kern_mutex.c revision 148557
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Machine independent bits of mutex implementation.
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD: head/sys/kern/kern_mutex.c 148557 2005-07-30 05:54:30Z ps $");
38
39#include "opt_adaptive_mutexes.h"
40#include "opt_ddb.h"
41#include "opt_mprof.h"
42#include "opt_mutex_wake_all.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/bus.h>
48#include <sys/conf.h>
49#include <sys/kdb.h>
50#include <sys/kernel.h>
51#include <sys/ktr.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/resourcevar.h>
57#include <sys/sched.h>
58#include <sys/sbuf.h>
59#include <sys/sysctl.h>
60#include <sys/turnstile.h>
61#include <sys/vmmeter.h>
62
63#include <machine/atomic.h>
64#include <machine/bus.h>
65#include <machine/clock.h>
66#include <machine/cpu.h>
67
68#include <ddb/ddb.h>
69
70#include <vm/vm.h>
71#include <vm/vm_extern.h>
72
73/*
74 * Force MUTEX_WAKE_ALL for now.
75 * single thread wakeup needs fixes to avoid race conditions with
76 * priority inheritance.
77 */
78#ifndef MUTEX_WAKE_ALL
79#define MUTEX_WAKE_ALL
80#endif
81
82/*
83 * Internal utility macros.
84 */
85#define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
86
87#define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
88	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
89
90/*
91 * Lock classes for sleep and spin mutexes.
92 */
93struct lock_class lock_class_mtx_sleep = {
94	"sleep mutex",
95	LC_SLEEPLOCK | LC_RECURSABLE
96};
97struct lock_class lock_class_mtx_spin = {
98	"spin mutex",
99	LC_SPINLOCK | LC_RECURSABLE
100};
101
102/*
103 * System-wide mutexes
104 */
105struct mtx sched_lock;
106struct mtx Giant;
107
108#ifdef MUTEX_PROFILING
109SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
110SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
111static int mutex_prof_enable = 0;
112SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
113    &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
114
115struct mutex_prof {
116	const char	*name;
117	const char	*file;
118	int		line;
119	uintmax_t	cnt_max;
120	uintmax_t	cnt_tot;
121	uintmax_t	cnt_cur;
122	uintmax_t	cnt_contest_holding;
123	uintmax_t	cnt_contest_locking;
124	struct mutex_prof *next;
125};
126
127/*
128 * mprof_buf is a static pool of profiling records to avoid possible
129 * reentrance of the memory allocation functions.
130 *
131 * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
132 */
133#ifdef MPROF_BUFFERS
134#define NUM_MPROF_BUFFERS	MPROF_BUFFERS
135#else
136#define	NUM_MPROF_BUFFERS	1000
137#endif
138static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
139static int first_free_mprof_buf;
140#ifndef MPROF_HASH_SIZE
141#define	MPROF_HASH_SIZE		1009
142#endif
143#if NUM_MPROF_BUFFERS >= MPROF_HASH_SIZE
144#error MPROF_BUFFERS must be larger than MPROF_HASH_SIZE
145#endif
146static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
147/* SWAG: sbuf size = avg stat. line size * number of locks */
148#define MPROF_SBUF_SIZE		256 * 400
149
150static int mutex_prof_acquisitions;
151SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
152    &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
153static int mutex_prof_records;
154SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
155    &mutex_prof_records, 0, "Number of profiling records");
156static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
157SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
158    &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
159static int mutex_prof_rejected;
160SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
161    &mutex_prof_rejected, 0, "Number of rejected profiling records");
162static int mutex_prof_hashsize = MPROF_HASH_SIZE;
163SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
164    &mutex_prof_hashsize, 0, "Hash size");
165static int mutex_prof_collisions = 0;
166SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
167    &mutex_prof_collisions, 0, "Number of hash collisions");
168
169/*
170 * mprof_mtx protects the profiling buffers and the hash.
171 */
172static struct mtx mprof_mtx;
173MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
174
175static u_int64_t
176nanoseconds(void)
177{
178	struct timespec tv;
179
180	nanotime(&tv);
181	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
182}
183
184static int
185dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
186{
187	struct sbuf *sb;
188	int error, i;
189	static int multiplier = 1;
190
191	if (first_free_mprof_buf == 0)
192		return (SYSCTL_OUT(req, "No locking recorded",
193		    sizeof("No locking recorded")));
194
195retry_sbufops:
196	sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
197	sbuf_printf(sb, "\n%6s %12s %11s %5s %12s %12s %s\n",
198	    "max", "total", "count", "avg", "cnt_hold", "cnt_lock", "name");
199	/*
200	 * XXX this spinlock seems to be by far the largest perpetrator
201	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
202	 * even before I pessimized it further by moving the average
203	 * computation here).
204	 */
205	mtx_lock_spin(&mprof_mtx);
206	for (i = 0; i < first_free_mprof_buf; ++i) {
207		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %12ju %12ju %s:%d (%s)\n",
208		    mprof_buf[i].cnt_max / 1000,
209		    mprof_buf[i].cnt_tot / 1000,
210		    mprof_buf[i].cnt_cur,
211		    mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
212			mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
213		    mprof_buf[i].cnt_contest_holding,
214		    mprof_buf[i].cnt_contest_locking,
215		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
216		if (sbuf_overflowed(sb)) {
217			mtx_unlock_spin(&mprof_mtx);
218			sbuf_delete(sb);
219			multiplier++;
220			goto retry_sbufops;
221		}
222	}
223	mtx_unlock_spin(&mprof_mtx);
224	sbuf_finish(sb);
225	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
226	sbuf_delete(sb);
227	return (error);
228}
229SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
230    NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
231
232static int
233reset_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
234{
235	int error, v;
236
237	if (first_free_mprof_buf == 0)
238		return (0);
239
240	v = 0;
241	error = sysctl_handle_int(oidp, &v, 0, req);
242	if (error)
243		return (error);
244	if (req->newptr == NULL)
245		return (error);
246	if (v == 0)
247		return (0);
248
249	mtx_lock_spin(&mprof_mtx);
250	bzero(mprof_buf, sizeof(*mprof_buf) * first_free_mprof_buf);
251	bzero(mprof_hash, sizeof(struct mtx *) * MPROF_HASH_SIZE);
252	first_free_mprof_buf = 0;
253	mtx_unlock_spin(&mprof_mtx);
254	return (0);
255}
256SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
257    NULL, 0, reset_mutex_prof_stats, "I", "Reset mutex profiling statistics");
258#endif
259
260/*
261 * Function versions of the inlined __mtx_* macros.  These are used by
262 * modules and can also be called from assembly language if needed.
263 */
264void
265_mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
266{
267
268	MPASS(curthread != NULL);
269	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
270	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
271	    file, line));
272	WITNESS_CHECKORDER(&m->mtx_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
273	    file, line);
274	_get_sleep_lock(m, curthread, opts, file, line);
275	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
276	    line);
277	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
278#ifdef MUTEX_PROFILING
279	/* don't reset the timer when/if recursing */
280	if (m->mtx_acqtime == 0) {
281		m->mtx_filename = file;
282		m->mtx_lineno = line;
283		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
284		++mutex_prof_acquisitions;
285	}
286#endif
287}
288
289void
290_mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
291{
292
293	MPASS(curthread != NULL);
294	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
295	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
296	    file, line));
297	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
298	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
299	    line);
300	mtx_assert(m, MA_OWNED);
301#ifdef MUTEX_PROFILING
302	if (m->mtx_acqtime != 0) {
303		static const char *unknown = "(unknown)";
304		struct mutex_prof *mpp;
305		u_int64_t acqtime, now;
306		const char *p, *q;
307		volatile u_int hash;
308
309		now = nanoseconds();
310		acqtime = m->mtx_acqtime;
311		m->mtx_acqtime = 0;
312		if (now <= acqtime)
313			goto out;
314		for (p = m->mtx_filename;
315		    p != NULL && strncmp(p, "../", 3) == 0; p += 3)
316			/* nothing */ ;
317		if (p == NULL || *p == '\0')
318			p = unknown;
319		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
320			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
321		mtx_lock_spin(&mprof_mtx);
322		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
323			if (mpp->line == m->mtx_lineno &&
324			    strcmp(mpp->file, p) == 0)
325				break;
326		if (mpp == NULL) {
327			/* Just exit if we cannot get a trace buffer */
328			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
329				++mutex_prof_rejected;
330				goto unlock;
331			}
332			mpp = &mprof_buf[first_free_mprof_buf++];
333			mpp->name = mtx_name(m);
334			mpp->file = p;
335			mpp->line = m->mtx_lineno;
336			mpp->next = mprof_hash[hash];
337			if (mprof_hash[hash] != NULL)
338				++mutex_prof_collisions;
339			mprof_hash[hash] = mpp;
340			++mutex_prof_records;
341		}
342		/*
343		 * Record if the mutex has been held longer now than ever
344		 * before.
345		 */
346		if (now - acqtime > mpp->cnt_max)
347			mpp->cnt_max = now - acqtime;
348		mpp->cnt_tot += now - acqtime;
349		mpp->cnt_cur++;
350		/*
351		 * There's a small race, really we should cmpxchg
352		 * 0 with the current value, but that would bill
353		 * the contention to the wrong lock instance if
354		 * it followed this also.
355		 */
356		mpp->cnt_contest_holding += m->mtx_contest_holding;
357		m->mtx_contest_holding = 0;
358		mpp->cnt_contest_locking += m->mtx_contest_locking;
359		m->mtx_contest_locking = 0;
360unlock:
361		mtx_unlock_spin(&mprof_mtx);
362	}
363out:
364#endif
365	_rel_sleep_lock(m, curthread, opts, file, line);
366}
367
368void
369_mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
370{
371
372	MPASS(curthread != NULL);
373	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
374	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
375	    m->mtx_object.lo_name, file, line));
376	WITNESS_CHECKORDER(&m->mtx_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
377	    file, line);
378	_get_spin_lock(m, curthread, opts, file, line);
379	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
380	    line);
381	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
382}
383
384void
385_mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
386{
387
388	MPASS(curthread != NULL);
389	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
390	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
391	    m->mtx_object.lo_name, file, line));
392	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
393	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
394	    line);
395	mtx_assert(m, MA_OWNED);
396	_rel_spin_lock(m);
397}
398
399/*
400 * The important part of mtx_trylock{,_flags}()
401 * Tries to acquire lock `m.'  If this function is called on a mutex that
402 * is already owned, it will recursively acquire the lock.
403 */
404int
405_mtx_trylock(struct mtx *m, int opts, const char *file, int line)
406{
407	int rval;
408
409	MPASS(curthread != NULL);
410
411	if (mtx_owned(m) && (m->mtx_object.lo_flags & LO_RECURSABLE) != 0) {
412		m->mtx_recurse++;
413		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
414		rval = 1;
415	} else
416		rval = _obtain_lock(m, (uintptr_t)curthread);
417
418	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
419	if (rval)
420		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
421		    file, line);
422
423	return (rval);
424}
425
426/*
427 * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
428 *
429 * We call this if the lock is either contested (i.e. we need to go to
430 * sleep waiting for it), or if we need to recurse on it.
431 */
432void
433_mtx_lock_sleep(struct mtx *m, uintptr_t tid, int opts, const char *file,
434    int line)
435{
436#if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
437	struct thread *owner;
438#endif
439	uintptr_t v;
440#ifdef KTR
441	int cont_logged = 0;
442#endif
443#ifdef MUTEX_PROFILING
444	int contested;
445#endif
446
447	if (mtx_owned(m)) {
448		KASSERT((m->mtx_object.lo_flags & LO_RECURSABLE) != 0,
449	    ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
450		    m->mtx_object.lo_name, file, line));
451		m->mtx_recurse++;
452		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
453		if (LOCK_LOG_TEST(&m->mtx_object, opts))
454			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
455		return;
456	}
457
458	if (LOCK_LOG_TEST(&m->mtx_object, opts))
459		CTR4(KTR_LOCK,
460		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
461		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
462
463#ifdef MUTEX_PROFILING
464	contested = 0;
465#endif
466	while (!_obtain_lock(m, tid)) {
467#ifdef MUTEX_PROFILING
468		contested = 1;
469		atomic_add_int(&m->mtx_contest_holding, 1);
470#endif
471		turnstile_lock(&m->mtx_object);
472		v = m->mtx_lock;
473
474		/*
475		 * Check if the lock has been released while spinning for
476		 * the turnstile chain lock.
477		 */
478		if (v == MTX_UNOWNED) {
479			turnstile_release(&m->mtx_object);
480			cpu_spinwait();
481			continue;
482		}
483
484#ifdef MUTEX_WAKE_ALL
485		MPASS(v != MTX_CONTESTED);
486#else
487		/*
488		 * The mutex was marked contested on release. This means that
489		 * there are other threads blocked on it.  Grab ownership of
490		 * it and propagate its priority to the current thread if
491		 * necessary.
492		 */
493		if (v == MTX_CONTESTED) {
494			m->mtx_lock = tid | MTX_CONTESTED;
495			turnstile_claim(&m->mtx_object);
496			break;
497		}
498#endif
499
500		/*
501		 * If the mutex isn't already contested and a failure occurs
502		 * setting the contested bit, the mutex was either released
503		 * or the state of the MTX_RECURSED bit changed.
504		 */
505		if ((v & MTX_CONTESTED) == 0 &&
506		    !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
507			turnstile_release(&m->mtx_object);
508			cpu_spinwait();
509			continue;
510		}
511
512#if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
513		/*
514		 * If the current owner of the lock is executing on another
515		 * CPU, spin instead of blocking.
516		 */
517		owner = (struct thread *)(v & MTX_FLAGMASK);
518#ifdef ADAPTIVE_GIANT
519		if (TD_IS_RUNNING(owner)) {
520#else
521		if (m != &Giant && TD_IS_RUNNING(owner)) {
522#endif
523			turnstile_release(&m->mtx_object);
524			while (mtx_owner(m) == owner && TD_IS_RUNNING(owner)) {
525				cpu_spinwait();
526			}
527			continue;
528		}
529#endif	/* SMP && !NO_ADAPTIVE_MUTEXES */
530
531		/*
532		 * We definitely must sleep for this lock.
533		 */
534		mtx_assert(m, MA_NOTOWNED);
535
536#ifdef KTR
537		if (!cont_logged) {
538			CTR6(KTR_CONTENTION,
539			    "contention: %p at %s:%d wants %s, taken by %s:%d",
540			    (void *)tid, file, line, m->mtx_object.lo_name,
541			    WITNESS_FILE(&m->mtx_object),
542			    WITNESS_LINE(&m->mtx_object));
543			cont_logged = 1;
544		}
545#endif
546
547		/*
548		 * Block on the turnstile.
549		 */
550		turnstile_wait(&m->mtx_object, mtx_owner(m));
551	}
552
553#ifdef KTR
554	if (cont_logged) {
555		CTR4(KTR_CONTENTION,
556		    "contention end: %s acquired by %p at %s:%d",
557		    m->mtx_object.lo_name, (void *)tid, file, line);
558	}
559#endif
560#ifdef MUTEX_PROFILING
561	if (contested)
562		m->mtx_contest_locking++;
563	m->mtx_contest_holding = 0;
564#endif
565	return;
566}
567
568#ifdef SMP
569/*
570 * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
571 *
572 * This is only called if we need to actually spin for the lock. Recursion
573 * is handled inline.
574 */
575void
576_mtx_lock_spin(struct mtx *m, uintptr_t tid, int opts, const char *file,
577    int line)
578{
579	int i = 0;
580
581	if (LOCK_LOG_TEST(&m->mtx_object, opts))
582		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
583
584	for (;;) {
585		if (_obtain_lock(m, tid))
586			break;
587
588		/* Give interrupts a chance while we spin. */
589		spinlock_exit();
590		while (m->mtx_lock != MTX_UNOWNED) {
591			if (i++ < 10000000) {
592				cpu_spinwait();
593				continue;
594			}
595			if (i < 60000000)
596				DELAY(1);
597			else if (!kdb_active) {
598				printf("spin lock %s held by %p for > 5 seconds\n",
599				    m->mtx_object.lo_name, (void *)m->mtx_lock);
600#ifdef WITNESS
601				witness_display_spinlock(&m->mtx_object,
602				    mtx_owner(m));
603#endif
604				panic("spin lock held too long");
605			}
606			cpu_spinwait();
607		}
608		spinlock_enter();
609	}
610
611	if (LOCK_LOG_TEST(&m->mtx_object, opts))
612		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
613
614	return;
615}
616#endif /* SMP */
617
618/*
619 * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
620 *
621 * We are only called here if the lock is recursed or contested (i.e. we
622 * need to wake up a blocked thread).
623 */
624void
625_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
626{
627	struct turnstile *ts;
628#ifndef PREEMPTION
629	struct thread *td, *td1;
630#endif
631
632	if (mtx_recursed(m)) {
633		if (--(m->mtx_recurse) == 0)
634			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
635		if (LOCK_LOG_TEST(&m->mtx_object, opts))
636			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
637		return;
638	}
639
640	turnstile_lock(&m->mtx_object);
641	ts = turnstile_lookup(&m->mtx_object);
642	if (LOCK_LOG_TEST(&m->mtx_object, opts))
643		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
644
645#if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
646	if (ts == NULL) {
647		_release_lock_quick(m);
648		if (LOCK_LOG_TEST(&m->mtx_object, opts))
649			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
650		turnstile_release(&m->mtx_object);
651		return;
652	}
653#else
654	MPASS(ts != NULL);
655#endif
656#ifndef PREEMPTION
657	/* XXX */
658	td1 = turnstile_head(ts);
659#endif
660#ifdef MUTEX_WAKE_ALL
661	turnstile_broadcast(ts);
662	_release_lock_quick(m);
663#else
664	if (turnstile_signal(ts)) {
665		_release_lock_quick(m);
666		if (LOCK_LOG_TEST(&m->mtx_object, opts))
667			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
668	} else {
669		m->mtx_lock = MTX_CONTESTED;
670		if (LOCK_LOG_TEST(&m->mtx_object, opts))
671			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p still contested",
672			    m);
673	}
674#endif
675	turnstile_unpend(ts);
676
677#ifndef PREEMPTION
678	/*
679	 * XXX: This is just a hack until preemption is done.  However,
680	 * once preemption is done we need to either wrap the
681	 * turnstile_signal() and release of the actual lock in an
682	 * extra critical section or change the preemption code to
683	 * always just set a flag and never do instant-preempts.
684	 */
685	td = curthread;
686	if (td->td_critnest > 0 || td1->td_priority >= td->td_priority)
687		return;
688	mtx_lock_spin(&sched_lock);
689	if (!TD_IS_RUNNING(td1)) {
690#ifdef notyet
691		if (td->td_ithd != NULL) {
692			struct ithd *it = td->td_ithd;
693
694			if (it->it_interrupted) {
695				if (LOCK_LOG_TEST(&m->mtx_object, opts))
696					CTR2(KTR_LOCK,
697				    "_mtx_unlock_sleep: %p interrupted %p",
698					    it, it->it_interrupted);
699				intr_thd_fixup(it);
700			}
701		}
702#endif
703		if (LOCK_LOG_TEST(&m->mtx_object, opts))
704			CTR2(KTR_LOCK,
705			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
706			    (void *)m->mtx_lock);
707
708		mi_switch(SW_INVOL, NULL);
709		if (LOCK_LOG_TEST(&m->mtx_object, opts))
710			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
711			    m, (void *)m->mtx_lock);
712	}
713	mtx_unlock_spin(&sched_lock);
714#endif
715
716	return;
717}
718
719/*
720 * All the unlocking of MTX_SPIN locks is done inline.
721 * See the _rel_spin_lock() macro for the details.
722 */
723
724/*
725 * The backing function for the INVARIANTS-enabled mtx_assert()
726 */
727#ifdef INVARIANT_SUPPORT
728void
729_mtx_assert(struct mtx *m, int what, const char *file, int line)
730{
731
732	if (panicstr != NULL || dumping)
733		return;
734	switch (what) {
735	case MA_OWNED:
736	case MA_OWNED | MA_RECURSED:
737	case MA_OWNED | MA_NOTRECURSED:
738		if (!mtx_owned(m))
739			panic("mutex %s not owned at %s:%d",
740			    m->mtx_object.lo_name, file, line);
741		if (mtx_recursed(m)) {
742			if ((what & MA_NOTRECURSED) != 0)
743				panic("mutex %s recursed at %s:%d",
744				    m->mtx_object.lo_name, file, line);
745		} else if ((what & MA_RECURSED) != 0) {
746			panic("mutex %s unrecursed at %s:%d",
747			    m->mtx_object.lo_name, file, line);
748		}
749		break;
750	case MA_NOTOWNED:
751		if (mtx_owned(m))
752			panic("mutex %s owned at %s:%d",
753			    m->mtx_object.lo_name, file, line);
754		break;
755	default:
756		panic("unknown mtx_assert at %s:%d", file, line);
757	}
758}
759#endif
760
761/*
762 * The MUTEX_DEBUG-enabled mtx_validate()
763 *
764 * Most of these checks have been moved off into the LO_INITIALIZED flag
765 * maintained by the witness code.
766 */
767#ifdef MUTEX_DEBUG
768
769void	mtx_validate(struct mtx *);
770
771void
772mtx_validate(struct mtx *m)
773{
774
775/*
776 * XXX: When kernacc() does not require Giant we can reenable this check
777 */
778#ifdef notyet
779/*
780 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
781 * we can re-enable the kernacc() checks.
782 */
783#ifndef __alpha__
784	/*
785	 * Can't call kernacc() from early init386(), especially when
786	 * initializing Giant mutex, because some stuff in kernacc()
787	 * requires Giant itself.
788	 */
789	if (!cold)
790		if (!kernacc((caddr_t)m, sizeof(m),
791		    VM_PROT_READ | VM_PROT_WRITE))
792			panic("Can't read and write to mutex %p", m);
793#endif
794#endif
795}
796#endif
797
798/*
799 * General init routine used by the MTX_SYSINIT() macro.
800 */
801void
802mtx_sysinit(void *arg)
803{
804	struct mtx_args *margs = arg;
805
806	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
807}
808
809/*
810 * Mutex initialization routine; initialize lock `m' of type contained in
811 * `opts' with options contained in `opts' and name `name.'  The optional
812 * lock type `type' is used as a general lock category name for use with
813 * witness.
814 */
815void
816mtx_init(struct mtx *m, const char *name, const char *type, int opts)
817{
818	struct lock_object *lock;
819
820	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
821	    MTX_NOWITNESS | MTX_DUPOK)) == 0);
822
823#ifdef MUTEX_DEBUG
824	/* Diagnostic and error correction */
825	mtx_validate(m);
826#endif
827
828	lock = &m->mtx_object;
829	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
830	    ("mutex \"%s\" %p already initialized", name, m));
831	bzero(m, sizeof(*m));
832	if (opts & MTX_SPIN)
833		lock->lo_class = &lock_class_mtx_spin;
834	else
835		lock->lo_class = &lock_class_mtx_sleep;
836	lock->lo_name = name;
837	lock->lo_type = type != NULL ? type : name;
838	if (opts & MTX_QUIET)
839		lock->lo_flags = LO_QUIET;
840	if (opts & MTX_RECURSE)
841		lock->lo_flags |= LO_RECURSABLE;
842	if ((opts & MTX_NOWITNESS) == 0)
843		lock->lo_flags |= LO_WITNESS;
844	if (opts & MTX_DUPOK)
845		lock->lo_flags |= LO_DUPOK;
846
847	m->mtx_lock = MTX_UNOWNED;
848
849	LOCK_LOG_INIT(lock, opts);
850
851	WITNESS_INIT(lock);
852}
853
854/*
855 * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
856 * passed in as a flag here because if the corresponding mtx_init() was
857 * called with MTX_QUIET set, then it will already be set in the mutex's
858 * flags.
859 */
860void
861mtx_destroy(struct mtx *m)
862{
863
864	LOCK_LOG_DESTROY(&m->mtx_object, 0);
865
866	if (!mtx_owned(m))
867		MPASS(mtx_unowned(m));
868	else {
869		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
870
871		/* Tell witness this isn't locked to make it happy. */
872		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
873		    __LINE__);
874	}
875
876	WITNESS_DESTROY(&m->mtx_object);
877}
878
879/*
880 * Intialize the mutex code and system mutexes.  This is called from the MD
881 * startup code prior to mi_startup().  The per-CPU data space needs to be
882 * setup before this is called.
883 */
884void
885mutex_init(void)
886{
887
888	/* Setup thread0 so that mutexes work. */
889	LIST_INIT(&thread0.td_contested);
890
891	/* Setup turnstiles so that sleep mutexes work. */
892	init_turnstiles();
893
894	/*
895	 * Initialize mutexes.
896	 */
897	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
898	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
899	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
900	mtx_lock(&Giant);
901}
902