kern_lockf.c revision 178247
1/*-
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27/*-
28 * Copyright (c) 1982, 1986, 1989, 1993
29 *	The Regents of the University of California.  All rights reserved.
30 *
31 * This code is derived from software contributed to Berkeley by
32 * Scooter Morris at Genentech Inc.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 4. Neither the name of the University nor the names of its contributors
43 *    may be used to endorse or promote products derived from this software
44 *    without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
59 */
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD: head/sys/kern/kern_lockf.c 178247 2008-04-16 14:08:12Z dfr $");
63
64#include "opt_debug_lockf.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/hash.h>
69#include <sys/kernel.h>
70#include <sys/limits.h>
71#include <sys/lock.h>
72#include <sys/mount.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/sx.h>
76#include <sys/unistd.h>
77#include <sys/vnode.h>
78#include <sys/malloc.h>
79#include <sys/fcntl.h>
80#include <sys/lockf.h>
81#include <sys/taskqueue.h>
82
83#ifdef LOCKF_DEBUG
84#include <sys/sysctl.h>
85
86#include <ufs/ufs/quota.h>
87#include <ufs/ufs/inode.h>
88
89static int	lockf_debug = 0; /* control debug output */
90SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91#endif
92
93MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94
95struct owner_edge;
96struct owner_vertex;
97struct owner_vertex_list;
98struct owner_graph;
99
100#define NOLOCKF (struct lockf_entry *)0
101#define SELF	0x1
102#define OTHERS	0x2
103static void	 lf_init(void *);
104static int	 lf_hash_owner(caddr_t, struct flock *, int);
105static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106    int);
107static struct lockf_entry *
108		 lf_alloc_lock(struct lock_owner *);
109static void	 lf_free_lock(struct lockf_entry *);
110static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
111static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
113static void	 lf_free_edge(struct lockf_edge *);
114static struct lockf_edge *
115		 lf_alloc_edge(void);
116static void	 lf_alloc_vertex(struct lockf_entry *);
117static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118static void	 lf_remove_edge(struct lockf_edge *);
119static void	 lf_remove_outgoing(struct lockf_entry *);
120static void	 lf_remove_incoming(struct lockf_entry *);
121static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
122static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
123static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124    int);
125static struct lockf_entry *
126		 lf_getblock(struct lockf *, struct lockf_entry *);
127static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
129static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
131    int all, struct lockf_entry_list *);
132static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133	struct lockf_entry_list*);
134static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135	struct lockf_entry_list*);
136static int	 lf_setlock(struct lockf *, struct lockf_entry *,
137    struct vnode *, void **cookiep);
138static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
139static void	 lf_split(struct lockf *, struct lockf_entry *,
140    struct lockf_entry *, struct lockf_entry_list *);
141#ifdef LOCKF_DEBUG
142static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143    struct owner_vertex_list *path);
144static void	 graph_check(struct owner_graph *g, int checkorder);
145static void	 graph_print_vertices(struct owner_vertex_list *set);
146#endif
147static int	 graph_delta_forward(struct owner_graph *g,
148    struct owner_vertex *x, struct owner_vertex *y,
149    struct owner_vertex_list *delta);
150static int	 graph_delta_backward(struct owner_graph *g,
151    struct owner_vertex *x, struct owner_vertex *y,
152    struct owner_vertex_list *delta);
153static int	 graph_add_indices(int *indices, int n,
154    struct owner_vertex_list *set);
155static int	 graph_assign_indices(struct owner_graph *g, int *indices,
156    int nextunused, struct owner_vertex_list *set);
157static int	 graph_add_edge(struct owner_graph *g,
158    struct owner_vertex *x, struct owner_vertex *y);
159static void	 graph_remove_edge(struct owner_graph *g,
160    struct owner_vertex *x, struct owner_vertex *y);
161static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162    struct lock_owner *lo);
163static void	 graph_free_vertex(struct owner_graph *g,
164    struct owner_vertex *v);
165static struct owner_graph * graph_init(struct owner_graph *g);
166#ifdef LOCKF_DEBUG
167static void	 lf_print(char *, struct lockf_entry *);
168static void	 lf_printlist(char *, struct lockf_entry *);
169static void	 lf_print_owner(struct lock_owner *);
170#endif
171
172/*
173 * This structure is used to keep track of both local and remote lock
174 * owners. The lf_owner field of the struct lockf_entry points back at
175 * the lock owner structure. Each possible lock owner (local proc for
176 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177 * pair for remote locks) is represented by a unique instance of
178 * struct lock_owner.
179 *
180 * If a lock owner has a lock that blocks some other lock or a lock
181 * that is waiting for some other lock, it also has a vertex in the
182 * owner_graph below.
183 *
184 * Locks:
185 * (s)		locked by state->ls_lock
186 * (S)		locked by lf_lock_states_lock
187 * (l)		locked by lf_lock_owners_lock
188 * (g)		locked by lf_owner_graph_lock
189 * (c)		const until freeing
190 */
191#define	LOCK_OWNER_HASH_SIZE	256
192
193struct lock_owner {
194	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195	int	lo_refs;	    /* (l) Number of locks referring to this */
196	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
197	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
198	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
199	int	lo_sysid;	    /* (c) System Id of the lock owner */
200	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201};
202
203LIST_HEAD(lock_owner_list, lock_owner);
204
205static struct sx		lf_lock_states_lock;
206static struct lockf_list	lf_lock_states; /* (S) */
207static struct sx		lf_lock_owners_lock;
208static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209
210/*
211 * Structures for deadlock detection.
212 *
213 * We have two types of directed graph, the first is the set of locks,
214 * both active and pending on a vnode. Within this graph, active locks
215 * are terminal nodes in the graph (i.e. have no out-going
216 * edges). Pending locks have out-going edges to each blocking active
217 * lock that prevents the lock from being granted and also to each
218 * older pending lock that would block them if it was active. The
219 * graph for each vnode is naturally acyclic; new edges are only ever
220 * added to or from new nodes (either new pending locks which only add
221 * out-going edges or new active locks which only add in-coming edges)
222 * therefore they cannot create loops in the lock graph.
223 *
224 * The second graph is a global graph of lock owners. Each lock owner
225 * is a vertex in that graph and an edge is added to the graph
226 * whenever an edge is added to a vnode graph, with end points
227 * corresponding to owner of the new pending lock and the owner of the
228 * lock upon which it waits. In order to prevent deadlock, we only add
229 * an edge to this graph if the new edge would not create a cycle.
230 *
231 * The lock owner graph is topologically sorted, i.e. if a node has
232 * any outgoing edges, then it has an order strictly less than any
233 * node to which it has an outgoing edge. We preserve this ordering
234 * (and detect cycles) on edge insertion using Algorithm PK from the
235 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237 * No. 1.7)
238 */
239struct owner_vertex;
240
241struct owner_edge {
242	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
244	int		e_refs;		  /* (g) number of times added */
245	struct owner_vertex *e_from;	  /* (c) out-going from here */
246	struct owner_vertex *e_to;	  /* (c) in-coming to here */
247};
248LIST_HEAD(owner_edge_list, owner_edge);
249
250struct owner_vertex {
251	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
253	int		v_order;	  /* (g) order of vertex in graph */
254	struct owner_edge_list v_outedges;/* (g) list of out-edges */
255	struct owner_edge_list v_inedges; /* (g) list of in-edges */
256	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
257};
258TAILQ_HEAD(owner_vertex_list, owner_vertex);
259
260struct owner_graph {
261	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262	int		g_size;		  /* (g) number of vertices */
263	int		g_space;	  /* (g) space allocated for vertices */
264	int		*g_indexbuf;	  /* (g) workspace for loop detection */
265	uint32_t	g_gen;		  /* (g) increment when re-ordering */
266};
267
268static struct sx		lf_owner_graph_lock;
269static struct owner_graph	lf_owner_graph;
270
271/*
272 * Initialise various structures and locks.
273 */
274static void
275lf_init(void *dummy)
276{
277	int i;
278
279	sx_init(&lf_lock_states_lock, "lock states lock");
280	LIST_INIT(&lf_lock_states);
281
282	sx_init(&lf_lock_owners_lock, "lock owners lock");
283	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284		LIST_INIT(&lf_lock_owners[i]);
285
286	sx_init(&lf_owner_graph_lock, "owner graph lock");
287	graph_init(&lf_owner_graph);
288}
289SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290
291/*
292 * Generate a hash value for a lock owner.
293 */
294static int
295lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296{
297	uint32_t h;
298
299	if (flags & F_REMOTE) {
300		h = HASHSTEP(0, fl->l_pid);
301		h = HASHSTEP(h, fl->l_sysid);
302	} else if (flags & F_FLOCK) {
303		h = ((uintptr_t) id) >> 7;
304	} else {
305		struct proc *p = (struct proc *) id;
306		h = HASHSTEP(0, p->p_pid);
307		h = HASHSTEP(h, 0);
308	}
309
310	return (h % LOCK_OWNER_HASH_SIZE);
311}
312
313/*
314 * Return true if a lock owner matches the details passed to
315 * lf_advlock.
316 */
317static int
318lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319    int flags)
320{
321	if (flags & F_REMOTE) {
322		return lo->lo_pid == fl->l_pid
323			&& lo->lo_sysid == fl->l_sysid;
324	} else {
325		return lo->lo_id == id;
326	}
327}
328
329static struct lockf_entry *
330lf_alloc_lock(struct lock_owner *lo)
331{
332	struct lockf_entry *lf;
333
334	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335
336#ifdef LOCKF_DEBUG
337	if (lockf_debug & 4)
338		printf("Allocated lock %p\n", lf);
339#endif
340	if (lo) {
341		sx_xlock(&lf_lock_owners_lock);
342		lo->lo_refs++;
343		sx_xunlock(&lf_lock_owners_lock);
344		lf->lf_owner = lo;
345	}
346
347	return (lf);
348}
349
350static void
351lf_free_lock(struct lockf_entry *lock)
352{
353	/*
354	 * Adjust the lock_owner reference count and
355	 * reclaim the entry if this is the last lock
356	 * for that owner.
357	 */
358	struct lock_owner *lo = lock->lf_owner;
359	if (lo) {
360		KASSERT(LIST_EMPTY(&lock->lf_outedges),
361		    ("freeing lock with dependancies"));
362		KASSERT(LIST_EMPTY(&lock->lf_inedges),
363		    ("freeing lock with dependants"));
364		sx_xlock(&lf_lock_owners_lock);
365		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
366		lo->lo_refs--;
367		if (lo->lo_refs == 0) {
368#ifdef LOCKF_DEBUG
369			if (lockf_debug & 1)
370				printf("lf_free_lock: freeing lock owner %p\n",
371				    lo);
372#endif
373			if (lo->lo_vertex) {
374				sx_xlock(&lf_owner_graph_lock);
375				graph_free_vertex(&lf_owner_graph,
376				    lo->lo_vertex);
377				sx_xunlock(&lf_owner_graph_lock);
378			}
379			LIST_REMOVE(lo, lo_link);
380			free(lo, M_LOCKF);
381#ifdef LOCKF_DEBUG
382			if (lockf_debug & 4)
383				printf("Freed lock owner %p\n", lo);
384#endif
385		}
386		sx_unlock(&lf_lock_owners_lock);
387	}
388	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
389		vrele(lock->lf_vnode);
390		lock->lf_vnode = NULL;
391	}
392#ifdef LOCKF_DEBUG
393	if (lockf_debug & 4)
394		printf("Freed lock %p\n", lock);
395#endif
396	free(lock, M_LOCKF);
397}
398
399/*
400 * Advisory record locking support
401 */
402int
403lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
404    u_quad_t size)
405{
406	struct lockf *state, *freestate = NULL;
407	struct flock *fl = ap->a_fl;
408	struct lockf_entry *lock;
409	struct vnode *vp = ap->a_vp;
410	caddr_t id = ap->a_id;
411	int flags = ap->a_flags;
412	int hash;
413	struct lock_owner *lo;
414	off_t start, end, oadd;
415	int error;
416
417	/*
418	 * Handle the F_UNLKSYS case first - no need to mess about
419	 * creating a lock owner for this one.
420	 */
421	if (ap->a_op == F_UNLCKSYS) {
422		lf_clearremotesys(fl->l_sysid);
423		return (0);
424	}
425
426	/*
427	 * Convert the flock structure into a start and end.
428	 */
429	switch (fl->l_whence) {
430
431	case SEEK_SET:
432	case SEEK_CUR:
433		/*
434		 * Caller is responsible for adding any necessary offset
435		 * when SEEK_CUR is used.
436		 */
437		start = fl->l_start;
438		break;
439
440	case SEEK_END:
441		if (size > OFF_MAX ||
442		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
443			return (EOVERFLOW);
444		start = size + fl->l_start;
445		break;
446
447	default:
448		return (EINVAL);
449	}
450	if (start < 0)
451		return (EINVAL);
452	if (fl->l_len < 0) {
453		if (start == 0)
454			return (EINVAL);
455		end = start - 1;
456		start += fl->l_len;
457		if (start < 0)
458			return (EINVAL);
459	} else if (fl->l_len == 0) {
460		end = OFF_MAX;
461	} else {
462		oadd = fl->l_len - 1;
463		if (oadd > OFF_MAX - start)
464			return (EOVERFLOW);
465		end = start + oadd;
466	}
467	/*
468	 * Avoid the common case of unlocking when inode has no locks.
469	 */
470	if ((*statep) == NULL || LIST_EMPTY(&(*statep)->ls_active)) {
471		if (ap->a_op != F_SETLK) {
472			fl->l_type = F_UNLCK;
473			return (0);
474		}
475	}
476
477	/*
478	 * Map our arguments to an existing lock owner or create one
479	 * if this is the first time we have seen this owner.
480	 */
481	hash = lf_hash_owner(id, fl, flags);
482	sx_xlock(&lf_lock_owners_lock);
483	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
484		if (lf_owner_matches(lo, id, fl, flags))
485			break;
486	if (!lo) {
487		/*
488		 * We initialise the lock with a reference
489		 * count which matches the new lockf_entry
490		 * structure created below.
491		 */
492		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
493		    M_WAITOK|M_ZERO);
494#ifdef LOCKF_DEBUG
495		if (lockf_debug & 4)
496			printf("Allocated lock owner %p\n", lo);
497#endif
498
499		lo->lo_refs = 1;
500		lo->lo_flags = flags;
501		lo->lo_id = id;
502		if (flags & F_REMOTE) {
503			lo->lo_pid = fl->l_pid;
504			lo->lo_sysid = fl->l_sysid;
505		} else if (flags & F_FLOCK) {
506			lo->lo_pid = -1;
507			lo->lo_sysid = 0;
508		} else {
509			struct proc *p = (struct proc *) id;
510			lo->lo_pid = p->p_pid;
511			lo->lo_sysid = 0;
512		}
513		lo->lo_vertex = NULL;
514
515#ifdef LOCKF_DEBUG
516		if (lockf_debug & 1) {
517			printf("lf_advlockasync: new lock owner %p ", lo);
518			lf_print_owner(lo);
519			printf("\n");
520		}
521#endif
522
523		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
524	} else {
525		/*
526		 * We have seen this lock owner before, increase its
527		 * reference count to account for the new lockf_entry
528		 * structure we create below.
529		 */
530		lo->lo_refs++;
531	}
532	sx_xunlock(&lf_lock_owners_lock);
533
534	/*
535	 * Create the lockf structure. We initialise the lf_owner
536	 * field here instead of in lf_alloc_lock() to avoid paying
537	 * the lf_lock_owners_lock tax twice.
538	 */
539	lock = lf_alloc_lock(NULL);
540	lock->lf_start = start;
541	lock->lf_end = end;
542	lock->lf_owner = lo;
543	lock->lf_vnode = vp;
544	if (flags & F_REMOTE) {
545		/*
546		 * For remote locks, the caller may release its ref to
547		 * the vnode at any time - we have to ref it here to
548		 * prevent it from being recycled unexpectedly.
549		 */
550		vref(vp);
551	}
552
553	/*
554	 * XXX The problem is that VTOI is ufs specific, so it will
555	 * break LOCKF_DEBUG for all other FS's other than UFS because
556	 * it casts the vnode->data ptr to struct inode *.
557	 */
558/*	lock->lf_inode = VTOI(ap->a_vp); */
559	lock->lf_inode = (struct inode *)0;
560	lock->lf_type = fl->l_type;
561	LIST_INIT(&lock->lf_outedges);
562	LIST_INIT(&lock->lf_inedges);
563	lock->lf_async_task = ap->a_task;
564	lock->lf_flags = ap->a_flags;
565
566	/*
567	 * Do the requested operation. First find our state structure
568	 * and create a new one if necessary - the caller's *statep
569	 * variable and the state's ls_threads count is protected by
570	 * the vnode interlock.
571	 */
572	VI_LOCK(vp);
573	if (vp->v_iflag & VI_DOOMED) {
574		VI_UNLOCK(vp);
575		lf_free_lock(lock);
576		return (ENOENT);
577	}
578
579	/*
580	 * Allocate a state structure if necessary.
581	 */
582	state = *statep;
583	if (state == NULL) {
584		struct lockf *ls;
585
586		VI_UNLOCK(vp);
587
588		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
589		sx_init(&ls->ls_lock, "ls_lock");
590		LIST_INIT(&ls->ls_active);
591		LIST_INIT(&ls->ls_pending);
592		ls->ls_threads = 1;
593
594		sx_xlock(&lf_lock_states_lock);
595		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
596		sx_xunlock(&lf_lock_states_lock);
597
598		/*
599		 * Cope if we lost a race with some other thread while
600		 * trying to allocate memory.
601		 */
602		VI_LOCK(vp);
603		if (vp->v_iflag & VI_DOOMED) {
604			VI_UNLOCK(vp);
605			sx_xlock(&lf_lock_states_lock);
606			LIST_REMOVE(ls, ls_link);
607			sx_xunlock(&lf_lock_states_lock);
608			sx_destroy(&ls->ls_lock);
609			free(ls, M_LOCKF);
610			lf_free_lock(lock);
611			return (ENOENT);
612		}
613		if ((*statep) == NULL) {
614			state = *statep = ls;
615			VI_UNLOCK(vp);
616		} else {
617			state = *statep;
618			state->ls_threads++;
619			VI_UNLOCK(vp);
620
621			sx_xlock(&lf_lock_states_lock);
622			LIST_REMOVE(ls, ls_link);
623			sx_xunlock(&lf_lock_states_lock);
624			sx_destroy(&ls->ls_lock);
625			free(ls, M_LOCKF);
626		}
627	} else {
628		state->ls_threads++;
629		VI_UNLOCK(vp);
630	}
631
632	sx_xlock(&state->ls_lock);
633	switch(ap->a_op) {
634	case F_SETLK:
635		error = lf_setlock(state, lock, vp, ap->a_cookiep);
636		break;
637
638	case F_UNLCK:
639		error = lf_clearlock(state, lock);
640		lf_free_lock(lock);
641		break;
642
643	case F_GETLK:
644		error = lf_getlock(state, lock, fl);
645		lf_free_lock(lock);
646		break;
647
648	case F_CANCEL:
649		if (ap->a_cookiep)
650			error = lf_cancel(state, lock, *ap->a_cookiep);
651		else
652			error = EINVAL;
653		lf_free_lock(lock);
654		break;
655
656	default:
657		lf_free_lock(lock);
658		error = EINVAL;
659		break;
660	}
661
662#ifdef INVARIANTS
663	/*
664	 * Check for some can't happen stuff. In this case, the active
665	 * lock list becoming disordered or containing mutually
666	 * blocking locks. We also check the pending list for locks
667	 * which should be active (i.e. have no out-going edges).
668	 */
669	LIST_FOREACH(lock, &state->ls_active, lf_link) {
670		struct lockf_entry *lf;
671		if (LIST_NEXT(lock, lf_link))
672			KASSERT((lock->lf_start
673				<= LIST_NEXT(lock, lf_link)->lf_start),
674			    ("locks disordered"));
675		LIST_FOREACH(lf, &state->ls_active, lf_link) {
676			if (lock == lf)
677				break;
678			KASSERT(!lf_blocks(lock, lf),
679			    ("two conflicting active locks"));
680			if (lock->lf_owner == lf->lf_owner)
681				KASSERT(!lf_overlaps(lock, lf),
682				    ("two overlapping locks from same owner"));
683		}
684	}
685	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
686		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
687		    ("pending lock which should be active"));
688	}
689#endif
690	sx_xunlock(&state->ls_lock);
691
692	/*
693	 * If we have removed the last active lock on the vnode and
694	 * this is the last thread that was in-progress, we can free
695	 * the state structure. We update the caller's pointer inside
696	 * the vnode interlock but call free outside.
697	 *
698	 * XXX alternatively, keep the state structure around until
699	 * the filesystem recycles - requires a callback from the
700	 * filesystem.
701	 */
702	VI_LOCK(vp);
703
704	state->ls_threads--;
705	wakeup(state);
706	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
707		KASSERT(LIST_EMPTY(&state->ls_pending),
708		    ("freeing state with pending locks"));
709		freestate = state;
710		*statep = NULL;
711	}
712
713	VI_UNLOCK(vp);
714
715	if (freestate) {
716		sx_xlock(&lf_lock_states_lock);
717		LIST_REMOVE(freestate, ls_link);
718		sx_xunlock(&lf_lock_states_lock);
719		sx_destroy(&freestate->ls_lock);
720		free(freestate, M_LOCKF);
721	}
722	return (error);
723}
724
725int
726lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
727{
728	struct vop_advlockasync_args a;
729
730	a.a_vp = ap->a_vp;
731	a.a_id = ap->a_id;
732	a.a_op = ap->a_op;
733	a.a_fl = ap->a_fl;
734	a.a_flags = ap->a_flags;
735	a.a_task = NULL;
736	a.a_cookiep = NULL;
737
738	return (lf_advlockasync(&a, statep, size));
739}
740
741void
742lf_purgelocks(struct vnode *vp, struct lockf **statep)
743{
744	struct lockf *state;
745	struct lockf_entry *lock, *nlock;
746
747	/*
748	 * For this to work correctly, the caller must ensure that no
749	 * other threads enter the locking system for this vnode,
750	 * e.g. by checking VI_DOOMED. We wake up any threads that are
751	 * sleeping waiting for locks on this vnode and then free all
752	 * the remaining locks.
753	 */
754	VI_LOCK(vp);
755	state = *statep;
756	if (state) {
757		state->ls_threads++;
758		VI_UNLOCK(vp);
759
760		sx_xlock(&state->ls_lock);
761		sx_xlock(&lf_owner_graph_lock);
762		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
763			LIST_REMOVE(lock, lf_link);
764			lf_remove_outgoing(lock);
765			lf_remove_incoming(lock);
766
767			/*
768			 * If its an async lock, we can just free it
769			 * here, otherwise we let the sleeping thread
770			 * free it.
771			 */
772			if (lock->lf_async_task) {
773				lf_free_lock(lock);
774			} else {
775				lock->lf_flags |= F_INTR;
776				wakeup(lock);
777			}
778		}
779		sx_xunlock(&lf_owner_graph_lock);
780		sx_xunlock(&state->ls_lock);
781
782		/*
783		 * Wait for all other threads, sleeping and otherwise
784		 * to leave.
785		 */
786		VI_LOCK(vp);
787		while (state->ls_threads > 1)
788			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
789		*statep = 0;
790		VI_UNLOCK(vp);
791
792		/*
793		 * We can just free all the active locks since they
794		 * will have no dependancies (we removed them all
795		 * above). We don't need to bother locking since we
796		 * are the last thread using this state structure.
797		 */
798		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
799			LIST_REMOVE(lock, lf_link);
800			lf_free_lock(lock);
801		}
802		sx_xlock(&lf_lock_states_lock);
803		LIST_REMOVE(state, ls_link);
804		sx_xunlock(&lf_lock_states_lock);
805		sx_destroy(&state->ls_lock);
806		free(state, M_LOCKF);
807	} else {
808		VI_UNLOCK(vp);
809	}
810}
811
812/*
813 * Return non-zero if locks 'x' and 'y' overlap.
814 */
815static int
816lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
817{
818
819	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
820}
821
822/*
823 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
824 */
825static int
826lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
827{
828
829	return x->lf_owner != y->lf_owner
830		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
831		&& lf_overlaps(x, y);
832}
833
834/*
835 * Allocate a lock edge from the free list
836 */
837static struct lockf_edge *
838lf_alloc_edge(void)
839{
840
841	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
842}
843
844/*
845 * Free a lock edge.
846 */
847static void
848lf_free_edge(struct lockf_edge *e)
849{
850
851	free(e, M_LOCKF);
852}
853
854
855/*
856 * Ensure that the lock's owner has a corresponding vertex in the
857 * owner graph.
858 */
859static void
860lf_alloc_vertex(struct lockf_entry *lock)
861{
862	struct owner_graph *g = &lf_owner_graph;
863
864	if (!lock->lf_owner->lo_vertex)
865		lock->lf_owner->lo_vertex =
866			graph_alloc_vertex(g, lock->lf_owner);
867}
868
869/*
870 * Attempt to record an edge from lock x to lock y. Return EDEADLK if
871 * the new edge would cause a cycle in the owner graph.
872 */
873static int
874lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
875{
876	struct owner_graph *g = &lf_owner_graph;
877	struct lockf_edge *e;
878	int error;
879
880#ifdef INVARIANTS
881	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
882		KASSERT(e->le_to != y, ("adding lock edge twice"));
883#endif
884
885	/*
886	 * Make sure the two owners have entries in the owner graph.
887	 */
888	lf_alloc_vertex(x);
889	lf_alloc_vertex(y);
890
891	error = graph_add_edge(g, x->lf_owner->lo_vertex,
892	    y->lf_owner->lo_vertex);
893	if (error)
894		return (error);
895
896	e = lf_alloc_edge();
897	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
898	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
899	e->le_from = x;
900	e->le_to = y;
901
902	return (0);
903}
904
905/*
906 * Remove an edge from the lock graph.
907 */
908static void
909lf_remove_edge(struct lockf_edge *e)
910{
911	struct owner_graph *g = &lf_owner_graph;
912	struct lockf_entry *x = e->le_from;
913	struct lockf_entry *y = e->le_to;
914
915	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
916	LIST_REMOVE(e, le_outlink);
917	LIST_REMOVE(e, le_inlink);
918	e->le_from = NULL;
919	e->le_to = NULL;
920	lf_free_edge(e);
921}
922
923/*
924 * Remove all out-going edges from lock x.
925 */
926static void
927lf_remove_outgoing(struct lockf_entry *x)
928{
929	struct lockf_edge *e;
930
931	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
932		lf_remove_edge(e);
933	}
934}
935
936/*
937 * Remove all in-coming edges from lock x.
938 */
939static void
940lf_remove_incoming(struct lockf_entry *x)
941{
942	struct lockf_edge *e;
943
944	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
945		lf_remove_edge(e);
946	}
947}
948
949/*
950 * Walk the list of locks for the file and create an out-going edge
951 * from lock to each blocking lock.
952 */
953static int
954lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
955{
956	struct lockf_entry *overlap;
957	int error;
958
959	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
960		/*
961		 * We may assume that the active list is sorted by
962		 * lf_start.
963		 */
964		if (overlap->lf_start > lock->lf_end)
965			break;
966		if (!lf_blocks(lock, overlap))
967			continue;
968
969		/*
970		 * We've found a blocking lock. Add the corresponding
971		 * edge to the graphs and see if it would cause a
972		 * deadlock.
973		 */
974		error = lf_add_edge(lock, overlap);
975
976		/*
977		 * The only error that lf_add_edge returns is EDEADLK.
978		 * Remove any edges we added and return the error.
979		 */
980		if (error) {
981			lf_remove_outgoing(lock);
982			return (error);
983		}
984	}
985
986	/*
987	 * We also need to add edges to sleeping locks that block
988	 * us. This ensures that lf_wakeup_lock cannot grant two
989	 * mutually blocking locks simultaneously and also enforces a
990	 * 'first come, first served' fairness model. Note that this
991	 * only happens if we are blocked by at least one active lock
992	 * due to the call to lf_getblock in lf_setlock below.
993	 */
994	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
995		if (!lf_blocks(lock, overlap))
996			continue;
997		/*
998		 * We've found a blocking lock. Add the corresponding
999		 * edge to the graphs and see if it would cause a
1000		 * deadlock.
1001		 */
1002		error = lf_add_edge(lock, overlap);
1003
1004		/*
1005		 * The only error that lf_add_edge returns is EDEADLK.
1006		 * Remove any edges we added and return the error.
1007		 */
1008		if (error) {
1009			lf_remove_outgoing(lock);
1010			return (error);
1011		}
1012	}
1013
1014	return (0);
1015}
1016
1017/*
1018 * Walk the list of pending locks for the file and create an in-coming
1019 * edge from lock to each blocking lock.
1020 */
1021static int
1022lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1023{
1024	struct lockf_entry *overlap;
1025	int error;
1026
1027	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1028		if (!lf_blocks(lock, overlap))
1029			continue;
1030
1031		/*
1032		 * We've found a blocking lock. Add the corresponding
1033		 * edge to the graphs and see if it would cause a
1034		 * deadlock.
1035		 */
1036		error = lf_add_edge(overlap, lock);
1037
1038		/*
1039		 * The only error that lf_add_edge returns is EDEADLK.
1040		 * Remove any edges we added and return the error.
1041		 */
1042		if (error) {
1043			lf_remove_incoming(lock);
1044			return (error);
1045		}
1046	}
1047	return (0);
1048}
1049
1050/*
1051 * Insert lock into the active list, keeping list entries ordered by
1052 * increasing values of lf_start.
1053 */
1054static void
1055lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1056{
1057	struct lockf_entry *lf, *lfprev;
1058
1059	if (LIST_EMPTY(&state->ls_active)) {
1060		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1061		return;
1062	}
1063
1064	lfprev = NULL;
1065	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1066		if (lf->lf_start > lock->lf_start) {
1067			LIST_INSERT_BEFORE(lf, lock, lf_link);
1068			return;
1069		}
1070		lfprev = lf;
1071	}
1072	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1073}
1074
1075/*
1076 * Wake up a sleeping lock and remove it from the pending list now
1077 * that all its dependancies have been resolved. The caller should
1078 * arrange for the lock to be added to the active list, adjusting any
1079 * existing locks for the same owner as needed.
1080 */
1081static void
1082lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1083{
1084
1085	/*
1086	 * Remove from ls_pending list and wake up the caller
1087	 * or start the async notification, as appropriate.
1088	 */
1089	LIST_REMOVE(wakelock, lf_link);
1090#ifdef LOCKF_DEBUG
1091	if (lockf_debug & 1)
1092		lf_print("lf_wakeup_lock: awakening", wakelock);
1093#endif /* LOCKF_DEBUG */
1094	if (wakelock->lf_async_task) {
1095		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1096	} else {
1097		wakeup(wakelock);
1098	}
1099}
1100
1101/*
1102 * Re-check all dependant locks and remove edges to locks that we no
1103 * longer block. If 'all' is non-zero, the lock has been removed and
1104 * we must remove all the dependancies, otherwise it has simply been
1105 * reduced but remains active. Any pending locks which have been been
1106 * unblocked are added to 'granted'
1107 */
1108static void
1109lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1110	struct lockf_entry_list *granted)
1111{
1112	struct lockf_edge *e, *ne;
1113	struct lockf_entry *deplock;
1114
1115	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1116		deplock = e->le_from;
1117		if (all || !lf_blocks(lock, deplock)) {
1118			sx_xlock(&lf_owner_graph_lock);
1119			lf_remove_edge(e);
1120			sx_xunlock(&lf_owner_graph_lock);
1121			if (LIST_EMPTY(&deplock->lf_outedges)) {
1122				lf_wakeup_lock(state, deplock);
1123				LIST_INSERT_HEAD(granted, deplock, lf_link);
1124			}
1125		}
1126	}
1127}
1128
1129/*
1130 * Set the start of an existing active lock, updating dependancies and
1131 * adding any newly woken locks to 'granted'.
1132 */
1133static void
1134lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1135	struct lockf_entry_list *granted)
1136{
1137
1138	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1139	lock->lf_start = new_start;
1140	LIST_REMOVE(lock, lf_link);
1141	lf_insert_lock(state, lock);
1142	lf_update_dependancies(state, lock, FALSE, granted);
1143}
1144
1145/*
1146 * Set the end of an existing active lock, updating dependancies and
1147 * adding any newly woken locks to 'granted'.
1148 */
1149static void
1150lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1151	struct lockf_entry_list *granted)
1152{
1153
1154	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1155	lock->lf_end = new_end;
1156	lf_update_dependancies(state, lock, FALSE, granted);
1157}
1158
1159/*
1160 * Add a lock to the active list, updating or removing any current
1161 * locks owned by the same owner and processing any pending locks that
1162 * become unblocked as a result. This code is also used for unlock
1163 * since the logic for updating existing locks is identical.
1164 *
1165 * As a result of processing the new lock, we may unblock existing
1166 * pending locks as a result of downgrading/unlocking. We simply
1167 * activate the newly granted locks by looping.
1168 *
1169 * Since the new lock already has its dependancies set up, we always
1170 * add it to the list (unless its an unlock request). This may
1171 * fragment the lock list in some pathological cases but its probably
1172 * not a real problem.
1173 */
1174static void
1175lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1176{
1177	struct lockf_entry *overlap, *lf;
1178	struct lockf_entry_list granted;
1179	int ovcase;
1180
1181	LIST_INIT(&granted);
1182	LIST_INSERT_HEAD(&granted, lock, lf_link);
1183
1184	while (!LIST_EMPTY(&granted)) {
1185		lock = LIST_FIRST(&granted);
1186		LIST_REMOVE(lock, lf_link);
1187
1188		/*
1189		 * Skip over locks owned by other processes.  Handle
1190		 * any locks that overlap and are owned by ourselves.
1191		 */
1192		overlap = LIST_FIRST(&state->ls_active);
1193		for (;;) {
1194			ovcase = lf_findoverlap(&overlap, lock, SELF);
1195
1196#ifdef LOCKF_DEBUG
1197			if (ovcase && (lockf_debug & 2)) {
1198				printf("lf_setlock: overlap %d", ovcase);
1199				lf_print("", overlap);
1200			}
1201#endif
1202			/*
1203			 * Six cases:
1204			 *	0) no overlap
1205			 *	1) overlap == lock
1206			 *	2) overlap contains lock
1207			 *	3) lock contains overlap
1208			 *	4) overlap starts before lock
1209			 *	5) overlap ends after lock
1210			 */
1211			switch (ovcase) {
1212			case 0: /* no overlap */
1213				break;
1214
1215			case 1: /* overlap == lock */
1216				/*
1217				 * We have already setup the
1218				 * dependants for the new lock, taking
1219				 * into account a possible downgrade
1220				 * or unlock. Remove the old lock.
1221				 */
1222				LIST_REMOVE(overlap, lf_link);
1223				lf_update_dependancies(state, overlap, TRUE,
1224					&granted);
1225				lf_free_lock(overlap);
1226				break;
1227
1228			case 2: /* overlap contains lock */
1229				/*
1230				 * Just split the existing lock.
1231				 */
1232				lf_split(state, overlap, lock, &granted);
1233				break;
1234
1235			case 3: /* lock contains overlap */
1236				/*
1237				 * Delete the overlap and advance to
1238				 * the next entry in the list.
1239				 */
1240				lf = LIST_NEXT(overlap, lf_link);
1241				LIST_REMOVE(overlap, lf_link);
1242				lf_update_dependancies(state, overlap, TRUE,
1243					&granted);
1244				lf_free_lock(overlap);
1245				overlap = lf;
1246				continue;
1247
1248			case 4: /* overlap starts before lock */
1249				/*
1250				 * Just update the overlap end and
1251				 * move on.
1252				 */
1253				lf_set_end(state, overlap, lock->lf_start - 1,
1254				    &granted);
1255				overlap = LIST_NEXT(overlap, lf_link);
1256				continue;
1257
1258			case 5: /* overlap ends after lock */
1259				/*
1260				 * Change the start of overlap and
1261				 * re-insert.
1262				 */
1263				lf_set_start(state, overlap, lock->lf_end + 1,
1264				    &granted);
1265				break;
1266			}
1267			break;
1268		}
1269#ifdef LOCKF_DEBUG
1270		if (lockf_debug & 1) {
1271			if (lock->lf_type != F_UNLCK)
1272				lf_print("lf_activate_lock: activated", lock);
1273			else
1274				lf_print("lf_activate_lock: unlocked", lock);
1275			lf_printlist("lf_activate_lock", lock);
1276		}
1277#endif /* LOCKF_DEBUG */
1278		if (lock->lf_type != F_UNLCK)
1279			lf_insert_lock(state, lock);
1280	}
1281}
1282
1283/*
1284 * Cancel a pending lock request, either as a result of a signal or a
1285 * cancel request for an async lock.
1286 */
1287static void
1288lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1289{
1290	struct lockf_entry_list granted;
1291
1292	/*
1293	 * Note it is theoretically possible that cancelling this lock
1294	 * may allow some other pending lock to become
1295	 * active. Consider this case:
1296	 *
1297	 * Owner	Action		Result		Dependancies
1298	 *
1299	 * A:		lock [0..0]	succeeds
1300	 * B:		lock [2..2]	succeeds
1301	 * C:		lock [1..2]	blocked		C->B
1302	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1303	 * A:		unlock [0..0]			C->B,D->C
1304	 * C:		cancel [1..2]
1305	 */
1306
1307	LIST_REMOVE(lock, lf_link);
1308
1309	/*
1310	 * Removing out-going edges is simple.
1311	 */
1312	sx_xlock(&lf_owner_graph_lock);
1313	lf_remove_outgoing(lock);
1314	sx_xunlock(&lf_owner_graph_lock);
1315
1316	/*
1317	 * Removing in-coming edges may allow some other lock to
1318	 * become active - we use lf_update_dependancies to figure
1319	 * this out.
1320	 */
1321	LIST_INIT(&granted);
1322	lf_update_dependancies(state, lock, TRUE, &granted);
1323	lf_free_lock(lock);
1324
1325	/*
1326	 * Feed any newly active locks to lf_activate_lock.
1327	 */
1328	while (!LIST_EMPTY(&granted)) {
1329		lock = LIST_FIRST(&granted);
1330		LIST_REMOVE(lock, lf_link);
1331		lf_activate_lock(state, lock);
1332	}
1333}
1334
1335/*
1336 * Set a byte-range lock.
1337 */
1338static int
1339lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1340    void **cookiep)
1341{
1342	struct lockf_entry *block;
1343	static char lockstr[] = "lockf";
1344	int priority, error;
1345
1346#ifdef LOCKF_DEBUG
1347	if (lockf_debug & 1)
1348		lf_print("lf_setlock", lock);
1349#endif /* LOCKF_DEBUG */
1350
1351	/*
1352	 * Set the priority
1353	 */
1354	priority = PLOCK;
1355	if (lock->lf_type == F_WRLCK)
1356		priority += 4;
1357	priority |= PCATCH;
1358	/*
1359	 * Scan lock list for this file looking for locks that would block us.
1360	 */
1361	while ((block = lf_getblock(state, lock))) {
1362		/*
1363		 * Free the structure and return if nonblocking.
1364		 */
1365		if ((lock->lf_flags & F_WAIT) == 0
1366		    && lock->lf_async_task == NULL) {
1367			lf_free_lock(lock);
1368			error = EAGAIN;
1369			goto out;
1370		}
1371
1372		/*
1373		 * We are blocked. Create edges to each blocking lock,
1374		 * checking for deadlock using the owner graph. For
1375		 * simplicity, we run deadlock detection for all
1376		 * locks, posix and otherwise.
1377		 */
1378		sx_xlock(&lf_owner_graph_lock);
1379		error = lf_add_outgoing(state, lock);
1380		sx_xunlock(&lf_owner_graph_lock);
1381
1382		if (error) {
1383#ifdef LOCKF_DEBUG
1384			if (lockf_debug & 1)
1385				lf_print("lf_setlock: deadlock", lock);
1386#endif
1387			lf_free_lock(lock);
1388			goto out;
1389		}
1390
1391		/*
1392		 * For flock type locks, we must first remove
1393		 * any shared locks that we hold before we sleep
1394		 * waiting for an exclusive lock.
1395		 */
1396		if ((lock->lf_flags & F_FLOCK) &&
1397		    lock->lf_type == F_WRLCK) {
1398			lock->lf_type = F_UNLCK;
1399			lf_activate_lock(state, lock);
1400			lock->lf_type = F_WRLCK;
1401		}
1402		/*
1403		 * We have added edges to everything that blocks
1404		 * us. Sleep until they all go away.
1405		 */
1406		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1407#ifdef LOCKF_DEBUG
1408		if (lockf_debug & 1) {
1409			struct lockf_edge *e;
1410			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1411				lf_print("lf_setlock: blocking on", e->le_to);
1412				lf_printlist("lf_setlock", e->le_to);
1413			}
1414		}
1415#endif /* LOCKF_DEBUG */
1416
1417		if ((lock->lf_flags & F_WAIT) == 0) {
1418			/*
1419			 * The caller requested async notification -
1420			 * this callback happens when the blocking
1421			 * lock is released, allowing the caller to
1422			 * make another attempt to take the lock.
1423			 */
1424			*cookiep = (void *) lock;
1425			error = EINPROGRESS;
1426			goto out;
1427		}
1428
1429		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1430		/*
1431		 * We may have been awakened by a signal and/or by a
1432		 * debugger continuing us (in which cases we must
1433		 * remove our lock graph edges) and/or by another
1434		 * process releasing a lock (in which case our edges
1435		 * have already been removed and we have been moved to
1436		 * the active list). We may also have been woken by
1437		 * lf_purgelocks which we report to the caller as
1438		 * EINTR. In that case, lf_purgelocks will have
1439		 * removed our lock graph edges.
1440		 *
1441		 * Note that it is possible to receive a signal after
1442		 * we were successfully woken (and moved to the active
1443		 * list) but before we resumed execution. In this
1444		 * case, our lf_outedges list will be clear. We
1445		 * pretend there was no error.
1446		 *
1447		 * Note also, if we have been sleeping long enough, we
1448		 * may now have incoming edges from some newer lock
1449		 * which is waiting behind us in the queue.
1450		 */
1451		if (lock->lf_flags & F_INTR) {
1452			error = EINTR;
1453			lf_free_lock(lock);
1454			goto out;
1455		}
1456		if (LIST_EMPTY(&lock->lf_outedges)) {
1457			error = 0;
1458		} else {
1459			lf_cancel_lock(state, lock);
1460			goto out;
1461		}
1462#ifdef LOCKF_DEBUG
1463		if (lockf_debug & 1) {
1464			lf_print("lf_setlock: granted", lock);
1465		}
1466#endif
1467		goto out;
1468	}
1469	/*
1470	 * It looks like we are going to grant the lock. First add
1471	 * edges from any currently pending lock that the new lock
1472	 * would block.
1473	 */
1474	sx_xlock(&lf_owner_graph_lock);
1475	error = lf_add_incoming(state, lock);
1476	sx_xunlock(&lf_owner_graph_lock);
1477	if (error) {
1478#ifdef LOCKF_DEBUG
1479		if (lockf_debug & 1)
1480			lf_print("lf_setlock: deadlock", lock);
1481#endif
1482		lf_free_lock(lock);
1483		goto out;
1484	}
1485
1486	/*
1487	 * No blocks!!  Add the lock.  Note that we will
1488	 * downgrade or upgrade any overlapping locks this
1489	 * process already owns.
1490	 */
1491	lf_activate_lock(state, lock);
1492	error = 0;
1493out:
1494	return (error);
1495}
1496
1497/*
1498 * Remove a byte-range lock on an inode.
1499 *
1500 * Generally, find the lock (or an overlap to that lock)
1501 * and remove it (or shrink it), then wakeup anyone we can.
1502 */
1503static int
1504lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1505{
1506	struct lockf_entry *overlap;
1507
1508	overlap = LIST_FIRST(&state->ls_active);
1509
1510	if (overlap == NOLOCKF)
1511		return (0);
1512#ifdef LOCKF_DEBUG
1513	if (unlock->lf_type != F_UNLCK)
1514		panic("lf_clearlock: bad type");
1515	if (lockf_debug & 1)
1516		lf_print("lf_clearlock", unlock);
1517#endif /* LOCKF_DEBUG */
1518
1519	lf_activate_lock(state, unlock);
1520
1521	return (0);
1522}
1523
1524/*
1525 * Check whether there is a blocking lock, and if so return its
1526 * details in '*fl'.
1527 */
1528static int
1529lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1530{
1531	struct lockf_entry *block;
1532
1533#ifdef LOCKF_DEBUG
1534	if (lockf_debug & 1)
1535		lf_print("lf_getlock", lock);
1536#endif /* LOCKF_DEBUG */
1537
1538	if ((block = lf_getblock(state, lock))) {
1539		fl->l_type = block->lf_type;
1540		fl->l_whence = SEEK_SET;
1541		fl->l_start = block->lf_start;
1542		if (block->lf_end == OFF_MAX)
1543			fl->l_len = 0;
1544		else
1545			fl->l_len = block->lf_end - block->lf_start + 1;
1546		fl->l_pid = block->lf_owner->lo_pid;
1547		fl->l_sysid = block->lf_owner->lo_sysid;
1548	} else {
1549		fl->l_type = F_UNLCK;
1550	}
1551	return (0);
1552}
1553
1554/*
1555 * Cancel an async lock request.
1556 */
1557static int
1558lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1559{
1560	struct lockf_entry *reallock;
1561
1562	/*
1563	 * We need to match this request with an existing lock
1564	 * request.
1565	 */
1566	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1567		if ((void *) reallock == cookie) {
1568			/*
1569			 * Double-check that this lock looks right
1570			 * (maybe use a rolling ID for the cancel
1571			 * cookie instead?)
1572			 */
1573			if (!(reallock->lf_vnode == lock->lf_vnode
1574				&& reallock->lf_start == lock->lf_start
1575				&& reallock->lf_end == lock->lf_end)) {
1576				return (ENOENT);
1577			}
1578
1579			/*
1580			 * Make sure this lock was async and then just
1581			 * remove it from its wait lists.
1582			 */
1583			if (!reallock->lf_async_task) {
1584				return (ENOENT);
1585			}
1586
1587			/*
1588			 * Note that since any other thread must take
1589			 * state->ls_lock before it can possibly
1590			 * trigger the async callback, we are safe
1591			 * from a race with lf_wakeup_lock, i.e. we
1592			 * can free the lock (actually our caller does
1593			 * this).
1594			 */
1595			lf_cancel_lock(state, reallock);
1596			return (0);
1597		}
1598	}
1599
1600	/*
1601	 * We didn't find a matching lock - not much we can do here.
1602	 */
1603	return (ENOENT);
1604}
1605
1606/*
1607 * Walk the list of locks for an inode and
1608 * return the first blocking lock.
1609 */
1610static struct lockf_entry *
1611lf_getblock(struct lockf *state, struct lockf_entry *lock)
1612{
1613	struct lockf_entry *overlap;
1614
1615	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1616		/*
1617		 * We may assume that the active list is sorted by
1618		 * lf_start.
1619		 */
1620		if (overlap->lf_start > lock->lf_end)
1621			break;
1622		if (!lf_blocks(lock, overlap))
1623			continue;
1624		return (overlap);
1625	}
1626	return (NOLOCKF);
1627}
1628
1629/*
1630 * Walk the list of locks for an inode to find an overlapping lock (if
1631 * any) and return a classification of that overlap.
1632 *
1633 * Arguments:
1634 *	*overlap	The place in the lock list to start looking
1635 *	lock		The lock which is being tested
1636 *	type		Pass 'SELF' to test only locks with the same
1637 *			owner as lock, or 'OTHER' to test only locks
1638 *			with a different owner
1639 *
1640 * Returns one of six values:
1641 *	0) no overlap
1642 *	1) overlap == lock
1643 *	2) overlap contains lock
1644 *	3) lock contains overlap
1645 *	4) overlap starts before lock
1646 *	5) overlap ends after lock
1647 *
1648 * If there is an overlapping lock, '*overlap' is set to point at the
1649 * overlapping lock.
1650 *
1651 * NOTE: this returns only the FIRST overlapping lock.  There
1652 *	 may be more than one.
1653 */
1654static int
1655lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1656{
1657	struct lockf_entry *lf;
1658	off_t start, end;
1659	int res;
1660
1661	if ((*overlap) == NOLOCKF) {
1662		return (0);
1663	}
1664#ifdef LOCKF_DEBUG
1665	if (lockf_debug & 2)
1666		lf_print("lf_findoverlap: looking for overlap in", lock);
1667#endif /* LOCKF_DEBUG */
1668	start = lock->lf_start;
1669	end = lock->lf_end;
1670	res = 0;
1671	while (*overlap) {
1672		lf = *overlap;
1673		if (lf->lf_start > end)
1674			break;
1675		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1676		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1677			*overlap = LIST_NEXT(lf, lf_link);
1678			continue;
1679		}
1680#ifdef LOCKF_DEBUG
1681		if (lockf_debug & 2)
1682			lf_print("\tchecking", lf);
1683#endif /* LOCKF_DEBUG */
1684		/*
1685		 * OK, check for overlap
1686		 *
1687		 * Six cases:
1688		 *	0) no overlap
1689		 *	1) overlap == lock
1690		 *	2) overlap contains lock
1691		 *	3) lock contains overlap
1692		 *	4) overlap starts before lock
1693		 *	5) overlap ends after lock
1694		 */
1695		if (start > lf->lf_end) {
1696			/* Case 0 */
1697#ifdef LOCKF_DEBUG
1698			if (lockf_debug & 2)
1699				printf("no overlap\n");
1700#endif /* LOCKF_DEBUG */
1701			*overlap = LIST_NEXT(lf, lf_link);
1702			continue;
1703		}
1704		if (lf->lf_start == start && lf->lf_end == end) {
1705			/* Case 1 */
1706#ifdef LOCKF_DEBUG
1707			if (lockf_debug & 2)
1708				printf("overlap == lock\n");
1709#endif /* LOCKF_DEBUG */
1710			res = 1;
1711			break;
1712		}
1713		if (lf->lf_start <= start && lf->lf_end >= end) {
1714			/* Case 2 */
1715#ifdef LOCKF_DEBUG
1716			if (lockf_debug & 2)
1717				printf("overlap contains lock\n");
1718#endif /* LOCKF_DEBUG */
1719			res = 2;
1720			break;
1721		}
1722		if (start <= lf->lf_start && end >= lf->lf_end) {
1723			/* Case 3 */
1724#ifdef LOCKF_DEBUG
1725			if (lockf_debug & 2)
1726				printf("lock contains overlap\n");
1727#endif /* LOCKF_DEBUG */
1728			res = 3;
1729			break;
1730		}
1731		if (lf->lf_start < start && lf->lf_end >= start) {
1732			/* Case 4 */
1733#ifdef LOCKF_DEBUG
1734			if (lockf_debug & 2)
1735				printf("overlap starts before lock\n");
1736#endif /* LOCKF_DEBUG */
1737			res = 4;
1738			break;
1739		}
1740		if (lf->lf_start > start && lf->lf_end > end) {
1741			/* Case 5 */
1742#ifdef LOCKF_DEBUG
1743			if (lockf_debug & 2)
1744				printf("overlap ends after lock\n");
1745#endif /* LOCKF_DEBUG */
1746			res = 5;
1747			break;
1748		}
1749		panic("lf_findoverlap: default");
1750	}
1751	return (res);
1752}
1753
1754/*
1755 * Split an the existing 'lock1', based on the extent of the lock
1756 * described by 'lock2'. The existing lock should cover 'lock2'
1757 * entirely.
1758 *
1759 * Any pending locks which have been been unblocked are added to
1760 * 'granted'
1761 */
1762static void
1763lf_split(struct lockf *state, struct lockf_entry *lock1,
1764    struct lockf_entry *lock2, struct lockf_entry_list *granted)
1765{
1766	struct lockf_entry *splitlock;
1767
1768#ifdef LOCKF_DEBUG
1769	if (lockf_debug & 2) {
1770		lf_print("lf_split", lock1);
1771		lf_print("splitting from", lock2);
1772	}
1773#endif /* LOCKF_DEBUG */
1774	/*
1775	 * Check to see if we don't need to split at all.
1776	 */
1777	if (lock1->lf_start == lock2->lf_start) {
1778		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1779		return;
1780	}
1781	if (lock1->lf_end == lock2->lf_end) {
1782		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1783		return;
1784	}
1785	/*
1786	 * Make a new lock consisting of the last part of
1787	 * the encompassing lock.
1788	 */
1789	splitlock = lf_alloc_lock(lock1->lf_owner);
1790	memcpy(splitlock, lock1, sizeof *splitlock);
1791	if (splitlock->lf_flags & F_REMOTE)
1792		vref(splitlock->lf_vnode);
1793
1794	/*
1795	 * This cannot cause a deadlock since any edges we would add
1796	 * to splitlock already exist in lock1. We must be sure to add
1797	 * necessary dependancies to splitlock before we reduce lock1
1798	 * otherwise we may accidentally grant a pending lock that
1799	 * was blocked by the tail end of lock1.
1800	 */
1801	splitlock->lf_start = lock2->lf_end + 1;
1802	LIST_INIT(&splitlock->lf_outedges);
1803	LIST_INIT(&splitlock->lf_inedges);
1804	sx_xlock(&lf_owner_graph_lock);
1805	lf_add_incoming(state, splitlock);
1806	sx_xunlock(&lf_owner_graph_lock);
1807
1808	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1809
1810	/*
1811	 * OK, now link it in
1812	 */
1813	lf_insert_lock(state, splitlock);
1814}
1815
1816struct clearlock {
1817	STAILQ_ENTRY(clearlock) link;
1818	struct vnode *vp;
1819	struct flock fl;
1820};
1821STAILQ_HEAD(clearlocklist, clearlock);
1822
1823void
1824lf_clearremotesys(int sysid)
1825{
1826	struct lockf *ls;
1827	struct lockf_entry *lf;
1828	struct clearlock *cl;
1829	struct clearlocklist locks;
1830
1831	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
1832
1833	/*
1834	 * In order to keep the locking simple, we iterate over the
1835	 * active lock lists to build a list of locks that need
1836	 * releasing. We then call VOP_ADVLOCK for each one in turn.
1837	 *
1838	 * We take an extra reference to the vnode for the duration to
1839	 * make sure it doesn't go away before we are finished.
1840	 */
1841	STAILQ_INIT(&locks);
1842	sx_xlock(&lf_lock_states_lock);
1843	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1844		sx_xlock(&ls->ls_lock);
1845		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1846			if (lf->lf_owner->lo_sysid != sysid)
1847				continue;
1848
1849			cl = malloc(sizeof(struct clearlock), M_LOCKF,
1850			    M_WAITOK);
1851			cl->vp = lf->lf_vnode;
1852			vref(cl->vp);
1853			cl->fl.l_start = lf->lf_start;
1854			if (lf->lf_end == OFF_MAX)
1855				cl->fl.l_len = 0;
1856			else
1857				cl->fl.l_len =
1858					lf->lf_end - lf->lf_start + 1;
1859			cl->fl.l_whence = SEEK_SET;
1860			cl->fl.l_type = F_UNLCK;
1861			cl->fl.l_pid = lf->lf_owner->lo_pid;
1862			cl->fl.l_sysid = sysid;
1863			STAILQ_INSERT_TAIL(&locks, cl, link);
1864		}
1865		sx_xunlock(&ls->ls_lock);
1866	}
1867	sx_xunlock(&lf_lock_states_lock);
1868
1869	while ((cl = STAILQ_FIRST(&locks)) != NULL) {
1870		STAILQ_REMOVE_HEAD(&locks, link);
1871		VOP_ADVLOCK(cl->vp, 0, F_UNLCK, &cl->fl, F_REMOTE);
1872		vrele(cl->vp);
1873		free(cl, M_LOCKF);
1874	}
1875}
1876
1877int
1878lf_countlocks(int sysid)
1879{
1880	int i;
1881	struct lock_owner *lo;
1882	int count;
1883
1884	count = 0;
1885	sx_xlock(&lf_lock_owners_lock);
1886	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
1887		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
1888			if (lo->lo_sysid == sysid)
1889				count += lo->lo_refs;
1890	sx_xunlock(&lf_lock_owners_lock);
1891
1892	return (count);
1893}
1894
1895#ifdef LOCKF_DEBUG
1896
1897/*
1898 * Return non-zero if y is reachable from x using a brute force
1899 * search. If reachable and path is non-null, return the route taken
1900 * in path.
1901 */
1902static int
1903graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
1904    struct owner_vertex_list *path)
1905{
1906	struct owner_edge *e;
1907
1908	if (x == y) {
1909		if (path)
1910			TAILQ_INSERT_HEAD(path, x, v_link);
1911		return 1;
1912	}
1913
1914	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
1915		if (graph_reaches(e->e_to, y, path)) {
1916			if (path)
1917				TAILQ_INSERT_HEAD(path, x, v_link);
1918			return 1;
1919		}
1920	}
1921	return 0;
1922}
1923
1924/*
1925 * Perform consistency checks on the graph. Make sure the values of
1926 * v_order are correct. If checkorder is non-zero, check no vertex can
1927 * reach any other vertex with a smaller order.
1928 */
1929static void
1930graph_check(struct owner_graph *g, int checkorder)
1931{
1932	int i, j;
1933
1934	for (i = 0; i < g->g_size; i++) {
1935		if (!g->g_vertices[i]->v_owner)
1936			continue;
1937		KASSERT(g->g_vertices[i]->v_order == i,
1938		    ("lock graph vertices disordered"));
1939		if (checkorder) {
1940			for (j = 0; j < i; j++) {
1941				if (!g->g_vertices[j]->v_owner)
1942					continue;
1943				KASSERT(!graph_reaches(g->g_vertices[i],
1944					g->g_vertices[j], NULL),
1945				    ("lock graph vertices disordered"));
1946			}
1947		}
1948	}
1949}
1950
1951static void
1952graph_print_vertices(struct owner_vertex_list *set)
1953{
1954	struct owner_vertex *v;
1955
1956	printf("{ ");
1957	TAILQ_FOREACH(v, set, v_link) {
1958		printf("%d:", v->v_order);
1959		lf_print_owner(v->v_owner);
1960		if (TAILQ_NEXT(v, v_link))
1961			printf(", ");
1962	}
1963	printf(" }\n");
1964}
1965
1966#endif
1967
1968/*
1969 * Calculate the sub-set of vertices v from the affected region [y..x]
1970 * where v is reachable from y. Return -1 if a loop was detected
1971 * (i.e. x is reachable from y, otherwise the number of vertices in
1972 * this subset.
1973 */
1974static int
1975graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
1976    struct owner_vertex *y, struct owner_vertex_list *delta)
1977{
1978	uint32_t gen;
1979	struct owner_vertex *v;
1980	struct owner_edge *e;
1981	int n;
1982
1983	/*
1984	 * We start with a set containing just y. Then for each vertex
1985	 * v in the set so far unprocessed, we add each vertex that v
1986	 * has an out-edge to and that is within the affected region
1987	 * [y..x]. If we see the vertex x on our travels, stop
1988	 * immediately.
1989	 */
1990	TAILQ_INIT(delta);
1991	TAILQ_INSERT_TAIL(delta, y, v_link);
1992	v = y;
1993	n = 1;
1994	gen = g->g_gen;
1995	while (v) {
1996		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
1997			if (e->e_to == x)
1998				return -1;
1999			if (e->e_to->v_order < x->v_order
2000			    && e->e_to->v_gen != gen) {
2001				e->e_to->v_gen = gen;
2002				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2003				n++;
2004			}
2005		}
2006		v = TAILQ_NEXT(v, v_link);
2007	}
2008
2009	return (n);
2010}
2011
2012/*
2013 * Calculate the sub-set of vertices v from the affected region [y..x]
2014 * where v reaches x. Return the number of vertices in this subset.
2015 */
2016static int
2017graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2018    struct owner_vertex *y, struct owner_vertex_list *delta)
2019{
2020	uint32_t gen;
2021	struct owner_vertex *v;
2022	struct owner_edge *e;
2023	int n;
2024
2025	/*
2026	 * We start with a set containing just x. Then for each vertex
2027	 * v in the set so far unprocessed, we add each vertex that v
2028	 * has an in-edge from and that is within the affected region
2029	 * [y..x].
2030	 */
2031	TAILQ_INIT(delta);
2032	TAILQ_INSERT_TAIL(delta, x, v_link);
2033	v = x;
2034	n = 1;
2035	gen = g->g_gen;
2036	while (v) {
2037		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2038			if (e->e_from->v_order > y->v_order
2039			    && e->e_from->v_gen != gen) {
2040				e->e_from->v_gen = gen;
2041				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2042				n++;
2043			}
2044		}
2045		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2046	}
2047
2048	return (n);
2049}
2050
2051static int
2052graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2053{
2054	struct owner_vertex *v;
2055	int i, j;
2056
2057	TAILQ_FOREACH(v, set, v_link) {
2058		for (i = n;
2059		     i > 0 && indices[i - 1] > v->v_order; i--)
2060			;
2061		for (j = n - 1; j >= i; j--)
2062			indices[j + 1] = indices[j];
2063		indices[i] = v->v_order;
2064		n++;
2065	}
2066
2067	return (n);
2068}
2069
2070static int
2071graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2072    struct owner_vertex_list *set)
2073{
2074	struct owner_vertex *v, *vlowest;
2075
2076	while (!TAILQ_EMPTY(set)) {
2077		vlowest = NULL;
2078		TAILQ_FOREACH(v, set, v_link) {
2079			if (!vlowest || v->v_order < vlowest->v_order)
2080				vlowest = v;
2081		}
2082		TAILQ_REMOVE(set, vlowest, v_link);
2083		vlowest->v_order = indices[nextunused];
2084		g->g_vertices[vlowest->v_order] = vlowest;
2085		nextunused++;
2086	}
2087
2088	return (nextunused);
2089}
2090
2091static int
2092graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2093    struct owner_vertex *y)
2094{
2095	struct owner_edge *e;
2096	struct owner_vertex_list deltaF, deltaB;
2097	int nF, nB, n, vi, i;
2098	int *indices;
2099
2100	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2101
2102	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2103		if (e->e_to == y) {
2104			e->e_refs++;
2105			return (0);
2106		}
2107	}
2108
2109#ifdef LOCKF_DEBUG
2110	if (lockf_debug & 8) {
2111		printf("adding edge %d:", x->v_order);
2112		lf_print_owner(x->v_owner);
2113		printf(" -> %d:", y->v_order);
2114		lf_print_owner(y->v_owner);
2115		printf("\n");
2116	}
2117#endif
2118	if (y->v_order < x->v_order) {
2119		/*
2120		 * The new edge violates the order. First find the set
2121		 * of affected vertices reachable from y (deltaF) and
2122		 * the set of affect vertices affected that reach x
2123		 * (deltaB), using the graph generation number to
2124		 * detect whether we have visited a given vertex
2125		 * already. We re-order the graph so that each vertex
2126		 * in deltaB appears before each vertex in deltaF.
2127		 *
2128		 * If x is a member of deltaF, then the new edge would
2129		 * create a cycle. Otherwise, we may assume that
2130		 * deltaF and deltaB are disjoint.
2131		 */
2132		g->g_gen++;
2133		if (g->g_gen == 0) {
2134			/*
2135			 * Generation wrap.
2136			 */
2137			for (vi = 0; vi < g->g_size; vi++) {
2138				g->g_vertices[vi]->v_gen = 0;
2139			}
2140			g->g_gen++;
2141		}
2142		nF = graph_delta_forward(g, x, y, &deltaF);
2143		if (nF < 0) {
2144#ifdef LOCKF_DEBUG
2145			if (lockf_debug & 8) {
2146				struct owner_vertex_list path;
2147				printf("deadlock: ");
2148				TAILQ_INIT(&path);
2149				graph_reaches(y, x, &path);
2150				graph_print_vertices(&path);
2151			}
2152#endif
2153			return (EDEADLK);
2154		}
2155
2156#ifdef LOCKF_DEBUG
2157		if (lockf_debug & 8) {
2158			printf("re-ordering graph vertices\n");
2159			printf("deltaF = ");
2160			graph_print_vertices(&deltaF);
2161		}
2162#endif
2163
2164		nB = graph_delta_backward(g, x, y, &deltaB);
2165
2166#ifdef LOCKF_DEBUG
2167		if (lockf_debug & 8) {
2168			printf("deltaB = ");
2169			graph_print_vertices(&deltaB);
2170		}
2171#endif
2172
2173		/*
2174		 * We first build a set of vertex indices (vertex
2175		 * order values) that we may use, then we re-assign
2176		 * orders first to those vertices in deltaB, then to
2177		 * deltaF. Note that the contents of deltaF and deltaB
2178		 * may be partially disordered - we perform an
2179		 * insertion sort while building our index set.
2180		 */
2181		indices = g->g_indexbuf;
2182		n = graph_add_indices(indices, 0, &deltaF);
2183		graph_add_indices(indices, n, &deltaB);
2184
2185		/*
2186		 * We must also be sure to maintain the relative
2187		 * ordering of deltaF and deltaB when re-assigning
2188		 * vertices. We do this by iteratively removing the
2189		 * lowest ordered element from the set and assigning
2190		 * it the next value from our new ordering.
2191		 */
2192		i = graph_assign_indices(g, indices, 0, &deltaB);
2193		graph_assign_indices(g, indices, i, &deltaF);
2194
2195#ifdef LOCKF_DEBUG
2196		if (lockf_debug & 8) {
2197			struct owner_vertex_list set;
2198			TAILQ_INIT(&set);
2199			for (i = 0; i < nB + nF; i++)
2200				TAILQ_INSERT_TAIL(&set,
2201				    g->g_vertices[indices[i]], v_link);
2202			printf("new ordering = ");
2203			graph_print_vertices(&set);
2204		}
2205#endif
2206	}
2207
2208	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2209
2210#ifdef LOCKF_DEBUG
2211	if (lockf_debug & 8) {
2212		graph_check(g, TRUE);
2213	}
2214#endif
2215
2216	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2217
2218	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2219	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2220	e->e_refs = 1;
2221	e->e_from = x;
2222	e->e_to = y;
2223
2224	return (0);
2225}
2226
2227/*
2228 * Remove an edge x->y from the graph.
2229 */
2230static void
2231graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2232    struct owner_vertex *y)
2233{
2234	struct owner_edge *e;
2235
2236	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2237
2238	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2239		if (e->e_to == y)
2240			break;
2241	}
2242	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2243
2244	e->e_refs--;
2245	if (e->e_refs == 0) {
2246#ifdef LOCKF_DEBUG
2247		if (lockf_debug & 8) {
2248			printf("removing edge %d:", x->v_order);
2249			lf_print_owner(x->v_owner);
2250			printf(" -> %d:", y->v_order);
2251			lf_print_owner(y->v_owner);
2252			printf("\n");
2253		}
2254#endif
2255		LIST_REMOVE(e, e_outlink);
2256		LIST_REMOVE(e, e_inlink);
2257		free(e, M_LOCKF);
2258	}
2259}
2260
2261/*
2262 * Allocate a vertex from the free list. Return ENOMEM if there are
2263 * none.
2264 */
2265static struct owner_vertex *
2266graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2267{
2268	struct owner_vertex *v;
2269
2270	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2271
2272	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2273	if (g->g_size == g->g_space) {
2274		g->g_vertices = realloc(g->g_vertices,
2275		    2 * g->g_space * sizeof(struct owner_vertex *),
2276		    M_LOCKF, M_WAITOK);
2277		free(g->g_indexbuf, M_LOCKF);
2278		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2279		    M_LOCKF, M_WAITOK);
2280		g->g_space = 2 * g->g_space;
2281	}
2282	v->v_order = g->g_size;
2283	v->v_gen = g->g_gen;
2284	g->g_vertices[g->g_size] = v;
2285	g->g_size++;
2286
2287	LIST_INIT(&v->v_outedges);
2288	LIST_INIT(&v->v_inedges);
2289	v->v_owner = lo;
2290
2291	return (v);
2292}
2293
2294static void
2295graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2296{
2297	struct owner_vertex *w;
2298	int i;
2299
2300	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2301
2302	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2303	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2304
2305	/*
2306	 * Remove from the graph's array and close up the gap,
2307	 * renumbering the other vertices.
2308	 */
2309	for (i = v->v_order + 1; i < g->g_size; i++) {
2310		w = g->g_vertices[i];
2311		w->v_order--;
2312		g->g_vertices[i - 1] = w;
2313	}
2314	g->g_size--;
2315
2316	free(v, M_LOCKF);
2317}
2318
2319static struct owner_graph *
2320graph_init(struct owner_graph *g)
2321{
2322
2323	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2324	    M_LOCKF, M_WAITOK);
2325	g->g_size = 0;
2326	g->g_space = 10;
2327	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2328	g->g_gen = 0;
2329
2330	return (g);
2331}
2332
2333#ifdef LOCKF_DEBUG
2334/*
2335 * Print description of a lock owner
2336 */
2337static void
2338lf_print_owner(struct lock_owner *lo)
2339{
2340
2341	if (lo->lo_flags & F_REMOTE) {
2342		printf("remote pid %d, system %d",
2343		    lo->lo_pid, lo->lo_sysid);
2344	} else if (lo->lo_flags & F_FLOCK) {
2345		printf("file %p", lo->lo_id);
2346	} else {
2347		printf("local pid %d", lo->lo_pid);
2348	}
2349}
2350
2351/*
2352 * Print out a lock.
2353 */
2354static void
2355lf_print(char *tag, struct lockf_entry *lock)
2356{
2357
2358	printf("%s: lock %p for ", tag, (void *)lock);
2359	lf_print_owner(lock->lf_owner);
2360	if (lock->lf_inode != (struct inode *)0)
2361		printf(" in ino %ju on dev <%s>,",
2362		    (uintmax_t)lock->lf_inode->i_number,
2363		    devtoname(lock->lf_inode->i_dev));
2364	printf(" %s, start %jd, end ",
2365	    lock->lf_type == F_RDLCK ? "shared" :
2366	    lock->lf_type == F_WRLCK ? "exclusive" :
2367	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2368	    (intmax_t)lock->lf_start);
2369	if (lock->lf_end == OFF_MAX)
2370		printf("EOF");
2371	else
2372		printf("%jd", (intmax_t)lock->lf_end);
2373	if (!LIST_EMPTY(&lock->lf_outedges))
2374		printf(" block %p\n",
2375		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2376	else
2377		printf("\n");
2378}
2379
2380static void
2381lf_printlist(char *tag, struct lockf_entry *lock)
2382{
2383	struct lockf_entry *lf, *blk;
2384	struct lockf_edge *e;
2385
2386	if (lock->lf_inode == (struct inode *)0)
2387		return;
2388
2389	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2390	    tag, (uintmax_t)lock->lf_inode->i_number,
2391	    devtoname(lock->lf_inode->i_dev));
2392	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2393		printf("\tlock %p for ",(void *)lf);
2394		lf_print_owner(lock->lf_owner);
2395		printf(", %s, start %jd, end %jd",
2396		    lf->lf_type == F_RDLCK ? "shared" :
2397		    lf->lf_type == F_WRLCK ? "exclusive" :
2398		    lf->lf_type == F_UNLCK ? "unlock" :
2399		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2400		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2401			blk = e->le_to;
2402			printf("\n\t\tlock request %p for ", (void *)blk);
2403			lf_print_owner(blk->lf_owner);
2404			printf(", %s, start %jd, end %jd",
2405			    blk->lf_type == F_RDLCK ? "shared" :
2406			    blk->lf_type == F_WRLCK ? "exclusive" :
2407			    blk->lf_type == F_UNLCK ? "unlock" :
2408			    "unknown", (intmax_t)blk->lf_start,
2409			    (intmax_t)blk->lf_end);
2410			if (!LIST_EMPTY(&blk->lf_inedges))
2411				panic("lf_printlist: bad list");
2412		}
2413		printf("\n");
2414	}
2415}
2416#endif /* LOCKF_DEBUG */
2417