subr_syscall.c revision 66712
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 66712 2000-10-06 01:50:43Z jhb $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_ktrace.h"
48#include "opt_clock.h"
49#include "opt_trap.h"
50
51#include <sys/param.h>
52#include <sys/bus.h>
53#include <sys/systm.h>
54#include <sys/proc.h>
55#include <sys/pioctl.h>
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/resourcevar.h>
59#include <sys/signalvar.h>
60#include <sys/syscall.h>
61#include <sys/sysctl.h>
62#include <sys/sysent.h>
63#include <sys/uio.h>
64#include <sys/vmmeter.h>
65#ifdef KTRACE
66#include <sys/ktrace.h>
67#endif
68
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <sys/lock.h>
72#include <vm/pmap.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_map.h>
75#include <vm/vm_page.h>
76#include <vm/vm_extern.h>
77
78#include <machine/cpu.h>
79#include <machine/ipl.h>
80#include <machine/md_var.h>
81#include <machine/mutex.h>
82#include <machine/pcb.h>
83#ifdef SMP
84#include <machine/smp.h>
85#endif
86#include <machine/tss.h>
87
88#include <i386/isa/icu.h>
89#include <i386/isa/intr_machdep.h>
90
91#ifdef POWERFAIL_NMI
92#include <sys/syslog.h>
93#include <machine/clock.h>
94#endif
95
96#include <machine/vm86.h>
97
98#include <ddb/ddb.h>
99
100#include "isa.h"
101#include "npx.h"
102
103#include <sys/sysctl.h>
104
105int (*pmath_emulate) __P((struct trapframe *));
106
107extern void trap __P((struct trapframe frame));
108extern int trapwrite __P((unsigned addr));
109extern void syscall2 __P((struct trapframe frame));
110extern void ast __P((struct trapframe frame));
111
112static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
113static void trap_fatal __P((struct trapframe *, vm_offset_t));
114void dblfault_handler __P((void));
115
116extern inthand_t IDTVEC(syscall);
117
118#define MAX_TRAP_MSG		28
119static char *trap_msg[] = {
120	"",					/*  0 unused */
121	"privileged instruction fault",		/*  1 T_PRIVINFLT */
122	"",					/*  2 unused */
123	"breakpoint instruction fault",		/*  3 T_BPTFLT */
124	"",					/*  4 unused */
125	"",					/*  5 unused */
126	"arithmetic trap",			/*  6 T_ARITHTRAP */
127	"system forced exception",		/*  7 T_ASTFLT */
128	"",					/*  8 unused */
129	"general protection fault",		/*  9 T_PROTFLT */
130	"trace trap",				/* 10 T_TRCTRAP */
131	"",					/* 11 unused */
132	"page fault",				/* 12 T_PAGEFLT */
133	"",					/* 13 unused */
134	"alignment fault",			/* 14 T_ALIGNFLT */
135	"",					/* 15 unused */
136	"",					/* 16 unused */
137	"",					/* 17 unused */
138	"integer divide fault",			/* 18 T_DIVIDE */
139	"non-maskable interrupt trap",		/* 19 T_NMI */
140	"overflow trap",			/* 20 T_OFLOW */
141	"FPU bounds check fault",		/* 21 T_BOUND */
142	"FPU device not available",		/* 22 T_DNA */
143	"double fault",				/* 23 T_DOUBLEFLT */
144	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
145	"invalid TSS fault",			/* 25 T_TSSFLT */
146	"segment not present fault",		/* 26 T_SEGNPFLT */
147	"stack fault",				/* 27 T_STKFLT */
148	"machine check trap",			/* 28 T_MCHK */
149};
150
151static __inline int userret __P((struct proc *p, struct trapframe *frame,
152				  u_quad_t oticks, int have_giant));
153
154#if defined(I586_CPU) && !defined(NO_F00F_HACK)
155extern int has_f00f_bug;
156#endif
157
158#ifdef DDB
159static int ddb_on_nmi = 1;
160SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
161	&ddb_on_nmi, 0, "Go to DDB on NMI");
162#endif
163static int panic_on_nmi = 1;
164SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
165	&panic_on_nmi, 0, "Panic on NMI");
166
167static __inline int
168userret(p, frame, oticks, have_giant)
169	struct proc *p;
170	struct trapframe *frame;
171	u_quad_t oticks;
172	int have_giant;
173{
174	int sig, s;
175
176	while ((sig = CURSIG(p)) != 0) {
177		if (have_giant == 0) {
178			mtx_enter(&Giant, MTX_DEF);
179			have_giant = 1;
180		}
181		postsig(sig);
182	}
183
184	p->p_priority = p->p_usrpri;
185	if (resched_wanted()) {
186		/*
187		 * Since we are curproc, clock will normally just change
188		 * our priority without moving us from one queue to another
189		 * (since the running process is not on a queue.)
190		 * If that happened after we setrunqueue ourselves but before we
191		 * mi_switch()'ed, we might not be on the queue indicated by
192		 * our priority.
193		 */
194		s = splhigh();
195		mtx_enter(&sched_lock, MTX_SPIN);
196		setrunqueue(p);
197		p->p_stats->p_ru.ru_nivcsw++;
198		mi_switch();
199		mtx_exit(&sched_lock, MTX_SPIN);
200		splx(s);
201		while ((sig = CURSIG(p)) != 0) {
202			if (have_giant == 0) {
203				mtx_enter(&Giant, MTX_DEF);
204				have_giant = 1;
205			}
206			postsig(sig);
207		}
208	}
209	/*
210	 * Charge system time if profiling.
211	 */
212	if (p->p_flag & P_PROFIL) {
213		if (have_giant == 0) {
214			mtx_enter(&Giant, MTX_DEF);
215			have_giant = 1;
216		}
217		addupc_task(p, frame->tf_eip,
218			    (u_int)(p->p_sticks - oticks) * psratio);
219	}
220	curpriority = p->p_priority;
221	return(have_giant);
222}
223
224/*
225 * Exception, fault, and trap interface to the FreeBSD kernel.
226 * This common code is called from assembly language IDT gate entry
227 * routines that prepare a suitable stack frame, and restore this
228 * frame after the exception has been processed.
229 */
230
231void
232trap(frame)
233	struct trapframe frame;
234{
235	struct proc *p = curproc;
236	u_quad_t sticks = 0;
237	int i = 0, ucode = 0, type, code;
238	vm_offset_t eva;
239#ifdef POWERFAIL_NMI
240	static int lastalert = 0;
241#endif
242
243	atomic_add_int(&cnt.v_trap, 1);
244
245	if ((frame.tf_eflags & PSL_I) == 0) {
246		/*
247		 * Buggy application or kernel code has disabled
248		 * interrupts and then trapped.  Enabling interrupts
249		 * now is wrong, but it is better than running with
250		 * interrupts disabled until they are accidentally
251		 * enabled later.  XXX Consider whether is this still
252		 * correct.
253		 */
254		type = frame.tf_trapno;
255		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
256			printf(
257			    "pid %ld (%s): trap %d with interrupts disabled\n",
258			    (long)curproc->p_pid, curproc->p_comm, type);
259		else if (type != T_BPTFLT && type != T_TRCTRAP)
260			/*
261			 * XXX not quite right, since this may be for a
262			 * multiple fault in user mode.
263			 */
264			printf("kernel trap %d with interrupts disabled\n",
265			    type);
266		enable_intr();
267	}
268
269	eva = 0;
270	if (frame.tf_trapno == T_PAGEFLT) {
271		/*
272		 * For some Cyrix CPUs, %cr2 is clobbered by
273		 * interrupts.  This problem is worked around by using
274		 * an interrupt gate for the pagefault handler.  We
275		 * are finally ready to read %cr2 and then must
276		 * reenable interrupts.
277		 */
278		eva = rcr2();
279		enable_intr();
280	}
281
282	mtx_enter(&Giant, MTX_DEF);
283
284#if defined(I586_CPU) && !defined(NO_F00F_HACK)
285restart:
286#endif
287
288	type = frame.tf_trapno;
289	code = frame.tf_err;
290
291        if ((ISPL(frame.tf_cs) == SEL_UPL) ||
292	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
293		/* user trap */
294
295		sticks = p->p_sticks;
296		p->p_md.md_regs = &frame;
297
298		switch (type) {
299		case T_PRIVINFLT:	/* privileged instruction fault */
300			ucode = type;
301			i = SIGILL;
302			break;
303
304		case T_BPTFLT:		/* bpt instruction fault */
305		case T_TRCTRAP:		/* trace trap */
306			frame.tf_eflags &= ~PSL_T;
307			i = SIGTRAP;
308			break;
309
310		case T_ARITHTRAP:	/* arithmetic trap */
311			ucode = code;
312			i = SIGFPE;
313			break;
314
315			/*
316			 * The following two traps can happen in
317			 * vm86 mode, and, if so, we want to handle
318			 * them specially.
319			 */
320		case T_PROTFLT:		/* general protection fault */
321		case T_STKFLT:		/* stack fault */
322			if (frame.tf_eflags & PSL_VM) {
323				i = vm86_emulate((struct vm86frame *)&frame);
324				if (i == 0)
325					goto user;
326				break;
327			}
328			/* FALL THROUGH */
329
330		case T_SEGNPFLT:	/* segment not present fault */
331		case T_TSSFLT:		/* invalid TSS fault */
332		case T_DOUBLEFLT:	/* double fault */
333		default:
334			ucode = code + BUS_SEGM_FAULT ;
335			i = SIGBUS;
336			break;
337
338		case T_PAGEFLT:		/* page fault */
339			i = trap_pfault(&frame, TRUE, eva);
340#if defined(I586_CPU) && !defined(NO_F00F_HACK)
341			if (i == -2) {
342				/*
343				 * f00f hack workaround has triggered, treat
344				 * as illegal instruction not page fault.
345				 */
346				frame.tf_trapno = T_PRIVINFLT;
347				goto restart;
348			}
349#endif
350			if (i == -1)
351				goto out;
352			if (i == 0)
353				goto user;
354
355			ucode = T_PAGEFLT;
356			break;
357
358		case T_DIVIDE:		/* integer divide fault */
359			ucode = FPE_INTDIV;
360			i = SIGFPE;
361			break;
362
363#if NISA > 0
364		case T_NMI:
365#ifdef POWERFAIL_NMI
366#ifndef TIMER_FREQ
367#  define TIMER_FREQ 1193182
368#endif
369			if (time_second - lastalert > 10) {
370				log(LOG_WARNING, "NMI: power fail\n");
371				sysbeep(TIMER_FREQ/880, hz);
372				lastalert = time_second;
373			}
374			goto out;
375#else /* !POWERFAIL_NMI */
376			/* machine/parity/power fail/"kitchen sink" faults */
377			if (isa_nmi(code) == 0) {
378#ifdef DDB
379				/*
380				 * NMI can be hooked up to a pushbutton
381				 * for debugging.
382				 */
383				if (ddb_on_nmi) {
384					printf ("NMI ... going to debugger\n");
385					kdb_trap (type, 0, &frame);
386				}
387#endif /* DDB */
388				goto out;
389			} else if (panic_on_nmi)
390				panic("NMI indicates hardware failure");
391			break;
392#endif /* POWERFAIL_NMI */
393#endif /* NISA > 0 */
394
395		case T_OFLOW:		/* integer overflow fault */
396			ucode = FPE_INTOVF;
397			i = SIGFPE;
398			break;
399
400		case T_BOUND:		/* bounds check fault */
401			ucode = FPE_FLTSUB;
402			i = SIGFPE;
403			break;
404
405		case T_DNA:
406#if NNPX > 0
407			/* transparent fault (due to context switch "late") */
408			if (npxdna())
409				goto out;
410#endif
411			if (!pmath_emulate) {
412				i = SIGFPE;
413				ucode = FPE_FPU_NP_TRAP;
414				break;
415			}
416			i = (*pmath_emulate)(&frame);
417			if (i == 0) {
418				if (!(frame.tf_eflags & PSL_T))
419					goto out;
420				frame.tf_eflags &= ~PSL_T;
421				i = SIGTRAP;
422			}
423			/* else ucode = emulator_only_knows() XXX */
424			break;
425
426		case T_FPOPFLT:		/* FPU operand fetch fault */
427			ucode = T_FPOPFLT;
428			i = SIGILL;
429			break;
430		}
431	} else {
432		/* kernel trap */
433
434		switch (type) {
435		case T_PAGEFLT:			/* page fault */
436			(void) trap_pfault(&frame, FALSE, eva);
437			goto out;
438
439		case T_DNA:
440#if NNPX > 0
441			/*
442			 * The kernel is apparently using npx for copying.
443			 * XXX this should be fatal unless the kernel has
444			 * registered such use.
445			 */
446			if (npxdna())
447				goto out;
448#endif
449			break;
450
451			/*
452			 * The following two traps can happen in
453			 * vm86 mode, and, if so, we want to handle
454			 * them specially.
455			 */
456		case T_PROTFLT:		/* general protection fault */
457		case T_STKFLT:		/* stack fault */
458			if (frame.tf_eflags & PSL_VM) {
459				i = vm86_emulate((struct vm86frame *)&frame);
460				if (i != 0)
461					/*
462					 * returns to original process
463					 */
464					vm86_trap((struct vm86frame *)&frame);
465				goto out;
466			}
467			if (type == T_STKFLT)
468				break;
469
470			/* FALL THROUGH */
471
472		case T_SEGNPFLT:	/* segment not present fault */
473			if (in_vm86call)
474				break;
475
476			if (intr_nesting_level != 0)
477				break;
478
479				/*
480				 * Invalid %fs's and %gs's can be created using
481				 * procfs or PT_SETREGS or by invalidating the
482				 * underlying LDT entry.  This causes a fault
483				 * in kernel mode when the kernel attempts to
484				 * switch contexts.  Lose the bad context
485				 * (XXX) so that we can continue, and generate
486				 * a signal.
487				 */
488				if (frame.tf_eip == (int)cpu_switch_load_gs) {
489					curpcb->pcb_gs = 0;
490					psignal(p, SIGBUS);
491				goto out;
492			}
493
494			/*
495			 * Invalid segment selectors and out of bounds
496			 * %eip's and %esp's can be set up in user mode.
497			 * This causes a fault in kernel mode when the
498			 * kernel tries to return to user mode.  We want
499			 * to get this fault so that we can fix the
500			 * problem here and not have to check all the
501			 * selectors and pointers when the user changes
502			 * them.
503			 */
504			if (frame.tf_eip == (int)doreti_iret) {
505				frame.tf_eip = (int)doreti_iret_fault;
506				goto out;
507			}
508			if (frame.tf_eip == (int)doreti_popl_ds) {
509				frame.tf_eip = (int)doreti_popl_ds_fault;
510				goto out;
511			}
512			if (frame.tf_eip == (int)doreti_popl_es) {
513				frame.tf_eip = (int)doreti_popl_es_fault;
514				goto out;
515				}
516			if (frame.tf_eip == (int)doreti_popl_fs) {
517				frame.tf_eip = (int)doreti_popl_fs_fault;
518				goto out;
519			}
520				if (curpcb && curpcb->pcb_onfault) {
521					frame.tf_eip = (int)curpcb->pcb_onfault;
522				goto out;
523			}
524			break;
525
526		case T_TSSFLT:
527			/*
528			 * PSL_NT can be set in user mode and isn't cleared
529			 * automatically when the kernel is entered.  This
530			 * causes a TSS fault when the kernel attempts to
531			 * `iret' because the TSS link is uninitialized.  We
532			 * want to get this fault so that we can fix the
533			 * problem here and not every time the kernel is
534			 * entered.
535			 */
536			if (frame.tf_eflags & PSL_NT) {
537				frame.tf_eflags &= ~PSL_NT;
538				goto out;
539			}
540			break;
541
542		case T_TRCTRAP:	 /* trace trap */
543			if (frame.tf_eip == (int)IDTVEC(syscall)) {
544				/*
545				 * We've just entered system mode via the
546				 * syscall lcall.  Continue single stepping
547				 * silently until the syscall handler has
548				 * saved the flags.
549				 */
550				goto out;
551			}
552			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
553				/*
554				 * The syscall handler has now saved the
555				 * flags.  Stop single stepping it.
556				 */
557				frame.tf_eflags &= ~PSL_T;
558				goto out;
559			}
560			/*
561			 * Ignore debug register trace traps due to
562			 * accesses in the user's address space, which
563			 * can happen under several conditions such as
564			 * if a user sets a watchpoint on a buffer and
565			 * then passes that buffer to a system call.
566			 * We still want to get TRCTRAPS for addresses
567			 * in kernel space because that is useful when
568			 * debugging the kernel.
569			 */
570			if (user_dbreg_trap() && !in_vm86call) {
571				/*
572				 * Reset breakpoint bits because the
573				 * processor doesn't
574				 */
575				load_dr6(rdr6() & 0xfffffff0);
576				goto out;
577			}
578			/*
579			 * Fall through (TRCTRAP kernel mode, kernel address)
580			 */
581		case T_BPTFLT:
582			/*
583			 * If DDB is enabled, let it handle the debugger trap.
584			 * Otherwise, debugger traps "can't happen".
585			 */
586#ifdef DDB
587			if (kdb_trap (type, 0, &frame))
588				goto out;
589#endif
590			break;
591
592#if NISA > 0
593		case T_NMI:
594#ifdef POWERFAIL_NMI
595			if (time_second - lastalert > 10) {
596		      log(LOG_WARNING, "NMI: power fail\n");
597		      sysbeep(TIMER_FREQ/880, hz);
598		      lastalert = time_second;
599		}
600			goto out;
601#else /* !POWERFAIL_NMI */
602			/* machine/parity/power fail/"kitchen sink" faults */
603			if (isa_nmi(code) == 0) {
604#ifdef DDB
605				/*
606				 * NMI can be hooked up to a pushbutton
607				 * for debugging.
608				 */
609				if (ddb_on_nmi) {
610					printf ("NMI ... going to debugger\n");
611					kdb_trap (type, 0, &frame);
612				}
613#endif /* DDB */
614				goto out;
615			} else if (panic_on_nmi == 0)
616				goto out;
617			/* FALL THROUGH */
618#endif /* POWERFAIL_NMI */
619#endif /* NISA > 0 */
620		}
621
622		trap_fatal(&frame, eva);
623		goto out;
624	}
625
626	/* Translate fault for emulators (e.g. Linux) */
627	if (*p->p_sysent->sv_transtrap)
628		i = (*p->p_sysent->sv_transtrap)(i, type);
629
630	trapsignal(p, i, ucode);
631
632#ifdef DEBUG
633	if (type <= MAX_TRAP_MSG) {
634		uprintf("fatal process exception: %s",
635			trap_msg[type]);
636		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
637			uprintf(", fault VA = 0x%lx", (u_long)eva);
638		uprintf("\n");
639	}
640#endif
641
642user:
643	userret(p, &frame, sticks, 1);
644out:
645	mtx_exit(&Giant, MTX_DEF);
646}
647
648#ifdef notyet
649/*
650 * This version doesn't allow a page fault to user space while
651 * in the kernel. The rest of the kernel needs to be made "safe"
652 * before this can be used. I think the only things remaining
653 * to be made safe are the iBCS2 code and the process tracing/
654 * debugging code.
655 */
656static int
657trap_pfault(frame, usermode, eva)
658	struct trapframe *frame;
659	int usermode;
660	vm_offset_t eva;
661{
662	vm_offset_t va;
663	struct vmspace *vm = NULL;
664	vm_map_t map = 0;
665	int rv = 0;
666	vm_prot_t ftype;
667	struct proc *p = curproc;
668
669	if (frame->tf_err & PGEX_W)
670		ftype = VM_PROT_WRITE;
671	else
672		ftype = VM_PROT_READ;
673
674	va = trunc_page(eva);
675	if (va < VM_MIN_KERNEL_ADDRESS) {
676		vm_offset_t v;
677		vm_page_t mpte;
678
679		if (p == NULL ||
680		    (!usermode && va < VM_MAXUSER_ADDRESS &&
681		     (intr_nesting_level != 0 || curpcb == NULL ||
682		      curpcb->pcb_onfault == NULL))) {
683			trap_fatal(frame, eva);
684			return (-1);
685		}
686
687		/*
688		 * This is a fault on non-kernel virtual memory.
689		 * vm is initialized above to NULL. If curproc is NULL
690		 * or curproc->p_vmspace is NULL the fault is fatal.
691		 */
692		vm = p->p_vmspace;
693		if (vm == NULL)
694			goto nogo;
695
696		map = &vm->vm_map;
697
698		/*
699		 * Keep swapout from messing with us during this
700		 *	critical time.
701		 */
702		++p->p_lock;
703
704		/*
705		 * Grow the stack if necessary
706		 */
707		/* grow_stack returns false only if va falls into
708		 * a growable stack region and the stack growth
709		 * fails.  It returns true if va was not within
710		 * a growable stack region, or if the stack
711		 * growth succeeded.
712		 */
713		if (!grow_stack (p, va)) {
714			rv = KERN_FAILURE;
715			--p->p_lock;
716			goto nogo;
717		}
718
719		/* Fault in the user page: */
720		rv = vm_fault(map, va, ftype,
721			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
722						      : VM_FAULT_NORMAL);
723
724		--p->p_lock;
725	} else {
726		/*
727		 * Don't allow user-mode faults in kernel address space.
728		 */
729		if (usermode)
730			goto nogo;
731
732		/*
733		 * Since we know that kernel virtual address addresses
734		 * always have pte pages mapped, we just have to fault
735		 * the page.
736		 */
737		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
738	}
739
740	if (rv == KERN_SUCCESS)
741		return (0);
742nogo:
743	if (!usermode) {
744		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
745			frame->tf_eip = (int)curpcb->pcb_onfault;
746			return (0);
747		}
748		trap_fatal(frame, eva);
749		return (-1);
750	}
751
752	/* kludge to pass faulting virtual address to sendsig */
753	frame->tf_err = eva;
754
755	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
756}
757#endif
758
759int
760trap_pfault(frame, usermode, eva)
761	struct trapframe *frame;
762	int usermode;
763	vm_offset_t eva;
764{
765	vm_offset_t va;
766	struct vmspace *vm = NULL;
767	vm_map_t map = 0;
768	int rv = 0;
769	vm_prot_t ftype;
770	struct proc *p = curproc;
771
772	va = trunc_page(eva);
773	if (va >= KERNBASE) {
774		/*
775		 * Don't allow user-mode faults in kernel address space.
776		 * An exception:  if the faulting address is the invalid
777		 * instruction entry in the IDT, then the Intel Pentium
778		 * F00F bug workaround was triggered, and we need to
779		 * treat it is as an illegal instruction, and not a page
780		 * fault.
781		 */
782#if defined(I586_CPU) && !defined(NO_F00F_HACK)
783		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
784			return -2;
785#endif
786		if (usermode)
787			goto nogo;
788
789		map = kernel_map;
790	} else {
791		/*
792		 * This is a fault on non-kernel virtual memory.
793		 * vm is initialized above to NULL. If curproc is NULL
794		 * or curproc->p_vmspace is NULL the fault is fatal.
795		 */
796		if (p != NULL)
797			vm = p->p_vmspace;
798
799		if (vm == NULL)
800			goto nogo;
801
802		map = &vm->vm_map;
803	}
804
805	if (frame->tf_err & PGEX_W)
806		ftype = VM_PROT_WRITE;
807	else
808		ftype = VM_PROT_READ;
809
810	if (map != kernel_map) {
811		/*
812		 * Keep swapout from messing with us during this
813		 *	critical time.
814		 */
815		++p->p_lock;
816
817		/*
818		 * Grow the stack if necessary
819		 */
820		/* grow_stack returns false only if va falls into
821		 * a growable stack region and the stack growth
822		 * fails.  It returns true if va was not within
823		 * a growable stack region, or if the stack
824		 * growth succeeded.
825		 */
826		if (!grow_stack (p, va)) {
827			rv = KERN_FAILURE;
828			--p->p_lock;
829			goto nogo;
830		}
831
832		/* Fault in the user page: */
833		rv = vm_fault(map, va, ftype,
834			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
835						      : VM_FAULT_NORMAL);
836
837		--p->p_lock;
838	} else {
839		/*
840		 * Don't have to worry about process locking or stacks in the kernel.
841		 */
842		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
843	}
844
845	if (rv == KERN_SUCCESS)
846		return (0);
847nogo:
848	if (!usermode) {
849		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
850			frame->tf_eip = (int)curpcb->pcb_onfault;
851			return (0);
852		}
853		trap_fatal(frame, eva);
854		return (-1);
855	}
856
857	/* kludge to pass faulting virtual address to sendsig */
858	frame->tf_err = eva;
859
860	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
861}
862
863static void
864trap_fatal(frame, eva)
865	struct trapframe *frame;
866	vm_offset_t eva;
867{
868	int code, type, ss, esp;
869	struct soft_segment_descriptor softseg;
870
871	code = frame->tf_err;
872	type = frame->tf_trapno;
873	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
874
875	if (type <= MAX_TRAP_MSG)
876		printf("\n\nFatal trap %d: %s while in %s mode\n",
877			type, trap_msg[type],
878        		frame->tf_eflags & PSL_VM ? "vm86" :
879			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
880#ifdef SMP
881	/* two seperate prints in case of a trap on an unmapped page */
882	printf("cpuid = %d; ", cpuid);
883	printf("lapic.id = %08x\n", lapic.id);
884#endif
885	if (type == T_PAGEFLT) {
886		printf("fault virtual address	= 0x%x\n", eva);
887		printf("fault code		= %s %s, %s\n",
888			code & PGEX_U ? "user" : "supervisor",
889			code & PGEX_W ? "write" : "read",
890			code & PGEX_P ? "protection violation" : "page not present");
891	}
892	printf("instruction pointer	= 0x%x:0x%x\n",
893	       frame->tf_cs & 0xffff, frame->tf_eip);
894        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
895		ss = frame->tf_ss & 0xffff;
896		esp = frame->tf_esp;
897	} else {
898		ss = GSEL(GDATA_SEL, SEL_KPL);
899		esp = (int)&frame->tf_esp;
900	}
901	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
902	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
903	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
904	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
905	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
906	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
907	       softseg.ssd_gran);
908	printf("processor eflags	= ");
909	if (frame->tf_eflags & PSL_T)
910		printf("trace trap, ");
911	if (frame->tf_eflags & PSL_I)
912		printf("interrupt enabled, ");
913	if (frame->tf_eflags & PSL_NT)
914		printf("nested task, ");
915	if (frame->tf_eflags & PSL_RF)
916		printf("resume, ");
917	if (frame->tf_eflags & PSL_VM)
918		printf("vm86, ");
919	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
920	printf("current process		= ");
921	if (curproc) {
922		printf("%lu (%s)\n",
923		    (u_long)curproc->p_pid, curproc->p_comm ?
924		    curproc->p_comm : "");
925	} else {
926		printf("Idle\n");
927	}
928
929#ifdef KDB
930	if (kdb_trap(&psl))
931		return;
932#endif
933#ifdef DDB
934	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
935		return;
936#endif
937	printf("trap number		= %d\n", type);
938	if (type <= MAX_TRAP_MSG)
939		panic(trap_msg[type]);
940	else
941		panic("unknown/reserved trap");
942}
943
944/*
945 * Double fault handler. Called when a fault occurs while writing
946 * a frame for a trap/exception onto the stack. This usually occurs
947 * when the stack overflows (such is the case with infinite recursion,
948 * for example).
949 *
950 * XXX Note that the current PTD gets replaced by IdlePTD when the
951 * task switch occurs. This means that the stack that was active at
952 * the time of the double fault is not available at <kstack> unless
953 * the machine was idle when the double fault occurred. The downside
954 * of this is that "trace <ebp>" in ddb won't work.
955 */
956void
957dblfault_handler()
958{
959	printf("\nFatal double fault:\n");
960	printf("eip = 0x%x\n", common_tss.tss_eip);
961	printf("esp = 0x%x\n", common_tss.tss_esp);
962	printf("ebp = 0x%x\n", common_tss.tss_ebp);
963#ifdef SMP
964	/* two seperate prints in case of a trap on an unmapped page */
965	printf("cpuid = %d; ", cpuid);
966	printf("lapic.id = %08x\n", lapic.id);
967#endif
968	panic("double fault");
969}
970
971/*
972 * Compensate for 386 brain damage (missing URKR).
973 * This is a little simpler than the pagefault handler in trap() because
974 * it the page tables have already been faulted in and high addresses
975 * are thrown out early for other reasons.
976 */
977int trapwrite(addr)
978	unsigned addr;
979{
980	struct proc *p;
981	vm_offset_t va;
982	struct vmspace *vm;
983	int rv;
984
985	va = trunc_page((vm_offset_t)addr);
986	/*
987	 * XXX - MAX is END.  Changed > to >= for temp. fix.
988	 */
989	if (va >= VM_MAXUSER_ADDRESS)
990		return (1);
991
992	p = curproc;
993	vm = p->p_vmspace;
994
995	++p->p_lock;
996
997	if (!grow_stack (p, va)) {
998		--p->p_lock;
999		return (1);
1000	}
1001
1002	/*
1003	 * fault the data page
1004	 */
1005	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1006
1007	--p->p_lock;
1008
1009	if (rv != KERN_SUCCESS)
1010		return 1;
1011
1012	return (0);
1013}
1014
1015/*
1016 *	syscall2 -	MP aware system call request C handler
1017 *
1018 *	A system call is essentially treated as a trap except that the
1019 *	MP lock is not held on entry or return.  We are responsible for
1020 *	obtaining the MP lock if necessary and for handling ASTs
1021 *	(e.g. a task switch) prior to return.
1022 *
1023 *	In general, only simple access and manipulation of curproc and
1024 *	the current stack is allowed without having to hold MP lock.
1025 */
1026void
1027syscall2(frame)
1028	struct trapframe frame;
1029{
1030	caddr_t params;
1031	int i;
1032	struct sysent *callp;
1033	struct proc *p = curproc;
1034	u_quad_t sticks;
1035	int error;
1036	int narg;
1037	int args[8];
1038	int have_giant = 0;
1039	u_int code;
1040
1041	atomic_add_int(&cnt.v_syscall, 1);
1042
1043#ifdef DIAGNOSTIC
1044	if (ISPL(frame.tf_cs) != SEL_UPL) {
1045		mtx_enter(&Giant, MTX_DEF);
1046		panic("syscall");
1047		/* NOT REACHED */
1048	}
1049#endif
1050
1051	/*
1052	 * handle atomicy by looping since interrupts are enabled and the
1053	 * MP lock is not held.
1054	 */
1055	sticks = ((volatile struct proc *)p)->p_sticks;
1056	while (sticks != ((volatile struct proc *)p)->p_sticks)
1057		sticks = ((volatile struct proc *)p)->p_sticks;
1058
1059	p->p_md.md_regs = &frame;
1060	params = (caddr_t)frame.tf_esp + sizeof(int);
1061	code = frame.tf_eax;
1062
1063	if (p->p_sysent->sv_prepsyscall) {
1064		/*
1065		 * The prep code is not MP aware.
1066		 */
1067		mtx_enter(&Giant, MTX_DEF);
1068		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1069		mtx_exit(&Giant, MTX_DEF);
1070	} else {
1071		/*
1072		 * Need to check if this is a 32 bit or 64 bit syscall.
1073		 * fuword is MP aware.
1074		 */
1075		if (code == SYS_syscall) {
1076			/*
1077			 * Code is first argument, followed by actual args.
1078			 */
1079			code = fuword(params);
1080			params += sizeof(int);
1081		} else if (code == SYS___syscall) {
1082			/*
1083			 * Like syscall, but code is a quad, so as to maintain
1084			 * quad alignment for the rest of the arguments.
1085			 */
1086			code = fuword(params);
1087			params += sizeof(quad_t);
1088		}
1089	}
1090
1091 	if (p->p_sysent->sv_mask)
1092 		code &= p->p_sysent->sv_mask;
1093
1094 	if (code >= p->p_sysent->sv_size)
1095 		callp = &p->p_sysent->sv_table[0];
1096  	else
1097 		callp = &p->p_sysent->sv_table[code];
1098
1099	narg = callp->sy_narg & SYF_ARGMASK;
1100
1101	/*
1102	 * copyin is MP aware, but the tracing code is not
1103	 */
1104	if (params && (i = narg * sizeof(int)) &&
1105	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1106		mtx_enter(&Giant, MTX_DEF);
1107		have_giant = 1;
1108#ifdef KTRACE
1109		if (KTRPOINT(p, KTR_SYSCALL))
1110			ktrsyscall(p->p_tracep, code, narg, args);
1111#endif
1112		goto bad;
1113	}
1114
1115	/*
1116	 * Try to run the syscall without the MP lock if the syscall
1117	 * is MP safe.  We have to obtain the MP lock no matter what if
1118	 * we are ktracing
1119	 */
1120	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1121		mtx_enter(&Giant, MTX_DEF);
1122		have_giant = 1;
1123	}
1124
1125#ifdef KTRACE
1126	if (KTRPOINT(p, KTR_SYSCALL)) {
1127		if (have_giant == 0) {
1128			mtx_enter(&Giant, MTX_DEF);
1129			have_giant = 1;
1130		}
1131		ktrsyscall(p->p_tracep, code, narg, args);
1132	}
1133#endif
1134	p->p_retval[0] = 0;
1135	p->p_retval[1] = frame.tf_edx;
1136
1137	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1138
1139	error = (*callp->sy_call)(p, args);
1140
1141	/*
1142	 * MP SAFE (we may or may not have the MP lock at this point)
1143	 */
1144	switch (error) {
1145	case 0:
1146		/*
1147		 * Reinitialize proc pointer `p' as it may be different
1148		 * if this is a child returning from fork syscall.
1149		 */
1150		p = curproc;
1151		frame.tf_eax = p->p_retval[0];
1152		frame.tf_edx = p->p_retval[1];
1153		frame.tf_eflags &= ~PSL_C;
1154		break;
1155
1156	case ERESTART:
1157		/*
1158		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1159		 * int 0x80 is 2 bytes. We saved this in tf_err.
1160		 */
1161		frame.tf_eip -= frame.tf_err;
1162		break;
1163
1164	case EJUSTRETURN:
1165		break;
1166
1167	default:
1168bad:
1169 		if (p->p_sysent->sv_errsize) {
1170 			if (error >= p->p_sysent->sv_errsize)
1171  				error = -1;	/* XXX */
1172   			else
1173  				error = p->p_sysent->sv_errtbl[error];
1174		}
1175		frame.tf_eax = error;
1176		frame.tf_eflags |= PSL_C;
1177		break;
1178	}
1179
1180	/*
1181	 * Traced syscall.  trapsignal() is not MP aware.
1182	 */
1183	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1184		if (have_giant == 0) {
1185			mtx_enter(&Giant, MTX_DEF);
1186			have_giant = 1;
1187		}
1188		frame.tf_eflags &= ~PSL_T;
1189		trapsignal(p, SIGTRAP, 0);
1190	}
1191
1192	/*
1193	 * Handle reschedule and other end-of-syscall issues
1194	 */
1195	have_giant = userret(p, &frame, sticks, have_giant);
1196
1197#ifdef KTRACE
1198	if (KTRPOINT(p, KTR_SYSRET)) {
1199		if (have_giant == 0) {
1200			mtx_enter(&Giant, MTX_DEF);
1201			have_giant = 1;
1202		}
1203		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1204	}
1205#endif
1206
1207	/*
1208	 * This works because errno is findable through the
1209	 * register set.  If we ever support an emulation where this
1210	 * is not the case, this code will need to be revisited.
1211	 */
1212	STOPEVENT(p, S_SCX, code);
1213
1214	/*
1215	 * Release the MP lock if we had to get it
1216	 */
1217	if (have_giant)
1218		mtx_exit(&Giant, MTX_DEF);
1219
1220	mtx_assert(&sched_lock, MA_NOTOWNED);
1221	mtx_assert(&Giant, MA_NOTOWNED);
1222}
1223
1224void
1225ast(frame)
1226	struct trapframe frame;
1227{
1228	struct proc *p = CURPROC;
1229	u_quad_t sticks;
1230
1231	/*
1232	 * handle atomicy by looping since interrupts are enabled and the
1233	 * MP lock is not held.
1234	 */
1235	sticks = ((volatile struct proc *)p)->p_sticks;
1236	while (sticks != ((volatile struct proc *)p)->p_sticks)
1237		sticks = ((volatile struct proc *)p)->p_sticks;
1238
1239	astoff();
1240	atomic_add_int(&cnt.v_soft, 1);
1241	if (p->p_flag & P_OWEUPC) {
1242		mtx_enter(&Giant, MTX_DEF);
1243		p->p_flag &= ~P_OWEUPC;
1244		addupc_task(p, p->p_stats->p_prof.pr_addr,
1245			    p->p_stats->p_prof.pr_ticks);
1246}
1247	if (userret(p, &frame, sticks, mtx_owned(&Giant)) != 0)
1248		mtx_exit(&Giant, MTX_DEF);
1249}
1250
1251/*
1252 * Simplified back end of syscall(), used when returning from fork()
1253 * directly into user mode.  Giant is not held on entry, and must not
1254 * be held on return.
1255 */
1256void
1257fork_return(p, frame)
1258	struct proc *p;
1259	struct trapframe frame;
1260{
1261	int	have_giant;
1262
1263	frame.tf_eax = 0;		/* Child returns zero */
1264	frame.tf_eflags &= ~PSL_C;	/* success */
1265	frame.tf_edx = 1;
1266
1267	have_giant = userret(p, &frame, 0, mtx_owned(&Giant));
1268#ifdef KTRACE
1269	if (KTRPOINT(p, KTR_SYSRET)) {
1270		if (have_giant == 0) {
1271			mtx_enter(&Giant, MTX_DEF);
1272			have_giant = 1;
1273		}
1274		ktrsysret(p->p_tracep, SYS_fork, 0, 0);
1275	}
1276#endif
1277	if (have_giant)
1278		mtx_exit(&Giant, MTX_DEF);
1279}
1280