kern_alq.c revision 241896
1/*-
2 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
3 * Copyright (c) 2008-2009, Lawrence Stewart <lstewart@freebsd.org>
4 * Copyright (c) 2009-2010, The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed at the Centre for Advanced
8 * Internet Architectures, Swinburne University of Technology, Melbourne,
9 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice unmodified, this list of conditions, and the following
16 *    disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/kern/kern_alq.c 241896 2012-10-22 17:50:54Z kib $");
35
36#include "opt_mac.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/kthread.h>
42#include <sys/lock.h>
43#include <sys/mount.h>
44#include <sys/mutex.h>
45#include <sys/namei.h>
46#include <sys/proc.h>
47#include <sys/vnode.h>
48#include <sys/alq.h>
49#include <sys/malloc.h>
50#include <sys/unistd.h>
51#include <sys/fcntl.h>
52#include <sys/eventhandler.h>
53
54#include <security/mac/mac_framework.h>
55
56/* Async. Logging Queue */
57struct alq {
58	char	*aq_entbuf;		/* Buffer for stored entries */
59	int	aq_entmax;		/* Max entries */
60	int	aq_entlen;		/* Entry length */
61	int	aq_freebytes;		/* Bytes available in buffer */
62	int	aq_buflen;		/* Total length of our buffer */
63	int	aq_writehead;		/* Location for next write */
64	int	aq_writetail;		/* Flush starts at this location */
65	int	aq_wrapearly;		/* # bytes left blank at end of buf */
66	int	aq_flags;		/* Queue flags */
67	int	aq_waiters;		/* Num threads waiting for resources
68					 * NB: Used as a wait channel so must
69					 * not be first field in the alq struct
70					 */
71	struct	ale	aq_getpost;	/* ALE for use by get/post */
72	struct mtx	aq_mtx;		/* Queue lock */
73	struct vnode	*aq_vp;		/* Open vnode handle */
74	struct ucred	*aq_cred;	/* Credentials of the opening thread */
75	LIST_ENTRY(alq)	aq_act;		/* List of active queues */
76	LIST_ENTRY(alq)	aq_link;	/* List of all queues */
77};
78
79#define	AQ_WANTED	0x0001		/* Wakeup sleeper when io is done */
80#define	AQ_ACTIVE	0x0002		/* on the active list */
81#define	AQ_FLUSHING	0x0004		/* doing IO */
82#define	AQ_SHUTDOWN	0x0008		/* Queue no longer valid */
83#define	AQ_ORDERED	0x0010		/* Queue enforces ordered writes */
84#define	AQ_LEGACY	0x0020		/* Legacy queue (fixed length writes) */
85
86#define	ALQ_LOCK(alq)	mtx_lock_spin(&(alq)->aq_mtx)
87#define	ALQ_UNLOCK(alq)	mtx_unlock_spin(&(alq)->aq_mtx)
88
89#define HAS_PENDING_DATA(alq) ((alq)->aq_freebytes != (alq)->aq_buflen)
90
91static MALLOC_DEFINE(M_ALD, "ALD", "ALD");
92
93/*
94 * The ald_mtx protects the ald_queues list and the ald_active list.
95 */
96static struct mtx ald_mtx;
97static LIST_HEAD(, alq) ald_queues;
98static LIST_HEAD(, alq) ald_active;
99static int ald_shutingdown = 0;
100struct thread *ald_thread;
101static struct proc *ald_proc;
102
103#define	ALD_LOCK()	mtx_lock(&ald_mtx)
104#define	ALD_UNLOCK()	mtx_unlock(&ald_mtx)
105
106/* Daemon functions */
107static int ald_add(struct alq *);
108static int ald_rem(struct alq *);
109static void ald_startup(void *);
110static void ald_daemon(void);
111static void ald_shutdown(void *, int);
112static void ald_activate(struct alq *);
113static void ald_deactivate(struct alq *);
114
115/* Internal queue functions */
116static void alq_shutdown(struct alq *);
117static void alq_destroy(struct alq *);
118static int alq_doio(struct alq *);
119
120
121/*
122 * Add a new queue to the global list.  Fail if we're shutting down.
123 */
124static int
125ald_add(struct alq *alq)
126{
127	int error;
128
129	error = 0;
130
131	ALD_LOCK();
132	if (ald_shutingdown) {
133		error = EBUSY;
134		goto done;
135	}
136	LIST_INSERT_HEAD(&ald_queues, alq, aq_link);
137done:
138	ALD_UNLOCK();
139	return (error);
140}
141
142/*
143 * Remove a queue from the global list unless we're shutting down.  If so,
144 * the ald will take care of cleaning up it's resources.
145 */
146static int
147ald_rem(struct alq *alq)
148{
149	int error;
150
151	error = 0;
152
153	ALD_LOCK();
154	if (ald_shutingdown) {
155		error = EBUSY;
156		goto done;
157	}
158	LIST_REMOVE(alq, aq_link);
159done:
160	ALD_UNLOCK();
161	return (error);
162}
163
164/*
165 * Put a queue on the active list.  This will schedule it for writing.
166 */
167static void
168ald_activate(struct alq *alq)
169{
170	LIST_INSERT_HEAD(&ald_active, alq, aq_act);
171	wakeup(&ald_active);
172}
173
174static void
175ald_deactivate(struct alq *alq)
176{
177	LIST_REMOVE(alq, aq_act);
178	alq->aq_flags &= ~AQ_ACTIVE;
179}
180
181static void
182ald_startup(void *unused)
183{
184	mtx_init(&ald_mtx, "ALDmtx", NULL, MTX_DEF|MTX_QUIET);
185	LIST_INIT(&ald_queues);
186	LIST_INIT(&ald_active);
187}
188
189static void
190ald_daemon(void)
191{
192	int needwakeup;
193	struct alq *alq;
194
195	ald_thread = FIRST_THREAD_IN_PROC(ald_proc);
196
197	EVENTHANDLER_REGISTER(shutdown_pre_sync, ald_shutdown, NULL,
198	    SHUTDOWN_PRI_FIRST);
199
200	ALD_LOCK();
201
202	for (;;) {
203		while ((alq = LIST_FIRST(&ald_active)) == NULL &&
204		    !ald_shutingdown)
205			mtx_sleep(&ald_active, &ald_mtx, PWAIT, "aldslp", 0);
206
207		/* Don't shutdown until all active ALQs are flushed. */
208		if (ald_shutingdown && alq == NULL) {
209			ALD_UNLOCK();
210			break;
211		}
212
213		ALQ_LOCK(alq);
214		ald_deactivate(alq);
215		ALD_UNLOCK();
216		needwakeup = alq_doio(alq);
217		ALQ_UNLOCK(alq);
218		if (needwakeup)
219			wakeup_one(alq);
220		ALD_LOCK();
221	}
222
223	kproc_exit(0);
224}
225
226static void
227ald_shutdown(void *arg, int howto)
228{
229	struct alq *alq;
230
231	ALD_LOCK();
232
233	/* Ensure no new queues can be created. */
234	ald_shutingdown = 1;
235
236	/* Shutdown all ALQs prior to terminating the ald_daemon. */
237	while ((alq = LIST_FIRST(&ald_queues)) != NULL) {
238		LIST_REMOVE(alq, aq_link);
239		ALD_UNLOCK();
240		alq_shutdown(alq);
241		ALD_LOCK();
242	}
243
244	/* At this point, all ALQs are flushed and shutdown. */
245
246	/*
247	 * Wake ald_daemon so that it exits. It won't be able to do
248	 * anything until we mtx_sleep because we hold the ald_mtx.
249	 */
250	wakeup(&ald_active);
251
252	/* Wait for ald_daemon to exit. */
253	mtx_sleep(ald_proc, &ald_mtx, PWAIT, "aldslp", 0);
254
255	ALD_UNLOCK();
256}
257
258static void
259alq_shutdown(struct alq *alq)
260{
261	ALQ_LOCK(alq);
262
263	/* Stop any new writers. */
264	alq->aq_flags |= AQ_SHUTDOWN;
265
266	/*
267	 * If the ALQ isn't active but has unwritten data (possible if
268	 * the ALQ_NOACTIVATE flag has been used), explicitly activate the
269	 * ALQ here so that the pending data gets flushed by the ald_daemon.
270	 */
271	if (!(alq->aq_flags & AQ_ACTIVE) && HAS_PENDING_DATA(alq)) {
272		alq->aq_flags |= AQ_ACTIVE;
273		ALQ_UNLOCK(alq);
274		ALD_LOCK();
275		ald_activate(alq);
276		ALD_UNLOCK();
277		ALQ_LOCK(alq);
278	}
279
280	/* Drain IO */
281	while (alq->aq_flags & AQ_ACTIVE) {
282		alq->aq_flags |= AQ_WANTED;
283		msleep_spin(alq, &alq->aq_mtx, "aldclose", 0);
284	}
285	ALQ_UNLOCK(alq);
286
287	vn_close(alq->aq_vp, FWRITE, alq->aq_cred,
288	    curthread);
289	crfree(alq->aq_cred);
290}
291
292void
293alq_destroy(struct alq *alq)
294{
295	/* Drain all pending IO. */
296	alq_shutdown(alq);
297
298	mtx_destroy(&alq->aq_mtx);
299	free(alq->aq_entbuf, M_ALD);
300	free(alq, M_ALD);
301}
302
303/*
304 * Flush all pending data to disk.  This operation will block.
305 */
306static int
307alq_doio(struct alq *alq)
308{
309	struct thread *td;
310	struct mount *mp;
311	struct vnode *vp;
312	struct uio auio;
313	struct iovec aiov[2];
314	int totlen;
315	int iov;
316	int wrapearly;
317
318	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
319
320	vp = alq->aq_vp;
321	td = curthread;
322	totlen = 0;
323	iov = 1;
324	wrapearly = alq->aq_wrapearly;
325
326	bzero(&aiov, sizeof(aiov));
327	bzero(&auio, sizeof(auio));
328
329	/* Start the write from the location of our buffer tail pointer. */
330	aiov[0].iov_base = alq->aq_entbuf + alq->aq_writetail;
331
332	if (alq->aq_writetail < alq->aq_writehead) {
333		/* Buffer not wrapped. */
334		totlen = aiov[0].iov_len = alq->aq_writehead - alq->aq_writetail;
335	} else if (alq->aq_writehead == 0) {
336		/* Buffer not wrapped (special case to avoid an empty iov). */
337		totlen = aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
338		    wrapearly;
339	} else {
340		/*
341		 * Buffer wrapped, requires 2 aiov entries:
342		 * - first is from writetail to end of buffer
343		 * - second is from start of buffer to writehead
344		 */
345		aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
346		    wrapearly;
347		iov++;
348		aiov[1].iov_base = alq->aq_entbuf;
349		aiov[1].iov_len =  alq->aq_writehead;
350		totlen = aiov[0].iov_len + aiov[1].iov_len;
351	}
352
353	alq->aq_flags |= AQ_FLUSHING;
354	ALQ_UNLOCK(alq);
355
356	auio.uio_iov = &aiov[0];
357	auio.uio_offset = 0;
358	auio.uio_segflg = UIO_SYSSPACE;
359	auio.uio_rw = UIO_WRITE;
360	auio.uio_iovcnt = iov;
361	auio.uio_resid = totlen;
362	auio.uio_td = td;
363
364	/*
365	 * Do all of the junk required to write now.
366	 */
367	vn_start_write(vp, &mp, V_WAIT);
368	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
369	/*
370	 * XXX: VOP_WRITE error checks are ignored.
371	 */
372#ifdef MAC
373	if (mac_vnode_check_write(alq->aq_cred, NOCRED, vp) == 0)
374#endif
375		VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, alq->aq_cred);
376	VOP_UNLOCK(vp, 0);
377	vn_finished_write(mp);
378
379	ALQ_LOCK(alq);
380	alq->aq_flags &= ~AQ_FLUSHING;
381
382	/* Adjust writetail as required, taking into account wrapping. */
383	alq->aq_writetail = (alq->aq_writetail + totlen + wrapearly) %
384	    alq->aq_buflen;
385	alq->aq_freebytes += totlen + wrapearly;
386
387	/*
388	 * If we just flushed part of the buffer which wrapped, reset the
389	 * wrapearly indicator.
390	 */
391	if (wrapearly)
392		alq->aq_wrapearly = 0;
393
394	/*
395	 * If we just flushed the buffer completely, reset indexes to 0 to
396	 * minimise buffer wraps.
397	 * This is also required to ensure alq_getn() can't wedge itself.
398	 */
399	if (!HAS_PENDING_DATA(alq))
400		alq->aq_writehead = alq->aq_writetail = 0;
401
402	KASSERT((alq->aq_writetail >= 0 && alq->aq_writetail < alq->aq_buflen),
403	    ("%s: aq_writetail < 0 || aq_writetail >= aq_buflen", __func__));
404
405	if (alq->aq_flags & AQ_WANTED) {
406		alq->aq_flags &= ~AQ_WANTED;
407		return (1);
408	}
409
410	return(0);
411}
412
413static struct kproc_desc ald_kp = {
414        "ALQ Daemon",
415        ald_daemon,
416        &ald_proc
417};
418
419SYSINIT(aldthread, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &ald_kp);
420SYSINIT(ald, SI_SUB_LOCK, SI_ORDER_ANY, ald_startup, NULL);
421
422
423/* User visible queue functions */
424
425/*
426 * Create the queue data structure, allocate the buffer, and open the file.
427 */
428
429int
430alq_open_flags(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
431    int size, int flags)
432{
433	struct thread *td;
434	struct nameidata nd;
435	struct alq *alq;
436	int oflags;
437	int error;
438
439	KASSERT((size > 0), ("%s: size <= 0", __func__));
440
441	*alqp = NULL;
442	td = curthread;
443
444	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, file, td);
445	oflags = FWRITE | O_NOFOLLOW | O_CREAT;
446
447	error = vn_open_cred(&nd, &oflags, cmode, 0, cred, NULL);
448	if (error)
449		return (error);
450
451	NDFREE(&nd, NDF_ONLY_PNBUF);
452	/* We just unlock so we hold a reference */
453	VOP_UNLOCK(nd.ni_vp, 0);
454
455	alq = malloc(sizeof(*alq), M_ALD, M_WAITOK|M_ZERO);
456	alq->aq_vp = nd.ni_vp;
457	alq->aq_cred = crhold(cred);
458
459	mtx_init(&alq->aq_mtx, "ALD Queue", NULL, MTX_SPIN|MTX_QUIET);
460
461	alq->aq_buflen = size;
462	alq->aq_entmax = 0;
463	alq->aq_entlen = 0;
464
465	alq->aq_freebytes = alq->aq_buflen;
466	alq->aq_entbuf = malloc(alq->aq_buflen, M_ALD, M_WAITOK|M_ZERO);
467	alq->aq_writehead = alq->aq_writetail = 0;
468	if (flags & ALQ_ORDERED)
469		alq->aq_flags |= AQ_ORDERED;
470
471	if ((error = ald_add(alq)) != 0) {
472		alq_destroy(alq);
473		return (error);
474	}
475
476	*alqp = alq;
477
478	return (0);
479}
480
481int
482alq_open(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
483    int size, int count)
484{
485	int ret;
486
487	KASSERT((count >= 0), ("%s: count < 0", __func__));
488
489	if (count > 0) {
490		ret = alq_open_flags(alqp, file, cred, cmode, size*count, 0);
491		(*alqp)->aq_flags |= AQ_LEGACY;
492		(*alqp)->aq_entmax = count;
493		(*alqp)->aq_entlen = size;
494	} else
495		ret = alq_open_flags(alqp, file, cred, cmode, size, 0);
496
497	return (ret);
498}
499
500
501/*
502 * Copy a new entry into the queue.  If the operation would block either
503 * wait or return an error depending on the value of waitok.
504 */
505int
506alq_writen(struct alq *alq, void *data, int len, int flags)
507{
508	int activate, copy, ret;
509	void *waitchan;
510
511	KASSERT((len > 0 && len <= alq->aq_buflen),
512	    ("%s: len <= 0 || len > aq_buflen", __func__));
513
514	activate = ret = 0;
515	copy = len;
516	waitchan = NULL;
517
518	ALQ_LOCK(alq);
519
520	/*
521	 * Fail to perform the write and return EWOULDBLOCK if:
522	 * - The message is larger than our underlying buffer.
523	 * - The ALQ is being shutdown.
524	 * - There is insufficient free space in our underlying buffer
525	 *   to accept the message and the user can't wait for space.
526	 * - There is insufficient free space in our underlying buffer
527	 *   to accept the message and the alq is inactive due to prior
528	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
529	 */
530	if (len > alq->aq_buflen ||
531	    alq->aq_flags & AQ_SHUTDOWN ||
532	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
533	    HAS_PENDING_DATA(alq))) && alq->aq_freebytes < len)) {
534		ALQ_UNLOCK(alq);
535		return (EWOULDBLOCK);
536	}
537
538	/*
539	 * If we want ordered writes and there is already at least one thread
540	 * waiting for resources to become available, sleep until we're woken.
541	 */
542	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
543		KASSERT(!(flags & ALQ_NOWAIT),
544		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
545		alq->aq_waiters++;
546		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqwnord", 0);
547		alq->aq_waiters--;
548	}
549
550	/*
551	 * (ALQ_WAITOK && aq_freebytes < len) or aq_freebytes >= len, either
552	 * enter while loop and sleep until we have enough free bytes (former)
553	 * or skip (latter). If AQ_ORDERED is set, only 1 thread at a time will
554	 * be in this loop. Otherwise, multiple threads may be sleeping here
555	 * competing for ALQ resources.
556	 */
557	while (alq->aq_freebytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
558		KASSERT(!(flags & ALQ_NOWAIT),
559		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
560		alq->aq_flags |= AQ_WANTED;
561		alq->aq_waiters++;
562		if (waitchan)
563			wakeup(waitchan);
564		msleep_spin(alq, &alq->aq_mtx, "alqwnres", 0);
565		alq->aq_waiters--;
566
567		/*
568		 * If we're the first thread to wake after an AQ_WANTED wakeup
569		 * but there isn't enough free space for us, we're going to loop
570		 * and sleep again. If there are other threads waiting in this
571		 * loop, schedule a wakeup so that they can see if the space
572		 * they require is available.
573		 */
574		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
575		    alq->aq_freebytes < len && !(alq->aq_flags & AQ_WANTED))
576			waitchan = alq;
577		else
578			waitchan = NULL;
579	}
580
581	/*
582	 * If there are waiters, we need to signal the waiting threads after we
583	 * complete our work. The alq ptr is used as a wait channel for threads
584	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
585	 * are not allowed to concurrently compete for resources in the above
586	 * while loop, so we use a different wait channel in this case.
587	 */
588	if (alq->aq_waiters > 0) {
589		if (alq->aq_flags & AQ_ORDERED)
590			waitchan = &alq->aq_waiters;
591		else
592			waitchan = alq;
593	} else
594		waitchan = NULL;
595
596	/* Bail if we're shutting down. */
597	if (alq->aq_flags & AQ_SHUTDOWN) {
598		ret = EWOULDBLOCK;
599		goto unlock;
600	}
601
602	/*
603	 * If we need to wrap the buffer to accommodate the write,
604	 * we'll need 2 calls to bcopy.
605	 */
606	if ((alq->aq_buflen - alq->aq_writehead) < len)
607		copy = alq->aq_buflen - alq->aq_writehead;
608
609	/* Copy message (or part thereof if wrap required) to the buffer. */
610	bcopy(data, alq->aq_entbuf + alq->aq_writehead, copy);
611	alq->aq_writehead += copy;
612
613	if (alq->aq_writehead >= alq->aq_buflen) {
614		KASSERT((alq->aq_writehead == alq->aq_buflen),
615		    ("%s: alq->aq_writehead (%d) > alq->aq_buflen (%d)",
616		    __func__,
617		    alq->aq_writehead,
618		    alq->aq_buflen));
619		alq->aq_writehead = 0;
620	}
621
622	if (copy != len) {
623		/*
624		 * Wrap the buffer by copying the remainder of our message
625		 * to the start of the buffer and resetting aq_writehead.
626		 */
627		bcopy(((uint8_t *)data)+copy, alq->aq_entbuf, len - copy);
628		alq->aq_writehead = len - copy;
629	}
630
631	KASSERT((alq->aq_writehead >= 0 && alq->aq_writehead < alq->aq_buflen),
632	    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen", __func__));
633
634	alq->aq_freebytes -= len;
635
636	if (!(alq->aq_flags & AQ_ACTIVE) && !(flags & ALQ_NOACTIVATE)) {
637		alq->aq_flags |= AQ_ACTIVE;
638		activate = 1;
639	}
640
641	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
642
643unlock:
644	ALQ_UNLOCK(alq);
645
646	if (activate) {
647		ALD_LOCK();
648		ald_activate(alq);
649		ALD_UNLOCK();
650	}
651
652	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
653	if (waitchan != NULL)
654		wakeup_one(waitchan);
655
656	return (ret);
657}
658
659int
660alq_write(struct alq *alq, void *data, int flags)
661{
662	/* Should only be called in fixed length message (legacy) mode. */
663	KASSERT((alq->aq_flags & AQ_LEGACY),
664	    ("%s: fixed length write on variable length queue", __func__));
665	return (alq_writen(alq, data, alq->aq_entlen, flags));
666}
667
668/*
669 * Retrieve a pointer for the ALQ to write directly into, avoiding bcopy.
670 */
671struct ale *
672alq_getn(struct alq *alq, int len, int flags)
673{
674	int contigbytes;
675	void *waitchan;
676
677	KASSERT((len > 0 && len <= alq->aq_buflen),
678	    ("%s: len <= 0 || len > alq->aq_buflen", __func__));
679
680	waitchan = NULL;
681
682	ALQ_LOCK(alq);
683
684	/*
685	 * Determine the number of free contiguous bytes.
686	 * We ensure elsewhere that if aq_writehead == aq_writetail because
687	 * the buffer is empty, they will both be set to 0 and therefore
688	 * aq_freebytes == aq_buflen and is fully contiguous.
689	 * If they are equal and the buffer is not empty, aq_freebytes will
690	 * be 0 indicating the buffer is full.
691	 */
692	if (alq->aq_writehead <= alq->aq_writetail)
693		contigbytes = alq->aq_freebytes;
694	else {
695		contigbytes = alq->aq_buflen - alq->aq_writehead;
696
697		if (contigbytes < len) {
698			/*
699			 * Insufficient space at end of buffer to handle a
700			 * contiguous write. Wrap early if there's space at
701			 * the beginning. This will leave a hole at the end
702			 * of the buffer which we will have to skip over when
703			 * flushing the buffer to disk.
704			 */
705			if (alq->aq_writetail >= len || flags & ALQ_WAITOK) {
706				/* Keep track of # bytes left blank. */
707				alq->aq_wrapearly = contigbytes;
708				/* Do the wrap and adjust counters. */
709				contigbytes = alq->aq_freebytes =
710				    alq->aq_writetail;
711				alq->aq_writehead = 0;
712			}
713		}
714	}
715
716	/*
717	 * Return a NULL ALE if:
718	 * - The message is larger than our underlying buffer.
719	 * - The ALQ is being shutdown.
720	 * - There is insufficient free space in our underlying buffer
721	 *   to accept the message and the user can't wait for space.
722	 * - There is insufficient free space in our underlying buffer
723	 *   to accept the message and the alq is inactive due to prior
724	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
725	 */
726	if (len > alq->aq_buflen ||
727	    alq->aq_flags & AQ_SHUTDOWN ||
728	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
729	    HAS_PENDING_DATA(alq))) && contigbytes < len)) {
730		ALQ_UNLOCK(alq);
731		return (NULL);
732	}
733
734	/*
735	 * If we want ordered writes and there is already at least one thread
736	 * waiting for resources to become available, sleep until we're woken.
737	 */
738	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
739		KASSERT(!(flags & ALQ_NOWAIT),
740		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
741		alq->aq_waiters++;
742		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqgnord", 0);
743		alq->aq_waiters--;
744	}
745
746	/*
747	 * (ALQ_WAITOK && contigbytes < len) or contigbytes >= len, either enter
748	 * while loop and sleep until we have enough contiguous free bytes
749	 * (former) or skip (latter). If AQ_ORDERED is set, only 1 thread at a
750	 * time will be in this loop. Otherwise, multiple threads may be
751	 * sleeping here competing for ALQ resources.
752	 */
753	while (contigbytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
754		KASSERT(!(flags & ALQ_NOWAIT),
755		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
756		alq->aq_flags |= AQ_WANTED;
757		alq->aq_waiters++;
758		if (waitchan)
759			wakeup(waitchan);
760		msleep_spin(alq, &alq->aq_mtx, "alqgnres", 0);
761		alq->aq_waiters--;
762
763		if (alq->aq_writehead <= alq->aq_writetail)
764			contigbytes = alq->aq_freebytes;
765		else
766			contigbytes = alq->aq_buflen - alq->aq_writehead;
767
768		/*
769		 * If we're the first thread to wake after an AQ_WANTED wakeup
770		 * but there isn't enough free space for us, we're going to loop
771		 * and sleep again. If there are other threads waiting in this
772		 * loop, schedule a wakeup so that they can see if the space
773		 * they require is available.
774		 */
775		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
776		    contigbytes < len && !(alq->aq_flags & AQ_WANTED))
777			waitchan = alq;
778		else
779			waitchan = NULL;
780	}
781
782	/*
783	 * If there are waiters, we need to signal the waiting threads after we
784	 * complete our work. The alq ptr is used as a wait channel for threads
785	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
786	 * are not allowed to concurrently compete for resources in the above
787	 * while loop, so we use a different wait channel in this case.
788	 */
789	if (alq->aq_waiters > 0) {
790		if (alq->aq_flags & AQ_ORDERED)
791			waitchan = &alq->aq_waiters;
792		else
793			waitchan = alq;
794	} else
795		waitchan = NULL;
796
797	/* Bail if we're shutting down. */
798	if (alq->aq_flags & AQ_SHUTDOWN) {
799		ALQ_UNLOCK(alq);
800		if (waitchan != NULL)
801			wakeup_one(waitchan);
802		return (NULL);
803	}
804
805	/*
806	 * If we are here, we have a contiguous number of bytes >= len
807	 * available in our buffer starting at aq_writehead.
808	 */
809	alq->aq_getpost.ae_data = alq->aq_entbuf + alq->aq_writehead;
810	alq->aq_getpost.ae_bytesused = len;
811
812	return (&alq->aq_getpost);
813}
814
815struct ale *
816alq_get(struct alq *alq, int flags)
817{
818	/* Should only be called in fixed length message (legacy) mode. */
819	KASSERT((alq->aq_flags & AQ_LEGACY),
820	    ("%s: fixed length get on variable length queue", __func__));
821	return (alq_getn(alq, alq->aq_entlen, flags));
822}
823
824void
825alq_post_flags(struct alq *alq, struct ale *ale, int flags)
826{
827	int activate;
828	void *waitchan;
829
830	activate = 0;
831
832	if (ale->ae_bytesused > 0) {
833		if (!(alq->aq_flags & AQ_ACTIVE) &&
834		    !(flags & ALQ_NOACTIVATE)) {
835			alq->aq_flags |= AQ_ACTIVE;
836			activate = 1;
837		}
838
839		alq->aq_writehead += ale->ae_bytesused;
840		alq->aq_freebytes -= ale->ae_bytesused;
841
842		/* Wrap aq_writehead if we filled to the end of the buffer. */
843		if (alq->aq_writehead == alq->aq_buflen)
844			alq->aq_writehead = 0;
845
846		KASSERT((alq->aq_writehead >= 0 &&
847		    alq->aq_writehead < alq->aq_buflen),
848		    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen",
849		    __func__));
850
851		KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
852	}
853
854	/*
855	 * If there are waiters, we need to signal the waiting threads after we
856	 * complete our work. The alq ptr is used as a wait channel for threads
857	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
858	 * are not allowed to concurrently compete for resources in the
859	 * alq_getn() while loop, so we use a different wait channel in this case.
860	 */
861	if (alq->aq_waiters > 0) {
862		if (alq->aq_flags & AQ_ORDERED)
863			waitchan = &alq->aq_waiters;
864		else
865			waitchan = alq;
866	} else
867		waitchan = NULL;
868
869	ALQ_UNLOCK(alq);
870
871	if (activate) {
872		ALD_LOCK();
873		ald_activate(alq);
874		ALD_UNLOCK();
875	}
876
877	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
878	if (waitchan != NULL)
879		wakeup_one(waitchan);
880}
881
882void
883alq_flush(struct alq *alq)
884{
885	int needwakeup = 0;
886
887	ALD_LOCK();
888	ALQ_LOCK(alq);
889
890	/*
891	 * Pull the lever iff there is data to flush and we're
892	 * not already in the middle of a flush operation.
893	 */
894	if (HAS_PENDING_DATA(alq) && !(alq->aq_flags & AQ_FLUSHING)) {
895		if (alq->aq_flags & AQ_ACTIVE)
896			ald_deactivate(alq);
897
898		ALD_UNLOCK();
899		needwakeup = alq_doio(alq);
900	} else
901		ALD_UNLOCK();
902
903	ALQ_UNLOCK(alq);
904
905	if (needwakeup)
906		wakeup_one(alq);
907}
908
909/*
910 * Flush remaining data, close the file and free all resources.
911 */
912void
913alq_close(struct alq *alq)
914{
915	/* Only flush and destroy alq if not already shutting down. */
916	if (ald_rem(alq) == 0)
917		alq_destroy(alq);
918}
919
920static int
921alq_load_handler(module_t mod, int what, void *arg)
922{
923	int ret;
924
925	ret = 0;
926
927	switch (what) {
928	case MOD_LOAD:
929	case MOD_SHUTDOWN:
930		break;
931
932	case MOD_QUIESCE:
933		ALD_LOCK();
934		/* Only allow unload if there are no open queues. */
935		if (LIST_FIRST(&ald_queues) == NULL) {
936			ald_shutingdown = 1;
937			ALD_UNLOCK();
938			ald_shutdown(NULL, 0);
939			mtx_destroy(&ald_mtx);
940		} else {
941			ALD_UNLOCK();
942			ret = EBUSY;
943		}
944		break;
945
946	case MOD_UNLOAD:
947		/* If MOD_QUIESCE failed we must fail here too. */
948		if (ald_shutingdown == 0)
949			ret = EBUSY;
950		break;
951
952	default:
953		ret = EINVAL;
954		break;
955	}
956
957	return (ret);
958}
959
960static moduledata_t alq_mod =
961{
962	"alq",
963	alq_load_handler,
964	NULL
965};
966
967DECLARE_MODULE(alq, alq_mod, SI_SUB_SMP, SI_ORDER_ANY);
968MODULE_VERSION(alq, 1);
969