subr_syscall.c revision 73931
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 73931 2001-03-07 03:53:39Z jhb $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_clock.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_isa.h"
49#include "opt_ktrace.h"
50#include "opt_npx.h"
51#include "opt_trap.h"
52
53#include <sys/param.h>
54#include <sys/bus.h>
55#include <sys/systm.h>
56#include <sys/proc.h>
57#include <sys/pioctl.h>
58#include <sys/ipl.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/mutex.h>
62#include <sys/resourcevar.h>
63#include <sys/signalvar.h>
64#include <sys/syscall.h>
65#include <sys/sysctl.h>
66#include <sys/sysent.h>
67#include <sys/uio.h>
68#include <sys/vmmeter.h>
69#ifdef KTRACE
70#include <sys/ktrace.h>
71#endif
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <sys/lock.h>
76#include <vm/pmap.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_extern.h>
81
82#include <machine/cpu.h>
83#include <machine/md_var.h>
84#include <machine/pcb.h>
85#ifdef SMP
86#include <machine/smp.h>
87#endif
88#include <machine/tss.h>
89
90#include <i386/isa/icu.h>
91#include <i386/isa/intr_machdep.h>
92
93#ifdef POWERFAIL_NMI
94#include <sys/syslog.h>
95#include <machine/clock.h>
96#endif
97
98#include <machine/vm86.h>
99
100#include <ddb/ddb.h>
101
102#include <sys/sysctl.h>
103
104int (*pmath_emulate) __P((struct trapframe *));
105
106extern void trap __P((struct trapframe frame));
107extern int trapwrite __P((unsigned addr));
108extern void syscall __P((struct trapframe frame));
109extern void ast __P((struct trapframe *framep));
110
111static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
112static void trap_fatal __P((struct trapframe *, vm_offset_t));
113void dblfault_handler __P((void));
114
115extern inthand_t IDTVEC(lcall_syscall);
116
117#define MAX_TRAP_MSG		28
118static char *trap_msg[] = {
119	"",					/*  0 unused */
120	"privileged instruction fault",		/*  1 T_PRIVINFLT */
121	"",					/*  2 unused */
122	"breakpoint instruction fault",		/*  3 T_BPTFLT */
123	"",					/*  4 unused */
124	"",					/*  5 unused */
125	"arithmetic trap",			/*  6 T_ARITHTRAP */
126	"",					/*  7 unused */
127	"",					/*  8 unused */
128	"general protection fault",		/*  9 T_PROTFLT */
129	"trace trap",				/* 10 T_TRCTRAP */
130	"",					/* 11 unused */
131	"page fault",				/* 12 T_PAGEFLT */
132	"",					/* 13 unused */
133	"alignment fault",			/* 14 T_ALIGNFLT */
134	"",					/* 15 unused */
135	"",					/* 16 unused */
136	"",					/* 17 unused */
137	"integer divide fault",			/* 18 T_DIVIDE */
138	"non-maskable interrupt trap",		/* 19 T_NMI */
139	"overflow trap",			/* 20 T_OFLOW */
140	"FPU bounds check fault",		/* 21 T_BOUND */
141	"FPU device not available",		/* 22 T_DNA */
142	"double fault",				/* 23 T_DOUBLEFLT */
143	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
144	"invalid TSS fault",			/* 25 T_TSSFLT */
145	"segment not present fault",		/* 26 T_SEGNPFLT */
146	"stack fault",				/* 27 T_STKFLT */
147	"machine check trap",			/* 28 T_MCHK */
148};
149
150#if defined(I586_CPU) && !defined(NO_F00F_HACK)
151extern int has_f00f_bug;
152#endif
153
154#ifdef DDB
155static int ddb_on_nmi = 1;
156SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
157	&ddb_on_nmi, 0, "Go to DDB on NMI");
158#endif
159static int panic_on_nmi = 1;
160SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
161	&panic_on_nmi, 0, "Panic on NMI");
162
163#ifdef WITNESS
164extern char *syscallnames[];
165#endif
166
167void
168userret(p, frame, oticks)
169	struct proc *p;
170	struct trapframe *frame;
171	u_quad_t oticks;
172{
173	int sig;
174
175	while ((sig = CURSIG(p)) != 0)
176		postsig(sig);
177
178	mtx_lock_spin(&sched_lock);
179	p->p_pri.pri_level = p->p_pri.pri_user;
180	if (resched_wanted()) {
181		/*
182		 * Since we are curproc, clock will normally just change
183		 * our priority without moving us from one queue to another
184		 * (since the running process is not on a queue.)
185		 * If that happened after we setrunqueue ourselves but before we
186		 * mi_switch()'ed, we might not be on the queue indicated by
187		 * our priority.
188		 */
189		DROP_GIANT_NOSWITCH();
190		setrunqueue(p);
191		p->p_stats->p_ru.ru_nivcsw++;
192		mi_switch();
193		mtx_unlock_spin(&sched_lock);
194		PICKUP_GIANT();
195		while ((sig = CURSIG(p)) != 0)
196			postsig(sig);
197		mtx_lock_spin(&sched_lock);
198	}
199
200	/*
201	 * Charge system time if profiling.
202	 */
203	if (p->p_sflag & PS_PROFIL) {
204		mtx_unlock_spin(&sched_lock);
205		/* XXX - do we need Giant? */
206		if (!mtx_owned(&Giant))
207			mtx_lock(&Giant);
208		addupc_task(p, TRAPF_PC(frame),
209			    (u_int)(p->p_sticks - oticks) * psratio);
210	} else
211		mtx_unlock_spin(&sched_lock);
212}
213
214/*
215 * Exception, fault, and trap interface to the FreeBSD kernel.
216 * This common code is called from assembly language IDT gate entry
217 * routines that prepare a suitable stack frame, and restore this
218 * frame after the exception has been processed.
219 */
220
221void
222trap(frame)
223	struct trapframe frame;
224{
225	struct proc *p = curproc;
226	u_quad_t sticks = 0;
227	int i = 0, ucode = 0, type, code;
228	vm_offset_t eva;
229#ifdef POWERFAIL_NMI
230	static int lastalert = 0;
231#endif
232
233	atomic_add_int(&cnt.v_trap, 1);
234
235	if ((frame.tf_eflags & PSL_I) == 0) {
236		/*
237		 * Buggy application or kernel code has disabled
238		 * interrupts and then trapped.  Enabling interrupts
239		 * now is wrong, but it is better than running with
240		 * interrupts disabled until they are accidentally
241		 * enabled later.  XXX This is really bad if we trap
242		 * while holding a spin lock.
243		 */
244		type = frame.tf_trapno;
245		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
246			printf(
247			    "pid %ld (%s): trap %d with interrupts disabled\n",
248			    (long)curproc->p_pid, curproc->p_comm, type);
249		else if (type != T_BPTFLT && type != T_TRCTRAP) {
250			/*
251			 * XXX not quite right, since this may be for a
252			 * multiple fault in user mode.
253			 */
254			printf("kernel trap %d with interrupts disabled\n",
255			    type);
256			/*
257			 * We should walk p_heldmtx here and see if any are
258			 * spin mutexes, and not do this if so.
259			 */
260			enable_intr();
261		}
262	}
263
264	eva = 0;
265
266#if defined(I586_CPU) && !defined(NO_F00F_HACK)
267restart:
268#endif
269
270	type = frame.tf_trapno;
271	code = frame.tf_err;
272
273        if ((ISPL(frame.tf_cs) == SEL_UPL) ||
274	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
275		/* user trap */
276
277		mtx_lock_spin(&sched_lock);
278		sticks = p->p_sticks;
279		mtx_unlock_spin(&sched_lock);
280		p->p_md.md_regs = &frame;
281
282		switch (type) {
283		case T_PRIVINFLT:	/* privileged instruction fault */
284			ucode = type;
285			i = SIGILL;
286			break;
287
288		case T_BPTFLT:		/* bpt instruction fault */
289		case T_TRCTRAP:		/* trace trap */
290			frame.tf_eflags &= ~PSL_T;
291			i = SIGTRAP;
292			break;
293
294		case T_ARITHTRAP:	/* arithmetic trap */
295			ucode = code;
296			i = SIGFPE;
297			break;
298
299			/*
300			 * The following two traps can happen in
301			 * vm86 mode, and, if so, we want to handle
302			 * them specially.
303			 */
304		case T_PROTFLT:		/* general protection fault */
305		case T_STKFLT:		/* stack fault */
306			if (frame.tf_eflags & PSL_VM) {
307				mtx_lock(&Giant);
308				i = vm86_emulate((struct vm86frame *)&frame);
309				mtx_unlock(&Giant);
310				if (i == 0)
311					goto user;
312				break;
313			}
314			/* FALL THROUGH */
315
316		case T_SEGNPFLT:	/* segment not present fault */
317		case T_TSSFLT:		/* invalid TSS fault */
318		case T_DOUBLEFLT:	/* double fault */
319		default:
320			ucode = code + BUS_SEGM_FAULT ;
321			i = SIGBUS;
322			break;
323
324		case T_PAGEFLT:		/* page fault */
325			/*
326			 * For some Cyrix CPUs, %cr2 is clobbered by
327			 * interrupts.  This problem is worked around by using
328			 * an interrupt gate for the pagefault handler.  We
329			 * are finally ready to read %cr2 and then must
330			 * reenable interrupts.
331			 */
332			eva = rcr2();
333			enable_intr();
334			mtx_lock(&Giant);
335			i = trap_pfault(&frame, TRUE, eva);
336			mtx_unlock(&Giant);
337#if defined(I586_CPU) && !defined(NO_F00F_HACK)
338			if (i == -2) {
339				/*
340				 * f00f hack workaround has triggered, treat
341				 * as illegal instruction not page fault.
342				 */
343				frame.tf_trapno = T_PRIVINFLT;
344				goto restart;
345			}
346#endif
347			if (i == -1)
348				goto out;
349			if (i == 0)
350				goto user;
351
352			ucode = T_PAGEFLT;
353			break;
354
355		case T_DIVIDE:		/* integer divide fault */
356			ucode = FPE_INTDIV;
357			i = SIGFPE;
358			break;
359
360#ifdef DEV_ISA
361		case T_NMI:
362#ifdef POWERFAIL_NMI
363#ifndef TIMER_FREQ
364#  define TIMER_FREQ 1193182
365#endif
366			mtx_lock(&Giant);
367			if (time_second - lastalert > 10) {
368				log(LOG_WARNING, "NMI: power fail\n");
369				sysbeep(TIMER_FREQ/880, hz);
370				lastalert = time_second;
371			}
372			mtx_unlock(&Giant);
373			goto out;
374#else /* !POWERFAIL_NMI */
375			/* machine/parity/power fail/"kitchen sink" faults */
376			/* XXX Giant */
377			if (isa_nmi(code) == 0) {
378#ifdef DDB
379				/*
380				 * NMI can be hooked up to a pushbutton
381				 * for debugging.
382				 */
383				if (ddb_on_nmi) {
384					printf ("NMI ... going to debugger\n");
385					kdb_trap (type, 0, &frame);
386				}
387#endif /* DDB */
388				goto out;
389			} else if (panic_on_nmi)
390				panic("NMI indicates hardware failure");
391			break;
392#endif /* POWERFAIL_NMI */
393#endif /* DEV_ISA */
394
395		case T_OFLOW:		/* integer overflow fault */
396			ucode = FPE_INTOVF;
397			i = SIGFPE;
398			break;
399
400		case T_BOUND:		/* bounds check fault */
401			ucode = FPE_FLTSUB;
402			i = SIGFPE;
403			break;
404
405		case T_DNA:
406#ifdef DEV_NPX
407			/* transparent fault (due to context switch "late") */
408			if (npxdna())
409				goto out;
410#endif
411			if (!pmath_emulate) {
412				i = SIGFPE;
413				ucode = FPE_FPU_NP_TRAP;
414				break;
415			}
416			mtx_lock(&Giant);
417			i = (*pmath_emulate)(&frame);
418			mtx_unlock(&Giant);
419			if (i == 0) {
420				if (!(frame.tf_eflags & PSL_T))
421					goto out;
422				frame.tf_eflags &= ~PSL_T;
423				i = SIGTRAP;
424			}
425			/* else ucode = emulator_only_knows() XXX */
426			break;
427
428		case T_FPOPFLT:		/* FPU operand fetch fault */
429			ucode = T_FPOPFLT;
430			i = SIGILL;
431			break;
432		}
433	} else {
434		/* kernel trap */
435
436		switch (type) {
437		case T_PAGEFLT:			/* page fault */
438			/*
439			 * For some Cyrix CPUs, %cr2 is clobbered by
440			 * interrupts.  This problem is worked around by using
441			 * an interrupt gate for the pagefault handler.  We
442			 * are finally ready to read %cr2 and then must
443			 * reenable interrupts.
444			 */
445			eva = rcr2();
446			enable_intr();
447			mtx_lock(&Giant);
448			(void) trap_pfault(&frame, FALSE, eva);
449			mtx_unlock(&Giant);
450			goto out;
451
452		case T_DNA:
453#ifdef DEV_NPX
454			/*
455			 * The kernel is apparently using npx for copying.
456			 * XXX this should be fatal unless the kernel has
457			 * registered such use.
458			 */
459			if (npxdna())
460				goto out;
461#endif
462			break;
463
464			/*
465			 * The following two traps can happen in
466			 * vm86 mode, and, if so, we want to handle
467			 * them specially.
468			 */
469		case T_PROTFLT:		/* general protection fault */
470		case T_STKFLT:		/* stack fault */
471			if (frame.tf_eflags & PSL_VM) {
472				mtx_lock(&Giant);
473				i = vm86_emulate((struct vm86frame *)&frame);
474				mtx_unlock(&Giant);
475				if (i != 0)
476					/*
477					 * returns to original process
478					 */
479					vm86_trap((struct vm86frame *)&frame);
480				goto out;
481			}
482			if (type == T_STKFLT)
483				break;
484
485			/* FALL THROUGH */
486
487		case T_SEGNPFLT:	/* segment not present fault */
488			if (in_vm86call)
489				break;
490
491			if (p->p_intr_nesting_level != 0)
492				break;
493
494			/*
495			 * Invalid %fs's and %gs's can be created using
496			 * procfs or PT_SETREGS or by invalidating the
497			 * underlying LDT entry.  This causes a fault
498			 * in kernel mode when the kernel attempts to
499			 * switch contexts.  Lose the bad context
500			 * (XXX) so that we can continue, and generate
501			 * a signal.
502			 */
503			if (frame.tf_eip == (int)cpu_switch_load_gs) {
504				PCPU_GET(curpcb)->pcb_gs = 0;
505				PROC_LOCK(p);
506				psignal(p, SIGBUS);
507				PROC_UNLOCK(p);
508				goto out;
509			}
510
511			/*
512			 * Invalid segment selectors and out of bounds
513			 * %eip's and %esp's can be set up in user mode.
514			 * This causes a fault in kernel mode when the
515			 * kernel tries to return to user mode.  We want
516			 * to get this fault so that we can fix the
517			 * problem here and not have to check all the
518			 * selectors and pointers when the user changes
519			 * them.
520			 */
521			if (frame.tf_eip == (int)doreti_iret) {
522				frame.tf_eip = (int)doreti_iret_fault;
523				goto out;
524			}
525			if (frame.tf_eip == (int)doreti_popl_ds) {
526				frame.tf_eip = (int)doreti_popl_ds_fault;
527				goto out;
528			}
529			if (frame.tf_eip == (int)doreti_popl_es) {
530				frame.tf_eip = (int)doreti_popl_es_fault;
531				goto out;
532			}
533			if (frame.tf_eip == (int)doreti_popl_fs) {
534				frame.tf_eip = (int)doreti_popl_fs_fault;
535				goto out;
536			}
537			if (PCPU_GET(curpcb) != NULL &&
538			    PCPU_GET(curpcb)->pcb_onfault != NULL) {
539				frame.tf_eip =
540				    (int)PCPU_GET(curpcb)->pcb_onfault;
541				goto out;
542			}
543			break;
544
545		case T_TSSFLT:
546			/*
547			 * PSL_NT can be set in user mode and isn't cleared
548			 * automatically when the kernel is entered.  This
549			 * causes a TSS fault when the kernel attempts to
550			 * `iret' because the TSS link is uninitialized.  We
551			 * want to get this fault so that we can fix the
552			 * problem here and not every time the kernel is
553			 * entered.
554			 */
555			if (frame.tf_eflags & PSL_NT) {
556				frame.tf_eflags &= ~PSL_NT;
557				goto out;
558			}
559			break;
560
561		case T_TRCTRAP:	 /* trace trap */
562			if (frame.tf_eip == (int)IDTVEC(lcall_syscall)) {
563				/*
564				 * We've just entered system mode via the
565				 * syscall lcall.  Continue single stepping
566				 * silently until the syscall handler has
567				 * saved the flags.
568				 */
569				goto out;
570			}
571			if (frame.tf_eip == (int)IDTVEC(lcall_syscall) + 1) {
572				/*
573				 * The syscall handler has now saved the
574				 * flags.  Stop single stepping it.
575				 */
576				frame.tf_eflags &= ~PSL_T;
577				goto out;
578			}
579			/*
580			 * Ignore debug register trace traps due to
581			 * accesses in the user's address space, which
582			 * can happen under several conditions such as
583			 * if a user sets a watchpoint on a buffer and
584			 * then passes that buffer to a system call.
585			 * We still want to get TRCTRAPS for addresses
586			 * in kernel space because that is useful when
587			 * debugging the kernel.
588			 */
589			/* XXX Giant */
590			if (user_dbreg_trap() && !in_vm86call) {
591				/*
592				 * Reset breakpoint bits because the
593				 * processor doesn't
594				 */
595				load_dr6(rdr6() & 0xfffffff0);
596				goto out;
597			}
598			/*
599			 * Fall through (TRCTRAP kernel mode, kernel address)
600			 */
601		case T_BPTFLT:
602			/*
603			 * If DDB is enabled, let it handle the debugger trap.
604			 * Otherwise, debugger traps "can't happen".
605			 */
606#ifdef DDB
607			/* XXX Giant */
608			if (kdb_trap (type, 0, &frame))
609				goto out;
610#endif
611			break;
612
613#ifdef DEV_ISA
614		case T_NMI:
615#ifdef POWERFAIL_NMI
616			mtx_lock(&Giant);
617			if (time_second - lastalert > 10) {
618				log(LOG_WARNING, "NMI: power fail\n");
619				sysbeep(TIMER_FREQ/880, hz);
620				lastalert = time_second;
621			}
622			mtx_unlock(&Giant);
623			goto out;
624#else /* !POWERFAIL_NMI */
625			/* XXX Giant */
626			/* machine/parity/power fail/"kitchen sink" faults */
627			if (isa_nmi(code) == 0) {
628#ifdef DDB
629				/*
630				 * NMI can be hooked up to a pushbutton
631				 * for debugging.
632				 */
633				if (ddb_on_nmi) {
634					printf ("NMI ... going to debugger\n");
635					kdb_trap (type, 0, &frame);
636				}
637#endif /* DDB */
638				goto out;
639			} else if (panic_on_nmi == 0)
640				goto out;
641			/* FALL THROUGH */
642#endif /* POWERFAIL_NMI */
643#endif /* DEV_ISA */
644		}
645
646		mtx_lock(&Giant);
647		trap_fatal(&frame, eva);
648		mtx_unlock(&Giant);
649		goto out;
650	}
651
652	mtx_lock(&Giant);
653	/* Translate fault for emulators (e.g. Linux) */
654	if (*p->p_sysent->sv_transtrap)
655		i = (*p->p_sysent->sv_transtrap)(i, type);
656
657	trapsignal(p, i, ucode);
658
659#ifdef DEBUG
660	if (type <= MAX_TRAP_MSG) {
661		uprintf("fatal process exception: %s",
662			trap_msg[type]);
663		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
664			uprintf(", fault VA = 0x%lx", (u_long)eva);
665		uprintf("\n");
666	}
667#endif
668	mtx_unlock(&Giant);
669
670user:
671	userret(p, &frame, sticks);
672	if (mtx_owned(&Giant))
673		mtx_unlock(&Giant);
674out:
675	return;
676}
677
678#ifdef notyet
679/*
680 * This version doesn't allow a page fault to user space while
681 * in the kernel. The rest of the kernel needs to be made "safe"
682 * before this can be used. I think the only things remaining
683 * to be made safe are the iBCS2 code and the process tracing/
684 * debugging code.
685 */
686static int
687trap_pfault(frame, usermode, eva)
688	struct trapframe *frame;
689	int usermode;
690	vm_offset_t eva;
691{
692	vm_offset_t va;
693	struct vmspace *vm = NULL;
694	vm_map_t map = 0;
695	int rv = 0;
696	vm_prot_t ftype;
697	struct proc *p = curproc;
698
699	if (frame->tf_err & PGEX_W)
700		ftype = VM_PROT_WRITE;
701	else
702		ftype = VM_PROT_READ;
703
704	va = trunc_page(eva);
705	if (va < VM_MIN_KERNEL_ADDRESS) {
706		vm_offset_t v;
707		vm_page_t mpte;
708
709		if (p == NULL ||
710		    (!usermode && va < VM_MAXUSER_ADDRESS &&
711		     (p->p_intr_nesting_level != 0 ||
712		      PCPU_GET(curpcb) == NULL ||
713		      PCPU_GET(curpcb)->pcb_onfault == NULL))) {
714			trap_fatal(frame, eva);
715			return (-1);
716		}
717
718		/*
719		 * This is a fault on non-kernel virtual memory.
720		 * vm is initialized above to NULL. If curproc is NULL
721		 * or curproc->p_vmspace is NULL the fault is fatal.
722		 */
723		vm = p->p_vmspace;
724		if (vm == NULL)
725			goto nogo;
726
727		map = &vm->vm_map;
728
729		/*
730		 * Keep swapout from messing with us during this
731		 *	critical time.
732		 */
733		PROC_LOCK(p);
734		++p->p_lock;
735		PROC_UNLOCK(p);
736
737		/*
738		 * Grow the stack if necessary
739		 */
740		/* grow_stack returns false only if va falls into
741		 * a growable stack region and the stack growth
742		 * fails.  It returns true if va was not within
743		 * a growable stack region, or if the stack
744		 * growth succeeded.
745		 */
746		if (!grow_stack (p, va)) {
747			rv = KERN_FAILURE;
748			PROC_LOCK(p);
749			--p->p_lock;
750			PROC_UNLOCK(p);
751			goto nogo;
752		}
753
754		/* Fault in the user page: */
755		rv = vm_fault(map, va, ftype,
756			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
757						      : VM_FAULT_NORMAL);
758
759		PROC_LOCK(p);
760		--p->p_lock;
761		PROC_UNLOCK(p);
762	} else {
763		/*
764		 * Don't allow user-mode faults in kernel address space.
765		 */
766		if (usermode)
767			goto nogo;
768
769		/*
770		 * Since we know that kernel virtual address addresses
771		 * always have pte pages mapped, we just have to fault
772		 * the page.
773		 */
774		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
775	}
776
777	if (rv == KERN_SUCCESS)
778		return (0);
779nogo:
780	if (!usermode) {
781		if (p->p_intr_nesting_level == 0 &&
782		    PCPU_GET(curpcb) != NULL &&
783		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
784			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
785			return (0);
786		}
787		trap_fatal(frame, eva);
788		return (-1);
789	}
790
791	/* kludge to pass faulting virtual address to sendsig */
792	frame->tf_err = eva;
793
794	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
795}
796#endif
797
798int
799trap_pfault(frame, usermode, eva)
800	struct trapframe *frame;
801	int usermode;
802	vm_offset_t eva;
803{
804	vm_offset_t va;
805	struct vmspace *vm = NULL;
806	vm_map_t map = 0;
807	int rv = 0;
808	vm_prot_t ftype;
809	struct proc *p = curproc;
810
811	va = trunc_page(eva);
812	if (va >= KERNBASE) {
813		/*
814		 * Don't allow user-mode faults in kernel address space.
815		 * An exception:  if the faulting address is the invalid
816		 * instruction entry in the IDT, then the Intel Pentium
817		 * F00F bug workaround was triggered, and we need to
818		 * treat it is as an illegal instruction, and not a page
819		 * fault.
820		 */
821#if defined(I586_CPU) && !defined(NO_F00F_HACK)
822		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
823			return -2;
824#endif
825		if (usermode)
826			goto nogo;
827
828		map = kernel_map;
829	} else {
830		/*
831		 * This is a fault on non-kernel virtual memory.
832		 * vm is initialized above to NULL. If curproc is NULL
833		 * or curproc->p_vmspace is NULL the fault is fatal.
834		 */
835		if (p != NULL)
836			vm = p->p_vmspace;
837
838		if (vm == NULL)
839			goto nogo;
840
841		map = &vm->vm_map;
842	}
843
844	if (frame->tf_err & PGEX_W)
845		ftype = VM_PROT_WRITE;
846	else
847		ftype = VM_PROT_READ;
848
849	if (map != kernel_map) {
850		/*
851		 * Keep swapout from messing with us during this
852		 *	critical time.
853		 */
854		PROC_LOCK(p);
855		++p->p_lock;
856		PROC_UNLOCK(p);
857
858		/*
859		 * Grow the stack if necessary
860		 */
861		/* grow_stack returns false only if va falls into
862		 * a growable stack region and the stack growth
863		 * fails.  It returns true if va was not within
864		 * a growable stack region, or if the stack
865		 * growth succeeded.
866		 */
867		if (!grow_stack (p, va)) {
868			rv = KERN_FAILURE;
869			PROC_LOCK(p);
870			--p->p_lock;
871			PROC_UNLOCK(p);
872			goto nogo;
873		}
874
875		/* Fault in the user page: */
876		rv = vm_fault(map, va, ftype,
877			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
878						      : VM_FAULT_NORMAL);
879
880		PROC_LOCK(p);
881		--p->p_lock;
882		PROC_UNLOCK(p);
883	} else {
884		/*
885		 * Don't have to worry about process locking or stacks in the
886		 * kernel.
887		 */
888		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
889	}
890
891	if (rv == KERN_SUCCESS)
892		return (0);
893nogo:
894	if (!usermode) {
895		if (p->p_intr_nesting_level == 0 &&
896		    PCPU_GET(curpcb) != NULL &&
897		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
898			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
899			return (0);
900		}
901		trap_fatal(frame, eva);
902		return (-1);
903	}
904
905	/* kludge to pass faulting virtual address to sendsig */
906	frame->tf_err = eva;
907
908	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
909}
910
911static void
912trap_fatal(frame, eva)
913	struct trapframe *frame;
914	vm_offset_t eva;
915{
916	int code, type, ss, esp;
917	struct soft_segment_descriptor softseg;
918
919	code = frame->tf_err;
920	type = frame->tf_trapno;
921	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
922
923	if (type <= MAX_TRAP_MSG)
924		printf("\n\nFatal trap %d: %s while in %s mode\n",
925			type, trap_msg[type],
926        		frame->tf_eflags & PSL_VM ? "vm86" :
927			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
928#ifdef SMP
929	/* two separate prints in case of a trap on an unmapped page */
930	printf("cpuid = %d; ", PCPU_GET(cpuid));
931	printf("lapic.id = %08x\n", lapic.id);
932#endif
933	if (type == T_PAGEFLT) {
934		printf("fault virtual address	= 0x%x\n", eva);
935		printf("fault code		= %s %s, %s\n",
936			code & PGEX_U ? "user" : "supervisor",
937			code & PGEX_W ? "write" : "read",
938			code & PGEX_P ? "protection violation" : "page not present");
939	}
940	printf("instruction pointer	= 0x%x:0x%x\n",
941	       frame->tf_cs & 0xffff, frame->tf_eip);
942        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
943		ss = frame->tf_ss & 0xffff;
944		esp = frame->tf_esp;
945	} else {
946		ss = GSEL(GDATA_SEL, SEL_KPL);
947		esp = (int)&frame->tf_esp;
948	}
949	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
950	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
951	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
952	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
953	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
954	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
955	       softseg.ssd_gran);
956	printf("processor eflags	= ");
957	if (frame->tf_eflags & PSL_T)
958		printf("trace trap, ");
959	if (frame->tf_eflags & PSL_I)
960		printf("interrupt enabled, ");
961	if (frame->tf_eflags & PSL_NT)
962		printf("nested task, ");
963	if (frame->tf_eflags & PSL_RF)
964		printf("resume, ");
965	if (frame->tf_eflags & PSL_VM)
966		printf("vm86, ");
967	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
968	printf("current process		= ");
969	if (curproc) {
970		printf("%lu (%s)\n",
971		    (u_long)curproc->p_pid, curproc->p_comm ?
972		    curproc->p_comm : "");
973	} else {
974		printf("Idle\n");
975	}
976
977#ifdef KDB
978	if (kdb_trap(&psl))
979		return;
980#endif
981#ifdef DDB
982	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
983		return;
984#endif
985	printf("trap number		= %d\n", type);
986	if (type <= MAX_TRAP_MSG)
987		panic(trap_msg[type]);
988	else
989		panic("unknown/reserved trap");
990}
991
992/*
993 * Double fault handler. Called when a fault occurs while writing
994 * a frame for a trap/exception onto the stack. This usually occurs
995 * when the stack overflows (such is the case with infinite recursion,
996 * for example).
997 *
998 * XXX Note that the current PTD gets replaced by IdlePTD when the
999 * task switch occurs. This means that the stack that was active at
1000 * the time of the double fault is not available at <kstack> unless
1001 * the machine was idle when the double fault occurred. The downside
1002 * of this is that "trace <ebp>" in ddb won't work.
1003 */
1004void
1005dblfault_handler()
1006{
1007	printf("\nFatal double fault:\n");
1008	printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip));
1009	printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp));
1010	printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp));
1011#ifdef SMP
1012	/* two separate prints in case of a trap on an unmapped page */
1013	printf("cpuid = %d; ", PCPU_GET(cpuid));
1014	printf("lapic.id = %08x\n", lapic.id);
1015#endif
1016	panic("double fault");
1017}
1018
1019/*
1020 * Compensate for 386 brain damage (missing URKR).
1021 * This is a little simpler than the pagefault handler in trap() because
1022 * it the page tables have already been faulted in and high addresses
1023 * are thrown out early for other reasons.
1024 */
1025int trapwrite(addr)
1026	unsigned addr;
1027{
1028	struct proc *p;
1029	vm_offset_t va;
1030	struct vmspace *vm;
1031	int rv;
1032
1033	va = trunc_page((vm_offset_t)addr);
1034	/*
1035	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1036	 */
1037	if (va >= VM_MAXUSER_ADDRESS)
1038		return (1);
1039
1040	p = curproc;
1041	vm = p->p_vmspace;
1042
1043	PROC_LOCK(p);
1044	++p->p_lock;
1045	PROC_UNLOCK(p);
1046
1047	if (!grow_stack (p, va)) {
1048		PROC_LOCK(p);
1049		--p->p_lock;
1050		PROC_UNLOCK(p);
1051		return (1);
1052	}
1053
1054	/*
1055	 * fault the data page
1056	 */
1057	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1058
1059	PROC_LOCK(p);
1060	--p->p_lock;
1061	PROC_UNLOCK(p);
1062
1063	if (rv != KERN_SUCCESS)
1064		return 1;
1065
1066	return (0);
1067}
1068
1069/*
1070 *	syscall -	MP aware system call request C handler
1071 *
1072 *	A system call is essentially treated as a trap except that the
1073 *	MP lock is not held on entry or return.  We are responsible for
1074 *	obtaining the MP lock if necessary and for handling ASTs
1075 *	(e.g. a task switch) prior to return.
1076 *
1077 *	In general, only simple access and manipulation of curproc and
1078 *	the current stack is allowed without having to hold MP lock.
1079 */
1080void
1081syscall(frame)
1082	struct trapframe frame;
1083{
1084	caddr_t params;
1085	int i;
1086	struct sysent *callp;
1087	struct proc *p = curproc;
1088	u_quad_t sticks;
1089	int error;
1090	int narg;
1091	int args[8];
1092	u_int code;
1093
1094	atomic_add_int(&cnt.v_syscall, 1);
1095
1096#ifdef DIAGNOSTIC
1097	if (ISPL(frame.tf_cs) != SEL_UPL) {
1098		mtx_lock(&Giant);
1099		panic("syscall");
1100		/* NOT REACHED */
1101	}
1102#endif
1103
1104	mtx_lock_spin(&sched_lock);
1105	sticks = p->p_sticks;
1106	mtx_unlock_spin(&sched_lock);
1107
1108	p->p_md.md_regs = &frame;
1109	params = (caddr_t)frame.tf_esp + sizeof(int);
1110	code = frame.tf_eax;
1111
1112	if (p->p_sysent->sv_prepsyscall) {
1113		/*
1114		 * The prep code is not MP aware.
1115		 */
1116		mtx_lock(&Giant);
1117		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1118		mtx_unlock(&Giant);
1119	} else {
1120		/*
1121		 * Need to check if this is a 32 bit or 64 bit syscall.
1122		 * fuword is MP aware.
1123		 */
1124		if (code == SYS_syscall) {
1125			/*
1126			 * Code is first argument, followed by actual args.
1127			 */
1128			code = fuword(params);
1129			params += sizeof(int);
1130		} else if (code == SYS___syscall) {
1131			/*
1132			 * Like syscall, but code is a quad, so as to maintain
1133			 * quad alignment for the rest of the arguments.
1134			 */
1135			code = fuword(params);
1136			params += sizeof(quad_t);
1137		}
1138	}
1139
1140 	if (p->p_sysent->sv_mask)
1141 		code &= p->p_sysent->sv_mask;
1142
1143 	if (code >= p->p_sysent->sv_size)
1144 		callp = &p->p_sysent->sv_table[0];
1145  	else
1146 		callp = &p->p_sysent->sv_table[code];
1147
1148	narg = callp->sy_narg & SYF_ARGMASK;
1149
1150	/*
1151	 * copyin is MP aware, but the tracing code is not
1152	 */
1153	if (params && (i = narg * sizeof(int)) &&
1154	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1155		mtx_lock(&Giant);
1156#ifdef KTRACE
1157		if (KTRPOINT(p, KTR_SYSCALL))
1158			ktrsyscall(p->p_tracep, code, narg, args);
1159#endif
1160		goto bad;
1161	}
1162
1163	/*
1164	 * Try to run the syscall without the MP lock if the syscall
1165	 * is MP safe.  We have to obtain the MP lock no matter what if
1166	 * we are ktracing
1167	 */
1168	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1169		mtx_lock(&Giant);
1170	}
1171
1172#ifdef KTRACE
1173	if (KTRPOINT(p, KTR_SYSCALL)) {
1174		if (!mtx_owned(&Giant))
1175			mtx_lock(&Giant);
1176		ktrsyscall(p->p_tracep, code, narg, args);
1177	}
1178#endif
1179	p->p_retval[0] = 0;
1180	p->p_retval[1] = frame.tf_edx;
1181
1182	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1183
1184	error = (*callp->sy_call)(p, args);
1185
1186	/*
1187	 * MP SAFE (we may or may not have the MP lock at this point)
1188	 */
1189	switch (error) {
1190	case 0:
1191		frame.tf_eax = p->p_retval[0];
1192		frame.tf_edx = p->p_retval[1];
1193		frame.tf_eflags &= ~PSL_C;
1194		break;
1195
1196	case ERESTART:
1197		/*
1198		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1199		 * int 0x80 is 2 bytes. We saved this in tf_err.
1200		 */
1201		frame.tf_eip -= frame.tf_err;
1202		break;
1203
1204	case EJUSTRETURN:
1205		break;
1206
1207	default:
1208bad:
1209 		if (p->p_sysent->sv_errsize) {
1210 			if (error >= p->p_sysent->sv_errsize)
1211  				error = -1;	/* XXX */
1212   			else
1213  				error = p->p_sysent->sv_errtbl[error];
1214		}
1215		frame.tf_eax = error;
1216		frame.tf_eflags |= PSL_C;
1217		break;
1218	}
1219
1220	/*
1221	 * Traced syscall.  trapsignal() is not MP aware.
1222	 */
1223	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1224		if (!mtx_owned(&Giant))
1225			mtx_lock(&Giant);
1226		frame.tf_eflags &= ~PSL_T;
1227		trapsignal(p, SIGTRAP, 0);
1228	}
1229
1230	/*
1231	 * Handle reschedule and other end-of-syscall issues
1232	 */
1233	userret(p, &frame, sticks);
1234
1235#ifdef KTRACE
1236	if (KTRPOINT(p, KTR_SYSRET)) {
1237		if (!mtx_owned(&Giant))
1238			mtx_lock(&Giant);
1239		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1240	}
1241#endif
1242
1243	/*
1244	 * Release Giant if we had to get it
1245	 */
1246	if (mtx_owned(&Giant))
1247		mtx_unlock(&Giant);
1248
1249	/*
1250	 * This works because errno is findable through the
1251	 * register set.  If we ever support an emulation where this
1252	 * is not the case, this code will need to be revisited.
1253	 */
1254	STOPEVENT(p, S_SCX, code);
1255
1256#ifdef WITNESS
1257	if (witness_list(p)) {
1258		panic("system call %s returning with mutex(s) held\n",
1259		    syscallnames[code]);
1260	}
1261#endif
1262	mtx_assert(&sched_lock, MA_NOTOWNED);
1263	mtx_assert(&Giant, MA_NOTOWNED);
1264}
1265
1266void
1267ast(framep)
1268	struct trapframe *framep;
1269{
1270	struct proc *p = CURPROC;
1271	u_quad_t sticks;
1272
1273	KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
1274
1275	/*
1276	 * We check for a pending AST here rather than in the assembly as
1277	 * acquiring and releasing mutexes in assembly is not fun.
1278	 */
1279	mtx_lock_spin(&sched_lock);
1280	if (!(astpending(p) || resched_wanted())) {
1281		mtx_unlock_spin(&sched_lock);
1282		return;
1283	}
1284
1285	sticks = p->p_sticks;
1286	p->p_md.md_regs = framep;
1287
1288	astoff(p);
1289	cnt.v_soft++;
1290	mtx_intr_enable(&sched_lock);
1291	if (p->p_sflag & PS_OWEUPC) {
1292		p->p_sflag &= ~PS_OWEUPC;
1293		mtx_unlock_spin(&sched_lock);
1294		mtx_lock(&Giant);
1295		mtx_lock_spin(&sched_lock);
1296		addupc_task(p, p->p_stats->p_prof.pr_addr,
1297			    p->p_stats->p_prof.pr_ticks);
1298	}
1299	if (p->p_sflag & PS_ALRMPEND) {
1300		p->p_sflag &= ~PS_ALRMPEND;
1301		mtx_unlock_spin(&sched_lock);
1302		PROC_LOCK(p);
1303		psignal(p, SIGVTALRM);
1304		PROC_UNLOCK(p);
1305		mtx_lock_spin(&sched_lock);
1306	}
1307	if (p->p_sflag & PS_PROFPEND) {
1308		p->p_sflag &= ~PS_PROFPEND;
1309		mtx_unlock_spin(&sched_lock);
1310		PROC_LOCK(p);
1311		psignal(p, SIGPROF);
1312		PROC_UNLOCK(p);
1313	} else
1314		mtx_unlock_spin(&sched_lock);
1315
1316	userret(p, framep, sticks);
1317
1318	if (mtx_owned(&Giant))
1319		mtx_unlock(&Giant);
1320}
1321