kern_ntptime.c revision 217368
1/*-
2 ***********************************************************************
3 *								       *
4 * Copyright (c) David L. Mills 1993-2001			       *
5 *								       *
6 * Permission to use, copy, modify, and distribute this software and   *
7 * its documentation for any purpose and without fee is hereby	       *
8 * granted, provided that the above copyright notice appears in all    *
9 * copies and that both the copyright notice and this permission       *
10 * notice appear in supporting documentation, and that the name	       *
11 * University of Delaware not be used in advertising or publicity      *
12 * pertaining to distribution of the software without specific,	       *
13 * written prior permission. The University of Delaware makes no       *
14 * representations about the suitability this software for any	       *
15 * purpose. It is provided "as is" without express or implied	       *
16 * warranty.							       *
17 *								       *
18 **********************************************************************/
19
20/*
21 * Adapted from the original sources for FreeBSD and timecounters by:
22 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 *
24 * The 32bit version of the "LP" macros seems a bit past its "sell by"
25 * date so I have retained only the 64bit version and included it directly
26 * in this file.
27 *
28 * Only minor changes done to interface with the timecounters over in
29 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30 * confusing and/or plain wrong in that context.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/kern/kern_ntptime.c 217368 2011-01-13 18:20:27Z mdf $");
35
36#include "opt_ntp.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/eventhandler.h>
42#include <sys/kernel.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/time.h>
48#include <sys/timex.h>
49#include <sys/timetc.h>
50#include <sys/timepps.h>
51#include <sys/syscallsubr.h>
52#include <sys/sysctl.h>
53
54/*
55 * Single-precision macros for 64-bit machines
56 */
57typedef int64_t l_fp;
58#define L_ADD(v, u)	((v) += (u))
59#define L_SUB(v, u)	((v) -= (u))
60#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
61#define L_NEG(v)	((v) = -(v))
62#define L_RSHIFT(v, n) \
63	do { \
64		if ((v) < 0) \
65			(v) = -(-(v) >> (n)); \
66		else \
67			(v) = (v) >> (n); \
68	} while (0)
69#define L_MPY(v, a)	((v) *= (a))
70#define L_CLR(v)	((v) = 0)
71#define L_ISNEG(v)	((v) < 0)
72#define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
73#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
74
75/*
76 * Generic NTP kernel interface
77 *
78 * These routines constitute the Network Time Protocol (NTP) interfaces
79 * for user and daemon application programs. The ntp_gettime() routine
80 * provides the time, maximum error (synch distance) and estimated error
81 * (dispersion) to client user application programs. The ntp_adjtime()
82 * routine is used by the NTP daemon to adjust the system clock to an
83 * externally derived time. The time offset and related variables set by
84 * this routine are used by other routines in this module to adjust the
85 * phase and frequency of the clock discipline loop which controls the
86 * system clock.
87 *
88 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
89 * defined), the time at each tick interrupt is derived directly from
90 * the kernel time variable. When the kernel time is reckoned in
91 * microseconds, (NTP_NANO undefined), the time is derived from the
92 * kernel time variable together with a variable representing the
93 * leftover nanoseconds at the last tick interrupt. In either case, the
94 * current nanosecond time is reckoned from these values plus an
95 * interpolated value derived by the clock routines in another
96 * architecture-specific module. The interpolation can use either a
97 * dedicated counter or a processor cycle counter (PCC) implemented in
98 * some architectures.
99 *
100 * Note that all routines must run at priority splclock or higher.
101 */
102/*
103 * Phase/frequency-lock loop (PLL/FLL) definitions
104 *
105 * The nanosecond clock discipline uses two variable types, time
106 * variables and frequency variables. Both types are represented as 64-
107 * bit fixed-point quantities with the decimal point between two 32-bit
108 * halves. On a 32-bit machine, each half is represented as a single
109 * word and mathematical operations are done using multiple-precision
110 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
111 * used.
112 *
113 * A time variable is a signed 64-bit fixed-point number in ns and
114 * fraction. It represents the remaining time offset to be amortized
115 * over succeeding tick interrupts. The maximum time offset is about
116 * 0.5 s and the resolution is about 2.3e-10 ns.
117 *
118 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
119 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
120 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
121 * |s s s|			 ns				   |
122 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
123 * |			    fraction				   |
124 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125 *
126 * A frequency variable is a signed 64-bit fixed-point number in ns/s
127 * and fraction. It represents the ns and fraction to be added to the
128 * kernel time variable at each second. The maximum frequency offset is
129 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
130 *
131 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
132 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
133 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
134 * |s s s s s s s s s s s s s|	          ns/s			   |
135 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
136 * |			    fraction				   |
137 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138 */
139/*
140 * The following variables establish the state of the PLL/FLL and the
141 * residual time and frequency offset of the local clock.
142 */
143#define SHIFT_PLL	4		/* PLL loop gain (shift) */
144#define SHIFT_FLL	2		/* FLL loop gain (shift) */
145
146static int time_state = TIME_OK;	/* clock state */
147static int time_status = STA_UNSYNC;	/* clock status bits */
148static long time_tai;			/* TAI offset (s) */
149static long time_monitor;		/* last time offset scaled (ns) */
150static long time_constant;		/* poll interval (shift) (s) */
151static long time_precision = 1;		/* clock precision (ns) */
152static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
153static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
154static long time_reftime;		/* time at last adjustment (s) */
155static l_fp time_offset;		/* time offset (ns) */
156static l_fp time_freq;			/* frequency offset (ns/s) */
157static l_fp time_adj;			/* tick adjust (ns/s) */
158
159static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
160
161#ifdef PPS_SYNC
162/*
163 * The following variables are used when a pulse-per-second (PPS) signal
164 * is available and connected via a modem control lead. They establish
165 * the engineering parameters of the clock discipline loop when
166 * controlled by the PPS signal.
167 */
168#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
169#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
170#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
171#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
172#define PPS_VALID	120		/* PPS signal watchdog max (s) */
173#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
174#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
175
176static struct timespec pps_tf[3];	/* phase median filter */
177static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
178static long pps_fcount;			/* frequency accumulator */
179static long pps_jitter;			/* nominal jitter (ns) */
180static long pps_stabil;			/* nominal stability (scaled ns/s) */
181static long pps_lastsec;		/* time at last calibration (s) */
182static int pps_valid;			/* signal watchdog counter */
183static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
184static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
185static int pps_intcnt;			/* wander counter */
186
187/*
188 * PPS signal quality monitors
189 */
190static long pps_calcnt;			/* calibration intervals */
191static long pps_jitcnt;			/* jitter limit exceeded */
192static long pps_stbcnt;			/* stability limit exceeded */
193static long pps_errcnt;			/* calibration errors */
194#endif /* PPS_SYNC */
195/*
196 * End of phase/frequency-lock loop (PLL/FLL) definitions
197 */
198
199static void ntp_init(void);
200static void hardupdate(long offset);
201static void ntp_gettime1(struct ntptimeval *ntvp);
202static int ntp_is_time_error(void);
203
204static int
205ntp_is_time_error(void)
206{
207	/*
208	 * Status word error decode. If any of these conditions occur,
209	 * an error is returned, instead of the status word. Most
210	 * applications will care only about the fact the system clock
211	 * may not be trusted, not about the details.
212	 *
213	 * Hardware or software error
214	 */
215	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
216
217	/*
218	 * PPS signal lost when either time or frequency synchronization
219	 * requested
220	 */
221	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
222	    !(time_status & STA_PPSSIGNAL)) ||
223
224	/*
225	 * PPS jitter exceeded when time synchronization requested
226	 */
227	    (time_status & STA_PPSTIME &&
228	    time_status & STA_PPSJITTER) ||
229
230	/*
231	 * PPS wander exceeded or calibration error when frequency
232	 * synchronization requested
233	 */
234	    (time_status & STA_PPSFREQ &&
235	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
236		return (1);
237
238	return (0);
239}
240
241static void
242ntp_gettime1(struct ntptimeval *ntvp)
243{
244	struct timespec atv;	/* nanosecond time */
245
246	GIANT_REQUIRED;
247
248	nanotime(&atv);
249	ntvp->time.tv_sec = atv.tv_sec;
250	ntvp->time.tv_nsec = atv.tv_nsec;
251	ntvp->maxerror = time_maxerror;
252	ntvp->esterror = time_esterror;
253	ntvp->tai = time_tai;
254	ntvp->time_state = time_state;
255
256	if (ntp_is_time_error())
257		ntvp->time_state = TIME_ERROR;
258}
259
260/*
261 * ntp_gettime() - NTP user application interface
262 *
263 * See the timex.h header file for synopsis and API description.  Note that
264 * the TAI offset is returned in the ntvtimeval.tai structure member.
265 */
266#ifndef _SYS_SYSPROTO_H_
267struct ntp_gettime_args {
268	struct ntptimeval *ntvp;
269};
270#endif
271/* ARGSUSED */
272int
273ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
274{
275	struct ntptimeval ntv;
276
277	mtx_lock(&Giant);
278	ntp_gettime1(&ntv);
279	mtx_unlock(&Giant);
280
281	td->td_retval[0] = ntv.time_state;
282	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
283}
284
285static int
286ntp_sysctl(SYSCTL_HANDLER_ARGS)
287{
288	struct ntptimeval ntv;	/* temporary structure */
289
290	ntp_gettime1(&ntv);
291
292	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
293}
294
295SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
296SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
297	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
298
299#ifdef PPS_SYNC
300SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
301SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
302SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
303    &time_monitor, 0, "");
304
305SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
306SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
307#endif
308
309/*
310 * ntp_adjtime() - NTP daemon application interface
311 *
312 * See the timex.h header file for synopsis and API description.  Note that
313 * the timex.constant structure member has a dual purpose to set the time
314 * constant and to set the TAI offset.
315 */
316#ifndef _SYS_SYSPROTO_H_
317struct ntp_adjtime_args {
318	struct timex *tp;
319};
320#endif
321
322int
323ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
324{
325	struct timex ntv;	/* temporary structure */
326	long freq;		/* frequency ns/s) */
327	int modes;		/* mode bits from structure */
328	int s;			/* caller priority */
329	int error;
330
331	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
332	if (error)
333		return(error);
334
335	/*
336	 * Update selected clock variables - only the superuser can
337	 * change anything. Note that there is no error checking here on
338	 * the assumption the superuser should know what it is doing.
339	 * Note that either the time constant or TAI offset are loaded
340	 * from the ntv.constant member, depending on the mode bits. If
341	 * the STA_PLL bit in the status word is cleared, the state and
342	 * status words are reset to the initial values at boot.
343	 */
344	mtx_lock(&Giant);
345	modes = ntv.modes;
346	if (modes)
347		error = priv_check(td, PRIV_NTP_ADJTIME);
348	if (error)
349		goto done2;
350	s = splclock();
351	if (modes & MOD_MAXERROR)
352		time_maxerror = ntv.maxerror;
353	if (modes & MOD_ESTERROR)
354		time_esterror = ntv.esterror;
355	if (modes & MOD_STATUS) {
356		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
357			time_state = TIME_OK;
358			time_status = STA_UNSYNC;
359#ifdef PPS_SYNC
360			pps_shift = PPS_FAVG;
361#endif /* PPS_SYNC */
362		}
363		time_status &= STA_RONLY;
364		time_status |= ntv.status & ~STA_RONLY;
365	}
366	if (modes & MOD_TIMECONST) {
367		if (ntv.constant < 0)
368			time_constant = 0;
369		else if (ntv.constant > MAXTC)
370			time_constant = MAXTC;
371		else
372			time_constant = ntv.constant;
373	}
374	if (modes & MOD_TAI) {
375		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
376			time_tai = ntv.constant;
377	}
378#ifdef PPS_SYNC
379	if (modes & MOD_PPSMAX) {
380		if (ntv.shift < PPS_FAVG)
381			pps_shiftmax = PPS_FAVG;
382		else if (ntv.shift > PPS_FAVGMAX)
383			pps_shiftmax = PPS_FAVGMAX;
384		else
385			pps_shiftmax = ntv.shift;
386	}
387#endif /* PPS_SYNC */
388	if (modes & MOD_NANO)
389		time_status |= STA_NANO;
390	if (modes & MOD_MICRO)
391		time_status &= ~STA_NANO;
392	if (modes & MOD_CLKB)
393		time_status |= STA_CLK;
394	if (modes & MOD_CLKA)
395		time_status &= ~STA_CLK;
396	if (modes & MOD_FREQUENCY) {
397		freq = (ntv.freq * 1000LL) >> 16;
398		if (freq > MAXFREQ)
399			L_LINT(time_freq, MAXFREQ);
400		else if (freq < -MAXFREQ)
401			L_LINT(time_freq, -MAXFREQ);
402		else {
403			/*
404			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
405			 * time_freq is [ns/s * 2^32]
406			 */
407			time_freq = ntv.freq * 1000LL * 65536LL;
408		}
409#ifdef PPS_SYNC
410		pps_freq = time_freq;
411#endif /* PPS_SYNC */
412	}
413	if (modes & MOD_OFFSET) {
414		if (time_status & STA_NANO)
415			hardupdate(ntv.offset);
416		else
417			hardupdate(ntv.offset * 1000);
418	}
419
420	/*
421	 * Retrieve all clock variables. Note that the TAI offset is
422	 * returned only by ntp_gettime();
423	 */
424	if (time_status & STA_NANO)
425		ntv.offset = L_GINT(time_offset);
426	else
427		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
428	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
429	ntv.maxerror = time_maxerror;
430	ntv.esterror = time_esterror;
431	ntv.status = time_status;
432	ntv.constant = time_constant;
433	if (time_status & STA_NANO)
434		ntv.precision = time_precision;
435	else
436		ntv.precision = time_precision / 1000;
437	ntv.tolerance = MAXFREQ * SCALE_PPM;
438#ifdef PPS_SYNC
439	ntv.shift = pps_shift;
440	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
441	if (time_status & STA_NANO)
442		ntv.jitter = pps_jitter;
443	else
444		ntv.jitter = pps_jitter / 1000;
445	ntv.stabil = pps_stabil;
446	ntv.calcnt = pps_calcnt;
447	ntv.errcnt = pps_errcnt;
448	ntv.jitcnt = pps_jitcnt;
449	ntv.stbcnt = pps_stbcnt;
450#endif /* PPS_SYNC */
451	splx(s);
452
453	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
454	if (error)
455		goto done2;
456
457	if (ntp_is_time_error())
458		td->td_retval[0] = TIME_ERROR;
459	else
460		td->td_retval[0] = time_state;
461
462done2:
463	mtx_unlock(&Giant);
464	return (error);
465}
466
467/*
468 * second_overflow() - called after ntp_tick_adjust()
469 *
470 * This routine is ordinarily called immediately following the above
471 * routine ntp_tick_adjust(). While these two routines are normally
472 * combined, they are separated here only for the purposes of
473 * simulation.
474 */
475void
476ntp_update_second(int64_t *adjustment, time_t *newsec)
477{
478	int tickrate;
479	l_fp ftemp;		/* 32/64-bit temporary */
480
481	/*
482	 * On rollover of the second both the nanosecond and microsecond
483	 * clocks are updated and the state machine cranked as
484	 * necessary. The phase adjustment to be used for the next
485	 * second is calculated and the maximum error is increased by
486	 * the tolerance.
487	 */
488	time_maxerror += MAXFREQ / 1000;
489
490	/*
491	 * Leap second processing. If in leap-insert state at
492	 * the end of the day, the system clock is set back one
493	 * second; if in leap-delete state, the system clock is
494	 * set ahead one second. The nano_time() routine or
495	 * external clock driver will insure that reported time
496	 * is always monotonic.
497	 */
498	switch (time_state) {
499
500		/*
501		 * No warning.
502		 */
503		case TIME_OK:
504		if (time_status & STA_INS)
505			time_state = TIME_INS;
506		else if (time_status & STA_DEL)
507			time_state = TIME_DEL;
508		break;
509
510		/*
511		 * Insert second 23:59:60 following second
512		 * 23:59:59.
513		 */
514		case TIME_INS:
515		if (!(time_status & STA_INS))
516			time_state = TIME_OK;
517		else if ((*newsec) % 86400 == 0) {
518			(*newsec)--;
519			time_state = TIME_OOP;
520			time_tai++;
521		}
522		break;
523
524		/*
525		 * Delete second 23:59:59.
526		 */
527		case TIME_DEL:
528		if (!(time_status & STA_DEL))
529			time_state = TIME_OK;
530		else if (((*newsec) + 1) % 86400 == 0) {
531			(*newsec)++;
532			time_tai--;
533			time_state = TIME_WAIT;
534		}
535		break;
536
537		/*
538		 * Insert second in progress.
539		 */
540		case TIME_OOP:
541			time_state = TIME_WAIT;
542		break;
543
544		/*
545		 * Wait for status bits to clear.
546		 */
547		case TIME_WAIT:
548		if (!(time_status & (STA_INS | STA_DEL)))
549			time_state = TIME_OK;
550	}
551
552	/*
553	 * Compute the total time adjustment for the next second
554	 * in ns. The offset is reduced by a factor depending on
555	 * whether the PPS signal is operating. Note that the
556	 * value is in effect scaled by the clock frequency,
557	 * since the adjustment is added at each tick interrupt.
558	 */
559	ftemp = time_offset;
560#ifdef PPS_SYNC
561	/* XXX even if PPS signal dies we should finish adjustment ? */
562	if (time_status & STA_PPSTIME && time_status &
563	    STA_PPSSIGNAL)
564		L_RSHIFT(ftemp, pps_shift);
565	else
566		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
567#else
568		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
569#endif /* PPS_SYNC */
570	time_adj = ftemp;
571	L_SUB(time_offset, ftemp);
572	L_ADD(time_adj, time_freq);
573
574	/*
575	 * Apply any correction from adjtime(2).  If more than one second
576	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
577	 * until the last second is slewed the final < 500 usecs.
578	 */
579	if (time_adjtime != 0) {
580		if (time_adjtime > 1000000)
581			tickrate = 5000;
582		else if (time_adjtime < -1000000)
583			tickrate = -5000;
584		else if (time_adjtime > 500)
585			tickrate = 500;
586		else if (time_adjtime < -500)
587			tickrate = -500;
588		else
589			tickrate = time_adjtime;
590		time_adjtime -= tickrate;
591		L_LINT(ftemp, tickrate * 1000);
592		L_ADD(time_adj, ftemp);
593	}
594	*adjustment = time_adj;
595
596#ifdef PPS_SYNC
597	if (pps_valid > 0)
598		pps_valid--;
599	else
600		time_status &= ~STA_PPSSIGNAL;
601#endif /* PPS_SYNC */
602}
603
604/*
605 * ntp_init() - initialize variables and structures
606 *
607 * This routine must be called after the kernel variables hz and tick
608 * are set or changed and before the next tick interrupt. In this
609 * particular implementation, these values are assumed set elsewhere in
610 * the kernel. The design allows the clock frequency and tick interval
611 * to be changed while the system is running. So, this routine should
612 * probably be integrated with the code that does that.
613 */
614static void
615ntp_init()
616{
617
618	/*
619	 * The following variables are initialized only at startup. Only
620	 * those structures not cleared by the compiler need to be
621	 * initialized, and these only in the simulator. In the actual
622	 * kernel, any nonzero values here will quickly evaporate.
623	 */
624	L_CLR(time_offset);
625	L_CLR(time_freq);
626#ifdef PPS_SYNC
627	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
628	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
629	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
630	pps_fcount = 0;
631	L_CLR(pps_freq);
632#endif /* PPS_SYNC */
633}
634
635SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
636
637/*
638 * hardupdate() - local clock update
639 *
640 * This routine is called by ntp_adjtime() to update the local clock
641 * phase and frequency. The implementation is of an adaptive-parameter,
642 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
643 * time and frequency offset estimates for each call. If the kernel PPS
644 * discipline code is configured (PPS_SYNC), the PPS signal itself
645 * determines the new time offset, instead of the calling argument.
646 * Presumably, calls to ntp_adjtime() occur only when the caller
647 * believes the local clock is valid within some bound (+-128 ms with
648 * NTP). If the caller's time is far different than the PPS time, an
649 * argument will ensue, and it's not clear who will lose.
650 *
651 * For uncompensated quartz crystal oscillators and nominal update
652 * intervals less than 256 s, operation should be in phase-lock mode,
653 * where the loop is disciplined to phase. For update intervals greater
654 * than 1024 s, operation should be in frequency-lock mode, where the
655 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
656 * is selected by the STA_MODE status bit.
657 */
658static void
659hardupdate(offset)
660	long offset;		/* clock offset (ns) */
661{
662	long mtemp;
663	l_fp ftemp;
664
665	/*
666	 * Select how the phase is to be controlled and from which
667	 * source. If the PPS signal is present and enabled to
668	 * discipline the time, the PPS offset is used; otherwise, the
669	 * argument offset is used.
670	 */
671	if (!(time_status & STA_PLL))
672		return;
673	if (!(time_status & STA_PPSTIME && time_status &
674	    STA_PPSSIGNAL)) {
675		if (offset > MAXPHASE)
676			time_monitor = MAXPHASE;
677		else if (offset < -MAXPHASE)
678			time_monitor = -MAXPHASE;
679		else
680			time_monitor = offset;
681		L_LINT(time_offset, time_monitor);
682	}
683
684	/*
685	 * Select how the frequency is to be controlled and in which
686	 * mode (PLL or FLL). If the PPS signal is present and enabled
687	 * to discipline the frequency, the PPS frequency is used;
688	 * otherwise, the argument offset is used to compute it.
689	 */
690	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
691		time_reftime = time_second;
692		return;
693	}
694	if (time_status & STA_FREQHOLD || time_reftime == 0)
695		time_reftime = time_second;
696	mtemp = time_second - time_reftime;
697	L_LINT(ftemp, time_monitor);
698	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
699	L_MPY(ftemp, mtemp);
700	L_ADD(time_freq, ftemp);
701	time_status &= ~STA_MODE;
702	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
703	    MAXSEC)) {
704		L_LINT(ftemp, (time_monitor << 4) / mtemp);
705		L_RSHIFT(ftemp, SHIFT_FLL + 4);
706		L_ADD(time_freq, ftemp);
707		time_status |= STA_MODE;
708	}
709	time_reftime = time_second;
710	if (L_GINT(time_freq) > MAXFREQ)
711		L_LINT(time_freq, MAXFREQ);
712	else if (L_GINT(time_freq) < -MAXFREQ)
713		L_LINT(time_freq, -MAXFREQ);
714}
715
716#ifdef PPS_SYNC
717/*
718 * hardpps() - discipline CPU clock oscillator to external PPS signal
719 *
720 * This routine is called at each PPS interrupt in order to discipline
721 * the CPU clock oscillator to the PPS signal. There are two independent
722 * first-order feedback loops, one for the phase, the other for the
723 * frequency. The phase loop measures and grooms the PPS phase offset
724 * and leaves it in a handy spot for the seconds overflow routine. The
725 * frequency loop averages successive PPS phase differences and
726 * calculates the PPS frequency offset, which is also processed by the
727 * seconds overflow routine. The code requires the caller to capture the
728 * time and architecture-dependent hardware counter values in
729 * nanoseconds at the on-time PPS signal transition.
730 *
731 * Note that, on some Unix systems this routine runs at an interrupt
732 * priority level higher than the timer interrupt routine hardclock().
733 * Therefore, the variables used are distinct from the hardclock()
734 * variables, except for the actual time and frequency variables, which
735 * are determined by this routine and updated atomically.
736 */
737void
738hardpps(tsp, nsec)
739	struct timespec *tsp;	/* time at PPS */
740	long nsec;		/* hardware counter at PPS */
741{
742	long u_sec, u_nsec, v_nsec; /* temps */
743	l_fp ftemp;
744
745	/*
746	 * The signal is first processed by a range gate and frequency
747	 * discriminator. The range gate rejects noise spikes outside
748	 * the range +-500 us. The frequency discriminator rejects input
749	 * signals with apparent frequency outside the range 1 +-500
750	 * PPM. If two hits occur in the same second, we ignore the
751	 * later hit; if not and a hit occurs outside the range gate,
752	 * keep the later hit for later comparison, but do not process
753	 * it.
754	 */
755	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
756	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
757	pps_valid = PPS_VALID;
758	u_sec = tsp->tv_sec;
759	u_nsec = tsp->tv_nsec;
760	if (u_nsec >= (NANOSECOND >> 1)) {
761		u_nsec -= NANOSECOND;
762		u_sec++;
763	}
764	v_nsec = u_nsec - pps_tf[0].tv_nsec;
765	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
766	    MAXFREQ)
767		return;
768	pps_tf[2] = pps_tf[1];
769	pps_tf[1] = pps_tf[0];
770	pps_tf[0].tv_sec = u_sec;
771	pps_tf[0].tv_nsec = u_nsec;
772
773	/*
774	 * Compute the difference between the current and previous
775	 * counter values. If the difference exceeds 0.5 s, assume it
776	 * has wrapped around, so correct 1.0 s. If the result exceeds
777	 * the tick interval, the sample point has crossed a tick
778	 * boundary during the last second, so correct the tick. Very
779	 * intricate.
780	 */
781	u_nsec = nsec;
782	if (u_nsec > (NANOSECOND >> 1))
783		u_nsec -= NANOSECOND;
784	else if (u_nsec < -(NANOSECOND >> 1))
785		u_nsec += NANOSECOND;
786	pps_fcount += u_nsec;
787	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
788		return;
789	time_status &= ~STA_PPSJITTER;
790
791	/*
792	 * A three-stage median filter is used to help denoise the PPS
793	 * time. The median sample becomes the time offset estimate; the
794	 * difference between the other two samples becomes the time
795	 * dispersion (jitter) estimate.
796	 */
797	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
798		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
799			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
800			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
801		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
802			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
803			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
804		} else {
805			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
806			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
807		}
808	} else {
809		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
810			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
811			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
812		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
813			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
814			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
815		} else {
816			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
817			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
818		}
819	}
820
821	/*
822	 * Nominal jitter is due to PPS signal noise and interrupt
823	 * latency. If it exceeds the popcorn threshold, the sample is
824	 * discarded. otherwise, if so enabled, the time offset is
825	 * updated. We can tolerate a modest loss of data here without
826	 * much degrading time accuracy.
827	 */
828	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
829		time_status |= STA_PPSJITTER;
830		pps_jitcnt++;
831	} else if (time_status & STA_PPSTIME) {
832		time_monitor = -v_nsec;
833		L_LINT(time_offset, time_monitor);
834	}
835	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
836	u_sec = pps_tf[0].tv_sec - pps_lastsec;
837	if (u_sec < (1 << pps_shift))
838		return;
839
840	/*
841	 * At the end of the calibration interval the difference between
842	 * the first and last counter values becomes the scaled
843	 * frequency. It will later be divided by the length of the
844	 * interval to determine the frequency update. If the frequency
845	 * exceeds a sanity threshold, or if the actual calibration
846	 * interval is not equal to the expected length, the data are
847	 * discarded. We can tolerate a modest loss of data here without
848	 * much degrading frequency accuracy.
849	 */
850	pps_calcnt++;
851	v_nsec = -pps_fcount;
852	pps_lastsec = pps_tf[0].tv_sec;
853	pps_fcount = 0;
854	u_nsec = MAXFREQ << pps_shift;
855	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
856	    pps_shift)) {
857		time_status |= STA_PPSERROR;
858		pps_errcnt++;
859		return;
860	}
861
862	/*
863	 * Here the raw frequency offset and wander (stability) is
864	 * calculated. If the wander is less than the wander threshold
865	 * for four consecutive averaging intervals, the interval is
866	 * doubled; if it is greater than the threshold for four
867	 * consecutive intervals, the interval is halved. The scaled
868	 * frequency offset is converted to frequency offset. The
869	 * stability metric is calculated as the average of recent
870	 * frequency changes, but is used only for performance
871	 * monitoring.
872	 */
873	L_LINT(ftemp, v_nsec);
874	L_RSHIFT(ftemp, pps_shift);
875	L_SUB(ftemp, pps_freq);
876	u_nsec = L_GINT(ftemp);
877	if (u_nsec > PPS_MAXWANDER) {
878		L_LINT(ftemp, PPS_MAXWANDER);
879		pps_intcnt--;
880		time_status |= STA_PPSWANDER;
881		pps_stbcnt++;
882	} else if (u_nsec < -PPS_MAXWANDER) {
883		L_LINT(ftemp, -PPS_MAXWANDER);
884		pps_intcnt--;
885		time_status |= STA_PPSWANDER;
886		pps_stbcnt++;
887	} else {
888		pps_intcnt++;
889	}
890	if (pps_intcnt >= 4) {
891		pps_intcnt = 4;
892		if (pps_shift < pps_shiftmax) {
893			pps_shift++;
894			pps_intcnt = 0;
895		}
896	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
897		pps_intcnt = -4;
898		if (pps_shift > PPS_FAVG) {
899			pps_shift--;
900			pps_intcnt = 0;
901		}
902	}
903	if (u_nsec < 0)
904		u_nsec = -u_nsec;
905	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
906
907	/*
908	 * The PPS frequency is recalculated and clamped to the maximum
909	 * MAXFREQ. If enabled, the system clock frequency is updated as
910	 * well.
911	 */
912	L_ADD(pps_freq, ftemp);
913	u_nsec = L_GINT(pps_freq);
914	if (u_nsec > MAXFREQ)
915		L_LINT(pps_freq, MAXFREQ);
916	else if (u_nsec < -MAXFREQ)
917		L_LINT(pps_freq, -MAXFREQ);
918	if (time_status & STA_PPSFREQ)
919		time_freq = pps_freq;
920}
921#endif /* PPS_SYNC */
922
923#ifndef _SYS_SYSPROTO_H_
924struct adjtime_args {
925	struct timeval *delta;
926	struct timeval *olddelta;
927};
928#endif
929/* ARGSUSED */
930int
931adjtime(struct thread *td, struct adjtime_args *uap)
932{
933	struct timeval delta, olddelta, *deltap;
934	int error;
935
936	if (uap->delta) {
937		error = copyin(uap->delta, &delta, sizeof(delta));
938		if (error)
939			return (error);
940		deltap = &delta;
941	} else
942		deltap = NULL;
943	error = kern_adjtime(td, deltap, &olddelta);
944	if (uap->olddelta && error == 0)
945		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
946	return (error);
947}
948
949int
950kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
951{
952	struct timeval atv;
953	int error;
954
955	mtx_lock(&Giant);
956	if (olddelta) {
957		atv.tv_sec = time_adjtime / 1000000;
958		atv.tv_usec = time_adjtime % 1000000;
959		if (atv.tv_usec < 0) {
960			atv.tv_usec += 1000000;
961			atv.tv_sec--;
962		}
963		*olddelta = atv;
964	}
965	if (delta) {
966		if ((error = priv_check(td, PRIV_ADJTIME))) {
967			mtx_unlock(&Giant);
968			return (error);
969		}
970		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
971		    delta->tv_usec;
972	}
973	mtx_unlock(&Giant);
974	return (0);
975}
976
977static struct callout resettodr_callout;
978static int resettodr_period = 1800;
979
980static void
981periodic_resettodr(void *arg __unused)
982{
983
984	if (!ntp_is_time_error()) {
985		mtx_lock(&Giant);
986		resettodr();
987		mtx_unlock(&Giant);
988	}
989	if (resettodr_period > 0)
990		callout_schedule(&resettodr_callout, resettodr_period * hz);
991}
992
993static void
994shutdown_resettodr(void *arg __unused, int howto __unused)
995{
996
997	callout_drain(&resettodr_callout);
998	if (resettodr_period > 0 && !ntp_is_time_error()) {
999		mtx_lock(&Giant);
1000		resettodr();
1001		mtx_unlock(&Giant);
1002	}
1003}
1004
1005static int
1006sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1007{
1008	int error;
1009
1010	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1011	if (error || !req->newptr)
1012		return (error);
1013	if (resettodr_period == 0)
1014		callout_stop(&resettodr_callout);
1015	else
1016		callout_reset(&resettodr_callout, resettodr_period * hz,
1017		    periodic_resettodr, NULL);
1018	return (0);
1019}
1020
1021SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
1022	&resettodr_period, 1800, sysctl_resettodr_period, "I",
1023	"Save system time to RTC with this period (in seconds)");
1024TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
1025
1026static void
1027start_periodic_resettodr(void *arg __unused)
1028{
1029
1030	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1031	    SHUTDOWN_PRI_FIRST);
1032	callout_init(&resettodr_callout, 1);
1033	if (resettodr_period == 0)
1034		return;
1035	callout_reset(&resettodr_callout, resettodr_period * hz,
1036	    periodic_resettodr, NULL);
1037}
1038
1039SYSINIT(periodic_resettodr, SI_SUB_RUN_SCHEDULER, SI_ORDER_MIDDLE,
1040	start_periodic_resettodr, NULL);
1041