subr_syscall.c revision 65811
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 65811 2000-09-13 12:40:43Z bde $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_ktrace.h"
48#include "opt_clock.h"
49#include "opt_trap.h"
50
51#include <sys/param.h>
52#include <sys/bus.h>
53#include <sys/systm.h>
54#include <sys/proc.h>
55#include <sys/pioctl.h>
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/resourcevar.h>
59#include <sys/signalvar.h>
60#include <sys/syscall.h>
61#include <sys/sysctl.h>
62#include <sys/sysent.h>
63#include <sys/uio.h>
64#include <sys/vmmeter.h>
65#ifdef KTRACE
66#include <sys/ktrace.h>
67#endif
68
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <sys/lock.h>
72#include <vm/pmap.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_map.h>
75#include <vm/vm_page.h>
76#include <vm/vm_extern.h>
77
78#include <machine/cpu.h>
79#include <machine/ipl.h>
80#include <machine/md_var.h>
81#include <machine/mutex.h>
82#include <machine/pcb.h>
83#ifdef SMP
84#include <machine/smp.h>
85#endif
86#include <machine/tss.h>
87
88#include <i386/isa/icu.h>
89#include <i386/isa/intr_machdep.h>
90
91#ifdef POWERFAIL_NMI
92#include <sys/syslog.h>
93#include <machine/clock.h>
94#endif
95
96#include <machine/vm86.h>
97
98#include <ddb/ddb.h>
99
100#include "isa.h"
101#include "npx.h"
102
103#include <sys/sysctl.h>
104
105int (*pmath_emulate) __P((struct trapframe *));
106
107extern void trap __P((struct trapframe frame));
108extern int trapwrite __P((unsigned addr));
109extern void syscall2 __P((struct trapframe frame));
110extern void ast __P((struct trapframe frame));
111
112static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
113static void trap_fatal __P((struct trapframe *, vm_offset_t));
114void dblfault_handler __P((void));
115
116extern inthand_t IDTVEC(syscall);
117
118#define MAX_TRAP_MSG		28
119static char *trap_msg[] = {
120	"",					/*  0 unused */
121	"privileged instruction fault",		/*  1 T_PRIVINFLT */
122	"",					/*  2 unused */
123	"breakpoint instruction fault",		/*  3 T_BPTFLT */
124	"",					/*  4 unused */
125	"",					/*  5 unused */
126	"arithmetic trap",			/*  6 T_ARITHTRAP */
127	"system forced exception",		/*  7 T_ASTFLT */
128	"",					/*  8 unused */
129	"general protection fault",		/*  9 T_PROTFLT */
130	"trace trap",				/* 10 T_TRCTRAP */
131	"",					/* 11 unused */
132	"page fault",				/* 12 T_PAGEFLT */
133	"",					/* 13 unused */
134	"alignment fault",			/* 14 T_ALIGNFLT */
135	"",					/* 15 unused */
136	"",					/* 16 unused */
137	"",					/* 17 unused */
138	"integer divide fault",			/* 18 T_DIVIDE */
139	"non-maskable interrupt trap",		/* 19 T_NMI */
140	"overflow trap",			/* 20 T_OFLOW */
141	"FPU bounds check fault",		/* 21 T_BOUND */
142	"FPU device not available",		/* 22 T_DNA */
143	"double fault",				/* 23 T_DOUBLEFLT */
144	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
145	"invalid TSS fault",			/* 25 T_TSSFLT */
146	"segment not present fault",		/* 26 T_SEGNPFLT */
147	"stack fault",				/* 27 T_STKFLT */
148	"machine check trap",			/* 28 T_MCHK */
149};
150
151static __inline int userret __P((struct proc *p, struct trapframe *frame,
152				  u_quad_t oticks, int have_giant));
153
154#if defined(I586_CPU) && !defined(NO_F00F_HACK)
155extern int has_f00f_bug;
156#endif
157
158#ifdef DDB
159static int ddb_on_nmi = 1;
160SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
161	&ddb_on_nmi, 0, "Go to DDB on NMI");
162#endif
163static int panic_on_nmi = 1;
164SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
165	&panic_on_nmi, 0, "Panic on NMI");
166
167static __inline int
168userret(p, frame, oticks, have_giant)
169	struct proc *p;
170	struct trapframe *frame;
171	u_quad_t oticks;
172	int have_giant;
173{
174	int sig, s;
175
176	while ((sig = CURSIG(p)) != 0) {
177		if (have_giant == 0) {
178			mtx_enter(&Giant, MTX_DEF);
179			have_giant = 1;
180		}
181		postsig(sig);
182	}
183
184	p->p_priority = p->p_usrpri;
185	if (resched_wanted()) {
186		/*
187		 * Since we are curproc, clock will normally just change
188		 * our priority without moving us from one queue to another
189		 * (since the running process is not on a queue.)
190		 * If that happened after we setrunqueue ourselves but before we
191		 * mi_switch()'ed, we might not be on the queue indicated by
192		 * our priority.
193		 */
194		s = splhigh();
195		mtx_enter(&sched_lock, MTX_SPIN);
196		setrunqueue(p);
197		p->p_stats->p_ru.ru_nivcsw++;
198		mi_switch();
199		mtx_exit(&sched_lock, MTX_SPIN);
200		splx(s);
201		while ((sig = CURSIG(p)) != 0) {
202			if (have_giant == 0) {
203				mtx_enter(&Giant, MTX_DEF);
204				have_giant = 1;
205			}
206			postsig(sig);
207		}
208	}
209	/*
210	 * Charge system time if profiling.
211	 */
212	if (p->p_flag & P_PROFIL) {
213		if (have_giant == 0) {
214			mtx_enter(&Giant, MTX_DEF);
215			have_giant = 1;
216		}
217		addupc_task(p, frame->tf_eip,
218			    (u_int)(p->p_sticks - oticks) * psratio);
219	}
220	curpriority = p->p_priority;
221	return(have_giant);
222}
223
224/*
225 * Exception, fault, and trap interface to the FreeBSD kernel.
226 * This common code is called from assembly language IDT gate entry
227 * routines that prepare a suitable stack frame, and restore this
228 * frame after the exception has been processed.
229 */
230
231void
232trap(frame)
233	struct trapframe frame;
234{
235	struct proc *p = curproc;
236	u_quad_t sticks = 0;
237	int i = 0, ucode = 0, type, code;
238	vm_offset_t eva;
239#ifdef POWERFAIL_NMI
240	static int lastalert = 0;
241#endif
242
243	atomic_add_int(&cnt.v_trap, 1);
244
245	if ((frame.tf_eflags & PSL_I) == 0) {
246		/*
247		 * Buggy application or kernel code has disabled
248		 * interrupts and then trapped.  Enabling interrupts
249		 * now is wrong, but it is better than running with
250		 * interrupts disabled until they are accidentally
251		 * enabled later.  XXX Consider whether is this still
252		 * correct.
253		 */
254		type = frame.tf_trapno;
255		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
256			printf(
257			    "pid %ld (%s): trap %d with interrupts disabled\n",
258			    (long)curproc->p_pid, curproc->p_comm, type);
259		else if (type != T_BPTFLT && type != T_TRCTRAP)
260			/*
261			 * XXX not quite right, since this may be for a
262			 * multiple fault in user mode.
263			 */
264			printf("kernel trap %d with interrupts disabled\n",
265			    type);
266		enable_intr();
267	}
268
269	eva = 0;
270	if (frame.tf_trapno == T_PAGEFLT) {
271		/*
272		 * For some Cyrix CPUs, %cr2 is clobbered by
273		 * interrupts.  This problem is worked around by using
274		 * an interrupt gate for the pagefault handler.  We
275		 * are finally ready to read %cr2 and then must
276		 * reenable interrupts.
277		 */
278		eva = rcr2();
279		enable_intr();
280	}
281
282	mtx_enter(&Giant, MTX_DEF);
283
284#if defined(I586_CPU) && !defined(NO_F00F_HACK)
285restart:
286#endif
287
288	type = frame.tf_trapno;
289	code = frame.tf_err;
290
291        if ((ISPL(frame.tf_cs) == SEL_UPL) ||
292	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
293		/* user trap */
294
295		sticks = p->p_sticks;
296		p->p_md.md_regs = &frame;
297
298		switch (type) {
299		case T_PRIVINFLT:	/* privileged instruction fault */
300			ucode = type;
301			i = SIGILL;
302			break;
303
304		case T_BPTFLT:		/* bpt instruction fault */
305		case T_TRCTRAP:		/* trace trap */
306			frame.tf_eflags &= ~PSL_T;
307			i = SIGTRAP;
308			break;
309
310		case T_ARITHTRAP:	/* arithmetic trap */
311			ucode = code;
312			i = SIGFPE;
313			break;
314
315			/*
316			 * The following two traps can happen in
317			 * vm86 mode, and, if so, we want to handle
318			 * them specially.
319			 */
320		case T_PROTFLT:		/* general protection fault */
321		case T_STKFLT:		/* stack fault */
322			if (frame.tf_eflags & PSL_VM) {
323				i = vm86_emulate((struct vm86frame *)&frame);
324				if (i == 0)
325					goto user;
326				break;
327			}
328			/* FALL THROUGH */
329
330		case T_SEGNPFLT:	/* segment not present fault */
331		case T_TSSFLT:		/* invalid TSS fault */
332		case T_DOUBLEFLT:	/* double fault */
333		default:
334			ucode = code + BUS_SEGM_FAULT ;
335			i = SIGBUS;
336			break;
337
338		case T_PAGEFLT:		/* page fault */
339			i = trap_pfault(&frame, TRUE, eva);
340#if defined(I586_CPU) && !defined(NO_F00F_HACK)
341			if (i == -2) {
342				/*
343				 * f00f hack workaround has triggered, treat
344				 * as illegal instruction not page fault.
345				 */
346				frame.tf_trapno = T_PRIVINFLT;
347				goto restart;
348			}
349#endif
350			if (i == -1)
351				goto out;
352			if (i == 0)
353				goto user;
354
355			ucode = T_PAGEFLT;
356			break;
357
358		case T_DIVIDE:		/* integer divide fault */
359			ucode = FPE_INTDIV;
360			i = SIGFPE;
361			break;
362
363#if NISA > 0
364		case T_NMI:
365#ifdef POWERFAIL_NMI
366#ifndef TIMER_FREQ
367#  define TIMER_FREQ 1193182
368#endif
369			if (time_second - lastalert > 10) {
370				log(LOG_WARNING, "NMI: power fail\n");
371				sysbeep(TIMER_FREQ/880, hz);
372				lastalert = time_second;
373			}
374			goto out;
375#else /* !POWERFAIL_NMI */
376			/* machine/parity/power fail/"kitchen sink" faults */
377			if (isa_nmi(code) == 0) {
378#ifdef DDB
379				/*
380				 * NMI can be hooked up to a pushbutton
381				 * for debugging.
382				 */
383				if (ddb_on_nmi) {
384					printf ("NMI ... going to debugger\n");
385					kdb_trap (type, 0, &frame);
386				}
387#endif /* DDB */
388				goto out;
389			} else if (panic_on_nmi)
390				panic("NMI indicates hardware failure");
391			break;
392#endif /* POWERFAIL_NMI */
393#endif /* NISA > 0 */
394
395		case T_OFLOW:		/* integer overflow fault */
396			ucode = FPE_INTOVF;
397			i = SIGFPE;
398			break;
399
400		case T_BOUND:		/* bounds check fault */
401			ucode = FPE_FLTSUB;
402			i = SIGFPE;
403			break;
404
405		case T_DNA:
406#if NNPX > 0
407			/* transparent fault (due to context switch "late") */
408			if (npxdna())
409				goto out;
410#endif
411			if (!pmath_emulate) {
412				i = SIGFPE;
413				ucode = FPE_FPU_NP_TRAP;
414				break;
415			}
416			i = (*pmath_emulate)(&frame);
417			if (i == 0) {
418				if (!(frame.tf_eflags & PSL_T))
419					goto out;
420				frame.tf_eflags &= ~PSL_T;
421				i = SIGTRAP;
422			}
423			/* else ucode = emulator_only_knows() XXX */
424			break;
425
426		case T_FPOPFLT:		/* FPU operand fetch fault */
427			ucode = T_FPOPFLT;
428			i = SIGILL;
429			break;
430		}
431	} else {
432		/* kernel trap */
433
434		switch (type) {
435		case T_PAGEFLT:			/* page fault */
436			(void) trap_pfault(&frame, FALSE, eva);
437			goto out;
438
439		case T_DNA:
440#if NNPX > 0
441			/*
442			 * The kernel is apparently using npx for copying.
443			 * XXX this should be fatal unless the kernel has
444			 * registered such use.
445			 */
446			if (npxdna())
447				goto out;
448#endif
449			break;
450
451			/*
452			 * The following two traps can happen in
453			 * vm86 mode, and, if so, we want to handle
454			 * them specially.
455			 */
456		case T_PROTFLT:		/* general protection fault */
457		case T_STKFLT:		/* stack fault */
458			if (frame.tf_eflags & PSL_VM) {
459				i = vm86_emulate((struct vm86frame *)&frame);
460				if (i != 0)
461					/*
462					 * returns to original process
463					 */
464					vm86_trap((struct vm86frame *)&frame);
465				goto out;
466			}
467			/* FALL THROUGH */
468
469		case T_SEGNPFLT:	/* segment not present fault */
470			if (in_vm86call)
471				break;
472
473			if (intr_nesting_level != 0)
474				break;
475
476				/*
477				 * Invalid %fs's and %gs's can be created using
478				 * procfs or PT_SETREGS or by invalidating the
479				 * underlying LDT entry.  This causes a fault
480				 * in kernel mode when the kernel attempts to
481				 * switch contexts.  Lose the bad context
482				 * (XXX) so that we can continue, and generate
483				 * a signal.
484				 */
485				if (frame.tf_eip == (int)cpu_switch_load_gs) {
486					curpcb->pcb_gs = 0;
487					psignal(p, SIGBUS);
488				goto out;
489			}
490
491			/*
492			 * Invalid segment selectors and out of bounds
493			 * %eip's and %esp's can be set up in user mode.
494			 * This causes a fault in kernel mode when the
495			 * kernel tries to return to user mode.  We want
496			 * to get this fault so that we can fix the
497			 * problem here and not have to check all the
498			 * selectors and pointers when the user changes
499			 * them.
500			 */
501			if (frame.tf_eip == (int)doreti_iret) {
502				frame.tf_eip = (int)doreti_iret_fault;
503				goto out;
504			}
505			if (frame.tf_eip == (int)doreti_popl_ds) {
506				frame.tf_eip = (int)doreti_popl_ds_fault;
507				goto out;
508			}
509			if (frame.tf_eip == (int)doreti_popl_es) {
510				frame.tf_eip = (int)doreti_popl_es_fault;
511				goto out;
512				}
513			if (frame.tf_eip == (int)doreti_popl_fs) {
514				frame.tf_eip = (int)doreti_popl_fs_fault;
515				goto out;
516			}
517				if (curpcb && curpcb->pcb_onfault) {
518					frame.tf_eip = (int)curpcb->pcb_onfault;
519				goto out;
520			}
521			break;
522
523		case T_TSSFLT:
524			/*
525			 * PSL_NT can be set in user mode and isn't cleared
526			 * automatically when the kernel is entered.  This
527			 * causes a TSS fault when the kernel attempts to
528			 * `iret' because the TSS link is uninitialized.  We
529			 * want to get this fault so that we can fix the
530			 * problem here and not every time the kernel is
531			 * entered.
532			 */
533			if (frame.tf_eflags & PSL_NT) {
534				frame.tf_eflags &= ~PSL_NT;
535				goto out;
536			}
537			break;
538
539		case T_TRCTRAP:	 /* trace trap */
540			if (frame.tf_eip == (int)IDTVEC(syscall)) {
541				/*
542				 * We've just entered system mode via the
543				 * syscall lcall.  Continue single stepping
544				 * silently until the syscall handler has
545				 * saved the flags.
546				 */
547				goto out;
548			}
549			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
550				/*
551				 * The syscall handler has now saved the
552				 * flags.  Stop single stepping it.
553				 */
554				frame.tf_eflags &= ~PSL_T;
555				goto out;
556			}
557			/*
558			 * Ignore debug register trace traps due to
559			 * accesses in the user's address space, which
560			 * can happen under several conditions such as
561			 * if a user sets a watchpoint on a buffer and
562			 * then passes that buffer to a system call.
563			 * We still want to get TRCTRAPS for addresses
564			 * in kernel space because that is useful when
565			 * debugging the kernel.
566			 */
567			if (user_dbreg_trap() && !in_vm86call) {
568				/*
569				 * Reset breakpoint bits because the
570				 * processor doesn't
571				 */
572				load_dr6(rdr6() & 0xfffffff0);
573				goto out;
574			}
575			/*
576			 * Fall through (TRCTRAP kernel mode, kernel address)
577			 */
578		case T_BPTFLT:
579			/*
580			 * If DDB is enabled, let it handle the debugger trap.
581			 * Otherwise, debugger traps "can't happen".
582			 */
583#ifdef DDB
584			if (kdb_trap (type, 0, &frame))
585				goto out;
586#endif
587			break;
588
589#if NISA > 0
590		case T_NMI:
591#ifdef POWERFAIL_NMI
592			if (time_second - lastalert > 10) {
593		      log(LOG_WARNING, "NMI: power fail\n");
594		      sysbeep(TIMER_FREQ/880, hz);
595		      lastalert = time_second;
596		}
597			goto out;
598#else /* !POWERFAIL_NMI */
599			/* machine/parity/power fail/"kitchen sink" faults */
600			if (isa_nmi(code) == 0) {
601#ifdef DDB
602				/*
603				 * NMI can be hooked up to a pushbutton
604				 * for debugging.
605				 */
606				if (ddb_on_nmi) {
607					printf ("NMI ... going to debugger\n");
608					kdb_trap (type, 0, &frame);
609				}
610#endif /* DDB */
611				goto out;
612			} else if (panic_on_nmi == 0)
613				goto out;
614			/* FALL THROUGH */
615#endif /* POWERFAIL_NMI */
616#endif /* NISA > 0 */
617		}
618
619		trap_fatal(&frame, eva);
620		goto out;
621	}
622
623	/* Translate fault for emulators (e.g. Linux) */
624	if (*p->p_sysent->sv_transtrap)
625		i = (*p->p_sysent->sv_transtrap)(i, type);
626
627	trapsignal(p, i, ucode);
628
629#ifdef DEBUG
630	if (type <= MAX_TRAP_MSG) {
631		uprintf("fatal process exception: %s",
632			trap_msg[type]);
633		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
634			uprintf(", fault VA = 0x%lx", (u_long)eva);
635		uprintf("\n");
636	}
637#endif
638
639user:
640	userret(p, &frame, sticks, 1);
641out:
642	mtx_exit(&Giant, MTX_DEF);
643}
644
645#ifdef notyet
646/*
647 * This version doesn't allow a page fault to user space while
648 * in the kernel. The rest of the kernel needs to be made "safe"
649 * before this can be used. I think the only things remaining
650 * to be made safe are the iBCS2 code and the process tracing/
651 * debugging code.
652 */
653static int
654trap_pfault(frame, usermode, eva)
655	struct trapframe *frame;
656	int usermode;
657	vm_offset_t eva;
658{
659	vm_offset_t va;
660	struct vmspace *vm = NULL;
661	vm_map_t map = 0;
662	int rv = 0;
663	vm_prot_t ftype;
664	struct proc *p = curproc;
665
666	if (frame->tf_err & PGEX_W)
667		ftype = VM_PROT_WRITE;
668	else
669		ftype = VM_PROT_READ;
670
671	va = trunc_page(eva);
672	if (va < VM_MIN_KERNEL_ADDRESS) {
673		vm_offset_t v;
674		vm_page_t mpte;
675
676		if (p == NULL ||
677		    (!usermode && va < VM_MAXUSER_ADDRESS &&
678		     (intr_nesting_level != 0 || curpcb == NULL ||
679		      curpcb->pcb_onfault == NULL))) {
680			trap_fatal(frame, eva);
681			return (-1);
682		}
683
684		/*
685		 * This is a fault on non-kernel virtual memory.
686		 * vm is initialized above to NULL. If curproc is NULL
687		 * or curproc->p_vmspace is NULL the fault is fatal.
688		 */
689		vm = p->p_vmspace;
690		if (vm == NULL)
691			goto nogo;
692
693		map = &vm->vm_map;
694
695		/*
696		 * Keep swapout from messing with us during this
697		 *	critical time.
698		 */
699		++p->p_lock;
700
701		/*
702		 * Grow the stack if necessary
703		 */
704		/* grow_stack returns false only if va falls into
705		 * a growable stack region and the stack growth
706		 * fails.  It returns true if va was not within
707		 * a growable stack region, or if the stack
708		 * growth succeeded.
709		 */
710		if (!grow_stack (p, va)) {
711			rv = KERN_FAILURE;
712			--p->p_lock;
713			goto nogo;
714		}
715
716		/* Fault in the user page: */
717		rv = vm_fault(map, va, ftype,
718			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
719						      : VM_FAULT_NORMAL);
720
721		--p->p_lock;
722	} else {
723		/*
724		 * Don't allow user-mode faults in kernel address space.
725		 */
726		if (usermode)
727			goto nogo;
728
729		/*
730		 * Since we know that kernel virtual address addresses
731		 * always have pte pages mapped, we just have to fault
732		 * the page.
733		 */
734		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
735	}
736
737	if (rv == KERN_SUCCESS)
738		return (0);
739nogo:
740	if (!usermode) {
741		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
742			frame->tf_eip = (int)curpcb->pcb_onfault;
743			return (0);
744		}
745		trap_fatal(frame, eva);
746		return (-1);
747	}
748
749	/* kludge to pass faulting virtual address to sendsig */
750	frame->tf_err = eva;
751
752	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
753}
754#endif
755
756int
757trap_pfault(frame, usermode, eva)
758	struct trapframe *frame;
759	int usermode;
760	vm_offset_t eva;
761{
762	vm_offset_t va;
763	struct vmspace *vm = NULL;
764	vm_map_t map = 0;
765	int rv = 0;
766	vm_prot_t ftype;
767	struct proc *p = curproc;
768
769	va = trunc_page(eva);
770	if (va >= KERNBASE) {
771		/*
772		 * Don't allow user-mode faults in kernel address space.
773		 * An exception:  if the faulting address is the invalid
774		 * instruction entry in the IDT, then the Intel Pentium
775		 * F00F bug workaround was triggered, and we need to
776		 * treat it is as an illegal instruction, and not a page
777		 * fault.
778		 */
779#if defined(I586_CPU) && !defined(NO_F00F_HACK)
780		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
781			return -2;
782#endif
783		if (usermode)
784			goto nogo;
785
786		map = kernel_map;
787	} else {
788		/*
789		 * This is a fault on non-kernel virtual memory.
790		 * vm is initialized above to NULL. If curproc is NULL
791		 * or curproc->p_vmspace is NULL the fault is fatal.
792		 */
793		if (p != NULL)
794			vm = p->p_vmspace;
795
796		if (vm == NULL)
797			goto nogo;
798
799		map = &vm->vm_map;
800	}
801
802	if (frame->tf_err & PGEX_W)
803		ftype = VM_PROT_WRITE;
804	else
805		ftype = VM_PROT_READ;
806
807	if (map != kernel_map) {
808		/*
809		 * Keep swapout from messing with us during this
810		 *	critical time.
811		 */
812		++p->p_lock;
813
814		/*
815		 * Grow the stack if necessary
816		 */
817		/* grow_stack returns false only if va falls into
818		 * a growable stack region and the stack growth
819		 * fails.  It returns true if va was not within
820		 * a growable stack region, or if the stack
821		 * growth succeeded.
822		 */
823		if (!grow_stack (p, va)) {
824			rv = KERN_FAILURE;
825			--p->p_lock;
826			goto nogo;
827		}
828
829		/* Fault in the user page: */
830		rv = vm_fault(map, va, ftype,
831			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
832						      : VM_FAULT_NORMAL);
833
834		--p->p_lock;
835	} else {
836		/*
837		 * Don't have to worry about process locking or stacks in the kernel.
838		 */
839		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
840	}
841
842	if (rv == KERN_SUCCESS)
843		return (0);
844nogo:
845	if (!usermode) {
846		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
847			frame->tf_eip = (int)curpcb->pcb_onfault;
848			return (0);
849		}
850		trap_fatal(frame, eva);
851		return (-1);
852	}
853
854	/* kludge to pass faulting virtual address to sendsig */
855	frame->tf_err = eva;
856
857	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
858}
859
860static void
861trap_fatal(frame, eva)
862	struct trapframe *frame;
863	vm_offset_t eva;
864{
865	int code, type, ss, esp;
866	struct soft_segment_descriptor softseg;
867
868	code = frame->tf_err;
869	type = frame->tf_trapno;
870	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
871
872	if (type <= MAX_TRAP_MSG)
873		printf("\n\nFatal trap %d: %s while in %s mode\n",
874			type, trap_msg[type],
875        		frame->tf_eflags & PSL_VM ? "vm86" :
876			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
877#ifdef SMP
878	/* two seperate prints in case of a trap on an unmapped page */
879	printf("cpuid = %d; ", cpuid);
880	printf("lapic.id = %08x\n", lapic.id);
881#endif
882	if (type == T_PAGEFLT) {
883		printf("fault virtual address	= 0x%x\n", eva);
884		printf("fault code		= %s %s, %s\n",
885			code & PGEX_U ? "user" : "supervisor",
886			code & PGEX_W ? "write" : "read",
887			code & PGEX_P ? "protection violation" : "page not present");
888	}
889	printf("instruction pointer	= 0x%x:0x%x\n",
890	       frame->tf_cs & 0xffff, frame->tf_eip);
891        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
892		ss = frame->tf_ss & 0xffff;
893		esp = frame->tf_esp;
894	} else {
895		ss = GSEL(GDATA_SEL, SEL_KPL);
896		esp = (int)&frame->tf_esp;
897	}
898	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
899	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
900	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
901	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
902	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
903	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
904	       softseg.ssd_gran);
905	printf("processor eflags	= ");
906	if (frame->tf_eflags & PSL_T)
907		printf("trace trap, ");
908	if (frame->tf_eflags & PSL_I)
909		printf("interrupt enabled, ");
910	if (frame->tf_eflags & PSL_NT)
911		printf("nested task, ");
912	if (frame->tf_eflags & PSL_RF)
913		printf("resume, ");
914	if (frame->tf_eflags & PSL_VM)
915		printf("vm86, ");
916	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
917	printf("current process		= ");
918	if (curproc) {
919		printf("%lu (%s)\n",
920		    (u_long)curproc->p_pid, curproc->p_comm ?
921		    curproc->p_comm : "");
922	} else {
923		printf("Idle\n");
924	}
925
926#ifdef KDB
927	if (kdb_trap(&psl))
928		return;
929#endif
930#ifdef DDB
931	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
932		return;
933#endif
934	printf("trap number		= %d\n", type);
935	if (type <= MAX_TRAP_MSG)
936		panic(trap_msg[type]);
937	else
938		panic("unknown/reserved trap");
939}
940
941/*
942 * Double fault handler. Called when a fault occurs while writing
943 * a frame for a trap/exception onto the stack. This usually occurs
944 * when the stack overflows (such is the case with infinite recursion,
945 * for example).
946 *
947 * XXX Note that the current PTD gets replaced by IdlePTD when the
948 * task switch occurs. This means that the stack that was active at
949 * the time of the double fault is not available at <kstack> unless
950 * the machine was idle when the double fault occurred. The downside
951 * of this is that "trace <ebp>" in ddb won't work.
952 */
953void
954dblfault_handler()
955{
956	printf("\nFatal double fault:\n");
957	printf("eip = 0x%x\n", common_tss.tss_eip);
958	printf("esp = 0x%x\n", common_tss.tss_esp);
959	printf("ebp = 0x%x\n", common_tss.tss_ebp);
960#ifdef SMP
961	/* two seperate prints in case of a trap on an unmapped page */
962	printf("cpuid = %d; ", cpuid);
963	printf("lapic.id = %08x\n", lapic.id);
964#endif
965	panic("double fault");
966}
967
968/*
969 * Compensate for 386 brain damage (missing URKR).
970 * This is a little simpler than the pagefault handler in trap() because
971 * it the page tables have already been faulted in and high addresses
972 * are thrown out early for other reasons.
973 */
974int trapwrite(addr)
975	unsigned addr;
976{
977	struct proc *p;
978	vm_offset_t va;
979	struct vmspace *vm;
980	int rv;
981
982	va = trunc_page((vm_offset_t)addr);
983	/*
984	 * XXX - MAX is END.  Changed > to >= for temp. fix.
985	 */
986	if (va >= VM_MAXUSER_ADDRESS)
987		return (1);
988
989	p = curproc;
990	vm = p->p_vmspace;
991
992	++p->p_lock;
993
994	if (!grow_stack (p, va)) {
995		--p->p_lock;
996		return (1);
997	}
998
999	/*
1000	 * fault the data page
1001	 */
1002	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1003
1004	--p->p_lock;
1005
1006	if (rv != KERN_SUCCESS)
1007		return 1;
1008
1009	return (0);
1010}
1011
1012/*
1013 *	syscall2 -	MP aware system call request C handler
1014 *
1015 *	A system call is essentially treated as a trap except that the
1016 *	MP lock is not held on entry or return.  We are responsible for
1017 *	obtaining the MP lock if necessary and for handling ASTs
1018 *	(e.g. a task switch) prior to return.
1019 *
1020 *	In general, only simple access and manipulation of curproc and
1021 *	the current stack is allowed without having to hold MP lock.
1022 */
1023void
1024syscall2(frame)
1025	struct trapframe frame;
1026{
1027	caddr_t params;
1028	int i;
1029	struct sysent *callp;
1030	struct proc *p = curproc;
1031	u_quad_t sticks;
1032	int error;
1033	int narg;
1034	int args[8];
1035	int have_giant = 0;
1036	u_int code;
1037
1038	atomic_add_int(&cnt.v_syscall, 1);
1039
1040#ifdef DIAGNOSTIC
1041	if (ISPL(frame.tf_cs) != SEL_UPL) {
1042		mtx_enter(&Giant, MTX_DEF);
1043		panic("syscall");
1044		/* NOT REACHED */
1045	}
1046#endif
1047
1048	/*
1049	 * handle atomicy by looping since interrupts are enabled and the
1050	 * MP lock is not held.
1051	 */
1052	sticks = ((volatile struct proc *)p)->p_sticks;
1053	while (sticks != ((volatile struct proc *)p)->p_sticks)
1054		sticks = ((volatile struct proc *)p)->p_sticks;
1055
1056	p->p_md.md_regs = &frame;
1057	params = (caddr_t)frame.tf_esp + sizeof(int);
1058	code = frame.tf_eax;
1059
1060	if (p->p_sysent->sv_prepsyscall) {
1061		/*
1062		 * The prep code is not MP aware.
1063		 */
1064		mtx_enter(&Giant, MTX_DEF);
1065		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1066		mtx_exit(&Giant, MTX_DEF);
1067	} else {
1068		/*
1069		 * Need to check if this is a 32 bit or 64 bit syscall.
1070		 * fuword is MP aware.
1071		 */
1072		if (code == SYS_syscall) {
1073			/*
1074			 * Code is first argument, followed by actual args.
1075			 */
1076			code = fuword(params);
1077			params += sizeof(int);
1078		} else if (code == SYS___syscall) {
1079			/*
1080			 * Like syscall, but code is a quad, so as to maintain
1081			 * quad alignment for the rest of the arguments.
1082			 */
1083			code = fuword(params);
1084			params += sizeof(quad_t);
1085		}
1086	}
1087
1088 	if (p->p_sysent->sv_mask)
1089 		code &= p->p_sysent->sv_mask;
1090
1091 	if (code >= p->p_sysent->sv_size)
1092 		callp = &p->p_sysent->sv_table[0];
1093  	else
1094 		callp = &p->p_sysent->sv_table[code];
1095
1096	narg = callp->sy_narg & SYF_ARGMASK;
1097
1098	/*
1099	 * copyin is MP aware, but the tracing code is not
1100	 */
1101	if (params && (i = narg * sizeof(int)) &&
1102	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1103		mtx_enter(&Giant, MTX_DEF);
1104		have_giant = 1;
1105#ifdef KTRACE
1106		if (KTRPOINT(p, KTR_SYSCALL))
1107			ktrsyscall(p->p_tracep, code, narg, args);
1108#endif
1109		goto bad;
1110	}
1111
1112	/*
1113	 * Try to run the syscall without the MP lock if the syscall
1114	 * is MP safe.  We have to obtain the MP lock no matter what if
1115	 * we are ktracing
1116	 */
1117	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1118		mtx_enter(&Giant, MTX_DEF);
1119		have_giant = 1;
1120	}
1121
1122#ifdef KTRACE
1123	if (KTRPOINT(p, KTR_SYSCALL)) {
1124		if (have_giant == 0) {
1125			mtx_enter(&Giant, MTX_DEF);
1126			have_giant = 1;
1127		}
1128		ktrsyscall(p->p_tracep, code, narg, args);
1129	}
1130#endif
1131	p->p_retval[0] = 0;
1132	p->p_retval[1] = frame.tf_edx;
1133
1134	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1135
1136	error = (*callp->sy_call)(p, args);
1137
1138	/*
1139	 * MP SAFE (we may or may not have the MP lock at this point)
1140	 */
1141	switch (error) {
1142	case 0:
1143		/*
1144		 * Reinitialize proc pointer `p' as it may be different
1145		 * if this is a child returning from fork syscall.
1146		 */
1147		p = curproc;
1148		frame.tf_eax = p->p_retval[0];
1149		frame.tf_edx = p->p_retval[1];
1150		frame.tf_eflags &= ~PSL_C;
1151		break;
1152
1153	case ERESTART:
1154		/*
1155		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1156		 * int 0x80 is 2 bytes. We saved this in tf_err.
1157		 */
1158		frame.tf_eip -= frame.tf_err;
1159		break;
1160
1161	case EJUSTRETURN:
1162		break;
1163
1164	default:
1165bad:
1166 		if (p->p_sysent->sv_errsize) {
1167 			if (error >= p->p_sysent->sv_errsize)
1168  				error = -1;	/* XXX */
1169   			else
1170  				error = p->p_sysent->sv_errtbl[error];
1171		}
1172		frame.tf_eax = error;
1173		frame.tf_eflags |= PSL_C;
1174		break;
1175	}
1176
1177	/*
1178	 * Traced syscall.  trapsignal() is not MP aware.
1179	 */
1180	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1181		if (have_giant == 0) {
1182			mtx_enter(&Giant, MTX_DEF);
1183			have_giant = 1;
1184		}
1185		frame.tf_eflags &= ~PSL_T;
1186		trapsignal(p, SIGTRAP, 0);
1187	}
1188
1189	/*
1190	 * Handle reschedule and other end-of-syscall issues
1191	 */
1192	have_giant = userret(p, &frame, sticks, have_giant);
1193
1194#ifdef KTRACE
1195	if (KTRPOINT(p, KTR_SYSRET)) {
1196		if (have_giant == 0) {
1197			mtx_enter(&Giant, MTX_DEF);
1198			have_giant = 1;
1199		}
1200		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1201	}
1202#endif
1203
1204	/*
1205	 * This works because errno is findable through the
1206	 * register set.  If we ever support an emulation where this
1207	 * is not the case, this code will need to be revisited.
1208	 */
1209	STOPEVENT(p, S_SCX, code);
1210
1211	/*
1212	 * Release the MP lock if we had to get it
1213	 */
1214	if (have_giant)
1215		mtx_exit(&Giant, MTX_DEF);
1216
1217	mtx_assert(&sched_lock, MA_NOTOWNED);
1218	mtx_assert(&Giant, MA_NOTOWNED);
1219}
1220
1221void
1222ast(frame)
1223	struct trapframe frame;
1224{
1225	struct proc *p = CURPROC;
1226	u_quad_t sticks;
1227
1228	/*
1229	 * handle atomicy by looping since interrupts are enabled and the
1230	 * MP lock is not held.
1231	 */
1232	sticks = ((volatile struct proc *)p)->p_sticks;
1233	while (sticks != ((volatile struct proc *)p)->p_sticks)
1234		sticks = ((volatile struct proc *)p)->p_sticks;
1235
1236	astoff();
1237	atomic_add_int(&cnt.v_soft, 1);
1238	if (p->p_flag & P_OWEUPC) {
1239		mtx_enter(&Giant, MTX_DEF);
1240		p->p_flag &= ~P_OWEUPC;
1241		addupc_task(p, p->p_stats->p_prof.pr_addr,
1242			    p->p_stats->p_prof.pr_ticks);
1243}
1244	if (userret(p, &frame, sticks, mtx_owned(&Giant)) != 0)
1245		mtx_exit(&Giant, MTX_DEF);
1246}
1247
1248/*
1249 * Simplified back end of syscall(), used when returning from fork()
1250 * directly into user mode.  Giant is not held on entry, and must not
1251 * be held on return.
1252 */
1253void
1254fork_return(p, frame)
1255	struct proc *p;
1256	struct trapframe frame;
1257{
1258	int	have_giant;
1259
1260	frame.tf_eax = 0;		/* Child returns zero */
1261	frame.tf_eflags &= ~PSL_C;	/* success */
1262	frame.tf_edx = 1;
1263
1264	have_giant = userret(p, &frame, 0, mtx_owned(&Giant));
1265#ifdef KTRACE
1266	if (KTRPOINT(p, KTR_SYSRET)) {
1267		if (have_giant == 0) {
1268			mtx_enter(&Giant, MTX_DEF);
1269			have_giant = 1;
1270		}
1271		ktrsysret(p->p_tracep, SYS_fork, 0, 0);
1272	}
1273#endif
1274	if (have_giant)
1275		mtx_exit(&Giant, MTX_DEF);
1276}
1277