subr_syscall.c revision 69881
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 69881 2000-12-12 01:14:32Z jake $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_ktrace.h"
48#include "opt_clock.h"
49#include "opt_trap.h"
50
51#include <sys/param.h>
52#include <sys/bus.h>
53#include <sys/systm.h>
54#include <sys/proc.h>
55#include <sys/pioctl.h>
56#include <sys/ipl.h>
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/mutex.h>
60#include <sys/resourcevar.h>
61#include <sys/signalvar.h>
62#include <sys/syscall.h>
63#include <sys/sysctl.h>
64#include <sys/sysent.h>
65#include <sys/uio.h>
66#include <sys/vmmeter.h>
67#ifdef KTRACE
68#include <sys/ktrace.h>
69#endif
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <sys/lock.h>
74#include <vm/pmap.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_map.h>
77#include <vm/vm_page.h>
78#include <vm/vm_extern.h>
79
80#include <machine/cpu.h>
81#include <machine/md_var.h>
82#include <machine/pcb.h>
83#ifdef SMP
84#include <machine/smp.h>
85#endif
86#include <machine/tss.h>
87
88#include <i386/isa/icu.h>
89#include <i386/isa/intr_machdep.h>
90
91#ifdef POWERFAIL_NMI
92#include <sys/syslog.h>
93#include <machine/clock.h>
94#endif
95
96#include <machine/vm86.h>
97
98#include <ddb/ddb.h>
99
100#include "isa.h"
101#include "npx.h"
102
103#include <sys/sysctl.h>
104
105int (*pmath_emulate) __P((struct trapframe *));
106
107extern void trap __P((struct trapframe frame));
108extern int trapwrite __P((unsigned addr));
109extern void syscall2 __P((struct trapframe frame));
110extern void ast __P((struct trapframe frame));
111
112static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
113static void trap_fatal __P((struct trapframe *, vm_offset_t));
114void dblfault_handler __P((void));
115
116extern inthand_t IDTVEC(syscall);
117
118#define MAX_TRAP_MSG		28
119static char *trap_msg[] = {
120	"",					/*  0 unused */
121	"privileged instruction fault",		/*  1 T_PRIVINFLT */
122	"",					/*  2 unused */
123	"breakpoint instruction fault",		/*  3 T_BPTFLT */
124	"",					/*  4 unused */
125	"",					/*  5 unused */
126	"arithmetic trap",			/*  6 T_ARITHTRAP */
127	"system forced exception",		/*  7 T_ASTFLT */
128	"",					/*  8 unused */
129	"general protection fault",		/*  9 T_PROTFLT */
130	"trace trap",				/* 10 T_TRCTRAP */
131	"",					/* 11 unused */
132	"page fault",				/* 12 T_PAGEFLT */
133	"",					/* 13 unused */
134	"alignment fault",			/* 14 T_ALIGNFLT */
135	"",					/* 15 unused */
136	"",					/* 16 unused */
137	"",					/* 17 unused */
138	"integer divide fault",			/* 18 T_DIVIDE */
139	"non-maskable interrupt trap",		/* 19 T_NMI */
140	"overflow trap",			/* 20 T_OFLOW */
141	"FPU bounds check fault",		/* 21 T_BOUND */
142	"FPU device not available",		/* 22 T_DNA */
143	"double fault",				/* 23 T_DOUBLEFLT */
144	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
145	"invalid TSS fault",			/* 25 T_TSSFLT */
146	"segment not present fault",		/* 26 T_SEGNPFLT */
147	"stack fault",				/* 27 T_STKFLT */
148	"machine check trap",			/* 28 T_MCHK */
149};
150
151static __inline int userret __P((struct proc *p, struct trapframe *frame,
152				  u_quad_t oticks, int have_giant));
153
154#if defined(I586_CPU) && !defined(NO_F00F_HACK)
155extern int has_f00f_bug;
156#endif
157
158#ifdef DDB
159static int ddb_on_nmi = 1;
160SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
161	&ddb_on_nmi, 0, "Go to DDB on NMI");
162#endif
163static int panic_on_nmi = 1;
164SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
165	&panic_on_nmi, 0, "Panic on NMI");
166
167#ifdef WITNESS
168extern char *syscallnames[];
169#endif
170
171static __inline int
172userret(p, frame, oticks, have_giant)
173	struct proc *p;
174	struct trapframe *frame;
175	u_quad_t oticks;
176	int have_giant;
177{
178	int sig, s;
179
180	while ((sig = CURSIG(p)) != 0) {
181		if (have_giant == 0) {
182			mtx_enter(&Giant, MTX_DEF);
183			have_giant = 1;
184		}
185		postsig(sig);
186	}
187
188	p->p_priority = p->p_usrpri;
189	if (resched_wanted()) {
190		/*
191		 * Since we are curproc, clock will normally just change
192		 * our priority without moving us from one queue to another
193		 * (since the running process is not on a queue.)
194		 * If that happened after we setrunqueue ourselves but before we
195		 * mi_switch()'ed, we might not be on the queue indicated by
196		 * our priority.
197		 */
198		s = splhigh();
199		mtx_enter(&sched_lock, MTX_SPIN);
200		DROP_GIANT_NOSWITCH();
201		setrunqueue(p);
202		p->p_stats->p_ru.ru_nivcsw++;
203		mi_switch();
204		mtx_exit(&sched_lock, MTX_SPIN);
205		PICKUP_GIANT();
206		splx(s);
207		while ((sig = CURSIG(p)) != 0) {
208			if (have_giant == 0) {
209				mtx_enter(&Giant, MTX_DEF);
210				have_giant = 1;
211			}
212			postsig(sig);
213		}
214	}
215	/*
216	 * Charge system time if profiling.
217	 */
218	if (p->p_flag & P_PROFIL) {
219		if (have_giant == 0) {
220			mtx_enter(&Giant, MTX_DEF);
221			have_giant = 1;
222		}
223		addupc_task(p, frame->tf_eip,
224			    (u_int)(p->p_sticks - oticks) * psratio);
225	}
226	curpriority = p->p_priority;
227	return(have_giant);
228}
229
230/*
231 * Exception, fault, and trap interface to the FreeBSD kernel.
232 * This common code is called from assembly language IDT gate entry
233 * routines that prepare a suitable stack frame, and restore this
234 * frame after the exception has been processed.
235 */
236
237void
238trap(frame)
239	struct trapframe frame;
240{
241	struct proc *p = curproc;
242	u_quad_t sticks = 0;
243	int i = 0, ucode = 0, type, code;
244	vm_offset_t eva;
245#ifdef POWERFAIL_NMI
246	static int lastalert = 0;
247#endif
248
249	atomic_add_int(&cnt.v_trap, 1);
250
251	if ((frame.tf_eflags & PSL_I) == 0) {
252		/*
253		 * Buggy application or kernel code has disabled
254		 * interrupts and then trapped.  Enabling interrupts
255		 * now is wrong, but it is better than running with
256		 * interrupts disabled until they are accidentally
257		 * enabled later.  XXX Consider whether is this still
258		 * correct.
259		 */
260		type = frame.tf_trapno;
261		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
262			printf(
263			    "pid %ld (%s): trap %d with interrupts disabled\n",
264			    (long)curproc->p_pid, curproc->p_comm, type);
265		else if (type != T_BPTFLT && type != T_TRCTRAP)
266			/*
267			 * XXX not quite right, since this may be for a
268			 * multiple fault in user mode.
269			 */
270			printf("kernel trap %d with interrupts disabled\n",
271			    type);
272		enable_intr();
273	}
274
275	eva = 0;
276	if (frame.tf_trapno == T_PAGEFLT) {
277		/*
278		 * For some Cyrix CPUs, %cr2 is clobbered by
279		 * interrupts.  This problem is worked around by using
280		 * an interrupt gate for the pagefault handler.  We
281		 * are finally ready to read %cr2 and then must
282		 * reenable interrupts.
283		 */
284		eva = rcr2();
285		enable_intr();
286	}
287
288	mtx_enter(&Giant, MTX_DEF);
289
290#if defined(I586_CPU) && !defined(NO_F00F_HACK)
291restart:
292#endif
293
294	type = frame.tf_trapno;
295	code = frame.tf_err;
296
297        if ((ISPL(frame.tf_cs) == SEL_UPL) ||
298	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
299		/* user trap */
300
301		sticks = p->p_sticks;
302		p->p_md.md_regs = &frame;
303
304		switch (type) {
305		case T_PRIVINFLT:	/* privileged instruction fault */
306			ucode = type;
307			i = SIGILL;
308			break;
309
310		case T_BPTFLT:		/* bpt instruction fault */
311		case T_TRCTRAP:		/* trace trap */
312			frame.tf_eflags &= ~PSL_T;
313			i = SIGTRAP;
314			break;
315
316		case T_ARITHTRAP:	/* arithmetic trap */
317			ucode = code;
318			i = SIGFPE;
319			break;
320
321			/*
322			 * The following two traps can happen in
323			 * vm86 mode, and, if so, we want to handle
324			 * them specially.
325			 */
326		case T_PROTFLT:		/* general protection fault */
327		case T_STKFLT:		/* stack fault */
328			if (frame.tf_eflags & PSL_VM) {
329				i = vm86_emulate((struct vm86frame *)&frame);
330				if (i == 0)
331					goto user;
332				break;
333			}
334			/* FALL THROUGH */
335
336		case T_SEGNPFLT:	/* segment not present fault */
337		case T_TSSFLT:		/* invalid TSS fault */
338		case T_DOUBLEFLT:	/* double fault */
339		default:
340			ucode = code + BUS_SEGM_FAULT ;
341			i = SIGBUS;
342			break;
343
344		case T_PAGEFLT:		/* page fault */
345			i = trap_pfault(&frame, TRUE, eva);
346#if defined(I586_CPU) && !defined(NO_F00F_HACK)
347			if (i == -2) {
348				/*
349				 * f00f hack workaround has triggered, treat
350				 * as illegal instruction not page fault.
351				 */
352				frame.tf_trapno = T_PRIVINFLT;
353				goto restart;
354			}
355#endif
356			if (i == -1)
357				goto out;
358			if (i == 0)
359				goto user;
360
361			ucode = T_PAGEFLT;
362			break;
363
364		case T_DIVIDE:		/* integer divide fault */
365			ucode = FPE_INTDIV;
366			i = SIGFPE;
367			break;
368
369#if NISA > 0
370		case T_NMI:
371#ifdef POWERFAIL_NMI
372#ifndef TIMER_FREQ
373#  define TIMER_FREQ 1193182
374#endif
375			if (time_second - lastalert > 10) {
376				log(LOG_WARNING, "NMI: power fail\n");
377				sysbeep(TIMER_FREQ/880, hz);
378				lastalert = time_second;
379			}
380			goto out;
381#else /* !POWERFAIL_NMI */
382			/* machine/parity/power fail/"kitchen sink" faults */
383			if (isa_nmi(code) == 0) {
384#ifdef DDB
385				/*
386				 * NMI can be hooked up to a pushbutton
387				 * for debugging.
388				 */
389				if (ddb_on_nmi) {
390					printf ("NMI ... going to debugger\n");
391					kdb_trap (type, 0, &frame);
392				}
393#endif /* DDB */
394				goto out;
395			} else if (panic_on_nmi)
396				panic("NMI indicates hardware failure");
397			break;
398#endif /* POWERFAIL_NMI */
399#endif /* NISA > 0 */
400
401		case T_OFLOW:		/* integer overflow fault */
402			ucode = FPE_INTOVF;
403			i = SIGFPE;
404			break;
405
406		case T_BOUND:		/* bounds check fault */
407			ucode = FPE_FLTSUB;
408			i = SIGFPE;
409			break;
410
411		case T_DNA:
412#if NNPX > 0
413			/* transparent fault (due to context switch "late") */
414			if (npxdna())
415				goto out;
416#endif
417			if (!pmath_emulate) {
418				i = SIGFPE;
419				ucode = FPE_FPU_NP_TRAP;
420				break;
421			}
422			i = (*pmath_emulate)(&frame);
423			if (i == 0) {
424				if (!(frame.tf_eflags & PSL_T))
425					goto out;
426				frame.tf_eflags &= ~PSL_T;
427				i = SIGTRAP;
428			}
429			/* else ucode = emulator_only_knows() XXX */
430			break;
431
432		case T_FPOPFLT:		/* FPU operand fetch fault */
433			ucode = T_FPOPFLT;
434			i = SIGILL;
435			break;
436		}
437	} else {
438		/* kernel trap */
439
440		switch (type) {
441		case T_PAGEFLT:			/* page fault */
442			(void) trap_pfault(&frame, FALSE, eva);
443			goto out;
444
445		case T_DNA:
446#if NNPX > 0
447			/*
448			 * The kernel is apparently using npx for copying.
449			 * XXX this should be fatal unless the kernel has
450			 * registered such use.
451			 */
452			if (npxdna())
453				goto out;
454#endif
455			break;
456
457			/*
458			 * The following two traps can happen in
459			 * vm86 mode, and, if so, we want to handle
460			 * them specially.
461			 */
462		case T_PROTFLT:		/* general protection fault */
463		case T_STKFLT:		/* stack fault */
464			if (frame.tf_eflags & PSL_VM) {
465				i = vm86_emulate((struct vm86frame *)&frame);
466				if (i != 0)
467					/*
468					 * returns to original process
469					 */
470					vm86_trap((struct vm86frame *)&frame);
471				goto out;
472			}
473			if (type == T_STKFLT)
474				break;
475
476			/* FALL THROUGH */
477
478		case T_SEGNPFLT:	/* segment not present fault */
479			if (in_vm86call)
480				break;
481
482			if (intr_nesting_level != 0)
483				break;
484
485			/*
486			 * Invalid %fs's and %gs's can be created using
487			 * procfs or PT_SETREGS or by invalidating the
488			 * underlying LDT entry.  This causes a fault
489			 * in kernel mode when the kernel attempts to
490			 * switch contexts.  Lose the bad context
491			 * (XXX) so that we can continue, and generate
492			 * a signal.
493			 */
494			if (frame.tf_eip == (int)cpu_switch_load_gs) {
495				curpcb->pcb_gs = 0;
496				psignal(p, SIGBUS);
497				goto out;
498			}
499
500			/*
501			 * Invalid segment selectors and out of bounds
502			 * %eip's and %esp's can be set up in user mode.
503			 * This causes a fault in kernel mode when the
504			 * kernel tries to return to user mode.  We want
505			 * to get this fault so that we can fix the
506			 * problem here and not have to check all the
507			 * selectors and pointers when the user changes
508			 * them.
509			 */
510			if (frame.tf_eip == (int)doreti_iret) {
511				frame.tf_eip = (int)doreti_iret_fault;
512				goto out;
513			}
514			if (frame.tf_eip == (int)doreti_popl_ds) {
515				frame.tf_eip = (int)doreti_popl_ds_fault;
516				goto out;
517			}
518			if (frame.tf_eip == (int)doreti_popl_es) {
519				frame.tf_eip = (int)doreti_popl_es_fault;
520				goto out;
521				}
522			if (frame.tf_eip == (int)doreti_popl_fs) {
523				frame.tf_eip = (int)doreti_popl_fs_fault;
524				goto out;
525			}
526			if (curpcb && curpcb->pcb_onfault) {
527				frame.tf_eip = (int)curpcb->pcb_onfault;
528				goto out;
529			}
530			break;
531
532		case T_TSSFLT:
533			/*
534			 * PSL_NT can be set in user mode and isn't cleared
535			 * automatically when the kernel is entered.  This
536			 * causes a TSS fault when the kernel attempts to
537			 * `iret' because the TSS link is uninitialized.  We
538			 * want to get this fault so that we can fix the
539			 * problem here and not every time the kernel is
540			 * entered.
541			 */
542			if (frame.tf_eflags & PSL_NT) {
543				frame.tf_eflags &= ~PSL_NT;
544				goto out;
545			}
546			break;
547
548		case T_TRCTRAP:	 /* trace trap */
549			if (frame.tf_eip == (int)IDTVEC(syscall)) {
550				/*
551				 * We've just entered system mode via the
552				 * syscall lcall.  Continue single stepping
553				 * silently until the syscall handler has
554				 * saved the flags.
555				 */
556				goto out;
557			}
558			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
559				/*
560				 * The syscall handler has now saved the
561				 * flags.  Stop single stepping it.
562				 */
563				frame.tf_eflags &= ~PSL_T;
564				goto out;
565			}
566			/*
567			 * Ignore debug register trace traps due to
568			 * accesses in the user's address space, which
569			 * can happen under several conditions such as
570			 * if a user sets a watchpoint on a buffer and
571			 * then passes that buffer to a system call.
572			 * We still want to get TRCTRAPS for addresses
573			 * in kernel space because that is useful when
574			 * debugging the kernel.
575			 */
576			if (user_dbreg_trap() && !in_vm86call) {
577				/*
578				 * Reset breakpoint bits because the
579				 * processor doesn't
580				 */
581				load_dr6(rdr6() & 0xfffffff0);
582				goto out;
583			}
584			/*
585			 * Fall through (TRCTRAP kernel mode, kernel address)
586			 */
587		case T_BPTFLT:
588			/*
589			 * If DDB is enabled, let it handle the debugger trap.
590			 * Otherwise, debugger traps "can't happen".
591			 */
592#ifdef DDB
593			if (kdb_trap (type, 0, &frame))
594				goto out;
595#endif
596			break;
597
598#if NISA > 0
599		case T_NMI:
600#ifdef POWERFAIL_NMI
601			if (time_second - lastalert > 10) {
602				log(LOG_WARNING, "NMI: power fail\n");
603				sysbeep(TIMER_FREQ/880, hz);
604				lastalert = time_second;
605			}
606			goto out;
607#else /* !POWERFAIL_NMI */
608			/* machine/parity/power fail/"kitchen sink" faults */
609			if (isa_nmi(code) == 0) {
610#ifdef DDB
611				/*
612				 * NMI can be hooked up to a pushbutton
613				 * for debugging.
614				 */
615				if (ddb_on_nmi) {
616					printf ("NMI ... going to debugger\n");
617					kdb_trap (type, 0, &frame);
618				}
619#endif /* DDB */
620				goto out;
621			} else if (panic_on_nmi == 0)
622				goto out;
623			/* FALL THROUGH */
624#endif /* POWERFAIL_NMI */
625#endif /* NISA > 0 */
626		}
627
628		trap_fatal(&frame, eva);
629		goto out;
630	}
631
632	/* Translate fault for emulators (e.g. Linux) */
633	if (*p->p_sysent->sv_transtrap)
634		i = (*p->p_sysent->sv_transtrap)(i, type);
635
636	trapsignal(p, i, ucode);
637
638#ifdef DEBUG
639	if (type <= MAX_TRAP_MSG) {
640		uprintf("fatal process exception: %s",
641			trap_msg[type]);
642		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
643			uprintf(", fault VA = 0x%lx", (u_long)eva);
644		uprintf("\n");
645	}
646#endif
647
648user:
649	userret(p, &frame, sticks, 1);
650out:
651	mtx_exit(&Giant, MTX_DEF);
652}
653
654#ifdef notyet
655/*
656 * This version doesn't allow a page fault to user space while
657 * in the kernel. The rest of the kernel needs to be made "safe"
658 * before this can be used. I think the only things remaining
659 * to be made safe are the iBCS2 code and the process tracing/
660 * debugging code.
661 */
662static int
663trap_pfault(frame, usermode, eva)
664	struct trapframe *frame;
665	int usermode;
666	vm_offset_t eva;
667{
668	vm_offset_t va;
669	struct vmspace *vm = NULL;
670	vm_map_t map = 0;
671	int rv = 0;
672	vm_prot_t ftype;
673	struct proc *p = curproc;
674
675	if (frame->tf_err & PGEX_W)
676		ftype = VM_PROT_WRITE;
677	else
678		ftype = VM_PROT_READ;
679
680	va = trunc_page(eva);
681	if (va < VM_MIN_KERNEL_ADDRESS) {
682		vm_offset_t v;
683		vm_page_t mpte;
684
685		if (p == NULL ||
686		    (!usermode && va < VM_MAXUSER_ADDRESS &&
687		     (intr_nesting_level != 0 || curpcb == NULL ||
688		      curpcb->pcb_onfault == NULL))) {
689			trap_fatal(frame, eva);
690			return (-1);
691		}
692
693		/*
694		 * This is a fault on non-kernel virtual memory.
695		 * vm is initialized above to NULL. If curproc is NULL
696		 * or curproc->p_vmspace is NULL the fault is fatal.
697		 */
698		vm = p->p_vmspace;
699		if (vm == NULL)
700			goto nogo;
701
702		map = &vm->vm_map;
703
704		/*
705		 * Keep swapout from messing with us during this
706		 *	critical time.
707		 */
708		++p->p_lock;
709
710		/*
711		 * Grow the stack if necessary
712		 */
713		/* grow_stack returns false only if va falls into
714		 * a growable stack region and the stack growth
715		 * fails.  It returns true if va was not within
716		 * a growable stack region, or if the stack
717		 * growth succeeded.
718		 */
719		if (!grow_stack (p, va)) {
720			rv = KERN_FAILURE;
721			--p->p_lock;
722			goto nogo;
723		}
724
725		/* Fault in the user page: */
726		rv = vm_fault(map, va, ftype,
727			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
728						      : VM_FAULT_NORMAL);
729
730		--p->p_lock;
731	} else {
732		/*
733		 * Don't allow user-mode faults in kernel address space.
734		 */
735		if (usermode)
736			goto nogo;
737
738		/*
739		 * Since we know that kernel virtual address addresses
740		 * always have pte pages mapped, we just have to fault
741		 * the page.
742		 */
743		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
744	}
745
746	if (rv == KERN_SUCCESS)
747		return (0);
748nogo:
749	if (!usermode) {
750		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
751			frame->tf_eip = (int)curpcb->pcb_onfault;
752			return (0);
753		}
754		trap_fatal(frame, eva);
755		return (-1);
756	}
757
758	/* kludge to pass faulting virtual address to sendsig */
759	frame->tf_err = eva;
760
761	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
762}
763#endif
764
765int
766trap_pfault(frame, usermode, eva)
767	struct trapframe *frame;
768	int usermode;
769	vm_offset_t eva;
770{
771	vm_offset_t va;
772	struct vmspace *vm = NULL;
773	vm_map_t map = 0;
774	int rv = 0;
775	vm_prot_t ftype;
776	struct proc *p = curproc;
777
778	va = trunc_page(eva);
779	if (va >= KERNBASE) {
780		/*
781		 * Don't allow user-mode faults in kernel address space.
782		 * An exception:  if the faulting address is the invalid
783		 * instruction entry in the IDT, then the Intel Pentium
784		 * F00F bug workaround was triggered, and we need to
785		 * treat it is as an illegal instruction, and not a page
786		 * fault.
787		 */
788#if defined(I586_CPU) && !defined(NO_F00F_HACK)
789		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
790			return -2;
791#endif
792		if (usermode)
793			goto nogo;
794
795		map = kernel_map;
796	} else {
797		/*
798		 * This is a fault on non-kernel virtual memory.
799		 * vm is initialized above to NULL. If curproc is NULL
800		 * or curproc->p_vmspace is NULL the fault is fatal.
801		 */
802		if (p != NULL)
803			vm = p->p_vmspace;
804
805		if (vm == NULL)
806			goto nogo;
807
808		map = &vm->vm_map;
809	}
810
811	if (frame->tf_err & PGEX_W)
812		ftype = VM_PROT_WRITE;
813	else
814		ftype = VM_PROT_READ;
815
816	if (map != kernel_map) {
817		/*
818		 * Keep swapout from messing with us during this
819		 *	critical time.
820		 */
821		++p->p_lock;
822
823		/*
824		 * Grow the stack if necessary
825		 */
826		/* grow_stack returns false only if va falls into
827		 * a growable stack region and the stack growth
828		 * fails.  It returns true if va was not within
829		 * a growable stack region, or if the stack
830		 * growth succeeded.
831		 */
832		if (!grow_stack (p, va)) {
833			rv = KERN_FAILURE;
834			--p->p_lock;
835			goto nogo;
836		}
837
838		/* Fault in the user page: */
839		rv = vm_fault(map, va, ftype,
840			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
841						      : VM_FAULT_NORMAL);
842
843		--p->p_lock;
844	} else {
845		/*
846		 * Don't have to worry about process locking or stacks in the kernel.
847		 */
848		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
849	}
850
851	if (rv == KERN_SUCCESS)
852		return (0);
853nogo:
854	if (!usermode) {
855		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
856			frame->tf_eip = (int)curpcb->pcb_onfault;
857			return (0);
858		}
859		trap_fatal(frame, eva);
860		return (-1);
861	}
862
863	/* kludge to pass faulting virtual address to sendsig */
864	frame->tf_err = eva;
865
866	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
867}
868
869static void
870trap_fatal(frame, eva)
871	struct trapframe *frame;
872	vm_offset_t eva;
873{
874	int code, type, ss, esp;
875	struct soft_segment_descriptor softseg;
876
877	code = frame->tf_err;
878	type = frame->tf_trapno;
879	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
880
881	if (type <= MAX_TRAP_MSG)
882		printf("\n\nFatal trap %d: %s while in %s mode\n",
883			type, trap_msg[type],
884        		frame->tf_eflags & PSL_VM ? "vm86" :
885			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
886#ifdef SMP
887	/* two seperate prints in case of a trap on an unmapped page */
888	printf("cpuid = %d; ", cpuid);
889	printf("lapic.id = %08x\n", lapic.id);
890#endif
891	if (type == T_PAGEFLT) {
892		printf("fault virtual address	= 0x%x\n", eva);
893		printf("fault code		= %s %s, %s\n",
894			code & PGEX_U ? "user" : "supervisor",
895			code & PGEX_W ? "write" : "read",
896			code & PGEX_P ? "protection violation" : "page not present");
897	}
898	printf("instruction pointer	= 0x%x:0x%x\n",
899	       frame->tf_cs & 0xffff, frame->tf_eip);
900        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
901		ss = frame->tf_ss & 0xffff;
902		esp = frame->tf_esp;
903	} else {
904		ss = GSEL(GDATA_SEL, SEL_KPL);
905		esp = (int)&frame->tf_esp;
906	}
907	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
908	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
909	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
910	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
911	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
912	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
913	       softseg.ssd_gran);
914	printf("processor eflags	= ");
915	if (frame->tf_eflags & PSL_T)
916		printf("trace trap, ");
917	if (frame->tf_eflags & PSL_I)
918		printf("interrupt enabled, ");
919	if (frame->tf_eflags & PSL_NT)
920		printf("nested task, ");
921	if (frame->tf_eflags & PSL_RF)
922		printf("resume, ");
923	if (frame->tf_eflags & PSL_VM)
924		printf("vm86, ");
925	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
926	printf("current process		= ");
927	if (curproc) {
928		printf("%lu (%s)\n",
929		    (u_long)curproc->p_pid, curproc->p_comm ?
930		    curproc->p_comm : "");
931	} else {
932		printf("Idle\n");
933	}
934
935#ifdef KDB
936	if (kdb_trap(&psl))
937		return;
938#endif
939#ifdef DDB
940	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
941		return;
942#endif
943	printf("trap number		= %d\n", type);
944	if (type <= MAX_TRAP_MSG)
945		panic(trap_msg[type]);
946	else
947		panic("unknown/reserved trap");
948}
949
950/*
951 * Double fault handler. Called when a fault occurs while writing
952 * a frame for a trap/exception onto the stack. This usually occurs
953 * when the stack overflows (such is the case with infinite recursion,
954 * for example).
955 *
956 * XXX Note that the current PTD gets replaced by IdlePTD when the
957 * task switch occurs. This means that the stack that was active at
958 * the time of the double fault is not available at <kstack> unless
959 * the machine was idle when the double fault occurred. The downside
960 * of this is that "trace <ebp>" in ddb won't work.
961 */
962void
963dblfault_handler()
964{
965	printf("\nFatal double fault:\n");
966	printf("eip = 0x%x\n", common_tss.tss_eip);
967	printf("esp = 0x%x\n", common_tss.tss_esp);
968	printf("ebp = 0x%x\n", common_tss.tss_ebp);
969#ifdef SMP
970	/* two seperate prints in case of a trap on an unmapped page */
971	printf("cpuid = %d; ", cpuid);
972	printf("lapic.id = %08x\n", lapic.id);
973#endif
974	panic("double fault");
975}
976
977/*
978 * Compensate for 386 brain damage (missing URKR).
979 * This is a little simpler than the pagefault handler in trap() because
980 * it the page tables have already been faulted in and high addresses
981 * are thrown out early for other reasons.
982 */
983int trapwrite(addr)
984	unsigned addr;
985{
986	struct proc *p;
987	vm_offset_t va;
988	struct vmspace *vm;
989	int rv;
990
991	va = trunc_page((vm_offset_t)addr);
992	/*
993	 * XXX - MAX is END.  Changed > to >= for temp. fix.
994	 */
995	if (va >= VM_MAXUSER_ADDRESS)
996		return (1);
997
998	p = curproc;
999	vm = p->p_vmspace;
1000
1001	++p->p_lock;
1002
1003	if (!grow_stack (p, va)) {
1004		--p->p_lock;
1005		return (1);
1006	}
1007
1008	/*
1009	 * fault the data page
1010	 */
1011	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1012
1013	--p->p_lock;
1014
1015	if (rv != KERN_SUCCESS)
1016		return 1;
1017
1018	return (0);
1019}
1020
1021/*
1022 *	syscall2 -	MP aware system call request C handler
1023 *
1024 *	A system call is essentially treated as a trap except that the
1025 *	MP lock is not held on entry or return.  We are responsible for
1026 *	obtaining the MP lock if necessary and for handling ASTs
1027 *	(e.g. a task switch) prior to return.
1028 *
1029 *	In general, only simple access and manipulation of curproc and
1030 *	the current stack is allowed without having to hold MP lock.
1031 */
1032void
1033syscall2(frame)
1034	struct trapframe frame;
1035{
1036	caddr_t params;
1037	int i;
1038	struct sysent *callp;
1039	struct proc *p = curproc;
1040	u_quad_t sticks;
1041	int error;
1042	int narg;
1043	int args[8];
1044	int have_giant = 0;
1045	u_int code;
1046
1047	atomic_add_int(&cnt.v_syscall, 1);
1048
1049#ifdef DIAGNOSTIC
1050	if (ISPL(frame.tf_cs) != SEL_UPL) {
1051		mtx_enter(&Giant, MTX_DEF);
1052		panic("syscall");
1053		/* NOT REACHED */
1054	}
1055#endif
1056
1057	/*
1058	 * handle atomicy by looping since interrupts are enabled and the
1059	 * MP lock is not held.
1060	 */
1061	sticks = ((volatile struct proc *)p)->p_sticks;
1062	while (sticks != ((volatile struct proc *)p)->p_sticks)
1063		sticks = ((volatile struct proc *)p)->p_sticks;
1064
1065	p->p_md.md_regs = &frame;
1066	params = (caddr_t)frame.tf_esp + sizeof(int);
1067	code = frame.tf_eax;
1068
1069	if (p->p_sysent->sv_prepsyscall) {
1070		/*
1071		 * The prep code is not MP aware.
1072		 */
1073		mtx_enter(&Giant, MTX_DEF);
1074		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1075		mtx_exit(&Giant, MTX_DEF);
1076	} else {
1077		/*
1078		 * Need to check if this is a 32 bit or 64 bit syscall.
1079		 * fuword is MP aware.
1080		 */
1081		if (code == SYS_syscall) {
1082			/*
1083			 * Code is first argument, followed by actual args.
1084			 */
1085			code = fuword(params);
1086			params += sizeof(int);
1087		} else if (code == SYS___syscall) {
1088			/*
1089			 * Like syscall, but code is a quad, so as to maintain
1090			 * quad alignment for the rest of the arguments.
1091			 */
1092			code = fuword(params);
1093			params += sizeof(quad_t);
1094		}
1095	}
1096
1097 	if (p->p_sysent->sv_mask)
1098 		code &= p->p_sysent->sv_mask;
1099
1100 	if (code >= p->p_sysent->sv_size)
1101 		callp = &p->p_sysent->sv_table[0];
1102  	else
1103 		callp = &p->p_sysent->sv_table[code];
1104
1105	narg = callp->sy_narg & SYF_ARGMASK;
1106
1107	/*
1108	 * copyin is MP aware, but the tracing code is not
1109	 */
1110	if (params && (i = narg * sizeof(int)) &&
1111	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1112		mtx_enter(&Giant, MTX_DEF);
1113		have_giant = 1;
1114#ifdef KTRACE
1115		if (KTRPOINT(p, KTR_SYSCALL))
1116			ktrsyscall(p->p_tracep, code, narg, args);
1117#endif
1118		goto bad;
1119	}
1120
1121	/*
1122	 * Try to run the syscall without the MP lock if the syscall
1123	 * is MP safe.  We have to obtain the MP lock no matter what if
1124	 * we are ktracing
1125	 */
1126	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1127		mtx_enter(&Giant, MTX_DEF);
1128		have_giant = 1;
1129	}
1130
1131#ifdef KTRACE
1132	if (KTRPOINT(p, KTR_SYSCALL)) {
1133		if (have_giant == 0) {
1134			mtx_enter(&Giant, MTX_DEF);
1135			have_giant = 1;
1136		}
1137		ktrsyscall(p->p_tracep, code, narg, args);
1138	}
1139#endif
1140	p->p_retval[0] = 0;
1141	p->p_retval[1] = frame.tf_edx;
1142
1143	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1144
1145	error = (*callp->sy_call)(p, args);
1146
1147	/*
1148	 * MP SAFE (we may or may not have the MP lock at this point)
1149	 */
1150	switch (error) {
1151	case 0:
1152		/*
1153		 * Reinitialize proc pointer `p' as it may be different
1154		 * if this is a child returning from fork syscall.
1155		 */
1156		p = curproc;
1157		frame.tf_eax = p->p_retval[0];
1158		frame.tf_edx = p->p_retval[1];
1159		frame.tf_eflags &= ~PSL_C;
1160		break;
1161
1162	case ERESTART:
1163		/*
1164		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1165		 * int 0x80 is 2 bytes. We saved this in tf_err.
1166		 */
1167		frame.tf_eip -= frame.tf_err;
1168		break;
1169
1170	case EJUSTRETURN:
1171		break;
1172
1173	default:
1174bad:
1175 		if (p->p_sysent->sv_errsize) {
1176 			if (error >= p->p_sysent->sv_errsize)
1177  				error = -1;	/* XXX */
1178   			else
1179  				error = p->p_sysent->sv_errtbl[error];
1180		}
1181		frame.tf_eax = error;
1182		frame.tf_eflags |= PSL_C;
1183		break;
1184	}
1185
1186	/*
1187	 * Traced syscall.  trapsignal() is not MP aware.
1188	 */
1189	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1190		if (have_giant == 0) {
1191			mtx_enter(&Giant, MTX_DEF);
1192			have_giant = 1;
1193		}
1194		frame.tf_eflags &= ~PSL_T;
1195		trapsignal(p, SIGTRAP, 0);
1196	}
1197
1198	/*
1199	 * Handle reschedule and other end-of-syscall issues
1200	 */
1201	have_giant = userret(p, &frame, sticks, have_giant);
1202
1203#ifdef KTRACE
1204	if (KTRPOINT(p, KTR_SYSRET)) {
1205		if (have_giant == 0) {
1206			mtx_enter(&Giant, MTX_DEF);
1207			have_giant = 1;
1208		}
1209		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1210	}
1211#endif
1212
1213	/*
1214	 * This works because errno is findable through the
1215	 * register set.  If we ever support an emulation where this
1216	 * is not the case, this code will need to be revisited.
1217	 */
1218	STOPEVENT(p, S_SCX, code);
1219
1220	/*
1221	 * Release the MP lock if we had to get it
1222	 */
1223	if (have_giant)
1224		mtx_exit(&Giant, MTX_DEF);
1225
1226	mtx_assert(&sched_lock, MA_NOTOWNED);
1227	mtx_assert(&Giant, MA_NOTOWNED);
1228#ifdef WITNESS
1229	if (witness_list(p)) {
1230		panic("system call %s returning with mutex(s) held\n",
1231		    syscallnames[code]);
1232	}
1233#endif
1234}
1235
1236void
1237ast(frame)
1238	struct trapframe frame;
1239{
1240	struct proc *p = CURPROC;
1241	u_quad_t sticks;
1242
1243	/*
1244	 * handle atomicy by looping since interrupts are enabled and the
1245	 * MP lock is not held.
1246	 */
1247	sticks = ((volatile struct proc *)p)->p_sticks;
1248	while (sticks != ((volatile struct proc *)p)->p_sticks)
1249		sticks = ((volatile struct proc *)p)->p_sticks;
1250
1251	astoff();
1252	atomic_add_int(&cnt.v_soft, 1);
1253	if (p->p_flag & P_OWEUPC) {
1254		mtx_enter(&Giant, MTX_DEF);
1255		p->p_flag &= ~P_OWEUPC;
1256		addupc_task(p, p->p_stats->p_prof.pr_addr,
1257			    p->p_stats->p_prof.pr_ticks);
1258	}
1259	if (p->p_flag & P_ALRMPEND) {
1260		if (!mtx_owned(&Giant))
1261			mtx_enter(&Giant, MTX_DEF);
1262		p->p_flag &= ~P_ALRMPEND;
1263		psignal(p, SIGVTALRM);
1264	}
1265	if (p->p_flag & P_PROFPEND) {
1266		if (!mtx_owned(&Giant))
1267			mtx_enter(&Giant, MTX_DEF);
1268		p->p_flag &= ~P_PROFPEND;
1269		psignal(p, SIGPROF);
1270	}
1271	if (userret(p, &frame, sticks, mtx_owned(&Giant)) != 0)
1272		mtx_exit(&Giant, MTX_DEF);
1273}
1274
1275/*
1276 * Simplified back end of syscall(), used when returning from fork()
1277 * directly into user mode.  Giant is not held on entry, and must not
1278 * be held on return.
1279 */
1280void
1281fork_return(p, frame)
1282	struct proc *p;
1283	struct trapframe frame;
1284{
1285	int	have_giant;
1286
1287	frame.tf_eax = 0;		/* Child returns zero */
1288	frame.tf_eflags &= ~PSL_C;	/* success */
1289	frame.tf_edx = 1;
1290
1291	have_giant = userret(p, &frame, 0, mtx_owned(&Giant));
1292#ifdef KTRACE
1293	if (KTRPOINT(p, KTR_SYSRET)) {
1294		if (have_giant == 0) {
1295			mtx_enter(&Giant, MTX_DEF);
1296			have_giant = 1;
1297		}
1298		ktrsysret(p->p_tracep, SYS_fork, 0, 0);
1299	}
1300#endif
1301	if (have_giant)
1302		mtx_exit(&Giant, MTX_DEF);
1303}
1304