kern_mutex.c revision 116182
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Machine independent bits of mutex implementation.
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD: head/sys/kern/kern_mutex.c 116182 2003-06-11 00:56:59Z obrien $");
38
39#include "opt_adaptive_mutexes.h"
40#include "opt_ddb.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/bus.h>
45#include <sys/kernel.h>
46#include <sys/ktr.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/sbuf.h>
54#include <sys/sysctl.h>
55#include <sys/vmmeter.h>
56
57#include <machine/atomic.h>
58#include <machine/bus.h>
59#include <machine/clock.h>
60#include <machine/cpu.h>
61
62#include <ddb/ddb.h>
63
64#include <vm/vm.h>
65#include <vm/vm_extern.h>
66
67/*
68 * Internal utility macros.
69 */
70#define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
71
72#define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
73	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
74
75/*
76 * Lock classes for sleep and spin mutexes.
77 */
78struct lock_class lock_class_mtx_sleep = {
79	"sleep mutex",
80	LC_SLEEPLOCK | LC_RECURSABLE
81};
82struct lock_class lock_class_mtx_spin = {
83	"spin mutex",
84	LC_SPINLOCK | LC_RECURSABLE
85};
86
87/*
88 * System-wide mutexes
89 */
90struct mtx sched_lock;
91struct mtx Giant;
92
93/*
94 * Prototypes for non-exported routines.
95 */
96static void	propagate_priority(struct thread *);
97
98static void
99propagate_priority(struct thread *td)
100{
101	int pri = td->td_priority;
102	struct mtx *m = td->td_blocked;
103
104	mtx_assert(&sched_lock, MA_OWNED);
105	for (;;) {
106		struct thread *td1;
107
108		td = mtx_owner(m);
109
110		if (td == NULL) {
111			/*
112			 * This really isn't quite right. Really
113			 * ought to bump priority of thread that
114			 * next acquires the mutex.
115			 */
116			MPASS(m->mtx_lock == MTX_CONTESTED);
117			return;
118		}
119
120		MPASS(td->td_proc != NULL);
121		MPASS(td->td_proc->p_magic == P_MAGIC);
122		KASSERT(!TD_IS_SLEEPING(td), ("sleeping thread owns a mutex"));
123		if (td->td_priority <= pri) /* lower is higher priority */
124			return;
125
126
127		/*
128		 * If lock holder is actually running, just bump priority.
129		 */
130		if (TD_IS_RUNNING(td)) {
131			td->td_priority = pri;
132			return;
133		}
134
135#ifndef SMP
136		/*
137		 * For UP, we check to see if td is curthread (this shouldn't
138		 * ever happen however as it would mean we are in a deadlock.)
139		 */
140		KASSERT(td != curthread, ("Deadlock detected"));
141#endif
142
143		/*
144		 * If on run queue move to new run queue, and quit.
145		 * XXXKSE this gets a lot more complicated under threads
146		 * but try anyhow.
147		 */
148		if (TD_ON_RUNQ(td)) {
149			MPASS(td->td_blocked == NULL);
150			sched_prio(td, pri);
151			return;
152		}
153		/*
154		 * Adjust for any other cases.
155		 */
156		td->td_priority = pri;
157
158		/*
159		 * If we aren't blocked on a mutex, we should be.
160		 */
161		KASSERT(TD_ON_LOCK(td), (
162		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
163		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
164		    m->mtx_object.lo_name));
165
166		/*
167		 * Pick up the mutex that td is blocked on.
168		 */
169		m = td->td_blocked;
170		MPASS(m != NULL);
171
172		/*
173		 * Check if the thread needs to be moved up on
174		 * the blocked chain
175		 */
176		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
177			continue;
178		}
179
180		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
181		if (td1->td_priority <= pri) {
182			continue;
183		}
184
185		/*
186		 * Remove thread from blocked chain and determine where
187		 * it should be moved up to.  Since we know that td1 has
188		 * a lower priority than td, we know that at least one
189		 * thread in the chain has a lower priority and that
190		 * td1 will thus not be NULL after the loop.
191		 */
192		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
193		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
194			MPASS(td1->td_proc->p_magic == P_MAGIC);
195			if (td1->td_priority > pri)
196				break;
197		}
198
199		MPASS(td1 != NULL);
200		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
201		CTR4(KTR_LOCK,
202		    "propagate_priority: p %p moved before %p on [%p] %s",
203		    td, td1, m, m->mtx_object.lo_name);
204	}
205}
206
207#ifdef MUTEX_PROFILING
208SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
209SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
210static int mutex_prof_enable = 0;
211SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
212    &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
213
214struct mutex_prof {
215	const char	*name;
216	const char	*file;
217	int		line;
218	uintmax_t	cnt_max;
219	uintmax_t	cnt_tot;
220	uintmax_t	cnt_cur;
221	struct mutex_prof *next;
222};
223
224/*
225 * mprof_buf is a static pool of profiling records to avoid possible
226 * reentrance of the memory allocation functions.
227 *
228 * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
229 */
230#define	NUM_MPROF_BUFFERS	1000
231static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
232static int first_free_mprof_buf;
233#define	MPROF_HASH_SIZE		1009
234static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
235/* SWAG: sbuf size = avg stat. line size * number of locks */
236#define MPROF_SBUF_SIZE		256 * 400
237
238static int mutex_prof_acquisitions;
239SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
240    &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
241static int mutex_prof_records;
242SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
243    &mutex_prof_records, 0, "Number of profiling records");
244static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
245SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
246    &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
247static int mutex_prof_rejected;
248SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
249    &mutex_prof_rejected, 0, "Number of rejected profiling records");
250static int mutex_prof_hashsize = MPROF_HASH_SIZE;
251SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
252    &mutex_prof_hashsize, 0, "Hash size");
253static int mutex_prof_collisions = 0;
254SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
255    &mutex_prof_collisions, 0, "Number of hash collisions");
256
257/*
258 * mprof_mtx protects the profiling buffers and the hash.
259 */
260static struct mtx mprof_mtx;
261MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
262
263static u_int64_t
264nanoseconds(void)
265{
266	struct timespec tv;
267
268	nanotime(&tv);
269	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
270}
271
272static int
273dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
274{
275	struct sbuf *sb;
276	int error, i;
277	static int multiplier = 1;
278
279	if (first_free_mprof_buf == 0)
280		return (SYSCTL_OUT(req, "No locking recorded",
281		    sizeof("No locking recorded")));
282
283retry_sbufops:
284	sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
285	sbuf_printf(sb, "%6s %12s %11s %5s %s\n",
286	    "max", "total", "count", "avg", "name");
287	/*
288	 * XXX this spinlock seems to be by far the largest perpetrator
289	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
290	 * even before I pessimized it further by moving the average
291	 * computation here).
292	 */
293	mtx_lock_spin(&mprof_mtx);
294	for (i = 0; i < first_free_mprof_buf; ++i) {
295		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %s:%d (%s)\n",
296		    mprof_buf[i].cnt_max / 1000,
297		    mprof_buf[i].cnt_tot / 1000,
298		    mprof_buf[i].cnt_cur,
299		    mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
300			mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
301		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
302		if (sbuf_overflowed(sb)) {
303			mtx_unlock_spin(&mprof_mtx);
304			sbuf_delete(sb);
305			multiplier++;
306			goto retry_sbufops;
307		}
308	}
309	mtx_unlock_spin(&mprof_mtx);
310	sbuf_finish(sb);
311	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
312	sbuf_delete(sb);
313	return (error);
314}
315SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
316    NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
317#endif
318
319/*
320 * Function versions of the inlined __mtx_* macros.  These are used by
321 * modules and can also be called from assembly language if needed.
322 */
323void
324_mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
325{
326
327	MPASS(curthread != NULL);
328	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
329	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
330	    file, line));
331	_get_sleep_lock(m, curthread, opts, file, line);
332	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
333	    line);
334	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
335#ifdef MUTEX_PROFILING
336	/* don't reset the timer when/if recursing */
337	if (m->mtx_acqtime == 0) {
338		m->mtx_filename = file;
339		m->mtx_lineno = line;
340		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
341		++mutex_prof_acquisitions;
342	}
343#endif
344}
345
346void
347_mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
348{
349
350	MPASS(curthread != NULL);
351	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
352	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
353	    file, line));
354	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
355	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
356	    line);
357	mtx_assert(m, MA_OWNED);
358#ifdef MUTEX_PROFILING
359	if (m->mtx_acqtime != 0) {
360		static const char *unknown = "(unknown)";
361		struct mutex_prof *mpp;
362		u_int64_t acqtime, now;
363		const char *p, *q;
364		volatile u_int hash;
365
366		now = nanoseconds();
367		acqtime = m->mtx_acqtime;
368		m->mtx_acqtime = 0;
369		if (now <= acqtime)
370			goto out;
371		for (p = m->mtx_filename;
372		    p != NULL && strncmp(p, "../", 3) == 0; p += 3)
373			/* nothing */ ;
374		if (p == NULL || *p == '\0')
375			p = unknown;
376		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
377			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
378		mtx_lock_spin(&mprof_mtx);
379		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
380			if (mpp->line == m->mtx_lineno &&
381			    strcmp(mpp->file, p) == 0)
382				break;
383		if (mpp == NULL) {
384			/* Just exit if we cannot get a trace buffer */
385			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
386				++mutex_prof_rejected;
387				goto unlock;
388			}
389			mpp = &mprof_buf[first_free_mprof_buf++];
390			mpp->name = mtx_name(m);
391			mpp->file = p;
392			mpp->line = m->mtx_lineno;
393			mpp->next = mprof_hash[hash];
394			if (mprof_hash[hash] != NULL)
395				++mutex_prof_collisions;
396			mprof_hash[hash] = mpp;
397			++mutex_prof_records;
398		}
399		/*
400		 * Record if the mutex has been held longer now than ever
401		 * before.
402		 */
403		if (now - acqtime > mpp->cnt_max)
404			mpp->cnt_max = now - acqtime;
405		mpp->cnt_tot += now - acqtime;
406		mpp->cnt_cur++;
407unlock:
408		mtx_unlock_spin(&mprof_mtx);
409	}
410out:
411#endif
412	_rel_sleep_lock(m, curthread, opts, file, line);
413}
414
415void
416_mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
417{
418
419	MPASS(curthread != NULL);
420	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
421	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
422	    m->mtx_object.lo_name, file, line));
423#if defined(SMP) || LOCK_DEBUG > 0 || 1
424	_get_spin_lock(m, curthread, opts, file, line);
425#else
426	critical_enter();
427#endif
428	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
429	    line);
430	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
431}
432
433void
434_mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
435{
436
437	MPASS(curthread != NULL);
438	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
439	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
440	    m->mtx_object.lo_name, file, line));
441	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
442	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
443	    line);
444	mtx_assert(m, MA_OWNED);
445#if defined(SMP) || LOCK_DEBUG > 0 || 1
446	_rel_spin_lock(m);
447#else
448	critical_exit();
449#endif
450}
451
452/*
453 * The important part of mtx_trylock{,_flags}()
454 * Tries to acquire lock `m.' We do NOT handle recursion here.  If this
455 * function is called on a recursed mutex, it will return failure and
456 * will not recursively acquire the lock.  You are expected to know what
457 * you are doing.
458 */
459int
460_mtx_trylock(struct mtx *m, int opts, const char *file, int line)
461{
462	int rval;
463
464	MPASS(curthread != NULL);
465
466	rval = _obtain_lock(m, curthread);
467
468	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
469	if (rval)
470		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
471		    file, line);
472
473	return (rval);
474}
475
476/*
477 * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
478 *
479 * We call this if the lock is either contested (i.e. we need to go to
480 * sleep waiting for it), or if we need to recurse on it.
481 */
482void
483_mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
484{
485	struct thread *td = curthread;
486	struct thread *td1;
487#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
488	struct thread *owner;
489#endif
490	uintptr_t v;
491#ifdef KTR
492	int cont_logged = 0;
493#endif
494
495	if (mtx_owned(m)) {
496		m->mtx_recurse++;
497		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
498		if (LOCK_LOG_TEST(&m->mtx_object, opts))
499			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
500		return;
501	}
502
503	if (LOCK_LOG_TEST(&m->mtx_object, opts))
504		CTR4(KTR_LOCK,
505		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
506		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
507
508	while (!_obtain_lock(m, td)) {
509
510		mtx_lock_spin(&sched_lock);
511		v = m->mtx_lock;
512
513		/*
514		 * Check if the lock has been released while spinning for
515		 * the sched_lock.
516		 */
517		if (v == MTX_UNOWNED) {
518			mtx_unlock_spin(&sched_lock);
519#ifdef __i386__
520			ia32_pause();
521#endif
522			continue;
523		}
524
525		/*
526		 * The mutex was marked contested on release. This means that
527		 * there are threads blocked on it.
528		 */
529		if (v == MTX_CONTESTED) {
530			td1 = TAILQ_FIRST(&m->mtx_blocked);
531			MPASS(td1 != NULL);
532			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
533
534			if (td1->td_priority < td->td_priority)
535				td->td_priority = td1->td_priority;
536			mtx_unlock_spin(&sched_lock);
537			return;
538		}
539
540		/*
541		 * If the mutex isn't already contested and a failure occurs
542		 * setting the contested bit, the mutex was either released
543		 * or the state of the MTX_RECURSED bit changed.
544		 */
545		if ((v & MTX_CONTESTED) == 0 &&
546		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
547			(void *)(v | MTX_CONTESTED))) {
548			mtx_unlock_spin(&sched_lock);
549#ifdef __i386__
550			ia32_pause();
551#endif
552			continue;
553		}
554
555#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
556		/*
557		 * If the current owner of the lock is executing on another
558		 * CPU, spin instead of blocking.
559		 */
560		owner = (struct thread *)(v & MTX_FLAGMASK);
561		if (m != &Giant && TD_IS_RUNNING(owner)) {
562			mtx_unlock_spin(&sched_lock);
563			while (mtx_owner(m) == owner && TD_IS_RUNNING(owner)) {
564#ifdef __i386__
565				ia32_pause();
566#endif
567			}
568			continue;
569		}
570#endif	/* SMP && ADAPTIVE_MUTEXES */
571
572		/*
573		 * We definitely must sleep for this lock.
574		 */
575		mtx_assert(m, MA_NOTOWNED);
576
577#ifdef notyet
578		/*
579		 * If we're borrowing an interrupted thread's VM context, we
580		 * must clean up before going to sleep.
581		 */
582		if (td->td_ithd != NULL) {
583			struct ithd *it = td->td_ithd;
584
585			if (it->it_interrupted) {
586				if (LOCK_LOG_TEST(&m->mtx_object, opts))
587					CTR2(KTR_LOCK,
588				    "_mtx_lock_sleep: %p interrupted %p",
589					    it, it->it_interrupted);
590				intr_thd_fixup(it);
591			}
592		}
593#endif
594
595		/*
596		 * Put us on the list of threads blocked on this mutex.
597		 */
598		if (TAILQ_EMPTY(&m->mtx_blocked)) {
599			td1 = mtx_owner(m);
600			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
601			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
602		} else {
603			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
604				if (td1->td_priority > td->td_priority)
605					break;
606			if (td1)
607				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
608			else
609				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
610		}
611#ifdef KTR
612		if (!cont_logged) {
613			CTR6(KTR_CONTENTION,
614			    "contention: %p at %s:%d wants %s, taken by %s:%d",
615			    td, file, line, m->mtx_object.lo_name,
616			    WITNESS_FILE(&m->mtx_object),
617			    WITNESS_LINE(&m->mtx_object));
618			cont_logged = 1;
619		}
620#endif
621
622		/*
623		 * Save who we're blocked on.
624		 */
625		td->td_blocked = m;
626		td->td_lockname = m->mtx_object.lo_name;
627		TD_SET_LOCK(td);
628		propagate_priority(td);
629
630		if (LOCK_LOG_TEST(&m->mtx_object, opts))
631			CTR3(KTR_LOCK,
632			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
633			    m->mtx_object.lo_name);
634
635		td->td_proc->p_stats->p_ru.ru_nvcsw++;
636		mi_switch();
637
638		if (LOCK_LOG_TEST(&m->mtx_object, opts))
639			CTR3(KTR_LOCK,
640			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
641			  td, m, m->mtx_object.lo_name);
642
643		mtx_unlock_spin(&sched_lock);
644	}
645
646#ifdef KTR
647	if (cont_logged) {
648		CTR4(KTR_CONTENTION,
649		    "contention end: %s acquired by %p at %s:%d",
650		    m->mtx_object.lo_name, td, file, line);
651	}
652#endif
653	return;
654}
655
656/*
657 * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
658 *
659 * This is only called if we need to actually spin for the lock. Recursion
660 * is handled inline.
661 */
662void
663_mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
664{
665	int i = 0;
666
667	if (LOCK_LOG_TEST(&m->mtx_object, opts))
668		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
669
670	for (;;) {
671		if (_obtain_lock(m, curthread))
672			break;
673
674		/* Give interrupts a chance while we spin. */
675		critical_exit();
676		while (m->mtx_lock != MTX_UNOWNED) {
677			if (i++ < 10000000) {
678#ifdef __i386__
679				ia32_pause();
680#endif
681				continue;
682			}
683			if (i < 60000000)
684				DELAY(1);
685#ifdef DDB
686			else if (!db_active)
687#else
688			else
689#endif
690				panic("spin lock %s held by %p for > 5 seconds",
691				    m->mtx_object.lo_name, (void *)m->mtx_lock);
692#ifdef __i386__
693			ia32_pause();
694#endif
695		}
696		critical_enter();
697	}
698
699	if (LOCK_LOG_TEST(&m->mtx_object, opts))
700		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
701
702	return;
703}
704
705/*
706 * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
707 *
708 * We are only called here if the lock is recursed or contested (i.e. we
709 * need to wake up a blocked thread).
710 */
711void
712_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
713{
714	struct thread *td, *td1;
715	struct mtx *m1;
716	int pri;
717
718	td = curthread;
719
720	if (mtx_recursed(m)) {
721		if (--(m->mtx_recurse) == 0)
722			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
723		if (LOCK_LOG_TEST(&m->mtx_object, opts))
724			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
725		return;
726	}
727
728	mtx_lock_spin(&sched_lock);
729	if (LOCK_LOG_TEST(&m->mtx_object, opts))
730		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
731
732	td1 = TAILQ_FIRST(&m->mtx_blocked);
733#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
734	if (td1 == NULL) {
735		_release_lock_quick(m);
736		if (LOCK_LOG_TEST(&m->mtx_object, opts))
737			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
738		mtx_unlock_spin(&sched_lock);
739		return;
740	}
741#endif
742	MPASS(td->td_proc->p_magic == P_MAGIC);
743	MPASS(td1->td_proc->p_magic == P_MAGIC);
744
745	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
746
747	if (TAILQ_EMPTY(&m->mtx_blocked)) {
748		LIST_REMOVE(m, mtx_contested);
749		_release_lock_quick(m);
750		if (LOCK_LOG_TEST(&m->mtx_object, opts))
751			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
752	} else
753		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
754
755	pri = PRI_MAX;
756	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
757		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
758		if (cp < pri)
759			pri = cp;
760	}
761
762	if (pri > td->td_base_pri)
763		pri = td->td_base_pri;
764	td->td_priority = pri;
765
766	if (LOCK_LOG_TEST(&m->mtx_object, opts))
767		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
768		    m, td1);
769
770	td1->td_blocked = NULL;
771	TD_CLR_LOCK(td1);
772	if (!TD_CAN_RUN(td1)) {
773		mtx_unlock_spin(&sched_lock);
774		return;
775	}
776	setrunqueue(td1);
777
778	if (td->td_critnest == 1 && td1->td_priority < pri) {
779#ifdef notyet
780		if (td->td_ithd != NULL) {
781			struct ithd *it = td->td_ithd;
782
783			if (it->it_interrupted) {
784				if (LOCK_LOG_TEST(&m->mtx_object, opts))
785					CTR2(KTR_LOCK,
786				    "_mtx_unlock_sleep: %p interrupted %p",
787					    it, it->it_interrupted);
788				intr_thd_fixup(it);
789			}
790		}
791#endif
792		if (LOCK_LOG_TEST(&m->mtx_object, opts))
793			CTR2(KTR_LOCK,
794			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
795			    (void *)m->mtx_lock);
796
797		td->td_proc->p_stats->p_ru.ru_nivcsw++;
798		mi_switch();
799		if (LOCK_LOG_TEST(&m->mtx_object, opts))
800			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
801			    m, (void *)m->mtx_lock);
802	}
803
804	mtx_unlock_spin(&sched_lock);
805
806	return;
807}
808
809/*
810 * All the unlocking of MTX_SPIN locks is done inline.
811 * See the _rel_spin_lock() macro for the details.
812 */
813
814/*
815 * The backing function for the INVARIANTS-enabled mtx_assert()
816 */
817#ifdef INVARIANT_SUPPORT
818void
819_mtx_assert(struct mtx *m, int what, const char *file, int line)
820{
821
822	if (panicstr != NULL)
823		return;
824	switch (what) {
825	case MA_OWNED:
826	case MA_OWNED | MA_RECURSED:
827	case MA_OWNED | MA_NOTRECURSED:
828		if (!mtx_owned(m))
829			panic("mutex %s not owned at %s:%d",
830			    m->mtx_object.lo_name, file, line);
831		if (mtx_recursed(m)) {
832			if ((what & MA_NOTRECURSED) != 0)
833				panic("mutex %s recursed at %s:%d",
834				    m->mtx_object.lo_name, file, line);
835		} else if ((what & MA_RECURSED) != 0) {
836			panic("mutex %s unrecursed at %s:%d",
837			    m->mtx_object.lo_name, file, line);
838		}
839		break;
840	case MA_NOTOWNED:
841		if (mtx_owned(m))
842			panic("mutex %s owned at %s:%d",
843			    m->mtx_object.lo_name, file, line);
844		break;
845	default:
846		panic("unknown mtx_assert at %s:%d", file, line);
847	}
848}
849#endif
850
851/*
852 * The MUTEX_DEBUG-enabled mtx_validate()
853 *
854 * Most of these checks have been moved off into the LO_INITIALIZED flag
855 * maintained by the witness code.
856 */
857#ifdef MUTEX_DEBUG
858
859void	mtx_validate(struct mtx *);
860
861void
862mtx_validate(struct mtx *m)
863{
864
865/*
866 * XXX: When kernacc() does not require Giant we can reenable this check
867 */
868#ifdef notyet
869/*
870 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
871 * we can re-enable the kernacc() checks.
872 */
873#ifndef __alpha__
874	/*
875	 * Can't call kernacc() from early init386(), especially when
876	 * initializing Giant mutex, because some stuff in kernacc()
877	 * requires Giant itself.
878	 */
879	if (!cold)
880		if (!kernacc((caddr_t)m, sizeof(m),
881		    VM_PROT_READ | VM_PROT_WRITE))
882			panic("Can't read and write to mutex %p", m);
883#endif
884#endif
885}
886#endif
887
888/*
889 * General init routine used by the MTX_SYSINIT() macro.
890 */
891void
892mtx_sysinit(void *arg)
893{
894	struct mtx_args *margs = arg;
895
896	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
897}
898
899/*
900 * Mutex initialization routine; initialize lock `m' of type contained in
901 * `opts' with options contained in `opts' and name `name.'  The optional
902 * lock type `type' is used as a general lock category name for use with
903 * witness.
904 */
905void
906mtx_init(struct mtx *m, const char *name, const char *type, int opts)
907{
908	struct lock_object *lock;
909
910	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
911	    MTX_NOWITNESS | MTX_DUPOK)) == 0);
912
913#ifdef MUTEX_DEBUG
914	/* Diagnostic and error correction */
915	mtx_validate(m);
916#endif
917
918	lock = &m->mtx_object;
919	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
920	    ("mutex \"%s\" %p already initialized", name, m));
921	bzero(m, sizeof(*m));
922	if (opts & MTX_SPIN)
923		lock->lo_class = &lock_class_mtx_spin;
924	else
925		lock->lo_class = &lock_class_mtx_sleep;
926	lock->lo_name = name;
927	lock->lo_type = type != NULL ? type : name;
928	if (opts & MTX_QUIET)
929		lock->lo_flags = LO_QUIET;
930	if (opts & MTX_RECURSE)
931		lock->lo_flags |= LO_RECURSABLE;
932	if ((opts & MTX_NOWITNESS) == 0)
933		lock->lo_flags |= LO_WITNESS;
934	if (opts & MTX_DUPOK)
935		lock->lo_flags |= LO_DUPOK;
936
937	m->mtx_lock = MTX_UNOWNED;
938	TAILQ_INIT(&m->mtx_blocked);
939
940	LOCK_LOG_INIT(lock, opts);
941
942	WITNESS_INIT(lock);
943}
944
945/*
946 * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
947 * passed in as a flag here because if the corresponding mtx_init() was
948 * called with MTX_QUIET set, then it will already be set in the mutex's
949 * flags.
950 */
951void
952mtx_destroy(struct mtx *m)
953{
954
955	LOCK_LOG_DESTROY(&m->mtx_object, 0);
956
957	if (!mtx_owned(m))
958		MPASS(mtx_unowned(m));
959	else {
960		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
961
962		/* Tell witness this isn't locked to make it happy. */
963		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
964		    __LINE__);
965	}
966
967	WITNESS_DESTROY(&m->mtx_object);
968}
969
970/*
971 * Intialize the mutex code and system mutexes.  This is called from the MD
972 * startup code prior to mi_startup().  The per-CPU data space needs to be
973 * setup before this is called.
974 */
975void
976mutex_init(void)
977{
978
979	/* Setup thread0 so that mutexes work. */
980	LIST_INIT(&thread0.td_contested);
981
982	/*
983	 * Initialize mutexes.
984	 */
985	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
986	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
987	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
988	mtx_lock(&Giant);
989}
990