subr_syscall.c revision 72683
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 72683 2001-02-19 04:15:59Z bde $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_clock.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_isa.h"
49#include "opt_ktrace.h"
50#include "opt_npx.h"
51#include "opt_trap.h"
52
53#include <sys/param.h>
54#include <sys/bus.h>
55#include <sys/systm.h>
56#include <sys/proc.h>
57#include <sys/pioctl.h>
58#include <sys/ipl.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/mutex.h>
62#include <sys/resourcevar.h>
63#include <sys/signalvar.h>
64#include <sys/syscall.h>
65#include <sys/sysctl.h>
66#include <sys/sysent.h>
67#include <sys/uio.h>
68#include <sys/vmmeter.h>
69#ifdef KTRACE
70#include <sys/ktrace.h>
71#endif
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <sys/lock.h>
76#include <vm/pmap.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_extern.h>
81
82#include <machine/cpu.h>
83#include <machine/md_var.h>
84#include <machine/pcb.h>
85#ifdef SMP
86#include <machine/smp.h>
87#endif
88#include <machine/tss.h>
89
90#include <i386/isa/icu.h>
91#include <i386/isa/intr_machdep.h>
92
93#ifdef POWERFAIL_NMI
94#include <sys/syslog.h>
95#include <machine/clock.h>
96#endif
97
98#include <machine/vm86.h>
99
100#include <ddb/ddb.h>
101
102#include <sys/sysctl.h>
103
104int (*pmath_emulate) __P((struct trapframe *));
105
106extern void trap __P((struct trapframe frame));
107extern int trapwrite __P((unsigned addr));
108extern void syscall __P((struct trapframe frame));
109extern void ast __P((struct trapframe frame));
110
111static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
112static void trap_fatal __P((struct trapframe *, vm_offset_t));
113void dblfault_handler __P((void));
114
115extern inthand_t IDTVEC(syscall);
116
117#define MAX_TRAP_MSG		28
118static char *trap_msg[] = {
119	"",					/*  0 unused */
120	"privileged instruction fault",		/*  1 T_PRIVINFLT */
121	"",					/*  2 unused */
122	"breakpoint instruction fault",		/*  3 T_BPTFLT */
123	"",					/*  4 unused */
124	"",					/*  5 unused */
125	"arithmetic trap",			/*  6 T_ARITHTRAP */
126	"system forced exception",		/*  7 T_ASTFLT */
127	"",					/*  8 unused */
128	"general protection fault",		/*  9 T_PROTFLT */
129	"trace trap",				/* 10 T_TRCTRAP */
130	"",					/* 11 unused */
131	"page fault",				/* 12 T_PAGEFLT */
132	"",					/* 13 unused */
133	"alignment fault",			/* 14 T_ALIGNFLT */
134	"",					/* 15 unused */
135	"",					/* 16 unused */
136	"",					/* 17 unused */
137	"integer divide fault",			/* 18 T_DIVIDE */
138	"non-maskable interrupt trap",		/* 19 T_NMI */
139	"overflow trap",			/* 20 T_OFLOW */
140	"FPU bounds check fault",		/* 21 T_BOUND */
141	"FPU device not available",		/* 22 T_DNA */
142	"double fault",				/* 23 T_DOUBLEFLT */
143	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
144	"invalid TSS fault",			/* 25 T_TSSFLT */
145	"segment not present fault",		/* 26 T_SEGNPFLT */
146	"stack fault",				/* 27 T_STKFLT */
147	"machine check trap",			/* 28 T_MCHK */
148};
149
150#if defined(I586_CPU) && !defined(NO_F00F_HACK)
151extern int has_f00f_bug;
152#endif
153
154#ifdef DDB
155static int ddb_on_nmi = 1;
156SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
157	&ddb_on_nmi, 0, "Go to DDB on NMI");
158#endif
159static int panic_on_nmi = 1;
160SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
161	&panic_on_nmi, 0, "Panic on NMI");
162
163#ifdef WITNESS
164extern char *syscallnames[];
165#endif
166
167void
168userret(p, frame, oticks)
169	struct proc *p;
170	struct trapframe *frame;
171	u_quad_t oticks;
172{
173	int sig;
174
175	while ((sig = CURSIG(p)) != 0) {
176		if (!mtx_owned(&Giant))
177			mtx_lock(&Giant);
178		postsig(sig);
179	}
180
181	mtx_lock_spin(&sched_lock);
182	p->p_pri.pri_level = p->p_pri.pri_user;
183	if (resched_wanted()) {
184		/*
185		 * Since we are curproc, clock will normally just change
186		 * our priority without moving us from one queue to another
187		 * (since the running process is not on a queue.)
188		 * If that happened after we setrunqueue ourselves but before we
189		 * mi_switch()'ed, we might not be on the queue indicated by
190		 * our priority.
191		 */
192		clear_resched();
193		DROP_GIANT_NOSWITCH();
194		setrunqueue(p);
195		p->p_stats->p_ru.ru_nivcsw++;
196		mi_switch();
197		mtx_unlock_spin(&sched_lock);
198		PICKUP_GIANT();
199		while ((sig = CURSIG(p)) != 0) {
200			if (!mtx_owned(&Giant))
201				mtx_lock(&Giant);
202			postsig(sig);
203		}
204		mtx_lock_spin(&sched_lock);
205	}
206
207	/*
208	 * Charge system time if profiling.
209	 */
210	if (p->p_sflag & PS_PROFIL) {
211		mtx_unlock_spin(&sched_lock);
212		/* XXX - do we need Giant? */
213		if (!mtx_owned(&Giant))
214			mtx_lock(&Giant);
215		mtx_lock_spin(&sched_lock);
216		addupc_task(p, TRAPF_PC(frame),
217			    (u_int)(p->p_sticks - oticks) * psratio);
218	}
219	mtx_unlock_spin(&sched_lock);
220}
221
222/*
223 * Exception, fault, and trap interface to the FreeBSD kernel.
224 * This common code is called from assembly language IDT gate entry
225 * routines that prepare a suitable stack frame, and restore this
226 * frame after the exception has been processed.
227 */
228
229void
230trap(frame)
231	struct trapframe frame;
232{
233	struct proc *p = curproc;
234	u_quad_t sticks = 0;
235	int i = 0, ucode = 0, type, code;
236	vm_offset_t eva;
237#ifdef POWERFAIL_NMI
238	static int lastalert = 0;
239#endif
240
241	atomic_add_int(&cnt.v_trap, 1);
242
243	if ((frame.tf_eflags & PSL_I) == 0) {
244		/*
245		 * Buggy application or kernel code has disabled
246		 * interrupts and then trapped.  Enabling interrupts
247		 * now is wrong, but it is better than running with
248		 * interrupts disabled until they are accidentally
249		 * enabled later.  XXX This is really bad if we trap
250		 * while holding a spin lock.
251		 */
252		type = frame.tf_trapno;
253		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
254			printf(
255			    "pid %ld (%s): trap %d with interrupts disabled\n",
256			    (long)curproc->p_pid, curproc->p_comm, type);
257		else if (type != T_BPTFLT && type != T_TRCTRAP) {
258			/*
259			 * XXX not quite right, since this may be for a
260			 * multiple fault in user mode.
261			 */
262			printf("kernel trap %d with interrupts disabled\n",
263			    type);
264			/*
265			 * We should walk p_heldmtx here and see if any are
266			 * spin mutexes, and not do this if so.
267			 */
268			enable_intr();
269		}
270	}
271
272	eva = 0;
273
274#if defined(I586_CPU) && !defined(NO_F00F_HACK)
275restart:
276#endif
277
278	type = frame.tf_trapno;
279	code = frame.tf_err;
280
281        if ((ISPL(frame.tf_cs) == SEL_UPL) ||
282	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
283		/* user trap */
284
285		mtx_lock_spin(&sched_lock);
286		sticks = p->p_sticks;
287		mtx_unlock_spin(&sched_lock);
288		p->p_md.md_regs = &frame;
289
290		switch (type) {
291		case T_PRIVINFLT:	/* privileged instruction fault */
292			ucode = type;
293			i = SIGILL;
294			break;
295
296		case T_BPTFLT:		/* bpt instruction fault */
297		case T_TRCTRAP:		/* trace trap */
298			frame.tf_eflags &= ~PSL_T;
299			i = SIGTRAP;
300			break;
301
302		case T_ARITHTRAP:	/* arithmetic trap */
303			ucode = code;
304			i = SIGFPE;
305			break;
306
307			/*
308			 * The following two traps can happen in
309			 * vm86 mode, and, if so, we want to handle
310			 * them specially.
311			 */
312		case T_PROTFLT:		/* general protection fault */
313		case T_STKFLT:		/* stack fault */
314			if (frame.tf_eflags & PSL_VM) {
315				mtx_lock(&Giant);
316				i = vm86_emulate((struct vm86frame *)&frame);
317				mtx_unlock(&Giant);
318				if (i == 0)
319					goto user;
320				break;
321			}
322			/* FALL THROUGH */
323
324		case T_SEGNPFLT:	/* segment not present fault */
325		case T_TSSFLT:		/* invalid TSS fault */
326		case T_DOUBLEFLT:	/* double fault */
327		default:
328			ucode = code + BUS_SEGM_FAULT ;
329			i = SIGBUS;
330			break;
331
332		case T_PAGEFLT:		/* page fault */
333			/*
334			 * For some Cyrix CPUs, %cr2 is clobbered by
335			 * interrupts.  This problem is worked around by using
336			 * an interrupt gate for the pagefault handler.  We
337			 * are finally ready to read %cr2 and then must
338			 * reenable interrupts.
339			 */
340			eva = rcr2();
341			enable_intr();
342			mtx_lock(&Giant);
343			i = trap_pfault(&frame, TRUE, eva);
344			mtx_unlock(&Giant);
345#if defined(I586_CPU) && !defined(NO_F00F_HACK)
346			if (i == -2) {
347				/*
348				 * f00f hack workaround has triggered, treat
349				 * as illegal instruction not page fault.
350				 */
351				frame.tf_trapno = T_PRIVINFLT;
352				goto restart;
353			}
354#endif
355			if (i == -1)
356				goto out;
357			if (i == 0)
358				goto user;
359
360			ucode = T_PAGEFLT;
361			break;
362
363		case T_DIVIDE:		/* integer divide fault */
364			ucode = FPE_INTDIV;
365			i = SIGFPE;
366			break;
367
368#ifdef DEV_ISA
369		case T_NMI:
370#ifdef POWERFAIL_NMI
371#ifndef TIMER_FREQ
372#  define TIMER_FREQ 1193182
373#endif
374			mtx_lock(&Giant);
375			if (time_second - lastalert > 10) {
376				log(LOG_WARNING, "NMI: power fail\n");
377				sysbeep(TIMER_FREQ/880, hz);
378				lastalert = time_second;
379			}
380			mtx_unlock(&Giant);
381			goto out;
382#else /* !POWERFAIL_NMI */
383			/* machine/parity/power fail/"kitchen sink" faults */
384			/* XXX Giant */
385			if (isa_nmi(code) == 0) {
386#ifdef DDB
387				/*
388				 * NMI can be hooked up to a pushbutton
389				 * for debugging.
390				 */
391				if (ddb_on_nmi) {
392					printf ("NMI ... going to debugger\n");
393					kdb_trap (type, 0, &frame);
394				}
395#endif /* DDB */
396				goto out;
397			} else if (panic_on_nmi)
398				panic("NMI indicates hardware failure");
399			break;
400#endif /* POWERFAIL_NMI */
401#endif /* DEV_ISA */
402
403		case T_OFLOW:		/* integer overflow fault */
404			ucode = FPE_INTOVF;
405			i = SIGFPE;
406			break;
407
408		case T_BOUND:		/* bounds check fault */
409			ucode = FPE_FLTSUB;
410			i = SIGFPE;
411			break;
412
413		case T_DNA:
414#ifdef DEV_NPX
415			/* transparent fault (due to context switch "late") */
416			if (npxdna())
417				goto out;
418#endif
419			if (!pmath_emulate) {
420				i = SIGFPE;
421				ucode = FPE_FPU_NP_TRAP;
422				break;
423			}
424			mtx_lock(&Giant);
425			i = (*pmath_emulate)(&frame);
426			mtx_unlock(&Giant);
427			if (i == 0) {
428				if (!(frame.tf_eflags & PSL_T))
429					goto out;
430				frame.tf_eflags &= ~PSL_T;
431				i = SIGTRAP;
432			}
433			/* else ucode = emulator_only_knows() XXX */
434			break;
435
436		case T_FPOPFLT:		/* FPU operand fetch fault */
437			ucode = T_FPOPFLT;
438			i = SIGILL;
439			break;
440		}
441	} else {
442		/* kernel trap */
443
444		switch (type) {
445		case T_PAGEFLT:			/* page fault */
446			/*
447			 * For some Cyrix CPUs, %cr2 is clobbered by
448			 * interrupts.  This problem is worked around by using
449			 * an interrupt gate for the pagefault handler.  We
450			 * are finally ready to read %cr2 and then must
451			 * reenable interrupts.
452			 */
453			eva = rcr2();
454			enable_intr();
455			mtx_lock(&Giant);
456			(void) trap_pfault(&frame, FALSE, eva);
457			mtx_unlock(&Giant);
458			goto out;
459
460		case T_DNA:
461#ifdef DEV_NPX
462			/*
463			 * The kernel is apparently using npx for copying.
464			 * XXX this should be fatal unless the kernel has
465			 * registered such use.
466			 */
467			if (npxdna())
468				goto out;
469#endif
470			break;
471
472			/*
473			 * The following two traps can happen in
474			 * vm86 mode, and, if so, we want to handle
475			 * them specially.
476			 */
477		case T_PROTFLT:		/* general protection fault */
478		case T_STKFLT:		/* stack fault */
479			if (frame.tf_eflags & PSL_VM) {
480				mtx_lock(&Giant);
481				i = vm86_emulate((struct vm86frame *)&frame);
482				mtx_unlock(&Giant);
483				if (i != 0)
484					/*
485					 * returns to original process
486					 */
487					vm86_trap((struct vm86frame *)&frame);
488				goto out;
489			}
490			if (type == T_STKFLT)
491				break;
492
493			/* FALL THROUGH */
494
495		case T_SEGNPFLT:	/* segment not present fault */
496			if (in_vm86call)
497				break;
498
499			if (p->p_intr_nesting_level != 0)
500				break;
501
502			/*
503			 * Invalid %fs's and %gs's can be created using
504			 * procfs or PT_SETREGS or by invalidating the
505			 * underlying LDT entry.  This causes a fault
506			 * in kernel mode when the kernel attempts to
507			 * switch contexts.  Lose the bad context
508			 * (XXX) so that we can continue, and generate
509			 * a signal.
510			 */
511			if (frame.tf_eip == (int)cpu_switch_load_gs) {
512				PCPU_GET(curpcb)->pcb_gs = 0;
513				mtx_lock(&Giant);
514				psignal(p, SIGBUS);
515				mtx_unlock(&Giant);
516				goto out;
517			}
518
519			/*
520			 * Invalid segment selectors and out of bounds
521			 * %eip's and %esp's can be set up in user mode.
522			 * This causes a fault in kernel mode when the
523			 * kernel tries to return to user mode.  We want
524			 * to get this fault so that we can fix the
525			 * problem here and not have to check all the
526			 * selectors and pointers when the user changes
527			 * them.
528			 */
529			if (frame.tf_eip == (int)doreti_iret) {
530				frame.tf_eip = (int)doreti_iret_fault;
531				goto out;
532			}
533			if (frame.tf_eip == (int)doreti_popl_ds) {
534				frame.tf_eip = (int)doreti_popl_ds_fault;
535				goto out;
536			}
537			if (frame.tf_eip == (int)doreti_popl_es) {
538				frame.tf_eip = (int)doreti_popl_es_fault;
539				goto out;
540			}
541			if (frame.tf_eip == (int)doreti_popl_fs) {
542				frame.tf_eip = (int)doreti_popl_fs_fault;
543				goto out;
544			}
545			if (PCPU_GET(curpcb) != NULL &&
546			    PCPU_GET(curpcb)->pcb_onfault != NULL) {
547				frame.tf_eip =
548				    (int)PCPU_GET(curpcb)->pcb_onfault;
549				goto out;
550			}
551			break;
552
553		case T_TSSFLT:
554			/*
555			 * PSL_NT can be set in user mode and isn't cleared
556			 * automatically when the kernel is entered.  This
557			 * causes a TSS fault when the kernel attempts to
558			 * `iret' because the TSS link is uninitialized.  We
559			 * want to get this fault so that we can fix the
560			 * problem here and not every time the kernel is
561			 * entered.
562			 */
563			if (frame.tf_eflags & PSL_NT) {
564				frame.tf_eflags &= ~PSL_NT;
565				goto out;
566			}
567			break;
568
569		case T_TRCTRAP:	 /* trace trap */
570			if (frame.tf_eip == (int)IDTVEC(syscall)) {
571				/*
572				 * We've just entered system mode via the
573				 * syscall lcall.  Continue single stepping
574				 * silently until the syscall handler has
575				 * saved the flags.
576				 */
577				goto out;
578			}
579			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
580				/*
581				 * The syscall handler has now saved the
582				 * flags.  Stop single stepping it.
583				 */
584				frame.tf_eflags &= ~PSL_T;
585				goto out;
586			}
587			/*
588			 * Ignore debug register trace traps due to
589			 * accesses in the user's address space, which
590			 * can happen under several conditions such as
591			 * if a user sets a watchpoint on a buffer and
592			 * then passes that buffer to a system call.
593			 * We still want to get TRCTRAPS for addresses
594			 * in kernel space because that is useful when
595			 * debugging the kernel.
596			 */
597			/* XXX Giant */
598			if (user_dbreg_trap() && !in_vm86call) {
599				/*
600				 * Reset breakpoint bits because the
601				 * processor doesn't
602				 */
603				load_dr6(rdr6() & 0xfffffff0);
604				goto out;
605			}
606			/*
607			 * Fall through (TRCTRAP kernel mode, kernel address)
608			 */
609		case T_BPTFLT:
610			/*
611			 * If DDB is enabled, let it handle the debugger trap.
612			 * Otherwise, debugger traps "can't happen".
613			 */
614#ifdef DDB
615			/* XXX Giant */
616			if (kdb_trap (type, 0, &frame))
617				goto out;
618#endif
619			break;
620
621#ifdef DEV_ISA
622		case T_NMI:
623#ifdef POWERFAIL_NMI
624			mtx_lock(&Giant);
625			if (time_second - lastalert > 10) {
626				log(LOG_WARNING, "NMI: power fail\n");
627				sysbeep(TIMER_FREQ/880, hz);
628				lastalert = time_second;
629			}
630			mtx_unlock(&Giant);
631			goto out;
632#else /* !POWERFAIL_NMI */
633			/* XXX Giant */
634			/* machine/parity/power fail/"kitchen sink" faults */
635			if (isa_nmi(code) == 0) {
636#ifdef DDB
637				/*
638				 * NMI can be hooked up to a pushbutton
639				 * for debugging.
640				 */
641				if (ddb_on_nmi) {
642					printf ("NMI ... going to debugger\n");
643					kdb_trap (type, 0, &frame);
644				}
645#endif /* DDB */
646				goto out;
647			} else if (panic_on_nmi == 0)
648				goto out;
649			/* FALL THROUGH */
650#endif /* POWERFAIL_NMI */
651#endif /* DEV_ISA */
652		}
653
654		mtx_lock(&Giant);
655		trap_fatal(&frame, eva);
656		mtx_unlock(&Giant);
657		goto out;
658	}
659
660	mtx_lock(&Giant);
661	/* Translate fault for emulators (e.g. Linux) */
662	if (*p->p_sysent->sv_transtrap)
663		i = (*p->p_sysent->sv_transtrap)(i, type);
664
665	trapsignal(p, i, ucode);
666
667#ifdef DEBUG
668	if (type <= MAX_TRAP_MSG) {
669		uprintf("fatal process exception: %s",
670			trap_msg[type]);
671		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
672			uprintf(", fault VA = 0x%lx", (u_long)eva);
673		uprintf("\n");
674	}
675#endif
676	mtx_unlock(&Giant);
677
678user:
679	userret(p, &frame, sticks);
680	if (mtx_owned(&Giant))
681		mtx_unlock(&Giant);
682out:
683	return;
684}
685
686#ifdef notyet
687/*
688 * This version doesn't allow a page fault to user space while
689 * in the kernel. The rest of the kernel needs to be made "safe"
690 * before this can be used. I think the only things remaining
691 * to be made safe are the iBCS2 code and the process tracing/
692 * debugging code.
693 */
694static int
695trap_pfault(frame, usermode, eva)
696	struct trapframe *frame;
697	int usermode;
698	vm_offset_t eva;
699{
700	vm_offset_t va;
701	struct vmspace *vm = NULL;
702	vm_map_t map = 0;
703	int rv = 0;
704	vm_prot_t ftype;
705	struct proc *p = curproc;
706
707	if (frame->tf_err & PGEX_W)
708		ftype = VM_PROT_WRITE;
709	else
710		ftype = VM_PROT_READ;
711
712	va = trunc_page(eva);
713	if (va < VM_MIN_KERNEL_ADDRESS) {
714		vm_offset_t v;
715		vm_page_t mpte;
716
717		if (p == NULL ||
718		    (!usermode && va < VM_MAXUSER_ADDRESS &&
719		     (p->p_intr_nesting_level != 0 ||
720		      PCPU_GET(curpcb) == NULL ||
721		      PCPU_GET(curpcb)->pcb_onfault == NULL))) {
722			trap_fatal(frame, eva);
723			return (-1);
724		}
725
726		/*
727		 * This is a fault on non-kernel virtual memory.
728		 * vm is initialized above to NULL. If curproc is NULL
729		 * or curproc->p_vmspace is NULL the fault is fatal.
730		 */
731		vm = p->p_vmspace;
732		if (vm == NULL)
733			goto nogo;
734
735		map = &vm->vm_map;
736
737		/*
738		 * Keep swapout from messing with us during this
739		 *	critical time.
740		 */
741		PROC_LOCK(p);
742		++p->p_lock;
743		PROC_UNLOCK(p);
744
745		/*
746		 * Grow the stack if necessary
747		 */
748		/* grow_stack returns false only if va falls into
749		 * a growable stack region and the stack growth
750		 * fails.  It returns true if va was not within
751		 * a growable stack region, or if the stack
752		 * growth succeeded.
753		 */
754		if (!grow_stack (p, va)) {
755			rv = KERN_FAILURE;
756			PROC_LOCK(p);
757			--p->p_lock;
758			PROC_UNLOCK(p);
759			goto nogo;
760		}
761
762		/* Fault in the user page: */
763		rv = vm_fault(map, va, ftype,
764			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
765						      : VM_FAULT_NORMAL);
766
767		PROC_LOCK(p);
768		--p->p_lock;
769		PROC_UNLOCK(p);
770	} else {
771		/*
772		 * Don't allow user-mode faults in kernel address space.
773		 */
774		if (usermode)
775			goto nogo;
776
777		/*
778		 * Since we know that kernel virtual address addresses
779		 * always have pte pages mapped, we just have to fault
780		 * the page.
781		 */
782		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
783	}
784
785	if (rv == KERN_SUCCESS)
786		return (0);
787nogo:
788	if (!usermode) {
789		if (p->p_intr_nesting_level == 0 &&
790		    PCPU_GET(curpcb) != NULL &&
791		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
792			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
793			return (0);
794		}
795		trap_fatal(frame, eva);
796		return (-1);
797	}
798
799	/* kludge to pass faulting virtual address to sendsig */
800	frame->tf_err = eva;
801
802	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
803}
804#endif
805
806int
807trap_pfault(frame, usermode, eva)
808	struct trapframe *frame;
809	int usermode;
810	vm_offset_t eva;
811{
812	vm_offset_t va;
813	struct vmspace *vm = NULL;
814	vm_map_t map = 0;
815	int rv = 0;
816	vm_prot_t ftype;
817	struct proc *p = curproc;
818
819	va = trunc_page(eva);
820	if (va >= KERNBASE) {
821		/*
822		 * Don't allow user-mode faults in kernel address space.
823		 * An exception:  if the faulting address is the invalid
824		 * instruction entry in the IDT, then the Intel Pentium
825		 * F00F bug workaround was triggered, and we need to
826		 * treat it is as an illegal instruction, and not a page
827		 * fault.
828		 */
829#if defined(I586_CPU) && !defined(NO_F00F_HACK)
830		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
831			return -2;
832#endif
833		if (usermode)
834			goto nogo;
835
836		map = kernel_map;
837	} else {
838		/*
839		 * This is a fault on non-kernel virtual memory.
840		 * vm is initialized above to NULL. If curproc is NULL
841		 * or curproc->p_vmspace is NULL the fault is fatal.
842		 */
843		if (p != NULL)
844			vm = p->p_vmspace;
845
846		if (vm == NULL)
847			goto nogo;
848
849		map = &vm->vm_map;
850	}
851
852	if (frame->tf_err & PGEX_W)
853		ftype = VM_PROT_WRITE;
854	else
855		ftype = VM_PROT_READ;
856
857	if (map != kernel_map) {
858		/*
859		 * Keep swapout from messing with us during this
860		 *	critical time.
861		 */
862		PROC_LOCK(p);
863		++p->p_lock;
864		PROC_UNLOCK(p);
865
866		/*
867		 * Grow the stack if necessary
868		 */
869		/* grow_stack returns false only if va falls into
870		 * a growable stack region and the stack growth
871		 * fails.  It returns true if va was not within
872		 * a growable stack region, or if the stack
873		 * growth succeeded.
874		 */
875		if (!grow_stack (p, va)) {
876			rv = KERN_FAILURE;
877			PROC_LOCK(p);
878			--p->p_lock;
879			PROC_UNLOCK(p);
880			goto nogo;
881		}
882
883		/* Fault in the user page: */
884		rv = vm_fault(map, va, ftype,
885			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
886						      : VM_FAULT_NORMAL);
887
888		PROC_LOCK(p);
889		--p->p_lock;
890		PROC_UNLOCK(p);
891	} else {
892		/*
893		 * Don't have to worry about process locking or stacks in the
894		 * kernel.
895		 */
896		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
897	}
898
899	if (rv == KERN_SUCCESS)
900		return (0);
901nogo:
902	if (!usermode) {
903		if (p->p_intr_nesting_level == 0 &&
904		    PCPU_GET(curpcb) != NULL &&
905		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
906			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
907			return (0);
908		}
909		trap_fatal(frame, eva);
910		return (-1);
911	}
912
913	/* kludge to pass faulting virtual address to sendsig */
914	frame->tf_err = eva;
915
916	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
917}
918
919static void
920trap_fatal(frame, eva)
921	struct trapframe *frame;
922	vm_offset_t eva;
923{
924	int code, type, ss, esp;
925	struct soft_segment_descriptor softseg;
926
927	code = frame->tf_err;
928	type = frame->tf_trapno;
929	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
930
931	if (type <= MAX_TRAP_MSG)
932		printf("\n\nFatal trap %d: %s while in %s mode\n",
933			type, trap_msg[type],
934        		frame->tf_eflags & PSL_VM ? "vm86" :
935			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
936#ifdef SMP
937	/* two separate prints in case of a trap on an unmapped page */
938	printf("cpuid = %d; ", PCPU_GET(cpuid));
939	printf("lapic.id = %08x\n", lapic.id);
940#endif
941	if (type == T_PAGEFLT) {
942		printf("fault virtual address	= 0x%x\n", eva);
943		printf("fault code		= %s %s, %s\n",
944			code & PGEX_U ? "user" : "supervisor",
945			code & PGEX_W ? "write" : "read",
946			code & PGEX_P ? "protection violation" : "page not present");
947	}
948	printf("instruction pointer	= 0x%x:0x%x\n",
949	       frame->tf_cs & 0xffff, frame->tf_eip);
950        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
951		ss = frame->tf_ss & 0xffff;
952		esp = frame->tf_esp;
953	} else {
954		ss = GSEL(GDATA_SEL, SEL_KPL);
955		esp = (int)&frame->tf_esp;
956	}
957	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
958	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
959	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
960	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
961	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
962	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
963	       softseg.ssd_gran);
964	printf("processor eflags	= ");
965	if (frame->tf_eflags & PSL_T)
966		printf("trace trap, ");
967	if (frame->tf_eflags & PSL_I)
968		printf("interrupt enabled, ");
969	if (frame->tf_eflags & PSL_NT)
970		printf("nested task, ");
971	if (frame->tf_eflags & PSL_RF)
972		printf("resume, ");
973	if (frame->tf_eflags & PSL_VM)
974		printf("vm86, ");
975	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
976	printf("current process		= ");
977	if (curproc) {
978		printf("%lu (%s)\n",
979		    (u_long)curproc->p_pid, curproc->p_comm ?
980		    curproc->p_comm : "");
981	} else {
982		printf("Idle\n");
983	}
984
985#ifdef KDB
986	if (kdb_trap(&psl))
987		return;
988#endif
989#ifdef DDB
990	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
991		return;
992#endif
993	printf("trap number		= %d\n", type);
994	if (type <= MAX_TRAP_MSG)
995		panic(trap_msg[type]);
996	else
997		panic("unknown/reserved trap");
998}
999
1000/*
1001 * Double fault handler. Called when a fault occurs while writing
1002 * a frame for a trap/exception onto the stack. This usually occurs
1003 * when the stack overflows (such is the case with infinite recursion,
1004 * for example).
1005 *
1006 * XXX Note that the current PTD gets replaced by IdlePTD when the
1007 * task switch occurs. This means that the stack that was active at
1008 * the time of the double fault is not available at <kstack> unless
1009 * the machine was idle when the double fault occurred. The downside
1010 * of this is that "trace <ebp>" in ddb won't work.
1011 */
1012void
1013dblfault_handler()
1014{
1015	printf("\nFatal double fault:\n");
1016	printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip));
1017	printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp));
1018	printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp));
1019#ifdef SMP
1020	/* two separate prints in case of a trap on an unmapped page */
1021	printf("cpuid = %d; ", PCPU_GET(cpuid));
1022	printf("lapic.id = %08x\n", lapic.id);
1023#endif
1024	panic("double fault");
1025}
1026
1027/*
1028 * Compensate for 386 brain damage (missing URKR).
1029 * This is a little simpler than the pagefault handler in trap() because
1030 * it the page tables have already been faulted in and high addresses
1031 * are thrown out early for other reasons.
1032 */
1033int trapwrite(addr)
1034	unsigned addr;
1035{
1036	struct proc *p;
1037	vm_offset_t va;
1038	struct vmspace *vm;
1039	int rv;
1040
1041	va = trunc_page((vm_offset_t)addr);
1042	/*
1043	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1044	 */
1045	if (va >= VM_MAXUSER_ADDRESS)
1046		return (1);
1047
1048	p = curproc;
1049	vm = p->p_vmspace;
1050
1051	PROC_LOCK(p);
1052	++p->p_lock;
1053	PROC_UNLOCK(p);
1054
1055	if (!grow_stack (p, va)) {
1056		PROC_LOCK(p);
1057		--p->p_lock;
1058		PROC_UNLOCK(p);
1059		return (1);
1060	}
1061
1062	/*
1063	 * fault the data page
1064	 */
1065	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1066
1067	PROC_LOCK(p);
1068	--p->p_lock;
1069	PROC_UNLOCK(p);
1070
1071	if (rv != KERN_SUCCESS)
1072		return 1;
1073
1074	return (0);
1075}
1076
1077/*
1078 *	syscall -	MP aware system call request C handler
1079 *
1080 *	A system call is essentially treated as a trap except that the
1081 *	MP lock is not held on entry or return.  We are responsible for
1082 *	obtaining the MP lock if necessary and for handling ASTs
1083 *	(e.g. a task switch) prior to return.
1084 *
1085 *	In general, only simple access and manipulation of curproc and
1086 *	the current stack is allowed without having to hold MP lock.
1087 */
1088void
1089syscall(frame)
1090	struct trapframe frame;
1091{
1092	caddr_t params;
1093	int i;
1094	struct sysent *callp;
1095	struct proc *p = curproc;
1096	u_quad_t sticks;
1097	int error;
1098	int narg;
1099	int args[8];
1100	u_int code;
1101
1102	atomic_add_int(&cnt.v_syscall, 1);
1103
1104#ifdef DIAGNOSTIC
1105	if (ISPL(frame.tf_cs) != SEL_UPL) {
1106		mtx_lock(&Giant);
1107		panic("syscall");
1108		/* NOT REACHED */
1109	}
1110#endif
1111
1112	mtx_lock_spin(&sched_lock);
1113	sticks = p->p_sticks;
1114	mtx_unlock_spin(&sched_lock);
1115
1116	p->p_md.md_regs = &frame;
1117	params = (caddr_t)frame.tf_esp + sizeof(int);
1118	code = frame.tf_eax;
1119
1120	if (p->p_sysent->sv_prepsyscall) {
1121		/*
1122		 * The prep code is not MP aware.
1123		 */
1124		mtx_lock(&Giant);
1125		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1126		mtx_unlock(&Giant);
1127	} else {
1128		/*
1129		 * Need to check if this is a 32 bit or 64 bit syscall.
1130		 * fuword is MP aware.
1131		 */
1132		if (code == SYS_syscall) {
1133			/*
1134			 * Code is first argument, followed by actual args.
1135			 */
1136			code = fuword(params);
1137			params += sizeof(int);
1138		} else if (code == SYS___syscall) {
1139			/*
1140			 * Like syscall, but code is a quad, so as to maintain
1141			 * quad alignment for the rest of the arguments.
1142			 */
1143			code = fuword(params);
1144			params += sizeof(quad_t);
1145		}
1146	}
1147
1148 	if (p->p_sysent->sv_mask)
1149 		code &= p->p_sysent->sv_mask;
1150
1151 	if (code >= p->p_sysent->sv_size)
1152 		callp = &p->p_sysent->sv_table[0];
1153  	else
1154 		callp = &p->p_sysent->sv_table[code];
1155
1156	narg = callp->sy_narg & SYF_ARGMASK;
1157
1158	/*
1159	 * copyin is MP aware, but the tracing code is not
1160	 */
1161	if (params && (i = narg * sizeof(int)) &&
1162	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1163		mtx_lock(&Giant);
1164#ifdef KTRACE
1165		if (KTRPOINT(p, KTR_SYSCALL))
1166			ktrsyscall(p->p_tracep, code, narg, args);
1167#endif
1168		goto bad;
1169	}
1170
1171	/*
1172	 * Try to run the syscall without the MP lock if the syscall
1173	 * is MP safe.  We have to obtain the MP lock no matter what if
1174	 * we are ktracing
1175	 */
1176	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1177		mtx_lock(&Giant);
1178	}
1179
1180#ifdef KTRACE
1181	if (KTRPOINT(p, KTR_SYSCALL)) {
1182		if (!mtx_owned(&Giant))
1183			mtx_lock(&Giant);
1184		ktrsyscall(p->p_tracep, code, narg, args);
1185	}
1186#endif
1187	p->p_retval[0] = 0;
1188	p->p_retval[1] = frame.tf_edx;
1189
1190	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1191
1192	error = (*callp->sy_call)(p, args);
1193
1194	/*
1195	 * MP SAFE (we may or may not have the MP lock at this point)
1196	 */
1197	switch (error) {
1198	case 0:
1199		frame.tf_eax = p->p_retval[0];
1200		frame.tf_edx = p->p_retval[1];
1201		frame.tf_eflags &= ~PSL_C;
1202		break;
1203
1204	case ERESTART:
1205		/*
1206		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1207		 * int 0x80 is 2 bytes. We saved this in tf_err.
1208		 */
1209		frame.tf_eip -= frame.tf_err;
1210		break;
1211
1212	case EJUSTRETURN:
1213		break;
1214
1215	default:
1216bad:
1217 		if (p->p_sysent->sv_errsize) {
1218 			if (error >= p->p_sysent->sv_errsize)
1219  				error = -1;	/* XXX */
1220   			else
1221  				error = p->p_sysent->sv_errtbl[error];
1222		}
1223		frame.tf_eax = error;
1224		frame.tf_eflags |= PSL_C;
1225		break;
1226	}
1227
1228	/*
1229	 * Traced syscall.  trapsignal() is not MP aware.
1230	 */
1231	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1232		if (!mtx_owned(&Giant))
1233			mtx_lock(&Giant);
1234		frame.tf_eflags &= ~PSL_T;
1235		trapsignal(p, SIGTRAP, 0);
1236	}
1237
1238	/*
1239	 * Handle reschedule and other end-of-syscall issues
1240	 */
1241	userret(p, &frame, sticks);
1242
1243#ifdef KTRACE
1244	if (KTRPOINT(p, KTR_SYSRET)) {
1245		if (!mtx_owned(&Giant))
1246			mtx_lock(&Giant);
1247		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1248	}
1249#endif
1250
1251	/*
1252	 * This works because errno is findable through the
1253	 * register set.  If we ever support an emulation where this
1254	 * is not the case, this code will need to be revisited.
1255	 */
1256	STOPEVENT(p, S_SCX, code);
1257
1258	/*
1259	 * Release Giant if we had to get it
1260	 */
1261	if (mtx_owned(&Giant))
1262		mtx_unlock(&Giant);
1263
1264#ifdef WITNESS
1265	if (witness_list(p)) {
1266		panic("system call %s returning with mutex(s) held\n",
1267		    syscallnames[code]);
1268	}
1269#endif
1270	mtx_assert(&sched_lock, MA_NOTOWNED);
1271	mtx_assert(&Giant, MA_NOTOWNED);
1272}
1273
1274void
1275ast(frame)
1276	struct trapframe frame;
1277{
1278	struct proc *p = CURPROC;
1279	u_quad_t sticks;
1280
1281	KASSERT(TRAPF_USERMODE(&frame), ("ast in kernel mode"));
1282
1283	/*
1284	 * We check for a pending AST here rather than in the assembly as
1285	 * acquiring and releasing mutexes in assembly is not fun.
1286	 */
1287	mtx_lock_spin(&sched_lock);
1288	if (!(astpending(p) || resched_wanted())) {
1289		mtx_unlock_spin(&sched_lock);
1290		return;
1291	}
1292
1293	sticks = p->p_sticks;
1294
1295	astoff(p);
1296	mtx_intr_enable(&sched_lock);
1297	atomic_add_int(&cnt.v_soft, 1);
1298	if (p->p_sflag & PS_OWEUPC) {
1299		p->p_sflag &= ~PS_OWEUPC;
1300		mtx_unlock_spin(&sched_lock);
1301		mtx_lock(&Giant);
1302		mtx_lock_spin(&sched_lock);
1303		addupc_task(p, p->p_stats->p_prof.pr_addr,
1304			    p->p_stats->p_prof.pr_ticks);
1305	}
1306	if (p->p_sflag & PS_ALRMPEND) {
1307		p->p_sflag &= ~PS_ALRMPEND;
1308		mtx_unlock_spin(&sched_lock);
1309		if (!mtx_owned(&Giant))
1310			mtx_lock(&Giant);
1311		psignal(p, SIGVTALRM);
1312		mtx_lock_spin(&sched_lock);
1313	}
1314	if (p->p_sflag & PS_PROFPEND) {
1315		p->p_sflag &= ~PS_PROFPEND;
1316		mtx_unlock_spin(&sched_lock);
1317		if (!mtx_owned(&Giant))
1318			mtx_lock(&Giant);
1319		psignal(p, SIGPROF);
1320	} else
1321		mtx_unlock_spin(&sched_lock);
1322
1323	userret(p, &frame, sticks);
1324
1325	if (mtx_owned(&Giant))
1326		mtx_unlock(&Giant);
1327}
1328