kern_ntptime.c revision 108755
1/***********************************************************************
2 *								       *
3 * Copyright (c) David L. Mills 1993-2001			       *
4 *								       *
5 * Permission to use, copy, modify, and distribute this software and   *
6 * its documentation for any purpose and without fee is hereby	       *
7 * granted, provided that the above copyright notice appears in all    *
8 * copies and that both the copyright notice and this permission       *
9 * notice appear in supporting documentation, and that the name	       *
10 * University of Delaware not be used in advertising or publicity      *
11 * pertaining to distribution of the software without specific,	       *
12 * written prior permission. The University of Delaware makes no       *
13 * representations about the suitability this software for any	       *
14 * purpose. It is provided "as is" without express or implied	       *
15 * warranty.							       *
16 *								       *
17 **********************************************************************/
18
19/*
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
22 *
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
26 *
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
30 *
31 * $FreeBSD: head/sys/kern/kern_ntptime.c 108755 2003-01-06 01:01:08Z peter $
32 */
33
34#include "opt_ntp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sysproto.h>
39#include <sys/kernel.h>
40#include <sys/proc.h>
41#include <sys/lock.h>
42#include <sys/mutex.h>
43#include <sys/time.h>
44#include <sys/timex.h>
45#include <sys/timetc.h>
46#include <sys/timepps.h>
47#include <sys/sysctl.h>
48
49/*
50 * Single-precision macros for 64-bit machines
51 */
52typedef long long l_fp;
53#define L_ADD(v, u)	((v) += (u))
54#define L_SUB(v, u)	((v) -= (u))
55#define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
56#define L_NEG(v)	((v) = -(v))
57#define L_RSHIFT(v, n) \
58	do { \
59		if ((v) < 0) \
60			(v) = -(-(v) >> (n)); \
61		else \
62			(v) = (v) >> (n); \
63	} while (0)
64#define L_MPY(v, a)	((v) *= (a))
65#define L_CLR(v)	((v) = 0)
66#define L_ISNEG(v)	((v) < 0)
67#define L_LINT(v, a)	((v) = (long long)(a) << 32)
68#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
69
70/*
71 * Generic NTP kernel interface
72 *
73 * These routines constitute the Network Time Protocol (NTP) interfaces
74 * for user and daemon application programs. The ntp_gettime() routine
75 * provides the time, maximum error (synch distance) and estimated error
76 * (dispersion) to client user application programs. The ntp_adjtime()
77 * routine is used by the NTP daemon to adjust the system clock to an
78 * externally derived time. The time offset and related variables set by
79 * this routine are used by other routines in this module to adjust the
80 * phase and frequency of the clock discipline loop which controls the
81 * system clock.
82 *
83 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
84 * defined), the time at each tick interrupt is derived directly from
85 * the kernel time variable. When the kernel time is reckoned in
86 * microseconds, (NTP_NANO undefined), the time is derived from the
87 * kernel time variable together with a variable representing the
88 * leftover nanoseconds at the last tick interrupt. In either case, the
89 * current nanosecond time is reckoned from these values plus an
90 * interpolated value derived by the clock routines in another
91 * architecture-specific module. The interpolation can use either a
92 * dedicated counter or a processor cycle counter (PCC) implemented in
93 * some architectures.
94 *
95 * Note that all routines must run at priority splclock or higher.
96 */
97/*
98 * Phase/frequency-lock loop (PLL/FLL) definitions
99 *
100 * The nanosecond clock discipline uses two variable types, time
101 * variables and frequency variables. Both types are represented as 64-
102 * bit fixed-point quantities with the decimal point between two 32-bit
103 * halves. On a 32-bit machine, each half is represented as a single
104 * word and mathematical operations are done using multiple-precision
105 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
106 * used.
107 *
108 * A time variable is a signed 64-bit fixed-point number in ns and
109 * fraction. It represents the remaining time offset to be amortized
110 * over succeeding tick interrupts. The maximum time offset is about
111 * 0.5 s and the resolution is about 2.3e-10 ns.
112 *
113 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
114 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
115 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116 * |s s s|			 ns				   |
117 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118 * |			    fraction				   |
119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120 *
121 * A frequency variable is a signed 64-bit fixed-point number in ns/s
122 * and fraction. It represents the ns and fraction to be added to the
123 * kernel time variable at each second. The maximum frequency offset is
124 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
125 *
126 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
127 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 * |s s s s s s s s s s s s s|	          ns/s			   |
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 * |			    fraction				   |
132 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133 */
134/*
135 * The following variables establish the state of the PLL/FLL and the
136 * residual time and frequency offset of the local clock.
137 */
138#define SHIFT_PLL	4		/* PLL loop gain (shift) */
139#define SHIFT_FLL	2		/* FLL loop gain (shift) */
140
141static int time_state = TIME_OK;	/* clock state */
142static int time_status = STA_UNSYNC;	/* clock status bits */
143static long time_tai;			/* TAI offset (s) */
144static long time_monitor;		/* last time offset scaled (ns) */
145static long time_constant;		/* poll interval (shift) (s) */
146static long time_precision = 1;		/* clock precision (ns) */
147static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
148static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
149static long time_reftime;		/* time at last adjustment (s) */
150static l_fp time_offset;		/* time offset (ns) */
151static l_fp time_freq;			/* frequency offset (ns/s) */
152static l_fp time_adj;			/* tick adjust (ns/s) */
153
154static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
155
156#ifdef PPS_SYNC
157/*
158 * The following variables are used when a pulse-per-second (PPS) signal
159 * is available and connected via a modem control lead. They establish
160 * the engineering parameters of the clock discipline loop when
161 * controlled by the PPS signal.
162 */
163#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
164#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
165#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
166#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
167#define PPS_VALID	120		/* PPS signal watchdog max (s) */
168#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
169#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
170
171static struct timespec pps_tf[3];	/* phase median filter */
172static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
173static long pps_fcount;			/* frequency accumulator */
174static long pps_jitter;			/* nominal jitter (ns) */
175static long pps_stabil;			/* nominal stability (scaled ns/s) */
176static long pps_lastsec;		/* time at last calibration (s) */
177static int pps_valid;			/* signal watchdog counter */
178static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
179static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
180static int pps_intcnt;			/* wander counter */
181
182/*
183 * PPS signal quality monitors
184 */
185static long pps_calcnt;			/* calibration intervals */
186static long pps_jitcnt;			/* jitter limit exceeded */
187static long pps_stbcnt;			/* stability limit exceeded */
188static long pps_errcnt;			/* calibration errors */
189#endif /* PPS_SYNC */
190/*
191 * End of phase/frequency-lock loop (PLL/FLL) definitions
192 */
193
194static void ntp_init(void);
195static void hardupdate(long offset);
196
197/*
198 * ntp_gettime() - NTP user application interface
199 *
200 * See the timex.h header file for synopsis and API description. Note
201 * that the TAI offset is returned in the ntvtimeval.tai structure
202 * member.
203 */
204static int
205ntp_sysctl(SYSCTL_HANDLER_ARGS)
206{
207	struct ntptimeval ntv;	/* temporary structure */
208	struct timespec atv;	/* nanosecond time */
209
210	nanotime(&atv);
211	ntv.time.tv_sec = atv.tv_sec;
212	ntv.time.tv_nsec = atv.tv_nsec;
213	ntv.maxerror = time_maxerror;
214	ntv.esterror = time_esterror;
215	ntv.tai = time_tai;
216	ntv.time_state = time_state;
217
218	/*
219	 * Status word error decode. If any of these conditions occur,
220	 * an error is returned, instead of the status word. Most
221	 * applications will care only about the fact the system clock
222	 * may not be trusted, not about the details.
223	 *
224	 * Hardware or software error
225	 */
226	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
227
228	/*
229	 * PPS signal lost when either time or frequency synchronization
230	 * requested
231	 */
232	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
233	    !(time_status & STA_PPSSIGNAL)) ||
234
235	/*
236	 * PPS jitter exceeded when time synchronization requested
237	 */
238	    (time_status & STA_PPSTIME &&
239	    time_status & STA_PPSJITTER) ||
240
241	/*
242	 * PPS wander exceeded or calibration error when frequency
243	 * synchronization requested
244	 */
245	    (time_status & STA_PPSFREQ &&
246	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
247		ntv.time_state = TIME_ERROR;
248	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
249}
250
251SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
252SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
253	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
254
255#ifdef PPS_SYNC
256SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
257SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
258SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
259
260SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
261SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
262#endif
263/*
264 * ntp_adjtime() - NTP daemon application interface
265 *
266 * See the timex.h header file for synopsis and API description. Note
267 * that the timex.constant structure member has a dual purpose to set
268 * the time constant and to set the TAI offset.
269 */
270#ifndef _SYS_SYSPROTO_H_
271struct ntp_adjtime_args {
272	struct timex *tp;
273};
274#endif
275
276/*
277 * MPSAFE
278 */
279int
280ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
281{
282	struct timex ntv;	/* temporary structure */
283	long freq;		/* frequency ns/s) */
284	int modes;		/* mode bits from structure */
285	int s;			/* caller priority */
286	int error;
287
288	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
289	if (error)
290		return(error);
291
292	/*
293	 * Update selected clock variables - only the superuser can
294	 * change anything. Note that there is no error checking here on
295	 * the assumption the superuser should know what it is doing.
296	 * Note that either the time constant or TAI offset are loaded
297	 * from the ntv.constant member, depending on the mode bits. If
298	 * the STA_PLL bit in the status word is cleared, the state and
299	 * status words are reset to the initial values at boot.
300	 */
301	mtx_lock(&Giant);
302	modes = ntv.modes;
303	if (modes)
304		error = suser(td);
305	if (error)
306		goto done2;
307	s = splclock();
308	if (modes & MOD_MAXERROR)
309		time_maxerror = ntv.maxerror;
310	if (modes & MOD_ESTERROR)
311		time_esterror = ntv.esterror;
312	if (modes & MOD_STATUS) {
313		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
314			time_state = TIME_OK;
315			time_status = STA_UNSYNC;
316#ifdef PPS_SYNC
317			pps_shift = PPS_FAVG;
318#endif /* PPS_SYNC */
319		}
320		time_status &= STA_RONLY;
321		time_status |= ntv.status & ~STA_RONLY;
322	}
323	if (modes & MOD_TIMECONST) {
324		if (ntv.constant < 0)
325			time_constant = 0;
326		else if (ntv.constant > MAXTC)
327			time_constant = MAXTC;
328		else
329			time_constant = ntv.constant;
330	}
331	if (modes & MOD_TAI) {
332		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
333			time_tai = ntv.constant;
334	}
335#ifdef PPS_SYNC
336	if (modes & MOD_PPSMAX) {
337		if (ntv.shift < PPS_FAVG)
338			pps_shiftmax = PPS_FAVG;
339		else if (ntv.shift > PPS_FAVGMAX)
340			pps_shiftmax = PPS_FAVGMAX;
341		else
342			pps_shiftmax = ntv.shift;
343	}
344#endif /* PPS_SYNC */
345	if (modes & MOD_NANO)
346		time_status |= STA_NANO;
347	if (modes & MOD_MICRO)
348		time_status &= ~STA_NANO;
349	if (modes & MOD_CLKB)
350		time_status |= STA_CLK;
351	if (modes & MOD_CLKA)
352		time_status &= ~STA_CLK;
353	if (modes & MOD_OFFSET) {
354		if (time_status & STA_NANO)
355			hardupdate(ntv.offset);
356		else
357			hardupdate(ntv.offset * 1000);
358	}
359	if (modes & MOD_FREQUENCY) {
360		freq = (ntv.freq * 1000LL) >> 16;
361		if (freq > MAXFREQ)
362			L_LINT(time_freq, MAXFREQ);
363		else if (freq < -MAXFREQ)
364			L_LINT(time_freq, -MAXFREQ);
365		else
366			L_LINT(time_freq, freq);
367#ifdef PPS_SYNC
368		pps_freq = time_freq;
369#endif /* PPS_SYNC */
370	}
371
372	/*
373	 * Retrieve all clock variables. Note that the TAI offset is
374	 * returned only by ntp_gettime();
375	 */
376	if (time_status & STA_NANO)
377		ntv.offset = L_GINT(time_offset);
378	else
379		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
380	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
381	ntv.maxerror = time_maxerror;
382	ntv.esterror = time_esterror;
383	ntv.status = time_status;
384	ntv.constant = time_constant;
385	if (time_status & STA_NANO)
386		ntv.precision = time_precision;
387	else
388		ntv.precision = time_precision / 1000;
389	ntv.tolerance = MAXFREQ * SCALE_PPM;
390#ifdef PPS_SYNC
391	ntv.shift = pps_shift;
392	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
393	if (time_status & STA_NANO)
394		ntv.jitter = pps_jitter;
395	else
396		ntv.jitter = pps_jitter / 1000;
397	ntv.stabil = pps_stabil;
398	ntv.calcnt = pps_calcnt;
399	ntv.errcnt = pps_errcnt;
400	ntv.jitcnt = pps_jitcnt;
401	ntv.stbcnt = pps_stbcnt;
402#endif /* PPS_SYNC */
403	splx(s);
404
405	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
406	if (error)
407		goto done2;
408
409	/*
410	 * Status word error decode. See comments in
411	 * ntp_gettime() routine.
412	 */
413	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
414	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
415	    !(time_status & STA_PPSSIGNAL)) ||
416	    (time_status & STA_PPSTIME &&
417	    time_status & STA_PPSJITTER) ||
418	    (time_status & STA_PPSFREQ &&
419	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
420		td->td_retval[0] = TIME_ERROR;
421	} else {
422		td->td_retval[0] = time_state;
423	}
424done2:
425	mtx_unlock(&Giant);
426	return (error);
427}
428
429/*
430 * second_overflow() - called after ntp_tick_adjust()
431 *
432 * This routine is ordinarily called immediately following the above
433 * routine ntp_tick_adjust(). While these two routines are normally
434 * combined, they are separated here only for the purposes of
435 * simulation.
436 */
437void
438ntp_update_second(int64_t *adjustment, time_t *newsec)
439{
440	int tickrate;
441	l_fp ftemp;		/* 32/64-bit temporary */
442
443	/*
444	 * On rollover of the second both the nanosecond and microsecond
445	 * clocks are updated and the state machine cranked as
446	 * necessary. The phase adjustment to be used for the next
447	 * second is calculated and the maximum error is increased by
448	 * the tolerance.
449	 */
450	time_maxerror += MAXFREQ / 1000;
451
452	/*
453	 * Leap second processing. If in leap-insert state at
454	 * the end of the day, the system clock is set back one
455	 * second; if in leap-delete state, the system clock is
456	 * set ahead one second. The nano_time() routine or
457	 * external clock driver will insure that reported time
458	 * is always monotonic.
459	 */
460	switch (time_state) {
461
462		/*
463		 * No warning.
464		 */
465		case TIME_OK:
466		if (time_status & STA_INS)
467			time_state = TIME_INS;
468		else if (time_status & STA_DEL)
469			time_state = TIME_DEL;
470		break;
471
472		/*
473		 * Insert second 23:59:60 following second
474		 * 23:59:59.
475		 */
476		case TIME_INS:
477		if (!(time_status & STA_INS))
478			time_state = TIME_OK;
479		else if ((*newsec) % 86400 == 0) {
480			(*newsec)--;
481			time_state = TIME_OOP;
482		}
483		break;
484
485		/*
486		 * Delete second 23:59:59.
487		 */
488		case TIME_DEL:
489		if (!(time_status & STA_DEL))
490			time_state = TIME_OK;
491		else if (((*newsec) + 1) % 86400 == 0) {
492			(*newsec)++;
493			time_tai--;
494			time_state = TIME_WAIT;
495		}
496		break;
497
498		/*
499		 * Insert second in progress.
500		 */
501		case TIME_OOP:
502			time_tai++;
503			time_state = TIME_WAIT;
504		break;
505
506		/*
507		 * Wait for status bits to clear.
508		 */
509		case TIME_WAIT:
510		if (!(time_status & (STA_INS | STA_DEL)))
511			time_state = TIME_OK;
512	}
513
514	/*
515	 * Compute the total time adjustment for the next second
516	 * in ns. The offset is reduced by a factor depending on
517	 * whether the PPS signal is operating. Note that the
518	 * value is in effect scaled by the clock frequency,
519	 * since the adjustment is added at each tick interrupt.
520	 */
521	ftemp = time_offset;
522#ifdef PPS_SYNC
523	/* XXX even if PPS signal dies we should finish adjustment ? */
524	if (time_status & STA_PPSTIME && time_status &
525	    STA_PPSSIGNAL)
526		L_RSHIFT(ftemp, pps_shift);
527	else
528		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
529#else
530		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
531#endif /* PPS_SYNC */
532	time_adj = ftemp;
533	L_SUB(time_offset, ftemp);
534	L_ADD(time_adj, time_freq);
535
536	/*
537	 * Apply any correction from adjtime(2).  If more than one second
538	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
539	 * until the last second is slewed the final < 500 usecs.
540	 */
541	if (time_adjtime != 0) {
542		if (time_adjtime > 1000000)
543			tickrate = 5000;
544		else if (time_adjtime < -1000000)
545			tickrate = -5000;
546		else if (time_adjtime > 500)
547			tickrate = 500;
548		else if (time_adjtime < -500)
549			tickrate = -500;
550		else if (time_adjtime != 0)
551			tickrate = time_adjtime;
552		else
553			tickrate = 0;	/* GCC sucks! */
554		time_adjtime -= tickrate;
555		L_LINT(ftemp, tickrate * 1000);
556		L_ADD(time_adj, ftemp);
557	}
558	*adjustment = time_adj;
559
560#ifdef PPS_SYNC
561	if (pps_valid > 0)
562		pps_valid--;
563	else
564		time_status &= ~STA_PPSSIGNAL;
565#endif /* PPS_SYNC */
566}
567
568/*
569 * ntp_init() - initialize variables and structures
570 *
571 * This routine must be called after the kernel variables hz and tick
572 * are set or changed and before the next tick interrupt. In this
573 * particular implementation, these values are assumed set elsewhere in
574 * the kernel. The design allows the clock frequency and tick interval
575 * to be changed while the system is running. So, this routine should
576 * probably be integrated with the code that does that.
577 */
578static void
579ntp_init()
580{
581
582	/*
583	 * The following variables are initialized only at startup. Only
584	 * those structures not cleared by the compiler need to be
585	 * initialized, and these only in the simulator. In the actual
586	 * kernel, any nonzero values here will quickly evaporate.
587	 */
588	L_CLR(time_offset);
589	L_CLR(time_freq);
590#ifdef PPS_SYNC
591	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
592	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
593	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
594	pps_fcount = 0;
595	L_CLR(pps_freq);
596#endif /* PPS_SYNC */
597}
598
599SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
600
601/*
602 * hardupdate() - local clock update
603 *
604 * This routine is called by ntp_adjtime() to update the local clock
605 * phase and frequency. The implementation is of an adaptive-parameter,
606 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
607 * time and frequency offset estimates for each call. If the kernel PPS
608 * discipline code is configured (PPS_SYNC), the PPS signal itself
609 * determines the new time offset, instead of the calling argument.
610 * Presumably, calls to ntp_adjtime() occur only when the caller
611 * believes the local clock is valid within some bound (+-128 ms with
612 * NTP). If the caller's time is far different than the PPS time, an
613 * argument will ensue, and it's not clear who will lose.
614 *
615 * For uncompensated quartz crystal oscillators and nominal update
616 * intervals less than 256 s, operation should be in phase-lock mode,
617 * where the loop is disciplined to phase. For update intervals greater
618 * than 1024 s, operation should be in frequency-lock mode, where the
619 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
620 * is selected by the STA_MODE status bit.
621 */
622static void
623hardupdate(offset)
624	long offset;		/* clock offset (ns) */
625{
626	long mtemp;
627	l_fp ftemp;
628
629	/*
630	 * Select how the phase is to be controlled and from which
631	 * source. If the PPS signal is present and enabled to
632	 * discipline the time, the PPS offset is used; otherwise, the
633	 * argument offset is used.
634	 */
635	if (!(time_status & STA_PLL))
636		return;
637	if (!(time_status & STA_PPSTIME && time_status &
638	    STA_PPSSIGNAL)) {
639		if (offset > MAXPHASE)
640			time_monitor = MAXPHASE;
641		else if (offset < -MAXPHASE)
642			time_monitor = -MAXPHASE;
643		else
644			time_monitor = offset;
645		L_LINT(time_offset, time_monitor);
646	}
647
648	/*
649	 * Select how the frequency is to be controlled and in which
650	 * mode (PLL or FLL). If the PPS signal is present and enabled
651	 * to discipline the frequency, the PPS frequency is used;
652	 * otherwise, the argument offset is used to compute it.
653	 */
654	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
655		time_reftime = time_second;
656		return;
657	}
658	if (time_status & STA_FREQHOLD || time_reftime == 0)
659		time_reftime = time_second;
660	mtemp = time_second - time_reftime;
661	L_LINT(ftemp, time_monitor);
662	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
663	L_MPY(ftemp, mtemp);
664	L_ADD(time_freq, ftemp);
665	time_status &= ~STA_MODE;
666	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
667	    MAXSEC)) {
668		L_LINT(ftemp, (time_monitor << 4) / mtemp);
669		L_RSHIFT(ftemp, SHIFT_FLL + 4);
670		L_ADD(time_freq, ftemp);
671		time_status |= STA_MODE;
672	}
673	time_reftime = time_second;
674	if (L_GINT(time_freq) > MAXFREQ)
675		L_LINT(time_freq, MAXFREQ);
676	else if (L_GINT(time_freq) < -MAXFREQ)
677		L_LINT(time_freq, -MAXFREQ);
678}
679
680#ifdef PPS_SYNC
681/*
682 * hardpps() - discipline CPU clock oscillator to external PPS signal
683 *
684 * This routine is called at each PPS interrupt in order to discipline
685 * the CPU clock oscillator to the PPS signal. There are two independent
686 * first-order feedback loops, one for the phase, the other for the
687 * frequency. The phase loop measures and grooms the PPS phase offset
688 * and leaves it in a handy spot for the seconds overflow routine. The
689 * frequency loop averages successive PPS phase differences and
690 * calculates the PPS frequency offset, which is also processed by the
691 * seconds overflow routine. The code requires the caller to capture the
692 * time and architecture-dependent hardware counter values in
693 * nanoseconds at the on-time PPS signal transition.
694 *
695 * Note that, on some Unix systems this routine runs at an interrupt
696 * priority level higher than the timer interrupt routine hardclock().
697 * Therefore, the variables used are distinct from the hardclock()
698 * variables, except for the actual time and frequency variables, which
699 * are determined by this routine and updated atomically.
700 */
701void
702hardpps(tsp, nsec)
703	struct timespec *tsp;	/* time at PPS */
704	long nsec;		/* hardware counter at PPS */
705{
706	long u_sec, u_nsec, v_nsec; /* temps */
707	l_fp ftemp;
708
709	/*
710	 * The signal is first processed by a range gate and frequency
711	 * discriminator. The range gate rejects noise spikes outside
712	 * the range +-500 us. The frequency discriminator rejects input
713	 * signals with apparent frequency outside the range 1 +-500
714	 * PPM. If two hits occur in the same second, we ignore the
715	 * later hit; if not and a hit occurs outside the range gate,
716	 * keep the later hit for later comparison, but do not process
717	 * it.
718	 */
719	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
720	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
721	pps_valid = PPS_VALID;
722	u_sec = tsp->tv_sec;
723	u_nsec = tsp->tv_nsec;
724	if (u_nsec >= (NANOSECOND >> 1)) {
725		u_nsec -= NANOSECOND;
726		u_sec++;
727	}
728	v_nsec = u_nsec - pps_tf[0].tv_nsec;
729	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
730	    MAXFREQ)
731		return;
732	pps_tf[2] = pps_tf[1];
733	pps_tf[1] = pps_tf[0];
734	pps_tf[0].tv_sec = u_sec;
735	pps_tf[0].tv_nsec = u_nsec;
736
737	/*
738	 * Compute the difference between the current and previous
739	 * counter values. If the difference exceeds 0.5 s, assume it
740	 * has wrapped around, so correct 1.0 s. If the result exceeds
741	 * the tick interval, the sample point has crossed a tick
742	 * boundary during the last second, so correct the tick. Very
743	 * intricate.
744	 */
745	u_nsec = nsec;
746	if (u_nsec > (NANOSECOND >> 1))
747		u_nsec -= NANOSECOND;
748	else if (u_nsec < -(NANOSECOND >> 1))
749		u_nsec += NANOSECOND;
750	pps_fcount += u_nsec;
751	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
752		return;
753	time_status &= ~STA_PPSJITTER;
754
755	/*
756	 * A three-stage median filter is used to help denoise the PPS
757	 * time. The median sample becomes the time offset estimate; the
758	 * difference between the other two samples becomes the time
759	 * dispersion (jitter) estimate.
760	 */
761	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
762		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
763			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
764			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
765		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
766			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
767			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
768		} else {
769			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
770			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
771		}
772	} else {
773		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
774			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
775			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
776		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
777			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
778			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
779		} else {
780			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
781			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
782		}
783	}
784
785	/*
786	 * Nominal jitter is due to PPS signal noise and interrupt
787	 * latency. If it exceeds the popcorn threshold, the sample is
788	 * discarded. otherwise, if so enabled, the time offset is
789	 * updated. We can tolerate a modest loss of data here without
790	 * much degrading time accuracy.
791	 */
792	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
793		time_status |= STA_PPSJITTER;
794		pps_jitcnt++;
795	} else if (time_status & STA_PPSTIME) {
796		time_monitor = -v_nsec;
797		L_LINT(time_offset, time_monitor);
798	}
799	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
800	u_sec = pps_tf[0].tv_sec - pps_lastsec;
801	if (u_sec < (1 << pps_shift))
802		return;
803
804	/*
805	 * At the end of the calibration interval the difference between
806	 * the first and last counter values becomes the scaled
807	 * frequency. It will later be divided by the length of the
808	 * interval to determine the frequency update. If the frequency
809	 * exceeds a sanity threshold, or if the actual calibration
810	 * interval is not equal to the expected length, the data are
811	 * discarded. We can tolerate a modest loss of data here without
812	 * much degrading frequency accuracy.
813	 */
814	pps_calcnt++;
815	v_nsec = -pps_fcount;
816	pps_lastsec = pps_tf[0].tv_sec;
817	pps_fcount = 0;
818	u_nsec = MAXFREQ << pps_shift;
819	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
820	    pps_shift)) {
821		time_status |= STA_PPSERROR;
822		pps_errcnt++;
823		return;
824	}
825
826	/*
827	 * Here the raw frequency offset and wander (stability) is
828	 * calculated. If the wander is less than the wander threshold
829	 * for four consecutive averaging intervals, the interval is
830	 * doubled; if it is greater than the threshold for four
831	 * consecutive intervals, the interval is halved. The scaled
832	 * frequency offset is converted to frequency offset. The
833	 * stability metric is calculated as the average of recent
834	 * frequency changes, but is used only for performance
835	 * monitoring.
836	 */
837	L_LINT(ftemp, v_nsec);
838	L_RSHIFT(ftemp, pps_shift);
839	L_SUB(ftemp, pps_freq);
840	u_nsec = L_GINT(ftemp);
841	if (u_nsec > PPS_MAXWANDER) {
842		L_LINT(ftemp, PPS_MAXWANDER);
843		pps_intcnt--;
844		time_status |= STA_PPSWANDER;
845		pps_stbcnt++;
846	} else if (u_nsec < -PPS_MAXWANDER) {
847		L_LINT(ftemp, -PPS_MAXWANDER);
848		pps_intcnt--;
849		time_status |= STA_PPSWANDER;
850		pps_stbcnt++;
851	} else {
852		pps_intcnt++;
853	}
854	if (pps_intcnt >= 4) {
855		pps_intcnt = 4;
856		if (pps_shift < pps_shiftmax) {
857			pps_shift++;
858			pps_intcnt = 0;
859		}
860	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
861		pps_intcnt = -4;
862		if (pps_shift > PPS_FAVG) {
863			pps_shift--;
864			pps_intcnt = 0;
865		}
866	}
867	if (u_nsec < 0)
868		u_nsec = -u_nsec;
869	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
870
871	/*
872	 * The PPS frequency is recalculated and clamped to the maximum
873	 * MAXFREQ. If enabled, the system clock frequency is updated as
874	 * well.
875	 */
876	L_ADD(pps_freq, ftemp);
877	u_nsec = L_GINT(pps_freq);
878	if (u_nsec > MAXFREQ)
879		L_LINT(pps_freq, MAXFREQ);
880	else if (u_nsec < -MAXFREQ)
881		L_LINT(pps_freq, -MAXFREQ);
882	if (time_status & STA_PPSFREQ)
883		time_freq = pps_freq;
884}
885#endif /* PPS_SYNC */
886
887#ifndef _SYS_SYSPROTO_H_
888struct adjtime_args {
889	struct timeval *delta;
890	struct timeval *olddelta;
891};
892#endif
893/*
894 * MPSAFE
895 */
896/* ARGSUSED */
897int
898adjtime(struct thread *td, struct adjtime_args *uap)
899{
900	struct timeval atv;
901	int error;
902
903	if ((error = suser(td)))
904		return (error);
905
906	mtx_lock(&Giant);
907	if (uap->olddelta) {
908		atv.tv_sec = time_adjtime / 1000000;
909		atv.tv_usec = time_adjtime % 1000000;
910		if (atv.tv_usec < 0) {
911			atv.tv_usec += 1000000;
912			atv.tv_sec--;
913		}
914		error = copyout(&atv, uap->olddelta, sizeof(atv));
915		if (error)
916			goto done2;
917	}
918	if (uap->delta) {
919		error = copyin(uap->delta, &atv, sizeof(atv));
920		if (error)
921			goto done2;
922		time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec;
923	}
924done2:
925	mtx_unlock(&Giant);
926	return (error);
927}
928
929