kern_ntptime.c revision 139804
1/*-
2 ***********************************************************************
3 *								       *
4 * Copyright (c) David L. Mills 1993-2001			       *
5 *								       *
6 * Permission to use, copy, modify, and distribute this software and   *
7 * its documentation for any purpose and without fee is hereby	       *
8 * granted, provided that the above copyright notice appears in all    *
9 * copies and that both the copyright notice and this permission       *
10 * notice appear in supporting documentation, and that the name	       *
11 * University of Delaware not be used in advertising or publicity      *
12 * pertaining to distribution of the software without specific,	       *
13 * written prior permission. The University of Delaware makes no       *
14 * representations about the suitability this software for any	       *
15 * purpose. It is provided "as is" without express or implied	       *
16 * warranty.							       *
17 *								       *
18 **********************************************************************/
19
20/*
21 * Adapted from the original sources for FreeBSD and timecounters by:
22 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 *
24 * The 32bit version of the "LP" macros seems a bit past its "sell by"
25 * date so I have retained only the 64bit version and included it directly
26 * in this file.
27 *
28 * Only minor changes done to interface with the timecounters over in
29 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30 * confusing and/or plain wrong in that context.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/kern/kern_ntptime.c 139804 2005-01-06 23:35:40Z imp $");
35
36#include "opt_ntp.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/proc.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/time.h>
46#include <sys/timex.h>
47#include <sys/timetc.h>
48#include <sys/timepps.h>
49#include <sys/sysctl.h>
50
51/*
52 * Single-precision macros for 64-bit machines
53 */
54typedef int64_t l_fp;
55#define L_ADD(v, u)	((v) += (u))
56#define L_SUB(v, u)	((v) -= (u))
57#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
58#define L_NEG(v)	((v) = -(v))
59#define L_RSHIFT(v, n) \
60	do { \
61		if ((v) < 0) \
62			(v) = -(-(v) >> (n)); \
63		else \
64			(v) = (v) >> (n); \
65	} while (0)
66#define L_MPY(v, a)	((v) *= (a))
67#define L_CLR(v)	((v) = 0)
68#define L_ISNEG(v)	((v) < 0)
69#define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
70#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
71
72/*
73 * Generic NTP kernel interface
74 *
75 * These routines constitute the Network Time Protocol (NTP) interfaces
76 * for user and daemon application programs. The ntp_gettime() routine
77 * provides the time, maximum error (synch distance) and estimated error
78 * (dispersion) to client user application programs. The ntp_adjtime()
79 * routine is used by the NTP daemon to adjust the system clock to an
80 * externally derived time. The time offset and related variables set by
81 * this routine are used by other routines in this module to adjust the
82 * phase and frequency of the clock discipline loop which controls the
83 * system clock.
84 *
85 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
86 * defined), the time at each tick interrupt is derived directly from
87 * the kernel time variable. When the kernel time is reckoned in
88 * microseconds, (NTP_NANO undefined), the time is derived from the
89 * kernel time variable together with a variable representing the
90 * leftover nanoseconds at the last tick interrupt. In either case, the
91 * current nanosecond time is reckoned from these values plus an
92 * interpolated value derived by the clock routines in another
93 * architecture-specific module. The interpolation can use either a
94 * dedicated counter or a processor cycle counter (PCC) implemented in
95 * some architectures.
96 *
97 * Note that all routines must run at priority splclock or higher.
98 */
99/*
100 * Phase/frequency-lock loop (PLL/FLL) definitions
101 *
102 * The nanosecond clock discipline uses two variable types, time
103 * variables and frequency variables. Both types are represented as 64-
104 * bit fixed-point quantities with the decimal point between two 32-bit
105 * halves. On a 32-bit machine, each half is represented as a single
106 * word and mathematical operations are done using multiple-precision
107 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
108 * used.
109 *
110 * A time variable is a signed 64-bit fixed-point number in ns and
111 * fraction. It represents the remaining time offset to be amortized
112 * over succeeding tick interrupts. The maximum time offset is about
113 * 0.5 s and the resolution is about 2.3e-10 ns.
114 *
115 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
116 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
117 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118 * |s s s|			 ns				   |
119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120 * |			    fraction				   |
121 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
122 *
123 * A frequency variable is a signed 64-bit fixed-point number in ns/s
124 * and fraction. It represents the ns and fraction to be added to the
125 * kernel time variable at each second. The maximum frequency offset is
126 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
127 *
128 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
129 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 * |s s s s s s s s s s s s s|	          ns/s			   |
132 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133 * |			    fraction				   |
134 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
135 */
136/*
137 * The following variables establish the state of the PLL/FLL and the
138 * residual time and frequency offset of the local clock.
139 */
140#define SHIFT_PLL	4		/* PLL loop gain (shift) */
141#define SHIFT_FLL	2		/* FLL loop gain (shift) */
142
143static int time_state = TIME_OK;	/* clock state */
144static int time_status = STA_UNSYNC;	/* clock status bits */
145static long time_tai;			/* TAI offset (s) */
146static long time_monitor;		/* last time offset scaled (ns) */
147static long time_constant;		/* poll interval (shift) (s) */
148static long time_precision = 1;		/* clock precision (ns) */
149static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
150static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
151static long time_reftime;		/* time at last adjustment (s) */
152static l_fp time_offset;		/* time offset (ns) */
153static l_fp time_freq;			/* frequency offset (ns/s) */
154static l_fp time_adj;			/* tick adjust (ns/s) */
155
156static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
157
158#ifdef PPS_SYNC
159/*
160 * The following variables are used when a pulse-per-second (PPS) signal
161 * is available and connected via a modem control lead. They establish
162 * the engineering parameters of the clock discipline loop when
163 * controlled by the PPS signal.
164 */
165#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
166#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
167#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
168#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
169#define PPS_VALID	120		/* PPS signal watchdog max (s) */
170#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
171#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
172
173static struct timespec pps_tf[3];	/* phase median filter */
174static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
175static long pps_fcount;			/* frequency accumulator */
176static long pps_jitter;			/* nominal jitter (ns) */
177static long pps_stabil;			/* nominal stability (scaled ns/s) */
178static long pps_lastsec;		/* time at last calibration (s) */
179static int pps_valid;			/* signal watchdog counter */
180static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
181static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
182static int pps_intcnt;			/* wander counter */
183
184/*
185 * PPS signal quality monitors
186 */
187static long pps_calcnt;			/* calibration intervals */
188static long pps_jitcnt;			/* jitter limit exceeded */
189static long pps_stbcnt;			/* stability limit exceeded */
190static long pps_errcnt;			/* calibration errors */
191#endif /* PPS_SYNC */
192/*
193 * End of phase/frequency-lock loop (PLL/FLL) definitions
194 */
195
196static void ntp_init(void);
197static void hardupdate(long offset);
198static void ntp_gettime1(struct ntptimeval *ntvp);
199
200static void
201ntp_gettime1(struct ntptimeval *ntvp)
202{
203	struct timespec atv;	/* nanosecond time */
204
205	nanotime(&atv);
206	ntvp->time.tv_sec = atv.tv_sec;
207	ntvp->time.tv_nsec = atv.tv_nsec;
208	ntvp->maxerror = time_maxerror;
209	ntvp->esterror = time_esterror;
210	ntvp->tai = time_tai;
211	ntvp->time_state = time_state;
212
213	/*
214	 * Status word error decode. If any of these conditions occur,
215	 * an error is returned, instead of the status word. Most
216	 * applications will care only about the fact the system clock
217	 * may not be trusted, not about the details.
218	 *
219	 * Hardware or software error
220	 */
221	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
222
223	/*
224	 * PPS signal lost when either time or frequency synchronization
225	 * requested
226	 */
227	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
228	    !(time_status & STA_PPSSIGNAL)) ||
229
230	/*
231	 * PPS jitter exceeded when time synchronization requested
232	 */
233	    (time_status & STA_PPSTIME &&
234	    time_status & STA_PPSJITTER) ||
235
236	/*
237	 * PPS wander exceeded or calibration error when frequency
238	 * synchronization requested
239	 */
240	    (time_status & STA_PPSFREQ &&
241	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
242		ntvp->time_state = TIME_ERROR;
243}
244
245/*
246 * ntp_gettime() - NTP user application interface
247 *
248 * See the timex.h header file for synopsis and API description. Note
249 * that the TAI offset is returned in the ntvtimeval.tai structure
250 * member.
251 */
252#ifndef _SYS_SYSPROTO_H_
253struct ntp_gettime_args {
254	struct ntptimeval *ntvp;
255};
256#endif
257/* ARGSUSED */
258int
259ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
260{
261	struct ntptimeval ntv;
262
263	ntp_gettime1(&ntv);
264
265	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
266}
267
268static int
269ntp_sysctl(SYSCTL_HANDLER_ARGS)
270{
271	struct ntptimeval ntv;	/* temporary structure */
272
273	ntp_gettime1(&ntv);
274
275	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
276}
277
278SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
279SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
280	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
281
282#ifdef PPS_SYNC
283SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
284SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
285SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
286
287SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
288SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
289#endif
290/*
291 * ntp_adjtime() - NTP daemon application interface
292 *
293 * See the timex.h header file for synopsis and API description. Note
294 * that the timex.constant structure member has a dual purpose to set
295 * the time constant and to set the TAI offset.
296 */
297#ifndef _SYS_SYSPROTO_H_
298struct ntp_adjtime_args {
299	struct timex *tp;
300};
301#endif
302
303/*
304 * MPSAFE
305 */
306int
307ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
308{
309	struct timex ntv;	/* temporary structure */
310	long freq;		/* frequency ns/s) */
311	int modes;		/* mode bits from structure */
312	int s;			/* caller priority */
313	int error;
314
315	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
316	if (error)
317		return(error);
318
319	/*
320	 * Update selected clock variables - only the superuser can
321	 * change anything. Note that there is no error checking here on
322	 * the assumption the superuser should know what it is doing.
323	 * Note that either the time constant or TAI offset are loaded
324	 * from the ntv.constant member, depending on the mode bits. If
325	 * the STA_PLL bit in the status word is cleared, the state and
326	 * status words are reset to the initial values at boot.
327	 */
328	mtx_lock(&Giant);
329	modes = ntv.modes;
330	if (modes)
331		error = suser(td);
332	if (error)
333		goto done2;
334	s = splclock();
335	if (modes & MOD_MAXERROR)
336		time_maxerror = ntv.maxerror;
337	if (modes & MOD_ESTERROR)
338		time_esterror = ntv.esterror;
339	if (modes & MOD_STATUS) {
340		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
341			time_state = TIME_OK;
342			time_status = STA_UNSYNC;
343#ifdef PPS_SYNC
344			pps_shift = PPS_FAVG;
345#endif /* PPS_SYNC */
346		}
347		time_status &= STA_RONLY;
348		time_status |= ntv.status & ~STA_RONLY;
349	}
350	if (modes & MOD_TIMECONST) {
351		if (ntv.constant < 0)
352			time_constant = 0;
353		else if (ntv.constant > MAXTC)
354			time_constant = MAXTC;
355		else
356			time_constant = ntv.constant;
357	}
358	if (modes & MOD_TAI) {
359		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
360			time_tai = ntv.constant;
361	}
362#ifdef PPS_SYNC
363	if (modes & MOD_PPSMAX) {
364		if (ntv.shift < PPS_FAVG)
365			pps_shiftmax = PPS_FAVG;
366		else if (ntv.shift > PPS_FAVGMAX)
367			pps_shiftmax = PPS_FAVGMAX;
368		else
369			pps_shiftmax = ntv.shift;
370	}
371#endif /* PPS_SYNC */
372	if (modes & MOD_NANO)
373		time_status |= STA_NANO;
374	if (modes & MOD_MICRO)
375		time_status &= ~STA_NANO;
376	if (modes & MOD_CLKB)
377		time_status |= STA_CLK;
378	if (modes & MOD_CLKA)
379		time_status &= ~STA_CLK;
380	if (modes & MOD_FREQUENCY) {
381		freq = (ntv.freq * 1000LL) >> 16;
382		if (freq > MAXFREQ)
383			L_LINT(time_freq, MAXFREQ);
384		else if (freq < -MAXFREQ)
385			L_LINT(time_freq, -MAXFREQ);
386		else {
387			/*
388			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
389			 * time_freq is [ns/s * 2^32]
390			 */
391			time_freq = ntv.freq * 1000LL * 65536LL;
392		}
393#ifdef PPS_SYNC
394		pps_freq = time_freq;
395#endif /* PPS_SYNC */
396	}
397	if (modes & MOD_OFFSET) {
398		if (time_status & STA_NANO)
399			hardupdate(ntv.offset);
400		else
401			hardupdate(ntv.offset * 1000);
402	}
403
404	/*
405	 * Retrieve all clock variables. Note that the TAI offset is
406	 * returned only by ntp_gettime();
407	 */
408	if (time_status & STA_NANO)
409		ntv.offset = L_GINT(time_offset);
410	else
411		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
412	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
413	ntv.maxerror = time_maxerror;
414	ntv.esterror = time_esterror;
415	ntv.status = time_status;
416	ntv.constant = time_constant;
417	if (time_status & STA_NANO)
418		ntv.precision = time_precision;
419	else
420		ntv.precision = time_precision / 1000;
421	ntv.tolerance = MAXFREQ * SCALE_PPM;
422#ifdef PPS_SYNC
423	ntv.shift = pps_shift;
424	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
425	if (time_status & STA_NANO)
426		ntv.jitter = pps_jitter;
427	else
428		ntv.jitter = pps_jitter / 1000;
429	ntv.stabil = pps_stabil;
430	ntv.calcnt = pps_calcnt;
431	ntv.errcnt = pps_errcnt;
432	ntv.jitcnt = pps_jitcnt;
433	ntv.stbcnt = pps_stbcnt;
434#endif /* PPS_SYNC */
435	splx(s);
436
437	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
438	if (error)
439		goto done2;
440
441	/*
442	 * Status word error decode. See comments in
443	 * ntp_gettime() routine.
444	 */
445	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
446	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
447	    !(time_status & STA_PPSSIGNAL)) ||
448	    (time_status & STA_PPSTIME &&
449	    time_status & STA_PPSJITTER) ||
450	    (time_status & STA_PPSFREQ &&
451	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
452		td->td_retval[0] = TIME_ERROR;
453	} else {
454		td->td_retval[0] = time_state;
455	}
456done2:
457	mtx_unlock(&Giant);
458	return (error);
459}
460
461/*
462 * second_overflow() - called after ntp_tick_adjust()
463 *
464 * This routine is ordinarily called immediately following the above
465 * routine ntp_tick_adjust(). While these two routines are normally
466 * combined, they are separated here only for the purposes of
467 * simulation.
468 */
469void
470ntp_update_second(int64_t *adjustment, time_t *newsec)
471{
472	int tickrate;
473	l_fp ftemp;		/* 32/64-bit temporary */
474
475	/*
476	 * On rollover of the second both the nanosecond and microsecond
477	 * clocks are updated and the state machine cranked as
478	 * necessary. The phase adjustment to be used for the next
479	 * second is calculated and the maximum error is increased by
480	 * the tolerance.
481	 */
482	time_maxerror += MAXFREQ / 1000;
483
484	/*
485	 * Leap second processing. If in leap-insert state at
486	 * the end of the day, the system clock is set back one
487	 * second; if in leap-delete state, the system clock is
488	 * set ahead one second. The nano_time() routine or
489	 * external clock driver will insure that reported time
490	 * is always monotonic.
491	 */
492	switch (time_state) {
493
494		/*
495		 * No warning.
496		 */
497		case TIME_OK:
498		if (time_status & STA_INS)
499			time_state = TIME_INS;
500		else if (time_status & STA_DEL)
501			time_state = TIME_DEL;
502		break;
503
504		/*
505		 * Insert second 23:59:60 following second
506		 * 23:59:59.
507		 */
508		case TIME_INS:
509		if (!(time_status & STA_INS))
510			time_state = TIME_OK;
511		else if ((*newsec) % 86400 == 0) {
512			(*newsec)--;
513			time_state = TIME_OOP;
514			time_tai++;
515		}
516		break;
517
518		/*
519		 * Delete second 23:59:59.
520		 */
521		case TIME_DEL:
522		if (!(time_status & STA_DEL))
523			time_state = TIME_OK;
524		else if (((*newsec) + 1) % 86400 == 0) {
525			(*newsec)++;
526			time_tai--;
527			time_state = TIME_WAIT;
528		}
529		break;
530
531		/*
532		 * Insert second in progress.
533		 */
534		case TIME_OOP:
535			time_state = TIME_WAIT;
536		break;
537
538		/*
539		 * Wait for status bits to clear.
540		 */
541		case TIME_WAIT:
542		if (!(time_status & (STA_INS | STA_DEL)))
543			time_state = TIME_OK;
544	}
545
546	/*
547	 * Compute the total time adjustment for the next second
548	 * in ns. The offset is reduced by a factor depending on
549	 * whether the PPS signal is operating. Note that the
550	 * value is in effect scaled by the clock frequency,
551	 * since the adjustment is added at each tick interrupt.
552	 */
553	ftemp = time_offset;
554#ifdef PPS_SYNC
555	/* XXX even if PPS signal dies we should finish adjustment ? */
556	if (time_status & STA_PPSTIME && time_status &
557	    STA_PPSSIGNAL)
558		L_RSHIFT(ftemp, pps_shift);
559	else
560		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
561#else
562		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
563#endif /* PPS_SYNC */
564	time_adj = ftemp;
565	L_SUB(time_offset, ftemp);
566	L_ADD(time_adj, time_freq);
567
568	/*
569	 * Apply any correction from adjtime(2).  If more than one second
570	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
571	 * until the last second is slewed the final < 500 usecs.
572	 */
573	if (time_adjtime != 0) {
574		if (time_adjtime > 1000000)
575			tickrate = 5000;
576		else if (time_adjtime < -1000000)
577			tickrate = -5000;
578		else if (time_adjtime > 500)
579			tickrate = 500;
580		else if (time_adjtime < -500)
581			tickrate = -500;
582		else
583			tickrate = time_adjtime;
584		time_adjtime -= tickrate;
585		L_LINT(ftemp, tickrate * 1000);
586		L_ADD(time_adj, ftemp);
587	}
588	*adjustment = time_adj;
589
590#ifdef PPS_SYNC
591	if (pps_valid > 0)
592		pps_valid--;
593	else
594		time_status &= ~STA_PPSSIGNAL;
595#endif /* PPS_SYNC */
596}
597
598/*
599 * ntp_init() - initialize variables and structures
600 *
601 * This routine must be called after the kernel variables hz and tick
602 * are set or changed and before the next tick interrupt. In this
603 * particular implementation, these values are assumed set elsewhere in
604 * the kernel. The design allows the clock frequency and tick interval
605 * to be changed while the system is running. So, this routine should
606 * probably be integrated with the code that does that.
607 */
608static void
609ntp_init()
610{
611
612	/*
613	 * The following variables are initialized only at startup. Only
614	 * those structures not cleared by the compiler need to be
615	 * initialized, and these only in the simulator. In the actual
616	 * kernel, any nonzero values here will quickly evaporate.
617	 */
618	L_CLR(time_offset);
619	L_CLR(time_freq);
620#ifdef PPS_SYNC
621	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
622	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
623	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
624	pps_fcount = 0;
625	L_CLR(pps_freq);
626#endif /* PPS_SYNC */
627}
628
629SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
630
631/*
632 * hardupdate() - local clock update
633 *
634 * This routine is called by ntp_adjtime() to update the local clock
635 * phase and frequency. The implementation is of an adaptive-parameter,
636 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
637 * time and frequency offset estimates for each call. If the kernel PPS
638 * discipline code is configured (PPS_SYNC), the PPS signal itself
639 * determines the new time offset, instead of the calling argument.
640 * Presumably, calls to ntp_adjtime() occur only when the caller
641 * believes the local clock is valid within some bound (+-128 ms with
642 * NTP). If the caller's time is far different than the PPS time, an
643 * argument will ensue, and it's not clear who will lose.
644 *
645 * For uncompensated quartz crystal oscillators and nominal update
646 * intervals less than 256 s, operation should be in phase-lock mode,
647 * where the loop is disciplined to phase. For update intervals greater
648 * than 1024 s, operation should be in frequency-lock mode, where the
649 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
650 * is selected by the STA_MODE status bit.
651 */
652static void
653hardupdate(offset)
654	long offset;		/* clock offset (ns) */
655{
656	long mtemp;
657	l_fp ftemp;
658
659	/*
660	 * Select how the phase is to be controlled and from which
661	 * source. If the PPS signal is present and enabled to
662	 * discipline the time, the PPS offset is used; otherwise, the
663	 * argument offset is used.
664	 */
665	if (!(time_status & STA_PLL))
666		return;
667	if (!(time_status & STA_PPSTIME && time_status &
668	    STA_PPSSIGNAL)) {
669		if (offset > MAXPHASE)
670			time_monitor = MAXPHASE;
671		else if (offset < -MAXPHASE)
672			time_monitor = -MAXPHASE;
673		else
674			time_monitor = offset;
675		L_LINT(time_offset, time_monitor);
676	}
677
678	/*
679	 * Select how the frequency is to be controlled and in which
680	 * mode (PLL or FLL). If the PPS signal is present and enabled
681	 * to discipline the frequency, the PPS frequency is used;
682	 * otherwise, the argument offset is used to compute it.
683	 */
684	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
685		time_reftime = time_second;
686		return;
687	}
688	if (time_status & STA_FREQHOLD || time_reftime == 0)
689		time_reftime = time_second;
690	mtemp = time_second - time_reftime;
691	L_LINT(ftemp, time_monitor);
692	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
693	L_MPY(ftemp, mtemp);
694	L_ADD(time_freq, ftemp);
695	time_status &= ~STA_MODE;
696	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
697	    MAXSEC)) {
698		L_LINT(ftemp, (time_monitor << 4) / mtemp);
699		L_RSHIFT(ftemp, SHIFT_FLL + 4);
700		L_ADD(time_freq, ftemp);
701		time_status |= STA_MODE;
702	}
703	time_reftime = time_second;
704	if (L_GINT(time_freq) > MAXFREQ)
705		L_LINT(time_freq, MAXFREQ);
706	else if (L_GINT(time_freq) < -MAXFREQ)
707		L_LINT(time_freq, -MAXFREQ);
708}
709
710#ifdef PPS_SYNC
711/*
712 * hardpps() - discipline CPU clock oscillator to external PPS signal
713 *
714 * This routine is called at each PPS interrupt in order to discipline
715 * the CPU clock oscillator to the PPS signal. There are two independent
716 * first-order feedback loops, one for the phase, the other for the
717 * frequency. The phase loop measures and grooms the PPS phase offset
718 * and leaves it in a handy spot for the seconds overflow routine. The
719 * frequency loop averages successive PPS phase differences and
720 * calculates the PPS frequency offset, which is also processed by the
721 * seconds overflow routine. The code requires the caller to capture the
722 * time and architecture-dependent hardware counter values in
723 * nanoseconds at the on-time PPS signal transition.
724 *
725 * Note that, on some Unix systems this routine runs at an interrupt
726 * priority level higher than the timer interrupt routine hardclock().
727 * Therefore, the variables used are distinct from the hardclock()
728 * variables, except for the actual time and frequency variables, which
729 * are determined by this routine and updated atomically.
730 */
731void
732hardpps(tsp, nsec)
733	struct timespec *tsp;	/* time at PPS */
734	long nsec;		/* hardware counter at PPS */
735{
736	long u_sec, u_nsec, v_nsec; /* temps */
737	l_fp ftemp;
738
739	/*
740	 * The signal is first processed by a range gate and frequency
741	 * discriminator. The range gate rejects noise spikes outside
742	 * the range +-500 us. The frequency discriminator rejects input
743	 * signals with apparent frequency outside the range 1 +-500
744	 * PPM. If two hits occur in the same second, we ignore the
745	 * later hit; if not and a hit occurs outside the range gate,
746	 * keep the later hit for later comparison, but do not process
747	 * it.
748	 */
749	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
750	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
751	pps_valid = PPS_VALID;
752	u_sec = tsp->tv_sec;
753	u_nsec = tsp->tv_nsec;
754	if (u_nsec >= (NANOSECOND >> 1)) {
755		u_nsec -= NANOSECOND;
756		u_sec++;
757	}
758	v_nsec = u_nsec - pps_tf[0].tv_nsec;
759	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
760	    MAXFREQ)
761		return;
762	pps_tf[2] = pps_tf[1];
763	pps_tf[1] = pps_tf[0];
764	pps_tf[0].tv_sec = u_sec;
765	pps_tf[0].tv_nsec = u_nsec;
766
767	/*
768	 * Compute the difference between the current and previous
769	 * counter values. If the difference exceeds 0.5 s, assume it
770	 * has wrapped around, so correct 1.0 s. If the result exceeds
771	 * the tick interval, the sample point has crossed a tick
772	 * boundary during the last second, so correct the tick. Very
773	 * intricate.
774	 */
775	u_nsec = nsec;
776	if (u_nsec > (NANOSECOND >> 1))
777		u_nsec -= NANOSECOND;
778	else if (u_nsec < -(NANOSECOND >> 1))
779		u_nsec += NANOSECOND;
780	pps_fcount += u_nsec;
781	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
782		return;
783	time_status &= ~STA_PPSJITTER;
784
785	/*
786	 * A three-stage median filter is used to help denoise the PPS
787	 * time. The median sample becomes the time offset estimate; the
788	 * difference between the other two samples becomes the time
789	 * dispersion (jitter) estimate.
790	 */
791	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
792		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
793			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
794			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
795		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
796			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
797			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
798		} else {
799			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
800			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
801		}
802	} else {
803		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
804			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
805			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
806		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
807			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
808			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
809		} else {
810			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
811			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
812		}
813	}
814
815	/*
816	 * Nominal jitter is due to PPS signal noise and interrupt
817	 * latency. If it exceeds the popcorn threshold, the sample is
818	 * discarded. otherwise, if so enabled, the time offset is
819	 * updated. We can tolerate a modest loss of data here without
820	 * much degrading time accuracy.
821	 */
822	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
823		time_status |= STA_PPSJITTER;
824		pps_jitcnt++;
825	} else if (time_status & STA_PPSTIME) {
826		time_monitor = -v_nsec;
827		L_LINT(time_offset, time_monitor);
828	}
829	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
830	u_sec = pps_tf[0].tv_sec - pps_lastsec;
831	if (u_sec < (1 << pps_shift))
832		return;
833
834	/*
835	 * At the end of the calibration interval the difference between
836	 * the first and last counter values becomes the scaled
837	 * frequency. It will later be divided by the length of the
838	 * interval to determine the frequency update. If the frequency
839	 * exceeds a sanity threshold, or if the actual calibration
840	 * interval is not equal to the expected length, the data are
841	 * discarded. We can tolerate a modest loss of data here without
842	 * much degrading frequency accuracy.
843	 */
844	pps_calcnt++;
845	v_nsec = -pps_fcount;
846	pps_lastsec = pps_tf[0].tv_sec;
847	pps_fcount = 0;
848	u_nsec = MAXFREQ << pps_shift;
849	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
850	    pps_shift)) {
851		time_status |= STA_PPSERROR;
852		pps_errcnt++;
853		return;
854	}
855
856	/*
857	 * Here the raw frequency offset and wander (stability) is
858	 * calculated. If the wander is less than the wander threshold
859	 * for four consecutive averaging intervals, the interval is
860	 * doubled; if it is greater than the threshold for four
861	 * consecutive intervals, the interval is halved. The scaled
862	 * frequency offset is converted to frequency offset. The
863	 * stability metric is calculated as the average of recent
864	 * frequency changes, but is used only for performance
865	 * monitoring.
866	 */
867	L_LINT(ftemp, v_nsec);
868	L_RSHIFT(ftemp, pps_shift);
869	L_SUB(ftemp, pps_freq);
870	u_nsec = L_GINT(ftemp);
871	if (u_nsec > PPS_MAXWANDER) {
872		L_LINT(ftemp, PPS_MAXWANDER);
873		pps_intcnt--;
874		time_status |= STA_PPSWANDER;
875		pps_stbcnt++;
876	} else if (u_nsec < -PPS_MAXWANDER) {
877		L_LINT(ftemp, -PPS_MAXWANDER);
878		pps_intcnt--;
879		time_status |= STA_PPSWANDER;
880		pps_stbcnt++;
881	} else {
882		pps_intcnt++;
883	}
884	if (pps_intcnt >= 4) {
885		pps_intcnt = 4;
886		if (pps_shift < pps_shiftmax) {
887			pps_shift++;
888			pps_intcnt = 0;
889		}
890	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
891		pps_intcnt = -4;
892		if (pps_shift > PPS_FAVG) {
893			pps_shift--;
894			pps_intcnt = 0;
895		}
896	}
897	if (u_nsec < 0)
898		u_nsec = -u_nsec;
899	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
900
901	/*
902	 * The PPS frequency is recalculated and clamped to the maximum
903	 * MAXFREQ. If enabled, the system clock frequency is updated as
904	 * well.
905	 */
906	L_ADD(pps_freq, ftemp);
907	u_nsec = L_GINT(pps_freq);
908	if (u_nsec > MAXFREQ)
909		L_LINT(pps_freq, MAXFREQ);
910	else if (u_nsec < -MAXFREQ)
911		L_LINT(pps_freq, -MAXFREQ);
912	if (time_status & STA_PPSFREQ)
913		time_freq = pps_freq;
914}
915#endif /* PPS_SYNC */
916
917#ifndef _SYS_SYSPROTO_H_
918struct adjtime_args {
919	struct timeval *delta;
920	struct timeval *olddelta;
921};
922#endif
923/*
924 * MPSAFE
925 */
926/* ARGSUSED */
927int
928adjtime(struct thread *td, struct adjtime_args *uap)
929{
930	struct timeval atv;
931	int error;
932
933	if ((error = suser(td)))
934		return (error);
935
936	mtx_lock(&Giant);
937	if (uap->olddelta) {
938		atv.tv_sec = time_adjtime / 1000000;
939		atv.tv_usec = time_adjtime % 1000000;
940		if (atv.tv_usec < 0) {
941			atv.tv_usec += 1000000;
942			atv.tv_sec--;
943		}
944		error = copyout(&atv, uap->olddelta, sizeof(atv));
945		if (error)
946			goto done2;
947	}
948	if (uap->delta) {
949		error = copyin(uap->delta, &atv, sizeof(atv));
950		if (error)
951			goto done2;
952		time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec;
953	}
954done2:
955	mtx_unlock(&Giant);
956	return (error);
957}
958
959