kern_mutex.c revision 104964
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 * $FreeBSD: head/sys/kern/kern_mutex.c 104964 2002-10-12 05:32:24Z jeff $
31 */
32
33/*
34 * Machine independent bits of mutex implementation.
35 */
36
37#include "opt_adaptive_mutexes.h"
38#include "opt_ddb.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/ktr.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mutex.h>
48#include <sys/proc.h>
49#include <sys/resourcevar.h>
50#include <sys/sched.h>
51#include <sys/sbuf.h>
52#include <sys/stdint.h>
53#include <sys/sysctl.h>
54#include <sys/vmmeter.h>
55
56#include <machine/atomic.h>
57#include <machine/bus.h>
58#include <machine/clock.h>
59#include <machine/cpu.h>
60
61#include <ddb/ddb.h>
62
63#include <vm/vm.h>
64#include <vm/vm_extern.h>
65
66/*
67 * Internal utility macros.
68 */
69#define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
70
71#define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
72	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
73
74/* XXXKSE This test will change. */
75#define	thread_running(td)						\
76	((td)->td_kse != NULL && (td)->td_kse->ke_oncpu != NOCPU)
77
78/*
79 * Lock classes for sleep and spin mutexes.
80 */
81struct lock_class lock_class_mtx_sleep = {
82	"sleep mutex",
83	LC_SLEEPLOCK | LC_RECURSABLE
84};
85struct lock_class lock_class_mtx_spin = {
86	"spin mutex",
87	LC_SPINLOCK | LC_RECURSABLE
88};
89
90/*
91 * System-wide mutexes
92 */
93struct mtx sched_lock;
94struct mtx Giant;
95
96/*
97 * Prototypes for non-exported routines.
98 */
99static void	propagate_priority(struct thread *);
100
101static void
102propagate_priority(struct thread *td)
103{
104	int pri = td->td_priority;
105	struct mtx *m = td->td_blocked;
106
107	mtx_assert(&sched_lock, MA_OWNED);
108	for (;;) {
109		struct thread *td1;
110
111		td = mtx_owner(m);
112
113		if (td == NULL) {
114			/*
115			 * This really isn't quite right. Really
116			 * ought to bump priority of thread that
117			 * next acquires the mutex.
118			 */
119			MPASS(m->mtx_lock == MTX_CONTESTED);
120			return;
121		}
122
123		MPASS(td->td_proc != NULL);
124		MPASS(td->td_proc->p_magic == P_MAGIC);
125		KASSERT(!TD_IS_SLEEPING(td), ("sleeping thread owns a mutex"));
126		if (td->td_priority <= pri) /* lower is higher priority */
127			return;
128
129
130		/*
131		 * If lock holder is actually running, just bump priority.
132		 */
133		if (TD_IS_RUNNING(td)) {
134			td->td_priority = pri;
135			return;
136		}
137
138#ifndef SMP
139		/*
140		 * For UP, we check to see if td is curthread (this shouldn't
141		 * ever happen however as it would mean we are in a deadlock.)
142		 */
143		KASSERT(td != curthread, ("Deadlock detected"));
144#endif
145
146		/*
147		 * If on run queue move to new run queue, and quit.
148		 * XXXKSE this gets a lot more complicated under threads
149		 * but try anyhow.
150		 */
151		if (TD_ON_RUNQ(td)) {
152			MPASS(td->td_blocked == NULL);
153			sched_prio(td, pri);
154			return;
155		}
156		/*
157		 * Adjust for any other cases.
158		 */
159		td->td_priority = pri;
160
161		/*
162		 * If we aren't blocked on a mutex, we should be.
163		 */
164		KASSERT(TD_ON_LOCK(td), (
165		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
166		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
167		    m->mtx_object.lo_name));
168
169		/*
170		 * Pick up the mutex that td is blocked on.
171		 */
172		m = td->td_blocked;
173		MPASS(m != NULL);
174
175		/*
176		 * Check if the thread needs to be moved up on
177		 * the blocked chain
178		 */
179		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
180			continue;
181		}
182
183		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
184		if (td1->td_priority <= pri) {
185			continue;
186		}
187
188		/*
189		 * Remove thread from blocked chain and determine where
190		 * it should be moved up to.  Since we know that td1 has
191		 * a lower priority than td, we know that at least one
192		 * thread in the chain has a lower priority and that
193		 * td1 will thus not be NULL after the loop.
194		 */
195		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
196		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
197			MPASS(td1->td_proc->p_magic == P_MAGIC);
198			if (td1->td_priority > pri)
199				break;
200		}
201
202		MPASS(td1 != NULL);
203		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
204		CTR4(KTR_LOCK,
205		    "propagate_priority: p %p moved before %p on [%p] %s",
206		    td, td1, m, m->mtx_object.lo_name);
207	}
208}
209
210#ifdef MUTEX_PROFILING
211SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
212SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
213static int mutex_prof_enable = 0;
214SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
215    &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
216
217struct mutex_prof {
218	const char *name;
219	const char *file;
220	int line;
221#define MPROF_MAX 0
222#define MPROF_TOT 1
223#define MPROF_CNT 2
224#define MPROF_AVG 3
225	uintmax_t counter[4];
226	struct mutex_prof *next;
227};
228
229/*
230 * mprof_buf is a static pool of profiling records to avoid possible
231 * reentrance of the memory allocation functions.
232 *
233 * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
234 */
235#define NUM_MPROF_BUFFERS 1000
236static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
237static int first_free_mprof_buf;
238#define MPROF_HASH_SIZE 1009
239static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
240
241static int mutex_prof_acquisitions;
242SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
243    &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
244static int mutex_prof_records;
245SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
246    &mutex_prof_records, 0, "Number of profiling records");
247static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
248SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
249    &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
250static int mutex_prof_rejected;
251SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
252    &mutex_prof_rejected, 0, "Number of rejected profiling records");
253static int mutex_prof_hashsize = MPROF_HASH_SIZE;
254SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
255    &mutex_prof_hashsize, 0, "Hash size");
256static int mutex_prof_collisions = 0;
257SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
258    &mutex_prof_collisions, 0, "Number of hash collisions");
259
260/*
261 * mprof_mtx protects the profiling buffers and the hash.
262 */
263static struct mtx mprof_mtx;
264MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
265
266static u_int64_t
267nanoseconds(void)
268{
269	struct timespec tv;
270
271	nanotime(&tv);
272	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
273}
274
275static int
276dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
277{
278	struct sbuf *sb;
279	int error, i;
280
281	if (first_free_mprof_buf == 0)
282		return SYSCTL_OUT(req, "No locking recorded",
283		    sizeof("No locking recorded"));
284
285	sb = sbuf_new(NULL, NULL, 1024, SBUF_AUTOEXTEND);
286	sbuf_printf(sb, "%12s %12s %12s %12s %s\n",
287	    "max", "total", "count", "average", "name");
288	mtx_lock_spin(&mprof_mtx);
289	for (i = 0; i < first_free_mprof_buf; ++i)
290		sbuf_printf(sb, "%12ju %12ju %12ju %12ju %s:%d (%s)\n",
291		    mprof_buf[i].counter[MPROF_MAX] / 1000,
292		    mprof_buf[i].counter[MPROF_TOT] / 1000,
293		    mprof_buf[i].counter[MPROF_CNT],
294		    mprof_buf[i].counter[MPROF_AVG] / 1000,
295		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
296	mtx_unlock_spin(&mprof_mtx);
297	sbuf_finish(sb);
298	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
299	sbuf_delete(sb);
300	return (error);
301}
302SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING|CTLFLAG_RD,
303    NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
304#endif
305
306/*
307 * Function versions of the inlined __mtx_* macros.  These are used by
308 * modules and can also be called from assembly language if needed.
309 */
310void
311_mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
312{
313
314	MPASS(curthread != NULL);
315	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
316	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
317	    file, line));
318	_get_sleep_lock(m, curthread, opts, file, line);
319	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
320	    line);
321	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
322#ifdef MUTEX_PROFILING
323	/* don't reset the timer when/if recursing */
324	if (m->mtx_acqtime == 0) {
325		m->mtx_filename = file;
326		m->mtx_lineno = line;
327		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
328		++mutex_prof_acquisitions;
329	}
330#endif
331}
332
333void
334_mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
335{
336
337	MPASS(curthread != NULL);
338	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
339	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
340	    file, line));
341 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
342	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
343	    line);
344	mtx_assert(m, MA_OWNED);
345#ifdef MUTEX_PROFILING
346	if (m->mtx_acqtime != 0) {
347		static const char *unknown = "(unknown)";
348		struct mutex_prof *mpp;
349		u_int64_t acqtime, now;
350		const char *p, *q;
351		volatile u_int hash;
352
353		now = nanoseconds();
354		acqtime = m->mtx_acqtime;
355		m->mtx_acqtime = 0;
356		if (now <= acqtime)
357			goto out;
358		for (p = m->mtx_filename; strncmp(p, "../", 3) == 0; p += 3)
359			/* nothing */ ;
360		if (p == NULL || *p == '\0')
361			p = unknown;
362		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
363			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
364		mtx_lock_spin(&mprof_mtx);
365		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
366			if (mpp->line == m->mtx_lineno &&
367			    strcmp(mpp->file, p) == 0)
368				break;
369		if (mpp == NULL) {
370			/* Just exit if we cannot get a trace buffer */
371			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
372				++mutex_prof_rejected;
373				goto unlock;
374			}
375			mpp = &mprof_buf[first_free_mprof_buf++];
376			mpp->name = mtx_name(m);
377			mpp->file = p;
378			mpp->line = m->mtx_lineno;
379			mpp->next = mprof_hash[hash];
380			if (mprof_hash[hash] != NULL)
381				++mutex_prof_collisions;
382			mprof_hash[hash] = mpp;
383			++mutex_prof_records;
384		}
385		/*
386		 * Record if the mutex has been held longer now than ever
387		 * before
388		 */
389		if ((now - acqtime) > mpp->counter[MPROF_MAX])
390			mpp->counter[MPROF_MAX] = now - acqtime;
391		mpp->counter[MPROF_TOT] += now - acqtime;
392		mpp->counter[MPROF_CNT] += 1;
393		mpp->counter[MPROF_AVG] =
394		    mpp->counter[MPROF_TOT] / mpp->counter[MPROF_CNT];
395unlock:
396		mtx_unlock_spin(&mprof_mtx);
397	}
398out:
399#endif
400	_rel_sleep_lock(m, curthread, opts, file, line);
401}
402
403void
404_mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
405{
406
407	MPASS(curthread != NULL);
408	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
409	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
410	    m->mtx_object.lo_name, file, line));
411#if defined(SMP) || LOCK_DEBUG > 0 || 1
412	_get_spin_lock(m, curthread, opts, file, line);
413#else
414	critical_enter();
415#endif
416	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
417	    line);
418	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
419}
420
421void
422_mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
423{
424
425	MPASS(curthread != NULL);
426	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
427	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
428	    m->mtx_object.lo_name, file, line));
429 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
430	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
431	    line);
432	mtx_assert(m, MA_OWNED);
433#if defined(SMP) || LOCK_DEBUG > 0 || 1
434	_rel_spin_lock(m);
435#else
436	critical_exit();
437#endif
438}
439
440/*
441 * The important part of mtx_trylock{,_flags}()
442 * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that
443 * if we're called, it's because we know we don't already own this lock.
444 */
445int
446_mtx_trylock(struct mtx *m, int opts, const char *file, int line)
447{
448	int rval;
449
450	MPASS(curthread != NULL);
451
452	rval = _obtain_lock(m, curthread);
453
454	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
455	if (rval) {
456		/*
457		 * We do not handle recursion in _mtx_trylock; see the
458		 * note at the top of the routine.
459		 */
460		KASSERT(!mtx_recursed(m),
461		    ("mtx_trylock() called on a recursed mutex"));
462		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
463		    file, line);
464	}
465
466	return (rval);
467}
468
469/*
470 * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
471 *
472 * We call this if the lock is either contested (i.e. we need to go to
473 * sleep waiting for it), or if we need to recurse on it.
474 */
475void
476_mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
477{
478	struct thread *td = curthread;
479#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
480	struct thread *owner;
481#endif
482#ifdef KTR
483	int cont_logged = 0;
484#endif
485
486	if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)td) {
487		m->mtx_recurse++;
488		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
489		if (LOCK_LOG_TEST(&m->mtx_object, opts))
490			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
491		return;
492	}
493
494	if (LOCK_LOG_TEST(&m->mtx_object, opts))
495		CTR4(KTR_LOCK,
496		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
497		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
498
499	while (!_obtain_lock(m, td)) {
500		uintptr_t v;
501		struct thread *td1;
502
503		mtx_lock_spin(&sched_lock);
504		/*
505		 * Check if the lock has been released while spinning for
506		 * the sched_lock.
507		 */
508		if ((v = m->mtx_lock) == MTX_UNOWNED) {
509			mtx_unlock_spin(&sched_lock);
510#ifdef __i386__
511			ia32_pause();
512#endif
513			continue;
514		}
515
516		/*
517		 * The mutex was marked contested on release. This means that
518		 * there are threads blocked on it.
519		 */
520		if (v == MTX_CONTESTED) {
521			td1 = TAILQ_FIRST(&m->mtx_blocked);
522			MPASS(td1 != NULL);
523			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
524
525			if (td1->td_priority < td->td_priority)
526				td->td_priority = td1->td_priority;
527			mtx_unlock_spin(&sched_lock);
528			return;
529		}
530
531		/*
532		 * If the mutex isn't already contested and a failure occurs
533		 * setting the contested bit, the mutex was either released
534		 * or the state of the MTX_RECURSED bit changed.
535		 */
536		if ((v & MTX_CONTESTED) == 0 &&
537		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
538			(void *)(v | MTX_CONTESTED))) {
539			mtx_unlock_spin(&sched_lock);
540#ifdef __i386__
541			ia32_pause();
542#endif
543			continue;
544		}
545
546#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
547		/*
548		 * If the current owner of the lock is executing on another
549		 * CPU, spin instead of blocking.
550		 */
551		owner = (struct thread *)(v & MTX_FLAGMASK);
552		if (m != &Giant && thread_running(owner)) {
553			mtx_unlock_spin(&sched_lock);
554			while (mtx_owner(m) == owner && thread_running(owner)) {
555#ifdef __i386__
556				ia32_pause();
557#endif
558			}
559			continue;
560		}
561#endif	/* SMP && ADAPTIVE_MUTEXES */
562
563		/*
564		 * We definitely must sleep for this lock.
565		 */
566		mtx_assert(m, MA_NOTOWNED);
567
568#ifdef notyet
569		/*
570		 * If we're borrowing an interrupted thread's VM context, we
571		 * must clean up before going to sleep.
572		 */
573		if (td->td_ithd != NULL) {
574			struct ithd *it = td->td_ithd;
575
576			if (it->it_interrupted) {
577				if (LOCK_LOG_TEST(&m->mtx_object, opts))
578					CTR2(KTR_LOCK,
579				    "_mtx_lock_sleep: %p interrupted %p",
580					    it, it->it_interrupted);
581				intr_thd_fixup(it);
582			}
583		}
584#endif
585
586		/*
587		 * Put us on the list of threads blocked on this mutex.
588		 */
589		if (TAILQ_EMPTY(&m->mtx_blocked)) {
590			td1 = mtx_owner(m);
591			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
592			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
593		} else {
594			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
595				if (td1->td_priority > td->td_priority)
596					break;
597			if (td1)
598				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
599			else
600				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
601		}
602#ifdef KTR
603		if (!cont_logged) {
604			CTR6(KTR_CONTENTION,
605			    "contention: %p at %s:%d wants %s, taken by %s:%d",
606			    td, file, line, m->mtx_object.lo_name,
607			    WITNESS_FILE(&m->mtx_object),
608			    WITNESS_LINE(&m->mtx_object));
609			cont_logged = 1;
610		}
611#endif
612
613		/*
614		 * Save who we're blocked on.
615		 */
616		td->td_blocked = m;
617		td->td_lockname = m->mtx_object.lo_name;
618		TD_SET_LOCK(td);
619		propagate_priority(td);
620
621		if (LOCK_LOG_TEST(&m->mtx_object, opts))
622			CTR3(KTR_LOCK,
623			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
624			    m->mtx_object.lo_name);
625
626		td->td_proc->p_stats->p_ru.ru_nvcsw++;
627		mi_switch();
628
629		if (LOCK_LOG_TEST(&m->mtx_object, opts))
630			CTR3(KTR_LOCK,
631			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
632			  td, m, m->mtx_object.lo_name);
633
634		mtx_unlock_spin(&sched_lock);
635	}
636
637#ifdef KTR
638	if (cont_logged) {
639		CTR4(KTR_CONTENTION,
640		    "contention end: %s acquired by %p at %s:%d",
641		    m->mtx_object.lo_name, td, file, line);
642	}
643#endif
644	return;
645}
646
647/*
648 * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
649 *
650 * This is only called if we need to actually spin for the lock. Recursion
651 * is handled inline.
652 */
653void
654_mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
655{
656	int i = 0;
657
658	if (LOCK_LOG_TEST(&m->mtx_object, opts))
659		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
660
661	for (;;) {
662		if (_obtain_lock(m, curthread))
663			break;
664
665		/* Give interrupts a chance while we spin. */
666		critical_exit();
667		while (m->mtx_lock != MTX_UNOWNED) {
668			if (i++ < 10000000) {
669#ifdef __i386__
670				ia32_pause();
671#endif
672				continue;
673			}
674			if (i < 60000000)
675				DELAY(1);
676#ifdef DDB
677			else if (!db_active)
678#else
679			else
680#endif
681				panic("spin lock %s held by %p for > 5 seconds",
682				    m->mtx_object.lo_name, (void *)m->mtx_lock);
683#ifdef __i386__
684			ia32_pause();
685#endif
686		}
687		critical_enter();
688	}
689
690	if (LOCK_LOG_TEST(&m->mtx_object, opts))
691		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
692
693	return;
694}
695
696/*
697 * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
698 *
699 * We are only called here if the lock is recursed or contested (i.e. we
700 * need to wake up a blocked thread).
701 */
702void
703_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
704{
705	struct thread *td, *td1;
706	struct mtx *m1;
707	int pri;
708
709	td = curthread;
710
711	if (mtx_recursed(m)) {
712		if (--(m->mtx_recurse) == 0)
713			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
714		if (LOCK_LOG_TEST(&m->mtx_object, opts))
715			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
716		return;
717	}
718
719	mtx_lock_spin(&sched_lock);
720	if (LOCK_LOG_TEST(&m->mtx_object, opts))
721		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
722
723	td1 = TAILQ_FIRST(&m->mtx_blocked);
724#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
725	if (td1 == NULL) {
726		_release_lock_quick(m);
727		if (LOCK_LOG_TEST(&m->mtx_object, opts))
728			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
729		mtx_unlock_spin(&sched_lock);
730		return;
731	}
732#endif
733	MPASS(td->td_proc->p_magic == P_MAGIC);
734	MPASS(td1->td_proc->p_magic == P_MAGIC);
735
736	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
737
738	if (TAILQ_EMPTY(&m->mtx_blocked)) {
739		LIST_REMOVE(m, mtx_contested);
740		_release_lock_quick(m);
741		if (LOCK_LOG_TEST(&m->mtx_object, opts))
742			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
743	} else
744		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
745
746	pri = PRI_MAX;
747	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
748		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
749		if (cp < pri)
750			pri = cp;
751	}
752
753	if (pri > td->td_base_pri)
754		pri = td->td_base_pri;
755	td->td_priority = pri;
756
757	if (LOCK_LOG_TEST(&m->mtx_object, opts))
758		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
759		    m, td1);
760
761	td1->td_blocked = NULL;
762	TD_CLR_LOCK(td1);
763	if (!TD_CAN_RUN(td1)) {
764		mtx_unlock_spin(&sched_lock);
765		return;
766	}
767	setrunqueue(td1);
768
769	if (td->td_critnest == 1 && td1->td_priority < pri) {
770#ifdef notyet
771		if (td->td_ithd != NULL) {
772			struct ithd *it = td->td_ithd;
773
774			if (it->it_interrupted) {
775				if (LOCK_LOG_TEST(&m->mtx_object, opts))
776					CTR2(KTR_LOCK,
777				    "_mtx_unlock_sleep: %p interrupted %p",
778					    it, it->it_interrupted);
779				intr_thd_fixup(it);
780			}
781		}
782#endif
783		if (LOCK_LOG_TEST(&m->mtx_object, opts))
784			CTR2(KTR_LOCK,
785			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
786			    (void *)m->mtx_lock);
787
788		td->td_proc->p_stats->p_ru.ru_nivcsw++;
789		mi_switch();
790		if (LOCK_LOG_TEST(&m->mtx_object, opts))
791			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
792			    m, (void *)m->mtx_lock);
793	}
794
795	mtx_unlock_spin(&sched_lock);
796
797	return;
798}
799
800/*
801 * All the unlocking of MTX_SPIN locks is done inline.
802 * See the _rel_spin_lock() macro for the details.
803 */
804
805/*
806 * The backing function for the INVARIANTS-enabled mtx_assert()
807 */
808#ifdef INVARIANT_SUPPORT
809void
810_mtx_assert(struct mtx *m, int what, const char *file, int line)
811{
812
813	if (panicstr != NULL)
814		return;
815	switch (what) {
816	case MA_OWNED:
817	case MA_OWNED | MA_RECURSED:
818	case MA_OWNED | MA_NOTRECURSED:
819		if (!mtx_owned(m))
820			panic("mutex %s not owned at %s:%d",
821			    m->mtx_object.lo_name, file, line);
822		if (mtx_recursed(m)) {
823			if ((what & MA_NOTRECURSED) != 0)
824				panic("mutex %s recursed at %s:%d",
825				    m->mtx_object.lo_name, file, line);
826		} else if ((what & MA_RECURSED) != 0) {
827			panic("mutex %s unrecursed at %s:%d",
828			    m->mtx_object.lo_name, file, line);
829		}
830		break;
831	case MA_NOTOWNED:
832		if (mtx_owned(m))
833			panic("mutex %s owned at %s:%d",
834			    m->mtx_object.lo_name, file, line);
835		break;
836	default:
837		panic("unknown mtx_assert at %s:%d", file, line);
838	}
839}
840#endif
841
842/*
843 * The MUTEX_DEBUG-enabled mtx_validate()
844 *
845 * Most of these checks have been moved off into the LO_INITIALIZED flag
846 * maintained by the witness code.
847 */
848#ifdef MUTEX_DEBUG
849
850void	mtx_validate(struct mtx *);
851
852void
853mtx_validate(struct mtx *m)
854{
855
856/*
857 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
858 * we can re-enable the kernacc() checks.
859 */
860#ifndef __alpha__
861	/*
862	 * Can't call kernacc() from early init386(), especially when
863	 * initializing Giant mutex, because some stuff in kernacc()
864	 * requires Giant itself.
865	 */
866	if (!cold)
867		if (!kernacc((caddr_t)m, sizeof(m),
868		    VM_PROT_READ | VM_PROT_WRITE))
869			panic("Can't read and write to mutex %p", m);
870#endif
871}
872#endif
873
874/*
875 * General init routine used by the MTX_SYSINIT() macro.
876 */
877void
878mtx_sysinit(void *arg)
879{
880	struct mtx_args *margs = arg;
881
882	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
883}
884
885/*
886 * Mutex initialization routine; initialize lock `m' of type contained in
887 * `opts' with options contained in `opts' and name `name.'  The optional
888 * lock type `type' is used as a general lock category name for use with
889 * witness.
890 */
891void
892mtx_init(struct mtx *m, const char *name, const char *type, int opts)
893{
894	struct lock_object *lock;
895
896	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
897	    MTX_SLEEPABLE | MTX_NOWITNESS | MTX_DUPOK)) == 0);
898
899#ifdef MUTEX_DEBUG
900	/* Diagnostic and error correction */
901	mtx_validate(m);
902#endif
903
904	lock = &m->mtx_object;
905	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
906	    ("mutex %s %p already initialized", name, m));
907	bzero(m, sizeof(*m));
908	if (opts & MTX_SPIN)
909		lock->lo_class = &lock_class_mtx_spin;
910	else
911		lock->lo_class = &lock_class_mtx_sleep;
912	lock->lo_name = name;
913	lock->lo_type = type != NULL ? type : name;
914	if (opts & MTX_QUIET)
915		lock->lo_flags = LO_QUIET;
916	if (opts & MTX_RECURSE)
917		lock->lo_flags |= LO_RECURSABLE;
918	if (opts & MTX_SLEEPABLE)
919		lock->lo_flags |= LO_SLEEPABLE;
920	if ((opts & MTX_NOWITNESS) == 0)
921		lock->lo_flags |= LO_WITNESS;
922	if (opts & MTX_DUPOK)
923		lock->lo_flags |= LO_DUPOK;
924
925	m->mtx_lock = MTX_UNOWNED;
926	TAILQ_INIT(&m->mtx_blocked);
927
928	LOCK_LOG_INIT(lock, opts);
929
930	WITNESS_INIT(lock);
931}
932
933/*
934 * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
935 * passed in as a flag here because if the corresponding mtx_init() was
936 * called with MTX_QUIET set, then it will already be set in the mutex's
937 * flags.
938 */
939void
940mtx_destroy(struct mtx *m)
941{
942
943	LOCK_LOG_DESTROY(&m->mtx_object, 0);
944
945	if (!mtx_owned(m))
946		MPASS(mtx_unowned(m));
947	else {
948		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
949
950		/* Tell witness this isn't locked to make it happy. */
951		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
952		    __LINE__);
953	}
954
955	WITNESS_DESTROY(&m->mtx_object);
956}
957
958/*
959 * Intialize the mutex code and system mutexes.  This is called from the MD
960 * startup code prior to mi_startup().  The per-CPU data space needs to be
961 * setup before this is called.
962 */
963void
964mutex_init(void)
965{
966
967	/* Setup thread0 so that mutexes work. */
968	LIST_INIT(&thread0.td_contested);
969
970	/*
971	 * Initialize mutexes.
972	 */
973	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
974	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
975	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
976	mtx_lock(&Giant);
977}
978
979/*
980 * Encapsulated Giant mutex routines.  These routines provide encapsulation
981 * control for the Giant mutex, allowing sysctls to be used to turn on and
982 * off Giant around certain subsystems.  The default value for the sysctls
983 * are set to what developers believe is stable and working in regards to
984 * the Giant pushdown.  Developers should not turn off Giant via these
985 * sysctls unless they know what they are doing.
986 *
987 * Callers of mtx_lock_giant() are expected to pass the return value to an
988 * accompanying mtx_unlock_giant() later on.  If multiple subsystems are
989 * effected by a Giant wrap, all related sysctl variables must be zero for
990 * the subsystem call to operate without Giant (as determined by the caller).
991 */
992
993SYSCTL_NODE(_kern, OID_AUTO, giant, CTLFLAG_RD, NULL, "Giant mutex manipulation");
994
995static int kern_giant_all = 0;
996SYSCTL_INT(_kern_giant, OID_AUTO, all, CTLFLAG_RW, &kern_giant_all, 0, "");
997
998int kern_giant_proc = 1;	/* Giant around PROC locks */
999int kern_giant_file = 1;	/* Giant around struct file & filedesc */
1000int kern_giant_ucred = 1;	/* Giant around ucred */
1001SYSCTL_INT(_kern_giant, OID_AUTO, proc, CTLFLAG_RW, &kern_giant_proc, 0, "");
1002SYSCTL_INT(_kern_giant, OID_AUTO, file, CTLFLAG_RW, &kern_giant_file, 0, "");
1003SYSCTL_INT(_kern_giant, OID_AUTO, ucred, CTLFLAG_RW, &kern_giant_ucred, 0, "");
1004
1005int
1006mtx_lock_giant(int sysctlvar)
1007{
1008	if (sysctlvar || kern_giant_all) {
1009		mtx_lock(&Giant);
1010		return(1);
1011	}
1012	return(0);
1013}
1014
1015void
1016mtx_unlock_giant(int s)
1017{
1018	if (s)
1019		mtx_unlock(&Giant);
1020}
1021
1022