p_retval[1];
1179		frame.tf_eflags &= ~PSL_C;
1180		break;
1181
1182	case ERESTART:
1183		/*
1184		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1185		 * int 0x80 is 2 bytes. We saved this in tf_err.
1186		 */
1187		frame.tf_eip -= frame.tf_err;
1188		break;
1189
1190	case EJUSTRETURN:
1191		break;
1192
1193	default:
1194bad:
1195 		if (p->p_sysent->sv_errsize) {
1196 			if (error >= p->p_sysent->sv_errsize)
1197  				error = -1;	/* XXX */
1198   			else
1199  				error = p->p_sysent->sv_errtbl[error];
1200		}
1201		frame.tf_eax = error;
1202		frame.tf_eflags |= PSL_C;
1203		break;
1204	}
1205
1206	/*
1207	 * Traced syscall.  trapsignal() is not MP aware.
1208	 */
1209	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1210		if (!mtx_owned(&Giant))
1211			mtx_lock(&Giant);
1212		frame.tf_eflags &= ~PSL_T;
1213		trapsignal(p, SIGTRAP, 0);
1214	}
1215
1216	/*
1217	 * Handle reschedule and other end-of-syscall issues
1218	 */
1219	userret(p, &frame, sticks);
1220
1221#ifdef KTRACE
1222	if (KTRPOINT(p, KTR_SYSRET)) {
1223		if (!mtx_owned(&Giant))
1224			mtx_lock(&Giant);
1225		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1226	}
1227#endif
1228
1229	/*
1230	 * Release Giant if we had to get it
1231	 */
1232	if (mtx_owned(&Giant))
1233		mtx_unlock(&Giant);
1234
1235	/*
1236	 * This works because errno is findable through the
1237	 * register set.  If we ever support an emulation where this
1238	 * is not the case, this code will need to be revisited.
1239	 */
1240	STOPEVENT(p, S_SCX, code);
1241
1242#ifdef WITNESS
1243	if (witness_list(p)) {
1244		panic("system call %s returning with mutex(s) held\n",
1245		    syscallnames[code]);
1246	}
1247#endif
1248	mtx_assert(&sched_lock, MA_NOTOWNED);
1249	mtx_assert(&Giant, MA_NOTOWNED);
1250}
1251
1252void
1253ast(framep)
1254	struct trapframe *framep;
1255{
1256	struct proc *p = CURPROC;
1257	u_quad_t sticks;
1258
1259	KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
1260
1261	/*
1262	 * We check for a pending AST here rather than in the assembly as
1263	 * acquiring and releasing mutexes in assembly is not fun.
1264	 */
1265	mtx_lock_spin(&sched_lock);
1266	if (!(astpending(p) || resched_wanted(p))) {
1267		mtx_unlock_spin(&sched_lock);
1268		return;
1269	}
1270
1271	sticks = p->p_sticks;
1272	p->p_md.md_regs = framep;
1273
1274	astoff(p);
1275	cnt.v_soft++;
1276	mtx_intr_enable(&sched_lock);
1277	if (p->p_sflag & PS_OWEUPC) {
1278		p->p_sflag &= ~PS_OWEUPC;
1279		mtx_unlock_spin(&sched_lock);
1280		mtx_lock(&Giant);
1281		mtx_lock_spin(&sched_lock);
1282		addupc_task(p, p->p_stats->p_prof.pr_addr,
1283			    p->p_stats->p_prof.pr_ticks);
1284	}
1285	if (p->p_sflag & PS_ALRMPEND) {
1286		p->p_sflag &= ~PS_ALRMPEND;
1287		mtx_unlock_spin(&sched_lock);
1288		PROC_LOCK(p);
1289		psignal(p, SIGVTALRM);
1290		PROC_UNLOCK(p);
1291		mtx_lock_spin(&sched_lock);
1292	}
1293	if (p->p_sflag & PS_PROFPEND) {
1294		p->p_sflag &= ~PS_PROFPEND;
1295		mtx_unlock_spin(&sched_lock);
1296		PROC_LOCK(p);
1297		psignal(p, SIGPROF);
1298		PROC_UNLOCK(p);
1299	} else
1300		mtx_unlock_spin(&sched_lock);
1301
1302	userret(p, framep, sticks);
1303
1304	if (mtx_owned(&Giant))
1305		mtx_unlock(&Giant);
1306}
1307