subr_syscall.c revision 63140
1/*-
2 * Copyright (C) 1994, David Greenman
3 * Copyright (c) 1990, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * the University of Utah, and William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38 * $FreeBSD: head/sys/kern/subr_trap.c 63140 2000-07-14 11:49:44Z ps $
39 */
40
41/*
42 * 386 Trap and System call handling
43 */
44
45#include "opt_cpu.h"
46#include "opt_ddb.h"
47#include "opt_ktrace.h"
48#include "opt_clock.h"
49#include "opt_trap.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/proc.h>
54#include <sys/pioctl.h>
55#include <sys/kernel.h>
56#include <sys/resourcevar.h>
57#include <sys/signalvar.h>
58#include <sys/syscall.h>
59#include <sys/sysent.h>
60#include <sys/uio.h>
61#include <sys/vmmeter.h>
62#ifdef KTRACE
63#include <sys/ktrace.h>
64#endif
65
66#include <vm/vm.h>
67#include <vm/vm_param.h>
68#include <sys/lock.h>
69#include <vm/pmap.h>
70#include <vm/vm_kern.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/vm_extern.h>
74
75#include <machine/cpu.h>
76#include <machine/ipl.h>
77#include <machine/md_var.h>
78#include <machine/pcb.h>
79#ifdef SMP
80#include <machine/smp.h>
81#endif
82#include <machine/tss.h>
83
84#include <i386/isa/intr_machdep.h>
85
86#ifdef POWERFAIL_NMI
87#include <sys/syslog.h>
88#include <machine/clock.h>
89#endif
90
91#include <machine/vm86.h>
92
93#include <ddb/ddb.h>
94
95#include "isa.h"
96#include "npx.h"
97
98int (*pmath_emulate) __P((struct trapframe *));
99
100extern void trap __P((struct trapframe frame));
101extern int trapwrite __P((unsigned addr));
102extern void syscall2 __P((struct trapframe frame));
103
104static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
105static void trap_fatal __P((struct trapframe *, vm_offset_t));
106void dblfault_handler __P((void));
107
108extern inthand_t IDTVEC(syscall);
109
110#define MAX_TRAP_MSG		28
111static char *trap_msg[] = {
112	"",					/*  0 unused */
113	"privileged instruction fault",		/*  1 T_PRIVINFLT */
114	"",					/*  2 unused */
115	"breakpoint instruction fault",		/*  3 T_BPTFLT */
116	"",					/*  4 unused */
117	"",					/*  5 unused */
118	"arithmetic trap",			/*  6 T_ARITHTRAP */
119	"system forced exception",		/*  7 T_ASTFLT */
120	"",					/*  8 unused */
121	"general protection fault",		/*  9 T_PROTFLT */
122	"trace trap",				/* 10 T_TRCTRAP */
123	"",					/* 11 unused */
124	"page fault",				/* 12 T_PAGEFLT */
125	"",					/* 13 unused */
126	"alignment fault",			/* 14 T_ALIGNFLT */
127	"",					/* 15 unused */
128	"",					/* 16 unused */
129	"",					/* 17 unused */
130	"integer divide fault",			/* 18 T_DIVIDE */
131	"non-maskable interrupt trap",		/* 19 T_NMI */
132	"overflow trap",			/* 20 T_OFLOW */
133	"FPU bounds check fault",		/* 21 T_BOUND */
134	"FPU device not available",		/* 22 T_DNA */
135	"double fault",				/* 23 T_DOUBLEFLT */
136	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
137	"invalid TSS fault",			/* 25 T_TSSFLT */
138	"segment not present fault",		/* 26 T_SEGNPFLT */
139	"stack fault",				/* 27 T_STKFLT */
140	"machine check trap",			/* 28 T_MCHK */
141};
142
143static __inline int userret __P((struct proc *p, struct trapframe *frame,
144				  u_quad_t oticks, int have_mplock));
145
146#if defined(I586_CPU) && !defined(NO_F00F_HACK)
147extern int has_f00f_bug;
148#endif
149
150static __inline int
151userret(p, frame, oticks, have_mplock)
152	struct proc *p;
153	struct trapframe *frame;
154	u_quad_t oticks;
155	int have_mplock;
156{
157	int sig, s;
158
159	while ((sig = CURSIG(p)) != 0) {
160		if (have_mplock == 0) {
161			get_mplock();
162			have_mplock = 1;
163		}
164		postsig(sig);
165	}
166
167	p->p_priority = p->p_usrpri;
168	if (resched_wanted()) {
169		/*
170		 * Since we are curproc, clock will normally just change
171		 * our priority without moving us from one queue to another
172		 * (since the running process is not on a queue.)
173		 * If that happened after we setrunqueue ourselves but before we
174		 * mi_switch()'ed, we might not be on the queue indicated by
175		 * our priority.
176		 */
177		if (have_mplock == 0) {
178			get_mplock();
179			have_mplock = 1;
180		}
181		s = splhigh();
182		setrunqueue(p);
183		p->p_stats->p_ru.ru_nivcsw++;
184		mi_switch();
185		splx(s);
186		while ((sig = CURSIG(p)) != 0)
187			postsig(sig);
188	}
189	/*
190	 * Charge system time if profiling.
191	 */
192	if (p->p_flag & P_PROFIL) {
193		if (have_mplock == 0) {
194			get_mplock();
195			have_mplock = 1;
196		}
197		addupc_task(p, frame->tf_eip,
198			    (u_int)(p->p_sticks - oticks) * psratio);
199	}
200	curpriority = p->p_priority;
201	return(have_mplock);
202}
203
204/*
205 * Exception, fault, and trap interface to the FreeBSD kernel.
206 * This common code is called from assembly language IDT gate entry
207 * routines that prepare a suitable stack frame, and restore this
208 * frame after the exception has been processed.
209 */
210
211void
212trap(frame)
213	struct trapframe frame;
214{
215	struct proc *p = curproc;
216	u_quad_t sticks = 0;
217	int i = 0, ucode = 0, type, code;
218	vm_offset_t eva;
219
220	if (!(frame.tf_eflags & PSL_I)) {
221		/*
222		 * Buggy application or kernel code has disabled interrupts
223		 * and then trapped.  Enabling interrupts now is wrong, but
224		 * it is better than running with interrupts disabled until
225		 * they are accidentally enabled later.
226		 */
227		type = frame.tf_trapno;
228		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
229			printf(
230			    "pid %ld (%s): trap %d with interrupts disabled\n",
231			    (long)curproc->p_pid, curproc->p_comm, type);
232		else if (type != T_BPTFLT && type != T_TRCTRAP)
233			/*
234			 * XXX not quite right, since this may be for a
235			 * multiple fault in user mode.
236			 */
237			printf("kernel trap %d with interrupts disabled\n",
238			    type);
239		enable_intr();
240	}
241
242	eva = 0;
243	if (frame.tf_trapno == T_PAGEFLT) {
244		/*
245		 * For some Cyrix CPUs, %cr2 is clobbered by interrupts.
246		 * This problem is worked around by using an interrupt
247		 * gate for the pagefault handler.  We are finally ready
248		 * to read %cr2 and then must reenable interrupts.
249		 *
250		 * XXX this should be in the switch statement, but the
251		 * NO_FOOF_HACK and VM86 goto and ifdefs obfuscate the
252		 * flow of control too much for this to be obviously
253		 * correct.
254		 */
255		eva = rcr2();
256		enable_intr();
257	}
258
259#if defined(I586_CPU) && !defined(NO_F00F_HACK)
260restart:
261#endif
262	type = frame.tf_trapno;
263	code = frame.tf_err;
264
265	if (in_vm86call) {
266		if (frame.tf_eflags & PSL_VM &&
267		    (type == T_PROTFLT || type == T_STKFLT)) {
268			i = vm86_emulate((struct vm86frame *)&frame);
269			if (i != 0)
270				/*
271				 * returns to original process
272				 */
273				vm86_trap((struct vm86frame *)&frame);
274			return;
275		}
276		switch (type) {
277			/*
278			 * these traps want either a process context, or
279			 * assume a normal userspace trap.
280			 */
281		case T_PROTFLT:
282		case T_SEGNPFLT:
283			trap_fatal(&frame, eva);
284			return;
285		case T_TRCTRAP:
286			type = T_BPTFLT;	/* kernel breakpoint */
287			/* FALL THROUGH */
288		}
289		goto kernel_trap;	/* normal kernel trap handling */
290	}
291
292        if ((ISPL(frame.tf_cs) == SEL_UPL) || (frame.tf_eflags & PSL_VM)) {
293		/* user trap */
294
295		sticks = p->p_sticks;
296		p->p_md.md_regs = &frame;
297
298		switch (type) {
299		case T_PRIVINFLT:	/* privileged instruction fault */
300			ucode = type;
301			i = SIGILL;
302			break;
303
304		case T_BPTFLT:		/* bpt instruction fault */
305		case T_TRCTRAP:		/* trace trap */
306			frame.tf_eflags &= ~PSL_T;
307			i = SIGTRAP;
308			break;
309
310		case T_ARITHTRAP:	/* arithmetic trap */
311			ucode = code;
312			i = SIGFPE;
313			break;
314
315		case T_ASTFLT:		/* Allow process switch */
316			astoff();
317			cnt.v_soft++;
318			if (p->p_flag & P_OWEUPC) {
319				p->p_flag &= ~P_OWEUPC;
320				addupc_task(p, p->p_stats->p_prof.pr_addr,
321					    p->p_stats->p_prof.pr_ticks);
322			}
323			goto out;
324
325			/*
326			 * The following two traps can happen in
327			 * vm86 mode, and, if so, we want to handle
328			 * them specially.
329			 */
330		case T_PROTFLT:		/* general protection fault */
331		case T_STKFLT:		/* stack fault */
332			if (frame.tf_eflags & PSL_VM) {
333				i = vm86_emulate((struct vm86frame *)&frame);
334				if (i == 0)
335					goto out;
336				break;
337			}
338			/* FALL THROUGH */
339
340		case T_SEGNPFLT:	/* segment not present fault */
341		case T_TSSFLT:		/* invalid TSS fault */
342		case T_DOUBLEFLT:	/* double fault */
343		default:
344			ucode = code + BUS_SEGM_FAULT ;
345			i = SIGBUS;
346			break;
347
348		case T_PAGEFLT:		/* page fault */
349			i = trap_pfault(&frame, TRUE, eva);
350			if (i == -1)
351				return;
352#if defined(I586_CPU) && !defined(NO_F00F_HACK)
353			if (i == -2)
354				goto restart;
355#endif
356			if (i == 0)
357				goto out;
358
359			ucode = T_PAGEFLT;
360			break;
361
362		case T_DIVIDE:		/* integer divide fault */
363			ucode = FPE_INTDIV;
364			i = SIGFPE;
365			break;
366
367#if NISA > 0
368		case T_NMI:
369#ifdef POWERFAIL_NMI
370			goto handle_powerfail;
371#else /* !POWERFAIL_NMI */
372			/* machine/parity/power fail/"kitchen sink" faults */
373			if (isa_nmi(code) == 0) {
374#ifdef DDB
375				/* NMI can be hooked up to a pushbutton for debugging */
376				printf ("NMI ... going to debugger\n");
377				kdb_trap (type, 0, &frame);
378#endif /* DDB */
379				return;
380			}
381			panic("NMI indicates hardware failure");
382#endif /* POWERFAIL_NMI */
383#endif /* NISA > 0 */
384
385		case T_OFLOW:		/* integer overflow fault */
386			ucode = FPE_INTOVF;
387			i = SIGFPE;
388			break;
389
390		case T_BOUND:		/* bounds check fault */
391			ucode = FPE_FLTSUB;
392			i = SIGFPE;
393			break;
394
395		case T_DNA:
396#if NNPX > 0
397			/* if a transparent fault (due to context switch "late") */
398			if (npxdna())
399				return;
400#endif
401			if (!pmath_emulate) {
402				i = SIGFPE;
403				ucode = FPE_FPU_NP_TRAP;
404				break;
405			}
406			i = (*pmath_emulate)(&frame);
407			if (i == 0) {
408				if (!(frame.tf_eflags & PSL_T))
409					return;
410				frame.tf_eflags &= ~PSL_T;
411				i = SIGTRAP;
412			}
413			/* else ucode = emulator_only_knows() XXX */
414			break;
415
416		case T_FPOPFLT:		/* FPU operand fetch fault */
417			ucode = T_FPOPFLT;
418			i = SIGILL;
419			break;
420		}
421	} else {
422kernel_trap:
423		/* kernel trap */
424
425		switch (type) {
426		case T_PAGEFLT:			/* page fault */
427			(void) trap_pfault(&frame, FALSE, eva);
428			return;
429
430		case T_DNA:
431#if NNPX > 0
432			/*
433			 * The kernel is apparently using npx for copying.
434			 * XXX this should be fatal unless the kernel has
435			 * registered such use.
436			 */
437			if (npxdna())
438				return;
439#endif
440			break;
441
442		case T_PROTFLT:		/* general protection fault */
443		case T_SEGNPFLT:	/* segment not present fault */
444			/*
445			 * Invalid segment selectors and out of bounds
446			 * %eip's and %esp's can be set up in user mode.
447			 * This causes a fault in kernel mode when the
448			 * kernel tries to return to user mode.  We want
449			 * to get this fault so that we can fix the
450			 * problem here and not have to check all the
451			 * selectors and pointers when the user changes
452			 * them.
453			 */
454#define	MAYBE_DORETI_FAULT(where, whereto)				\
455	do {								\
456		if (frame.tf_eip == (int)where) {			\
457			frame.tf_eip = (int)whereto;			\
458			return;						\
459		}							\
460	} while (0)
461
462			if (intr_nesting_level == 0) {
463				/*
464				 * Invalid %fs's and %gs's can be created using
465				 * procfs or PT_SETREGS or by invalidating the
466				 * underlying LDT entry.  This causes a fault
467				 * in kernel mode when the kernel attempts to
468				 * switch contexts.  Lose the bad context
469				 * (XXX) so that we can continue, and generate
470				 * a signal.
471				 */
472				if (frame.tf_eip == (int)cpu_switch_load_gs) {
473					curpcb->pcb_gs = 0;
474					psignal(p, SIGBUS);
475					return;
476				}
477				MAYBE_DORETI_FAULT(doreti_iret,
478						   doreti_iret_fault);
479				MAYBE_DORETI_FAULT(doreti_popl_ds,
480						   doreti_popl_ds_fault);
481				MAYBE_DORETI_FAULT(doreti_popl_es,
482						   doreti_popl_es_fault);
483				MAYBE_DORETI_FAULT(doreti_popl_fs,
484						   doreti_popl_fs_fault);
485				if (curpcb && curpcb->pcb_onfault) {
486					frame.tf_eip = (int)curpcb->pcb_onfault;
487					return;
488				}
489			}
490			break;
491
492		case T_TSSFLT:
493			/*
494			 * PSL_NT can be set in user mode and isn't cleared
495			 * automatically when the kernel is entered.  This
496			 * causes a TSS fault when the kernel attempts to
497			 * `iret' because the TSS link is uninitialized.  We
498			 * want to get this fault so that we can fix the
499			 * problem here and not every time the kernel is
500			 * entered.
501			 */
502			if (frame.tf_eflags & PSL_NT) {
503				frame.tf_eflags &= ~PSL_NT;
504				return;
505			}
506			break;
507
508		case T_TRCTRAP:	 /* trace trap */
509			if (frame.tf_eip == (int)IDTVEC(syscall)) {
510				/*
511				 * We've just entered system mode via the
512				 * syscall lcall.  Continue single stepping
513				 * silently until the syscall handler has
514				 * saved the flags.
515				 */
516				return;
517			}
518			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
519				/*
520				 * The syscall handler has now saved the
521				 * flags.  Stop single stepping it.
522				 */
523				frame.tf_eflags &= ~PSL_T;
524				return;
525			}
526			/*
527			 * Ignore debug register trace traps due to
528			 * accesses in the user's address space, which
529			 * can happen under several conditions such as
530			 * if a user sets a watchpoint on a buffer and
531			 * then passes that buffer to a system call.
532			 * We still want to get TRCTRAPS for addresses
533			 * in kernel space because that is useful when
534			 * debugging the kernel.
535			 */
536			if (user_dbreg_trap()) {
537				/*
538				 * Reset breakpoint bits because the
539				 * processor doesn't
540				 */
541				load_dr6(rdr6() & 0xfffffff0);
542				return;
543			}
544			/*
545			 * Fall through (TRCTRAP kernel mode, kernel address)
546			 */
547		case T_BPTFLT:
548			/*
549			 * If DDB is enabled, let it handle the debugger trap.
550			 * Otherwise, debugger traps "can't happen".
551			 */
552#ifdef DDB
553			if (kdb_trap (type, 0, &frame))
554				return;
555#endif
556			break;
557
558#if NISA > 0
559		case T_NMI:
560#ifdef POWERFAIL_NMI
561#ifndef TIMER_FREQ
562#  define TIMER_FREQ 1193182
563#endif
564	handle_powerfail:
565		{
566		  static unsigned lastalert = 0;
567
568		  if(time_second - lastalert > 10)
569		    {
570		      log(LOG_WARNING, "NMI: power fail\n");
571		      sysbeep(TIMER_FREQ/880, hz);
572		      lastalert = time_second;
573		    }
574		  return;
575		}
576#else /* !POWERFAIL_NMI */
577			/* machine/parity/power fail/"kitchen sink" faults */
578			if (isa_nmi(code) == 0) {
579#ifdef DDB
580				/* NMI can be hooked up to a pushbutton for debugging */
581				printf ("NMI ... going to debugger\n");
582				kdb_trap (type, 0, &frame);
583#endif /* DDB */
584				return;
585			}
586			/* FALL THROUGH */
587#endif /* POWERFAIL_NMI */
588#endif /* NISA > 0 */
589		}
590
591		trap_fatal(&frame, eva);
592		return;
593	}
594
595	/* Translate fault for emulators (e.g. Linux) */
596	if (*p->p_sysent->sv_transtrap)
597		i = (*p->p_sysent->sv_transtrap)(i, type);
598
599	trapsignal(p, i, ucode);
600
601#ifdef DEBUG
602	if (type <= MAX_TRAP_MSG) {
603		uprintf("fatal process exception: %s",
604			trap_msg[type]);
605		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
606			uprintf(", fault VA = 0x%lx", (u_long)eva);
607		uprintf("\n");
608	}
609#endif
610
611out:
612	userret(p, &frame, sticks, 1);
613}
614
615#ifdef notyet
616/*
617 * This version doesn't allow a page fault to user space while
618 * in the kernel. The rest of the kernel needs to be made "safe"
619 * before this can be used. I think the only things remaining
620 * to be made safe are the iBCS2 code and the process tracing/
621 * debugging code.
622 */
623static int
624trap_pfault(frame, usermode, eva)
625	struct trapframe *frame;
626	int usermode;
627	vm_offset_t eva;
628{
629	vm_offset_t va;
630	struct vmspace *vm = NULL;
631	vm_map_t map = 0;
632	int rv = 0;
633	vm_prot_t ftype;
634	struct proc *p = curproc;
635
636	if (frame->tf_err & PGEX_W)
637		ftype = VM_PROT_READ | VM_PROT_WRITE;
638	else
639		ftype = VM_PROT_READ;
640
641	va = trunc_page(eva);
642	if (va < VM_MIN_KERNEL_ADDRESS) {
643		vm_offset_t v;
644		vm_page_t mpte;
645
646		if (p == NULL ||
647		    (!usermode && va < VM_MAXUSER_ADDRESS &&
648		     (intr_nesting_level != 0 || curpcb == NULL ||
649		      curpcb->pcb_onfault == NULL))) {
650			trap_fatal(frame, eva);
651			return (-1);
652		}
653
654		/*
655		 * This is a fault on non-kernel virtual memory.
656		 * vm is initialized above to NULL. If curproc is NULL
657		 * or curproc->p_vmspace is NULL the fault is fatal.
658		 */
659		vm = p->p_vmspace;
660		if (vm == NULL)
661			goto nogo;
662
663		map = &vm->vm_map;
664
665		/*
666		 * Keep swapout from messing with us during this
667		 *	critical time.
668		 */
669		++p->p_lock;
670
671		/*
672		 * Grow the stack if necessary
673		 */
674		/* grow_stack returns false only if va falls into
675		 * a growable stack region and the stack growth
676		 * fails.  It returns true if va was not within
677		 * a growable stack region, or if the stack
678		 * growth succeeded.
679		 */
680		if (!grow_stack (p, va)) {
681			rv = KERN_FAILURE;
682			--p->p_lock;
683			goto nogo;
684		}
685
686		/* Fault in the user page: */
687		rv = vm_fault(map, va, ftype,
688			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
689						      : VM_FAULT_NORMAL);
690
691		--p->p_lock;
692	} else {
693		/*
694		 * Don't allow user-mode faults in kernel address space.
695		 */
696		if (usermode)
697			goto nogo;
698
699		/*
700		 * Since we know that kernel virtual address addresses
701		 * always have pte pages mapped, we just have to fault
702		 * the page.
703		 */
704		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
705	}
706
707	if (rv == KERN_SUCCESS)
708		return (0);
709nogo:
710	if (!usermode) {
711		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
712			frame->tf_eip = (int)curpcb->pcb_onfault;
713			return (0);
714		}
715		trap_fatal(frame, eva);
716		return (-1);
717	}
718
719	/* kludge to pass faulting virtual address to sendsig */
720	frame->tf_err = eva;
721
722	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
723}
724#endif
725
726int
727trap_pfault(frame, usermode, eva)
728	struct trapframe *frame;
729	int usermode;
730	vm_offset_t eva;
731{
732	vm_offset_t va;
733	struct vmspace *vm = NULL;
734	vm_map_t map = 0;
735	int rv = 0;
736	vm_prot_t ftype;
737	struct proc *p = curproc;
738
739	va = trunc_page(eva);
740	if (va >= KERNBASE) {
741		/*
742		 * Don't allow user-mode faults in kernel address space.
743		 * An exception:  if the faulting address is the invalid
744		 * instruction entry in the IDT, then the Intel Pentium
745		 * F00F bug workaround was triggered, and we need to
746		 * treat it is as an illegal instruction, and not a page
747		 * fault.
748		 */
749#if defined(I586_CPU) && !defined(NO_F00F_HACK)
750		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug) {
751			frame->tf_trapno = T_PRIVINFLT;
752			return -2;
753		}
754#endif
755		if (usermode)
756			goto nogo;
757
758		map = kernel_map;
759	} else {
760		/*
761		 * This is a fault on non-kernel virtual memory.
762		 * vm is initialized above to NULL. If curproc is NULL
763		 * or curproc->p_vmspace is NULL the fault is fatal.
764		 */
765		if (p != NULL)
766			vm = p->p_vmspace;
767
768		if (vm == NULL)
769			goto nogo;
770
771		map = &vm->vm_map;
772	}
773
774	if (frame->tf_err & PGEX_W)
775		ftype = VM_PROT_READ | VM_PROT_WRITE;
776	else
777		ftype = VM_PROT_READ;
778
779	if (map != kernel_map) {
780		/*
781		 * Keep swapout from messing with us during this
782		 *	critical time.
783		 */
784		++p->p_lock;
785
786		/*
787		 * Grow the stack if necessary
788		 */
789		/* grow_stack returns false only if va falls into
790		 * a growable stack region and the stack growth
791		 * fails.  It returns true if va was not within
792		 * a growable stack region, or if the stack
793		 * growth succeeded.
794		 */
795		if (!grow_stack (p, va)) {
796			rv = KERN_FAILURE;
797			--p->p_lock;
798			goto nogo;
799		}
800
801		/* Fault in the user page: */
802		rv = vm_fault(map, va, ftype,
803			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
804						      : VM_FAULT_NORMAL);
805
806		--p->p_lock;
807	} else {
808		/*
809		 * Don't have to worry about process locking or stacks in the kernel.
810		 */
811		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
812	}
813
814	if (rv == KERN_SUCCESS)
815		return (0);
816nogo:
817	if (!usermode) {
818		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
819			frame->tf_eip = (int)curpcb->pcb_onfault;
820			return (0);
821		}
822		trap_fatal(frame, eva);
823		return (-1);
824	}
825
826	/* kludge to pass faulting virtual address to sendsig */
827	frame->tf_err = eva;
828
829	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
830}
831
832static void
833trap_fatal(frame, eva)
834	struct trapframe *frame;
835	vm_offset_t eva;
836{
837	int code, type, ss, esp;
838	struct soft_segment_descriptor softseg;
839
840	code = frame->tf_err;
841	type = frame->tf_trapno;
842	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
843
844	if (type <= MAX_TRAP_MSG)
845		printf("\n\nFatal trap %d: %s while in %s mode\n",
846			type, trap_msg[type],
847        		frame->tf_eflags & PSL_VM ? "vm86" :
848			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
849#ifdef SMP
850	/* three seperate prints in case of a trap on an unmapped page */
851	printf("mp_lock = %08x; ", mp_lock);
852	printf("cpuid = %d; ", cpuid);
853	printf("lapic.id = %08x\n", lapic.id);
854#endif
855	if (type == T_PAGEFLT) {
856		printf("fault virtual address	= 0x%x\n", eva);
857		printf("fault code		= %s %s, %s\n",
858			code & PGEX_U ? "user" : "supervisor",
859			code & PGEX_W ? "write" : "read",
860			code & PGEX_P ? "protection violation" : "page not present");
861	}
862	printf("instruction pointer	= 0x%x:0x%x\n",
863	       frame->tf_cs & 0xffff, frame->tf_eip);
864        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
865		ss = frame->tf_ss & 0xffff;
866		esp = frame->tf_esp;
867	} else {
868		ss = GSEL(GDATA_SEL, SEL_KPL);
869		esp = (int)&frame->tf_esp;
870	}
871	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
872	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
873	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
874	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
875	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
876	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
877	       softseg.ssd_gran);
878	printf("processor eflags	= ");
879	if (frame->tf_eflags & PSL_T)
880		printf("trace trap, ");
881	if (frame->tf_eflags & PSL_I)
882		printf("interrupt enabled, ");
883	if (frame->tf_eflags & PSL_NT)
884		printf("nested task, ");
885	if (frame->tf_eflags & PSL_RF)
886		printf("resume, ");
887	if (frame->tf_eflags & PSL_VM)
888		printf("vm86, ");
889	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
890	printf("current process		= ");
891	if (curproc) {
892		printf("%lu (%s)\n",
893		    (u_long)curproc->p_pid, curproc->p_comm ?
894		    curproc->p_comm : "");
895	} else {
896		printf("Idle\n");
897	}
898	printf("interrupt mask		= ");
899	if ((cpl & net_imask) == net_imask)
900		printf("net ");
901	if ((cpl & tty_imask) == tty_imask)
902		printf("tty ");
903	if ((cpl & bio_imask) == bio_imask)
904		printf("bio ");
905	if ((cpl & cam_imask) == cam_imask)
906		printf("cam ");
907	if (cpl == 0)
908		printf("none");
909#ifdef SMP
910/**
911 *  XXX FIXME:
912 *	we probably SHOULD have stopped the other CPUs before now!
913 *	another CPU COULD have been touching cpl at this moment...
914 */
915	printf(" <- SMP: XXX");
916#endif
917	printf("\n");
918
919#ifdef KDB
920	if (kdb_trap(&psl))
921		return;
922#endif
923#ifdef DDB
924	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
925		return;
926#endif
927	printf("trap number		= %d\n", type);
928	if (type <= MAX_TRAP_MSG)
929		panic(trap_msg[type]);
930	else
931		panic("unknown/reserved trap");
932}
933
934/*
935 * Double fault handler. Called when a fault occurs while writing
936 * a frame for a trap/exception onto the stack. This usually occurs
937 * when the stack overflows (such is the case with infinite recursion,
938 * for example).
939 *
940 * XXX Note that the current PTD gets replaced by IdlePTD when the
941 * task switch occurs. This means that the stack that was active at
942 * the time of the double fault is not available at <kstack> unless
943 * the machine was idle when the double fault occurred. The downside
944 * of this is that "trace <ebp>" in ddb won't work.
945 */
946void
947dblfault_handler()
948{
949	printf("\nFatal double fault:\n");
950	printf("eip = 0x%x\n", common_tss.tss_eip);
951	printf("esp = 0x%x\n", common_tss.tss_esp);
952	printf("ebp = 0x%x\n", common_tss.tss_ebp);
953#ifdef SMP
954	/* three seperate prints in case of a trap on an unmapped page */
955	printf("mp_lock = %08x; ", mp_lock);
956	printf("cpuid = %d; ", cpuid);
957	printf("lapic.id = %08x\n", lapic.id);
958#endif
959	panic("double fault");
960}
961
962/*
963 * Compensate for 386 brain damage (missing URKR).
964 * This is a little simpler than the pagefault handler in trap() because
965 * it the page tables have already been faulted in and high addresses
966 * are thrown out early for other reasons.
967 */
968int trapwrite(addr)
969	unsigned addr;
970{
971	struct proc *p;
972	vm_offset_t va;
973	struct vmspace *vm;
974	int rv;
975
976	va = trunc_page((vm_offset_t)addr);
977	/*
978	 * XXX - MAX is END.  Changed > to >= for temp. fix.
979	 */
980	if (va >= VM_MAXUSER_ADDRESS)
981		return (1);
982
983	p = curproc;
984	vm = p->p_vmspace;
985
986	++p->p_lock;
987
988	if (!grow_stack (p, va)) {
989		--p->p_lock;
990		return (1);
991	}
992
993	/*
994	 * fault the data page
995	 */
996	rv = vm_fault(&vm->vm_map, va, VM_PROT_READ|VM_PROT_WRITE, VM_FAULT_DIRTY);
997
998	--p->p_lock;
999
1000	if (rv != KERN_SUCCESS)
1001		return 1;
1002
1003	return (0);
1004}
1005
1006/*
1007 *	syscall2 -	MP aware system call request C handler
1008 *
1009 *	A system call is essentially treated as a trap except that the
1010 *	MP lock is not held on entry or return.  We are responsible for
1011 *	obtaining the MP lock if necessary and for handling ASTs
1012 *	(e.g. a task switch) prior to return.
1013 *
1014 *	In general, only simple access and manipulation of curproc and
1015 *	the current stack is allowed without having to hold MP lock.
1016 */
1017void
1018syscall2(frame)
1019	struct trapframe frame;
1020{
1021	caddr_t params;
1022	int i;
1023	struct sysent *callp;
1024	struct proc *p = curproc;
1025	u_quad_t sticks;
1026	int error;
1027	int narg;
1028	int args[8];
1029	int have_mplock = 0;
1030	u_int code;
1031
1032#ifdef DIAGNOSTIC
1033	if (ISPL(frame.tf_cs) != SEL_UPL) {
1034		get_mplock();
1035		panic("syscall");
1036		/* NOT REACHED */
1037	}
1038#endif
1039
1040	/*
1041	 * handle atomicy by looping since interrupts are enabled and the
1042	 * MP lock is not held.
1043	 */
1044	sticks = ((volatile struct proc *)p)->p_sticks;
1045	while (sticks != ((volatile struct proc *)p)->p_sticks)
1046		sticks = ((volatile struct proc *)p)->p_sticks;
1047
1048	p->p_md.md_regs = &frame;
1049	params = (caddr_t)frame.tf_esp + sizeof(int);
1050	code = frame.tf_eax;
1051
1052	if (p->p_sysent->sv_prepsyscall) {
1053		/*
1054		 * The prep code is not MP aware.
1055		 */
1056		get_mplock();
1057		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1058		rel_mplock();
1059	} else {
1060		/*
1061		 * Need to check if this is a 32 bit or 64 bit syscall.
1062		 * fuword is MP aware.
1063		 */
1064		if (code == SYS_syscall) {
1065			/*
1066			 * Code is first argument, followed by actual args.
1067			 */
1068			code = fuword(params);
1069			params += sizeof(int);
1070		} else if (code == SYS___syscall) {
1071			/*
1072			 * Like syscall, but code is a quad, so as to maintain
1073			 * quad alignment for the rest of the arguments.
1074			 */
1075			code = fuword(params);
1076			params += sizeof(quad_t);
1077		}
1078	}
1079
1080 	if (p->p_sysent->sv_mask)
1081 		code &= p->p_sysent->sv_mask;
1082
1083 	if (code >= p->p_sysent->sv_size)
1084 		callp = &p->p_sysent->sv_table[0];
1085  	else
1086 		callp = &p->p_sysent->sv_table[code];
1087
1088	narg = callp->sy_narg & SYF_ARGMASK;
1089
1090	/*
1091	 * copyin is MP aware, but the tracing code is not
1092	 */
1093	if (params && (i = narg * sizeof(int)) &&
1094	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1095		get_mplock();
1096		have_mplock = 1;
1097#ifdef KTRACE
1098		if (KTRPOINT(p, KTR_SYSCALL))
1099			ktrsyscall(p->p_tracep, code, narg, args);
1100#endif
1101		goto bad;
1102	}
1103
1104	/*
1105	 * Try to run the syscall without the MP lock if the syscall
1106	 * is MP safe.  We have to obtain the MP lock no matter what if
1107	 * we are ktracing
1108	 */
1109	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1110		get_mplock();
1111		have_mplock = 1;
1112	}
1113
1114#ifdef KTRACE
1115	if (KTRPOINT(p, KTR_SYSCALL)) {
1116		if (have_mplock == 0) {
1117			get_mplock();
1118			have_mplock = 1;
1119		}
1120		ktrsyscall(p->p_tracep, code, narg, args);
1121	}
1122#endif
1123	p->p_retval[0] = 0;
1124	p->p_retval[1] = frame.tf_edx;
1125
1126	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1127
1128	error = (*callp->sy_call)(p, args);
1129
1130	/*
1131	 * MP SAFE (we may or may not have the MP lock at this point)
1132	 */
1133	switch (error) {
1134	case 0:
1135		/*
1136		 * Reinitialize proc pointer `p' as it may be different
1137		 * if this is a child returning from fork syscall.
1138		 */
1139		p = curproc;
1140		frame.tf_eax = p->p_retval[0];
1141		frame.tf_edx = p->p_retval[1];
1142		frame.tf_eflags &= ~PSL_C;
1143		break;
1144
1145	case ERESTART:
1146		/*
1147		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1148		 * int 0x80 is 2 bytes. We saved this in tf_err.
1149		 */
1150		frame.tf_eip -= frame.tf_err;
1151		break;
1152
1153	case EJUSTRETURN:
1154		break;
1155
1156	default:
1157bad:
1158 		if (p->p_sysent->sv_errsize) {
1159 			if (error >= p->p_sysent->sv_errsize)
1160  				error = -1;	/* XXX */
1161   			else
1162  				error = p->p_sysent->sv_errtbl[error];
1163		}
1164		frame.tf_eax = error;
1165		frame.tf_eflags |= PSL_C;
1166		break;
1167	}
1168
1169	/*
1170	 * Traced syscall.  trapsignal() is not MP aware.
1171	 */
1172	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1173		if (have_mplock == 0) {
1174			get_mplock();
1175			have_mplock = 1;
1176		}
1177		frame.tf_eflags &= ~PSL_T;
1178		trapsignal(p, SIGTRAP, 0);
1179	}
1180
1181	/*
1182	 * Handle reschedule and other end-of-syscall issues
1183	 */
1184	have_mplock = userret(p, &frame, sticks, have_mplock);
1185
1186#ifdef KTRACE
1187	if (KTRPOINT(p, KTR_SYSRET)) {
1188		if (have_mplock == 0) {
1189			get_mplock();
1190			have_mplock = 1;
1191		}
1192		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1193	}
1194#endif
1195
1196	/*
1197	 * This works because errno is findable through the
1198	 * register set.  If we ever support an emulation where this
1199	 * is not the case, this code will need to be revisited.
1200	 */
1201	STOPEVENT(p, S_SCX, code);
1202
1203	/*
1204	 * Release the MP lock if we had to get it
1205	 */
1206	if (have_mplock)
1207		rel_mplock();
1208}
1209
1210/*
1211 * Simplified back end of syscall(), used when returning from fork()
1212 * directly into user mode.  MP lock is held on entry and should be
1213 * held on return.
1214 */
1215void
1216fork_return(p, frame)
1217	struct proc *p;
1218	struct trapframe frame;
1219{
1220	frame.tf_eax = 0;		/* Child returns zero */
1221	frame.tf_eflags &= ~PSL_C;	/* success */
1222	frame.tf_edx = 1;
1223
1224	userret(p, &frame, 0, 1);
1225#ifdef KTRACE
1226	if (KTRPOINT(p, KTR_SYSRET))
1227		ktrsysret(p->p_tracep, SYS_fork, 0, 0);
1228#endif
1229}
1230