kern_mutex.c revision 67352
11573Srgrimes/*-
21573Srgrimes * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
31573Srgrimes *
41573Srgrimes * Redistribution and use in source and binary forms, with or without
51573Srgrimes * modification, are permitted provided that the following conditions
61573Srgrimes * are met:
71573Srgrimes * 1. Redistributions of source code must retain the above copyright
81573Srgrimes *    notice, this list of conditions and the following disclaimer.
91573Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
101573Srgrimes *    notice, this list of conditions and the following disclaimer in the
111573Srgrimes *    documentation and/or other materials provided with the distribution.
121573Srgrimes * 3. Berkeley Software Design Inc's name may not be used to endorse or
131573Srgrimes *    promote products derived from this software without specific prior
141573Srgrimes *    written permission.
151573Srgrimes *
161573Srgrimes * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
171573Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
181573Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
191573Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
201573Srgrimes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
211573Srgrimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
221573Srgrimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
231573Srgrimes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
241573Srgrimes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
251573Srgrimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
261573Srgrimes * SUCH DAMAGE.
271573Srgrimes *
281573Srgrimes *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
291573Srgrimes *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
301573Srgrimes * $FreeBSD: head/sys/kern/kern_mutex.c 67352 2000-10-20 07:26:37Z jhb $
311573Srgrimes */
321573Srgrimes
331573Srgrimes/*
341573Srgrimes *	Main Entry: witness
351573Srgrimes *	Pronunciation: 'wit-n&s
361573Srgrimes *	Function: noun
371573Srgrimes *	Etymology: Middle English witnesse, from Old English witnes knowledge,
381573Srgrimes *	    testimony, witness, from 2wit
391573Srgrimes *	Date: before 12th century
401573Srgrimes *	1 : attestation of a fact or event : TESTIMONY
411573Srgrimes *	2 : one that gives evidence; specifically : one who testifies in
421573Srgrimes *	    a cause or before a judicial tribunal
431573Srgrimes *	3 : one asked to be present at a transaction so as to be able to
448870Srgrimes *	    testify to its having taken place
451573Srgrimes *	4 : one who has personal knowledge of something
461573Srgrimes *	5 a : something serving as evidence or proof : SIGN
471573Srgrimes *	  b : public affirmation by word or example of usually
481573Srgrimes *	      religious faith or conviction <the heroic witness to divine
491573Srgrimes *	      life -- Pilot>
501573Srgrimes *	6 capitalized : a member of the Jehovah's Witnesses
511573Srgrimes */
521573Srgrimes
531573Srgrimes#include <sys/param.h>
541573Srgrimes#include <sys/bus.h>
551573Srgrimes#include <sys/kernel.h>
561573Srgrimes#include <sys/malloc.h>
571573Srgrimes#include <sys/proc.h>
581573Srgrimes#include <sys/systm.h>
591573Srgrimes#include <sys/vmmeter.h>
601573Srgrimes#include <sys/ktr.h>
611573Srgrimes
621573Srgrimes#include <machine/atomic.h>
631573Srgrimes#include <machine/bus.h>
641573Srgrimes#include <machine/clock.h>
651573Srgrimes#include <machine/cpu.h>
661573Srgrimes
671573Srgrimes#include <vm/vm.h>
681573Srgrimes#include <vm/vm_extern.h>
691573Srgrimes
701573Srgrimes#define _KERN_MUTEX_C_		/* Cause non-inlined mtx_*() to be compiled. */
711573Srgrimes#include <sys/mutex.h>
721573Srgrimes
731573Srgrimes/*
741573Srgrimes * Machine independent bits of the mutex implementation
751573Srgrimes */
761573Srgrimes/* All mutexes in system (used for debug/panic) */
771573Srgrimes#ifdef MUTEX_DEBUG
781573Srgrimesstatic struct mtx_debug all_mtx_debug = { NULL, {NULL, NULL}, NULL, 0,
791573Srgrimes	"All mutexes queue head" };
801573Srgrimesstatic struct mtx all_mtx = { MTX_UNOWNED, 0, 0, &all_mtx_debug,
81	TAILQ_HEAD_INITIALIZER(all_mtx.mtx_blocked),
82	{ NULL, NULL }, &all_mtx, &all_mtx };
83#else	/* MUTEX_DEBUG */
84static struct mtx all_mtx = { MTX_UNOWNED, 0, 0, "All mutexes queue head",
85	TAILQ_HEAD_INITIALIZER(all_mtx.mtx_blocked),
86	{ NULL, NULL }, &all_mtx, &all_mtx };
87#endif	/* MUTEX_DEBUG */
88
89static int	mtx_cur_cnt;
90static int	mtx_max_cnt;
91
92void	_mtx_enter_giant_def(void);
93void	_mtx_exit_giant_def(void);
94static void propagate_priority(struct proc *) __unused;
95
96#define	mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
97#define	mtx_owner(m)	(mtx_unowned(m) ? NULL \
98			    : (struct proc *)((m)->mtx_lock & MTX_FLAGMASK))
99
100#define RETIP(x)		*(((uintptr_t *)(&x)) - 1)
101#define	SET_PRIO(p, pri)	(p)->p_priority = (pri)
102
103/*
104 * XXX Temporary, for use from assembly language
105 */
106
107void
108_mtx_enter_giant_def(void)
109{
110
111	mtx_enter(&Giant, MTX_DEF);
112}
113
114void
115_mtx_exit_giant_def(void)
116{
117
118	mtx_exit(&Giant, MTX_DEF);
119}
120
121static void
122propagate_priority(struct proc *p)
123{
124	int pri = p->p_priority;
125	struct mtx *m = p->p_blocked;
126
127	for (;;) {
128		struct proc *p1;
129
130		p = mtx_owner(m);
131
132		if (p == NULL) {
133			/*
134			 * This really isn't quite right. Really
135			 * ought to bump priority of process that
136			 * next acquires the mutex.
137			 */
138			MPASS(m->mtx_lock == MTX_CONTESTED);
139			return;
140		}
141		MPASS(p->p_magic == P_MAGIC);
142		if (p->p_priority <= pri)
143			return;
144		/*
145		 * If lock holder is actually running, just bump priority.
146		 */
147		if (TAILQ_NEXT(p, p_procq) == NULL) {
148			MPASS(p->p_stat == SRUN || p->p_stat == SZOMB);
149			SET_PRIO(p, pri);
150			return;
151		}
152		/*
153		 * If on run queue move to new run queue, and
154		 * quit.
155		 */
156		if (p->p_stat == SRUN) {
157			MPASS(p->p_blocked == NULL);
158			remrunqueue(p);
159			SET_PRIO(p, pri);
160			setrunqueue(p);
161			return;
162		}
163
164		/*
165		 * If we aren't blocked on a mutex, give up and quit.
166		 */
167		if (p->p_stat != SMTX) {
168			printf(
169	"XXX: process %d(%s):%d holds %s but isn't blocked on a mutex\n",
170			    p->p_pid, p->p_comm, p->p_stat, m->mtx_description);
171			return;
172		}
173
174		/*
175		 * Pick up the mutex that p is blocked on.
176		 */
177		m = p->p_blocked;
178		MPASS(m != NULL);
179
180		printf("XXX: process %d(%s) is blocked on %s\n", p->p_pid,
181		    p->p_comm, m->mtx_description);
182		/*
183		 * Check if the proc needs to be moved up on
184		 * the blocked chain
185		 */
186		if ((p1 = TAILQ_PREV(p, rq, p_procq)) == NULL ||
187		    p1->p_priority <= pri) {
188			if (p1)
189				printf(
190	"XXX: previous process %d(%s) has higher priority\n",
191				    p->p_pid, p->p_comm);
192			else
193				printf("XXX: process at head of run queue\n");
194			continue;
195		}
196
197		/*
198		 * Remove proc from blocked chain
199		 */
200		TAILQ_REMOVE(&m->mtx_blocked, p, p_procq);
201		TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq) {
202			MPASS(p1->p_magic == P_MAGIC);
203			if (p1->p_priority > pri)
204				break;
205		}
206		if (p1)
207			TAILQ_INSERT_BEFORE(p1, p, p_procq);
208		else
209			TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
210		CTR4(KTR_LOCK,
211		    "propagate priority: p 0x%p moved before 0x%p on [0x%p] %s",
212		    p, p1, m, m->mtx_description);
213	}
214}
215
216void
217mtx_enter_hard(struct mtx *m, int type, int saveintr)
218{
219	struct proc *p = CURPROC;
220	struct timeval new_switchtime;
221
222	KASSERT(p != NULL, ("curproc is NULL in mutex"));
223
224	switch (type) {
225	case MTX_DEF:
226		if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)p) {
227			m->mtx_recurse++;
228			atomic_set_ptr(&m->mtx_lock, MTX_RECURSE);
229			CTR1(KTR_LOCK, "mtx_enter: 0x%p recurse", m);
230			return;
231		}
232		CTR3(KTR_LOCK, "mtx_enter: 0x%p contested (lock=%p) [0x%p]",
233		    m, m->mtx_lock, RETIP(m));
234		while (!_obtain_lock(m, p)) {
235			int v;
236			struct proc *p1;
237
238			mtx_enter(&sched_lock, MTX_SPIN | MTX_RLIKELY);
239			/*
240			 * check if the lock has been released while
241			 * waiting for the schedlock.
242			 */
243			if ((v = m->mtx_lock) == MTX_UNOWNED) {
244				mtx_exit(&sched_lock, MTX_SPIN);
245				continue;
246			}
247			/*
248			 * The mutex was marked contested on release. This
249			 * means that there are processes blocked on it.
250			 */
251			if (v == MTX_CONTESTED) {
252				p1 = TAILQ_FIRST(&m->mtx_blocked);
253				KASSERT(p1 != NULL, ("contested mutex has no contesters"));
254				KASSERT(p != NULL, ("curproc is NULL for contested mutex"));
255				m->mtx_lock = (uintptr_t)p | MTX_CONTESTED;
256				if (p1->p_priority < p->p_priority) {
257					SET_PRIO(p, p1->p_priority);
258				}
259				mtx_exit(&sched_lock, MTX_SPIN);
260				return;
261			}
262			/*
263			 * If the mutex isn't already contested and
264			 * a failure occurs setting the contested bit the
265			 * mutex was either release or the
266			 * state of the RECURSION bit changed.
267			 */
268			if ((v & MTX_CONTESTED) == 0 &&
269			    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
270				               (void *)(v | MTX_CONTESTED))) {
271				mtx_exit(&sched_lock, MTX_SPIN);
272				continue;
273			}
274
275			/* We definitely have to sleep for this lock */
276			mtx_assert(m, MA_NOTOWNED);
277
278#ifdef notyet
279			/*
280			 * If we're borrowing an interrupted thread's VM
281			 * context must clean up before going to sleep.
282			 */
283			if (p->p_flag & (P_ITHD | P_SITHD)) {
284				ithd_t *it = (ithd_t *)p;
285
286				if (it->it_interrupted) {
287					CTR2(KTR_LOCK,
288					    "mtx_enter: 0x%x interrupted 0x%x",
289					    it, it->it_interrupted);
290					intr_thd_fixup(it);
291				}
292			}
293#endif
294
295			/* Put us on the list of procs blocked on this mutex */
296			if (TAILQ_EMPTY(&m->mtx_blocked)) {
297				p1 = (struct proc *)(m->mtx_lock &
298						     MTX_FLAGMASK);
299				LIST_INSERT_HEAD(&p1->p_contested, m,
300						 mtx_contested);
301				TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
302			} else {
303				TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq)
304					if (p1->p_priority > p->p_priority)
305						break;
306				if (p1)
307					TAILQ_INSERT_BEFORE(p1, p, p_procq);
308				else
309					TAILQ_INSERT_TAIL(&m->mtx_blocked, p,
310							  p_procq);
311			}
312
313			p->p_blocked = m;	/* Who we're blocked on */
314			p->p_stat = SMTX;
315#if 0
316			propagate_priority(p);
317#endif
318			CTR3(KTR_LOCK, "mtx_enter: p 0x%p blocked on [0x%p] %s",
319			    p, m, m->mtx_description);
320			/*
321			 * Blatantly copied from mi_switch nearly verbatim.
322			 * When Giant goes away and we stop dinking with it
323			 * in mi_switch, we can go back to calling mi_switch
324			 * directly here.
325			 */
326
327			/*
328			 * Compute the amount of time during which the current
329			 * process was running, and add that to its total so
330			 * far.
331			 */
332			microuptime(&new_switchtime);
333			if (timevalcmp(&new_switchtime, &switchtime, <)) {
334				printf(
335		    "microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
336		    		    switchtime.tv_sec, switchtime.tv_usec,
337		    		    new_switchtime.tv_sec,
338		    		    new_switchtime.tv_usec);
339				new_switchtime = switchtime;
340			} else {
341				p->p_runtime += (new_switchtime.tv_usec -
342				    switchtime.tv_usec) +
343				    (new_switchtime.tv_sec - switchtime.tv_sec) *
344				    (int64_t)1000000;
345			}
346
347			/*
348			 * Pick a new current process and record its start time.
349			 */
350			cnt.v_swtch++;
351			switchtime = new_switchtime;
352			cpu_switch();
353			if (switchtime.tv_sec == 0)
354				microuptime(&switchtime);
355			switchticks = ticks;
356			CTR3(KTR_LOCK,
357			    "mtx_enter: p 0x%p free from blocked on [0x%p] %s",
358			    p, m, m->mtx_description);
359			mtx_exit(&sched_lock, MTX_SPIN);
360		}
361		return;
362	case MTX_SPIN:
363	case MTX_SPIN | MTX_FIRST:
364	case MTX_SPIN | MTX_TOPHALF:
365	    {
366		int i = 0;
367
368		if (m->mtx_lock == (uintptr_t)p) {
369			m->mtx_recurse++;
370			return;
371		}
372		CTR1(KTR_LOCK, "mtx_enter: %p spinning", m);
373		for (;;) {
374			if (_obtain_lock(m, p))
375				break;
376			while (m->mtx_lock != MTX_UNOWNED) {
377				if (i++ < 1000000)
378					continue;
379				if (i++ < 6000000)
380					DELAY (1);
381#ifdef DDB
382				else if (!db_active)
383#else
384				else
385#endif
386					panic(
387				"spin lock %s held by 0x%p for > 5 seconds",
388					    m->mtx_description,
389					    (void *)m->mtx_lock);
390			}
391		}
392
393#ifdef MUTEX_DEBUG
394		if (type != MTX_SPIN)
395			m->mtx_saveintr = 0xbeefface;
396		else
397#endif
398			m->mtx_saveintr = saveintr;
399		CTR1(KTR_LOCK, "mtx_enter: 0x%p spin done", m);
400		return;
401	    }
402	}
403}
404
405void
406mtx_exit_hard(struct mtx *m, int type)
407{
408	struct proc *p, *p1;
409	struct mtx *m1;
410	int pri;
411
412	p = CURPROC;
413	switch (type) {
414	case MTX_DEF:
415	case MTX_DEF | MTX_NOSWITCH:
416		if (m->mtx_recurse != 0) {
417			if (--(m->mtx_recurse) == 0)
418				atomic_clear_ptr(&m->mtx_lock, MTX_RECURSE);
419			CTR1(KTR_LOCK, "mtx_exit: 0x%p unrecurse", m);
420			return;
421		}
422		mtx_enter(&sched_lock, MTX_SPIN);
423		CTR1(KTR_LOCK, "mtx_exit: 0x%p contested", m);
424		p1 = TAILQ_FIRST(&m->mtx_blocked);
425		MPASS(p->p_magic == P_MAGIC);
426		MPASS(p1->p_magic == P_MAGIC);
427		TAILQ_REMOVE(&m->mtx_blocked, p1, p_procq);
428		if (TAILQ_EMPTY(&m->mtx_blocked)) {
429			LIST_REMOVE(m, mtx_contested);
430			_release_lock_quick(m);
431			CTR1(KTR_LOCK, "mtx_exit: 0x%p not held", m);
432		} else
433			m->mtx_lock = MTX_CONTESTED;
434		pri = MAXPRI;
435		LIST_FOREACH(m1, &p->p_contested, mtx_contested) {
436			int cp = TAILQ_FIRST(&m1->mtx_blocked)->p_priority;
437			if (cp < pri)
438				pri = cp;
439		}
440		if (pri > p->p_nativepri)
441			pri = p->p_nativepri;
442		SET_PRIO(p, pri);
443		CTR2(KTR_LOCK, "mtx_exit: 0x%p contested setrunqueue 0x%p",
444		    m, p1);
445		p1->p_blocked = NULL;
446		p1->p_stat = SRUN;
447		setrunqueue(p1);
448		if ((type & MTX_NOSWITCH) == 0 && p1->p_priority < pri) {
449#ifdef notyet
450			if (p->p_flag & (P_ITHD | P_SITHD)) {
451				ithd_t *it = (ithd_t *)p;
452
453				if (it->it_interrupted) {
454					CTR2(KTR_LOCK,
455					    "mtx_exit: 0x%x interruped 0x%x",
456					    it, it->it_interrupted);
457					intr_thd_fixup(it);
458				}
459			}
460#endif
461			setrunqueue(p);
462			CTR2(KTR_LOCK, "mtx_exit: 0x%p switching out lock=0x%p",
463			    m, m->mtx_lock);
464			mi_switch();
465			CTR2(KTR_LOCK, "mtx_exit: 0x%p resuming lock=0x%p",
466			    m, m->mtx_lock);
467		}
468		mtx_exit(&sched_lock, MTX_SPIN);
469		break;
470	case MTX_SPIN:
471	case MTX_SPIN | MTX_FIRST:
472		if (m->mtx_recurse != 0) {
473			m->mtx_recurse--;
474			return;
475		}
476		MPASS(mtx_owned(m));
477		_release_lock_quick(m);
478		if (type & MTX_FIRST)
479			enable_intr();	/* XXX is this kosher? */
480		else {
481			MPASS(m->mtx_saveintr != 0xbeefface);
482			restore_intr(m->mtx_saveintr);
483		}
484		break;
485	case MTX_SPIN | MTX_TOPHALF:
486		if (m->mtx_recurse != 0) {
487			m->mtx_recurse--;
488			return;
489		}
490		MPASS(mtx_owned(m));
491		_release_lock_quick(m);
492		break;
493	default:
494		panic("mtx_exit_hard: unsupported type 0x%x\n", type);
495	}
496}
497
498#define MV_DESTROY	0	/* validate before destory */
499#define MV_INIT		1	/* validate before init */
500
501#ifdef MUTEX_DEBUG
502
503int mtx_validate __P((struct mtx *, int));
504
505int
506mtx_validate(struct mtx *m, int when)
507{
508	struct mtx *mp;
509	int i;
510	int retval = 0;
511
512	if (m == &all_mtx || cold)
513		return 0;
514
515	mtx_enter(&all_mtx, MTX_DEF);
516/*
517 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
518 * we can re-enable the kernacc() checks.
519 */
520#ifndef __alpha__
521	MPASS(kernacc((caddr_t)all_mtx.mtx_next, sizeof(uintptr_t),
522	    VM_PROT_READ) == 1);
523#endif
524	MPASS(all_mtx.mtx_next->mtx_prev == &all_mtx);
525	for (i = 0, mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next) {
526#ifndef __alpha__
527		if (kernacc((caddr_t)mp->mtx_next, sizeof(uintptr_t),
528		    VM_PROT_READ) != 1) {
529			panic("mtx_validate: mp=%p mp->mtx_next=%p",
530			    mp, mp->mtx_next);
531		}
532#endif
533		i++;
534		if (i > mtx_cur_cnt) {
535			panic("mtx_validate: too many in chain, known=%d\n",
536			    mtx_cur_cnt);
537		}
538	}
539	MPASS(i == mtx_cur_cnt);
540	switch (when) {
541	case MV_DESTROY:
542		for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
543			if (mp == m)
544				break;
545		MPASS(mp == m);
546		break;
547	case MV_INIT:
548		for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
549		if (mp == m) {
550			/*
551			 * Not good. This mutex already exists.
552			 */
553			printf("re-initing existing mutex %s\n",
554			    m->mtx_description);
555			MPASS(m->mtx_lock == MTX_UNOWNED);
556			retval = 1;
557		}
558	}
559	mtx_exit(&all_mtx, MTX_DEF);
560	return (retval);
561}
562#endif
563
564void
565mtx_init(struct mtx *m, const char *t, int flag)
566{
567#ifdef MUTEX_DEBUG
568	struct mtx_debug *debug;
569#endif
570
571	CTR2(KTR_LOCK, "mtx_init 0x%p (%s)", m, t);
572#ifdef MUTEX_DEBUG
573	if (mtx_validate(m, MV_INIT))	/* diagnostic and error correction */
574		return;
575	if (flag & MTX_COLD)
576		debug = m->mtx_debug;
577	else
578		debug = NULL;
579	if (debug == NULL) {
580#ifdef DIAGNOSTIC
581		if(cold && bootverbose)
582			printf("malloc'ing mtx_debug while cold for %s\n", t);
583#endif
584
585		/* XXX - should not use DEVBUF */
586		debug = malloc(sizeof(struct mtx_debug), M_DEVBUF, M_NOWAIT);
587		MPASS(debug != NULL);
588		bzero(debug, sizeof(struct mtx_debug));
589	}
590#endif
591	bzero((void *)m, sizeof *m);
592	TAILQ_INIT(&m->mtx_blocked);
593#ifdef MUTEX_DEBUG
594	m->mtx_debug = debug;
595#endif
596	m->mtx_description = t;
597	m->mtx_lock = MTX_UNOWNED;
598	/* Put on all mutex queue */
599	mtx_enter(&all_mtx, MTX_DEF);
600	m->mtx_next = &all_mtx;
601	m->mtx_prev = all_mtx.mtx_prev;
602	m->mtx_prev->mtx_next = m;
603	all_mtx.mtx_prev = m;
604	if (++mtx_cur_cnt > mtx_max_cnt)
605		mtx_max_cnt = mtx_cur_cnt;
606	mtx_exit(&all_mtx, MTX_DEF);
607	witness_init(m, flag);
608}
609
610void
611mtx_destroy(struct mtx *m)
612{
613
614	CTR2(KTR_LOCK, "mtx_destroy 0x%p (%s)", m, m->mtx_description);
615#ifdef MUTEX_DEBUG
616	if (m->mtx_next == NULL)
617		panic("mtx_destroy: %p (%s) already destroyed",
618		    m, m->mtx_description);
619
620	if (!mtx_owned(m)) {
621		MPASS(m->mtx_lock == MTX_UNOWNED);
622	} else {
623		MPASS((m->mtx_lock & (MTX_RECURSE|MTX_CONTESTED)) == 0);
624	}
625	mtx_validate(m, MV_DESTROY);		/* diagnostic */
626#endif
627
628#ifdef WITNESS
629	if (m->mtx_witness)
630		witness_destroy(m);
631#endif /* WITNESS */
632
633	/* Remove from the all mutex queue */
634	mtx_enter(&all_mtx, MTX_DEF);
635	m->mtx_next->mtx_prev = m->mtx_prev;
636	m->mtx_prev->mtx_next = m->mtx_next;
637#ifdef MUTEX_DEBUG
638	m->mtx_next = m->mtx_prev = NULL;
639	free(m->mtx_debug, M_DEVBUF);
640	m->mtx_debug = NULL;
641#endif
642	mtx_cur_cnt--;
643	mtx_exit(&all_mtx, MTX_DEF);
644}
645
646/*
647 * The non-inlined versions of the mtx_*() functions are always built (above),
648 * but the witness code depends on the MUTEX_DEBUG and WITNESS kernel options
649 * being specified.
650 */
651#if (defined(MUTEX_DEBUG) && defined(WITNESS))
652
653#define WITNESS_COUNT 200
654#define	WITNESS_NCHILDREN 2
655
656#ifndef WITNESS
657#define	WITNESS		0	/* default off */
658#endif
659
660#ifndef SMP
661extern int witness_spin_check;
662#endif
663
664int witness_watch;
665
666struct witness {
667	struct witness	*w_next;
668	char		*w_description;
669	const char	*w_file;
670	int		 w_line;
671	struct witness	*w_morechildren;
672	u_char		 w_childcnt;
673	u_char		 w_Giant_squawked:1;
674	u_char		 w_other_squawked:1;
675	u_char		 w_same_squawked:1;
676	u_char		 w_sleep:1;
677	u_char		 w_spin:1;	/* this is a spin mutex */
678	u_int		 w_level;
679	struct witness	*w_children[WITNESS_NCHILDREN];
680};
681
682struct witness_blessed {
683	char 	*b_lock1;
684	char	*b_lock2;
685};
686
687#ifdef KDEBUG
688/*
689 * When WITNESS_KDEBUG is set to 1, it will cause the system to
690 * drop into kdebug() when:
691 *	- a lock heirarchy violation occurs
692 *	- locks are held when going to sleep.
693 */
694#ifndef WITNESS_KDEBUG
695#define WITNESS_KDEBUG 0
696#endif
697int	witness_kdebug = WITNESS_KDEBUG;
698#endif /* KDEBUG */
699
700#ifndef WITNESS_SKIPSPIN
701#define WITNESS_SKIPSPIN 0
702#endif
703int	witness_skipspin = WITNESS_SKIPSPIN;
704
705
706static struct mtx	 w_mtx;
707static struct witness	*w_free;
708static struct witness	*w_all;
709static int		 w_inited;
710static int		 witness_dead;	/* fatal error, probably no memory */
711
712static struct witness	 w_data[WITNESS_COUNT];
713
714static struct witness	 *enroll __P((char *description, int flag));
715static int itismychild __P((struct witness *parent, struct witness *child));
716static void removechild __P((struct witness *parent, struct witness *child));
717static int isitmychild __P((struct witness *parent, struct witness *child));
718static int isitmydescendant __P((struct witness *parent, struct witness *child));
719static int dup_ok __P((struct witness *));
720static int blessed __P((struct witness *, struct witness *));
721static void witness_displaydescendants
722    __P((void(*)(const char *fmt, ...), struct witness *));
723static void witness_leveldescendents __P((struct witness *parent, int level));
724static void witness_levelall __P((void));
725static struct witness * witness_get __P((void));
726static void witness_free __P((struct witness *m));
727
728
729static char *ignore_list[] = {
730	"witness lock",
731	"Kdebug",		/* breaks rules and may or may not work */
732	"Page Alias",		/* sparc only, witness lock won't block intr */
733	NULL
734};
735
736static char *spin_order_list[] = {
737	"sched lock",
738	"log mtx",
739	"zslock",	/* sparc only above log, this one is a real hack */
740	"time lock",	/* above callout */
741	"callout mtx",	/* above wayout */
742	/*
743	 * leaf locks
744	 */
745	"wayout mtx",
746	"kernel_pmap",  /* sparc only, logically equal "pmap" below */
747	"pmap",		/* sparc only */
748	NULL
749};
750
751static char *order_list[] = {
752	"tcb", "inp", "so_snd", "so_rcv", "Giant lock", NULL,
753	"udb", "inp", NULL,
754	"unp head", "unp", "so_snd", NULL,
755	"de0", "Giant lock", NULL,
756	"ifnet", "Giant lock", NULL,
757	"fifo", "so_snd", NULL,
758	"hme0", "Giant lock", NULL,
759	"esp0", "Giant lock", NULL,
760	"hfa0", "Giant lock", NULL,
761	"so_rcv", "atm_global", NULL,
762	"so_snd", "atm_global", NULL,
763	"NFS", "Giant lock", NULL,
764	NULL
765};
766
767static char *dup_list[] = {
768	"inp",
769	"process group",
770	"session",
771	"unp",
772	"rtentry",
773	"rawcb",
774	NULL
775};
776
777static char *sleep_list[] = {
778	"Giant lock",
779	NULL
780};
781
782/*
783 * Pairs of locks which have been blessed
784 * Don't complain about order problems with blessed locks
785 */
786static struct witness_blessed blessed_list[] = {
787};
788static int blessed_count = sizeof(blessed_list) / sizeof(struct witness_blessed);
789
790void
791witness_init(struct mtx *m, int flag)
792{
793	m->mtx_witness = enroll(m->mtx_description, flag);
794}
795
796void
797witness_destroy(struct mtx *m)
798{
799	struct mtx *m1;
800	struct proc *p;
801	p = CURPROC;
802	for ((m1 = LIST_FIRST(&p->p_heldmtx)); m1 != NULL;
803		m1 = LIST_NEXT(m1, mtx_held)) {
804		if (m1 == m) {
805			LIST_REMOVE(m, mtx_held);
806			break;
807		}
808	}
809	return;
810
811}
812
813void
814witness_enter(struct mtx *m, int flags, const char *file, int line)
815{
816	struct witness *w, *w1;
817	struct mtx *m1;
818	struct proc *p;
819	int i;
820#ifdef KDEBUG
821	int go_into_kdebug = 0;
822#endif /* KDEBUG */
823
824	w = m->mtx_witness;
825	p = CURPROC;
826
827	if (flags & MTX_SPIN) {
828		if (!w->w_spin)
829			panic("mutex_enter: MTX_SPIN on MTX_DEF mutex %s @"
830			    " %s:%d", m->mtx_description, file, line);
831		if (m->mtx_recurse != 0)
832			return;
833		mtx_enter(&w_mtx, MTX_SPIN);
834		i = witness_spin_check;
835		if (i != 0 && w->w_level < i) {
836			mtx_exit(&w_mtx, MTX_SPIN);
837			panic("mutex_enter(%s:%x, MTX_SPIN) out of order @"
838			    " %s:%d already holding %s:%x",
839			    m->mtx_description, w->w_level, file, line,
840			    spin_order_list[ffs(i)-1], i);
841		}
842		PCPU_SET(witness_spin_check, i | w->w_level);
843		mtx_exit(&w_mtx, MTX_SPIN);
844		return;
845	}
846	if (w->w_spin)
847		panic("mutex_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
848		    m->mtx_description, file, line);
849
850	if (m->mtx_recurse != 0)
851		return;
852	if (witness_dead)
853		goto out;
854	if (cold)
855		goto out;
856
857	if (!mtx_legal2block())
858		panic("blockable mtx_enter() of %s when not legal @ %s:%d",
859			    m->mtx_description, file, line);
860	/*
861	 * Is this the first mutex acquired
862	 */
863	if ((m1 = LIST_FIRST(&p->p_heldmtx)) == NULL)
864		goto out;
865
866	if ((w1 = m1->mtx_witness) == w) {
867		if (w->w_same_squawked || dup_ok(w))
868			goto out;
869		w->w_same_squawked = 1;
870		printf("acquring duplicate lock of same type: \"%s\"\n",
871			m->mtx_description);
872		printf(" 1st @ %s:%d\n", w->w_file, w->w_line);
873		printf(" 2nd @ %s:%d\n", file, line);
874#ifdef KDEBUG
875		go_into_kdebug = 1;
876#endif /* KDEBUG */
877		goto out;
878	}
879	MPASS(!mtx_owned(&w_mtx));
880	mtx_enter(&w_mtx, MTX_SPIN);
881	/*
882	 * If we have a known higher number just say ok
883	 */
884	if (witness_watch > 1 && w->w_level > w1->w_level) {
885		mtx_exit(&w_mtx, MTX_SPIN);
886		goto out;
887	}
888	if (isitmydescendant(m1->mtx_witness, w)) {
889		mtx_exit(&w_mtx, MTX_SPIN);
890		goto out;
891	}
892	for (i = 0; m1 != NULL; m1 = LIST_NEXT(m1, mtx_held), i++) {
893
894		MPASS(i < 200);
895		w1 = m1->mtx_witness;
896		if (isitmydescendant(w, w1)) {
897			mtx_exit(&w_mtx, MTX_SPIN);
898			if (blessed(w, w1))
899				goto out;
900			if (m1 == &Giant) {
901				if (w1->w_Giant_squawked)
902					goto out;
903				else
904					w1->w_Giant_squawked = 1;
905			} else {
906				if (w1->w_other_squawked)
907					goto out;
908				else
909					w1->w_other_squawked = 1;
910			}
911			printf("lock order reversal\n");
912			printf(" 1st %s last acquired @ %s:%d\n",
913			    w->w_description, w->w_file, w->w_line);
914			printf(" 2nd %p %s @ %s:%d\n",
915			    m1, w1->w_description, w1->w_file, w1->w_line);
916			printf(" 3rd %p %s @ %s:%d\n",
917			    m, w->w_description, file, line);
918#ifdef KDEBUG
919			go_into_kdebug = 1;
920#endif /* KDEBUG */
921			goto out;
922		}
923	}
924	m1 = LIST_FIRST(&p->p_heldmtx);
925	if (!itismychild(m1->mtx_witness, w))
926		mtx_exit(&w_mtx, MTX_SPIN);
927
928out:
929#ifdef KDEBUG
930	if (witness_kdebug && go_into_kdebug)
931		kdebug();
932#endif /* KDEBUG */
933	w->w_file = file;
934	w->w_line = line;
935	m->mtx_line = line;
936	m->mtx_file = file;
937
938	/*
939	 * If this pays off it likely means that a mutex  being witnessed
940	 * is acquired in hardclock. Put it in the ignore list. It is
941	 * likely not the mutex this assert fails on.
942	 */
943	MPASS(m->mtx_held.le_prev == NULL);
944	LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
945}
946
947void
948witness_exit(struct mtx *m, int flags, const char *file, int line)
949{
950	struct witness *w;
951
952	w = m->mtx_witness;
953
954	if (flags & MTX_SPIN) {
955		if (!w->w_spin)
956			panic("mutex_exit: MTX_SPIN on MTX_DEF mutex %s @"
957			    " %s:%d", m->mtx_description, file, line);
958		if (m->mtx_recurse != 0)
959			return;
960		mtx_enter(&w_mtx, MTX_SPIN);
961		PCPU_SET(witness_spin_check, witness_spin_check & ~w->w_level);
962		mtx_exit(&w_mtx, MTX_SPIN);
963		return;
964	}
965	if (w->w_spin)
966		panic("mutex_exit: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
967		    m->mtx_description, file, line);
968
969	if (m->mtx_recurse != 0)
970		return;
971
972	if ((flags & MTX_NOSWITCH) == 0 && !mtx_legal2block() && !cold)
973		panic("switchable mtx_exit() of %s when not legal @ %s:%d",
974			    m->mtx_description, file, line);
975	LIST_REMOVE(m, mtx_held);
976	m->mtx_held.le_prev = NULL;
977}
978
979void
980witness_try_enter(struct mtx *m, int flags, const char *file, int line)
981{
982	struct proc *p;
983	struct witness *w = m->mtx_witness;
984
985	if (flags & MTX_SPIN) {
986		if (!w->w_spin)
987			panic("mutex_try_enter: "
988			    "MTX_SPIN on MTX_DEF mutex %s @ %s:%d",
989			    m->mtx_description, file, line);
990		if (m->mtx_recurse != 0)
991			return;
992		mtx_enter(&w_mtx, MTX_SPIN);
993		PCPU_SET(witness_spin_check, witness_spin_check | w->w_level);
994		mtx_exit(&w_mtx, MTX_SPIN);
995		return;
996	}
997
998	if (w->w_spin)
999		panic("mutex_try_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
1000		    m->mtx_description, file, line);
1001
1002	if (m->mtx_recurse != 0)
1003		return;
1004
1005	w->w_file = file;
1006	w->w_line = line;
1007	m->mtx_line = line;
1008	m->mtx_file = file;
1009	p = CURPROC;
1010	MPASS(m->mtx_held.le_prev == NULL);
1011	LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
1012}
1013
1014void
1015witness_display(void(*prnt)(const char *fmt, ...))
1016{
1017	struct witness *w, *w1;
1018
1019	witness_levelall();
1020
1021	for (w = w_all; w; w = w->w_next) {
1022		if (w->w_file == NULL)
1023			continue;
1024		for (w1 = w_all; w1; w1 = w1->w_next) {
1025			if (isitmychild(w1, w))
1026				break;
1027		}
1028		if (w1 != NULL)
1029			continue;
1030		/*
1031		 * This lock has no anscestors, display its descendants.
1032		 */
1033		witness_displaydescendants(prnt, w);
1034	}
1035	prnt("\nMutex which were never acquired\n");
1036	for (w = w_all; w; w = w->w_next) {
1037		if (w->w_file != NULL)
1038			continue;
1039		prnt("%s\n", w->w_description);
1040	}
1041}
1042
1043int
1044witness_sleep(int check_only, struct mtx *mtx, const char *file, int line)
1045{
1046	struct mtx *m;
1047	struct proc *p;
1048	char **sleep;
1049	int n = 0;
1050
1051	p = CURPROC;
1052	for ((m = LIST_FIRST(&p->p_heldmtx)); m != NULL;
1053	    m = LIST_NEXT(m, mtx_held)) {
1054		if (m == mtx)
1055			continue;
1056		for (sleep = sleep_list; *sleep!= NULL; sleep++)
1057			if (strcmp(m->mtx_description, *sleep) == 0)
1058				goto next;
1059		printf("%s:%d: %s with \"%s\" locked from %s:%d\n",
1060			file, line, check_only ? "could sleep" : "sleeping",
1061			m->mtx_description,
1062			m->mtx_witness->w_file, m->mtx_witness->w_line);
1063		n++;
1064	next:
1065	}
1066#ifdef KDEBUG
1067	if (witness_kdebug && n)
1068		kdebug();
1069#endif /* KDEBUG */
1070	return (n);
1071}
1072
1073static struct witness *
1074enroll(char *description, int flag)
1075{
1076	int i;
1077	struct witness *w, *w1;
1078	char **ignore;
1079	char **order;
1080
1081	if (!witness_watch)
1082		return (NULL);
1083	for (ignore = ignore_list; *ignore != NULL; ignore++)
1084		if (strcmp(description, *ignore) == 0)
1085			return (NULL);
1086
1087	if (w_inited == 0) {
1088		mtx_init(&w_mtx, "witness lock", MTX_DEF);
1089		for (i = 0; i < WITNESS_COUNT; i++) {
1090			w = &w_data[i];
1091			witness_free(w);
1092		}
1093		w_inited = 1;
1094		for (order = order_list; *order != NULL; order++) {
1095			w = enroll(*order, MTX_DEF);
1096			w->w_file = "order list";
1097			for (order++; *order != NULL; order++) {
1098				w1 = enroll(*order, MTX_DEF);
1099				w1->w_file = "order list";
1100				itismychild(w, w1);
1101				w = w1;
1102    	    	    	}
1103		}
1104	}
1105	if ((flag & MTX_SPIN) && witness_skipspin)
1106		return (NULL);
1107	mtx_enter(&w_mtx, MTX_SPIN);
1108	for (w = w_all; w; w = w->w_next) {
1109		if (strcmp(description, w->w_description) == 0) {
1110			mtx_exit(&w_mtx, MTX_SPIN);
1111			return (w);
1112		}
1113	}
1114	if ((w = witness_get()) == NULL)
1115		return (NULL);
1116	w->w_next = w_all;
1117	w_all = w;
1118	w->w_description = description;
1119	mtx_exit(&w_mtx, MTX_SPIN);
1120	if (flag & MTX_SPIN) {
1121		w->w_spin = 1;
1122
1123		i = 1;
1124		for (order = spin_order_list; *order != NULL; order++) {
1125			if (strcmp(description, *order) == 0)
1126				break;
1127			i <<= 1;
1128		}
1129		if (*order == NULL)
1130			panic("spin lock %s not in order list", description);
1131		w->w_level = i;
1132	}
1133	return (w);
1134}
1135
1136static int
1137itismychild(struct witness *parent, struct witness *child)
1138{
1139	static int recursed;
1140
1141	/*
1142	 * Insert "child" after "parent"
1143	 */
1144	while (parent->w_morechildren)
1145		parent = parent->w_morechildren;
1146
1147	if (parent->w_childcnt == WITNESS_NCHILDREN) {
1148		if ((parent->w_morechildren = witness_get()) == NULL)
1149			return (1);
1150		parent = parent->w_morechildren;
1151	}
1152	MPASS(child != NULL);
1153	parent->w_children[parent->w_childcnt++] = child;
1154	/*
1155	 * now prune whole tree
1156	 */
1157	if (recursed)
1158		return (0);
1159	recursed = 1;
1160	for (child = w_all; child != NULL; child = child->w_next) {
1161		for (parent = w_all; parent != NULL;
1162		    parent = parent->w_next) {
1163			if (!isitmychild(parent, child))
1164				continue;
1165			removechild(parent, child);
1166			if (isitmydescendant(parent, child))
1167				continue;
1168			itismychild(parent, child);
1169		}
1170	}
1171	recursed = 0;
1172	witness_levelall();
1173	return (0);
1174}
1175
1176static void
1177removechild(struct witness *parent, struct witness *child)
1178{
1179	struct witness *w, *w1;
1180	int i;
1181
1182	for (w = parent; w != NULL; w = w->w_morechildren)
1183		for (i = 0; i < w->w_childcnt; i++)
1184			if (w->w_children[i] == child)
1185				goto found;
1186	return;
1187found:
1188	for (w1 = w; w1->w_morechildren != NULL; w1 = w1->w_morechildren)
1189		continue;
1190	w->w_children[i] = w1->w_children[--w1->w_childcnt];
1191	MPASS(w->w_children[i] != NULL);
1192
1193	if (w1->w_childcnt != 0)
1194		return;
1195
1196	if (w1 == parent)
1197		return;
1198	for (w = parent; w->w_morechildren != w1; w = w->w_morechildren)
1199		continue;
1200	w->w_morechildren = 0;
1201	witness_free(w1);
1202}
1203
1204static int
1205isitmychild(struct witness *parent, struct witness *child)
1206{
1207	struct witness *w;
1208	int i;
1209
1210	for (w = parent; w != NULL; w = w->w_morechildren) {
1211		for (i = 0; i < w->w_childcnt; i++) {
1212			if (w->w_children[i] == child)
1213				return (1);
1214		}
1215	}
1216	return (0);
1217}
1218
1219static int
1220isitmydescendant(struct witness *parent, struct witness *child)
1221{
1222	struct witness *w;
1223	int i;
1224	int j;
1225
1226	for (j = 0, w = parent; w != NULL; w = w->w_morechildren, j++) {
1227		MPASS(j < 1000);
1228		for (i = 0; i < w->w_childcnt; i++) {
1229			if (w->w_children[i] == child)
1230				return (1);
1231		}
1232		for (i = 0; i < w->w_childcnt; i++) {
1233			if (isitmydescendant(w->w_children[i], child))
1234				return (1);
1235		}
1236	}
1237	return (0);
1238}
1239
1240void
1241witness_levelall (void)
1242{
1243	struct witness *w, *w1;
1244
1245	for (w = w_all; w; w = w->w_next)
1246		if (!w->w_spin)
1247			w->w_level = 0;
1248	for (w = w_all; w; w = w->w_next) {
1249		if (w->w_spin)
1250			continue;
1251		for (w1 = w_all; w1; w1 = w1->w_next) {
1252			if (isitmychild(w1, w))
1253				break;
1254		}
1255		if (w1 != NULL)
1256			continue;
1257		witness_leveldescendents(w, 0);
1258	}
1259}
1260
1261static void
1262witness_leveldescendents(struct witness *parent, int level)
1263{
1264	int i;
1265	struct witness *w;
1266
1267	if (parent->w_level < level)
1268		parent->w_level = level;
1269	level++;
1270	for (w = parent; w != NULL; w = w->w_morechildren)
1271		for (i = 0; i < w->w_childcnt; i++)
1272			witness_leveldescendents(w->w_children[i], level);
1273}
1274
1275static void
1276witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1277			   struct witness *parent)
1278{
1279	struct witness *w;
1280	int i;
1281	int level = parent->w_level;
1282
1283	prnt("%d", level);
1284	if (level < 10)
1285		prnt(" ");
1286	for (i = 0; i < level; i++)
1287		prnt(" ");
1288	prnt("%s", parent->w_description);
1289	if (parent->w_file != NULL) {
1290		prnt(" -- last acquired @ %s", parent->w_file);
1291#ifndef W_USE_WHERE
1292		prnt(":%d", parent->w_line);
1293#endif
1294		prnt("\n");
1295	}
1296
1297	for (w = parent; w != NULL; w = w->w_morechildren)
1298		for (i = 0; i < w->w_childcnt; i++)
1299			    witness_displaydescendants(prnt, w->w_children[i]);
1300    }
1301
1302static int
1303dup_ok(struct witness *w)
1304{
1305	char **dup;
1306
1307	for (dup = dup_list; *dup!= NULL; dup++)
1308		if (strcmp(w->w_description, *dup) == 0)
1309			return (1);
1310	return (0);
1311}
1312
1313static int
1314blessed(struct witness *w1, struct witness *w2)
1315{
1316	int i;
1317	struct witness_blessed *b;
1318
1319	for (i = 0; i < blessed_count; i++) {
1320		b = &blessed_list[i];
1321		if (strcmp(w1->w_description, b->b_lock1) == 0) {
1322			if (strcmp(w2->w_description, b->b_lock2) == 0)
1323				return (1);
1324			continue;
1325		}
1326		if (strcmp(w1->w_description, b->b_lock2) == 0)
1327			if (strcmp(w2->w_description, b->b_lock1) == 0)
1328				return (1);
1329	}
1330	return (0);
1331}
1332
1333static struct witness *
1334witness_get()
1335{
1336	struct witness *w;
1337
1338	if ((w = w_free) == NULL) {
1339		witness_dead = 1;
1340		mtx_exit(&w_mtx, MTX_SPIN);
1341		printf("witness exhausted\n");
1342		return (NULL);
1343	}
1344	w_free = w->w_next;
1345	bzero(w, sizeof(*w));
1346	return (w);
1347}
1348
1349static void
1350witness_free(struct witness *w)
1351{
1352	w->w_next = w_free;
1353	w_free = w;
1354}
1355
1356void
1357witness_list(struct proc *p)
1358{
1359	struct mtx *m;
1360
1361	for ((m = LIST_FIRST(&p->p_heldmtx)); m != NULL;
1362	    m = LIST_NEXT(m, mtx_held)) {
1363		printf("\t\"%s\" (%p) locked at %s:%d\n",
1364		    m->mtx_description, m,
1365		    m->mtx_witness->w_file, m->mtx_witness->w_line);
1366	}
1367}
1368
1369void
1370witness_save(struct mtx *m, const char **filep, int *linep)
1371{
1372	*filep = m->mtx_witness->w_file;
1373	*linep = m->mtx_witness->w_line;
1374}
1375
1376void
1377witness_restore(struct mtx *m, const char *file, int line)
1378{
1379	m->mtx_witness->w_file = file;
1380	m->mtx_witness->w_line = line;
1381}
1382
1383#endif	/* (defined(MUTEX_DEBUG) && defined(WITNESS)) */
1384