pmap.c revision 240126
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 240126 2012-09-05 06:02:54Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#else
129#include <sys/cpuset.h>
130#endif
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#include <xen/interface/xen.h>
157#include <xen/hypervisor.h>
158#include <machine/xen/hypercall.h>
159#include <machine/xen/xenvar.h>
160#include <machine/xen/xenfunc.h>
161
162#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
163#define CPU_ENABLE_SSE
164#endif
165
166#ifndef PMAP_SHPGPERPROC
167#define PMAP_SHPGPERPROC 200
168#endif
169
170#define DIAGNOSTIC
171
172#if !defined(DIAGNOSTIC)
173#ifdef __GNUC_GNU_INLINE__
174#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
175#else
176#define PMAP_INLINE	extern inline
177#endif
178#else
179#define PMAP_INLINE
180#endif
181
182#ifdef PV_STATS
183#define PV_STAT(x)	do { x ; } while (0)
184#else
185#define PV_STAT(x)	do { } while (0)
186#endif
187
188/*
189 * Get PDEs and PTEs for user/kernel address space
190 */
191#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
192#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
193
194#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
195#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
196#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
197#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
198#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
199
200#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
201
202#define HAMFISTED_LOCKING
203#ifdef HAMFISTED_LOCKING
204static struct mtx createdelete_lock;
205#endif
206
207struct pmap kernel_pmap_store;
208LIST_HEAD(pmaplist, pmap);
209static struct pmaplist allpmaps;
210static struct mtx allpmaps_lock;
211
212vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
213vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
214int pgeflag = 0;		/* PG_G or-in */
215int pseflag = 0;		/* PG_PS or-in */
216
217int nkpt;
218vm_offset_t kernel_vm_end;
219extern u_int32_t KERNend;
220
221#ifdef PAE
222pt_entry_t pg_nx;
223#endif
224
225static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
226
227static int pat_works;			/* Is page attribute table sane? */
228
229/*
230 * Data for the pv entry allocation mechanism
231 */
232static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
233static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
234static int shpgperproc = PMAP_SHPGPERPROC;
235
236struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
237int pv_maxchunks;			/* How many chunks we have KVA for */
238vm_offset_t pv_vafree;			/* freelist stored in the PTE */
239
240/*
241 * All those kernel PT submaps that BSD is so fond of
242 */
243struct sysmaps {
244	struct	mtx lock;
245	pt_entry_t *CMAP1;
246	pt_entry_t *CMAP2;
247	caddr_t	CADDR1;
248	caddr_t	CADDR2;
249};
250static struct sysmaps sysmaps_pcpu[MAXCPU];
251static pt_entry_t *CMAP3;
252caddr_t ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280static void	free_pv_chunk(struct pv_chunk *pc);
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
283static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
284static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
285		    vm_offset_t va);
286
287static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
288    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
289static void pmap_flush_page(vm_page_t m);
290static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
291static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
292    vm_page_t *free);
293static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
294    vm_page_t *free);
295static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
296					vm_offset_t va);
297static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
298    vm_page_t m);
299
300static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
301
302static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
303static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free);
304static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
305static void pmap_pte_release(pt_entry_t *pte);
306static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
307static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
308
309static __inline void pagezero(void *page);
310
311CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
312CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
313
314/*
315 * If you get an error here, then you set KVA_PAGES wrong! See the
316 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
317 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
318 */
319CTASSERT(KERNBASE % (1 << 24) == 0);
320
321void
322pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
323{
324	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
325
326	switch (type) {
327	case SH_PD_SET_VA:
328#if 0
329		xen_queue_pt_update(shadow_pdir_ma,
330				    xpmap_ptom(val & ~(PG_RW)));
331#endif
332		xen_queue_pt_update(pdir_ma,
333				    xpmap_ptom(val));
334		break;
335	case SH_PD_SET_VA_MA:
336#if 0
337		xen_queue_pt_update(shadow_pdir_ma,
338				    val & ~(PG_RW));
339#endif
340		xen_queue_pt_update(pdir_ma, val);
341		break;
342	case SH_PD_SET_VA_CLEAR:
343#if 0
344		xen_queue_pt_update(shadow_pdir_ma, 0);
345#endif
346		xen_queue_pt_update(pdir_ma, 0);
347		break;
348	}
349}
350
351/*
352 *	Bootstrap the system enough to run with virtual memory.
353 *
354 *	On the i386 this is called after mapping has already been enabled
355 *	and just syncs the pmap module with what has already been done.
356 *	[We can't call it easily with mapping off since the kernel is not
357 *	mapped with PA == VA, hence we would have to relocate every address
358 *	from the linked base (virtual) address "KERNBASE" to the actual
359 *	(physical) address starting relative to 0]
360 */
361void
362pmap_bootstrap(vm_paddr_t firstaddr)
363{
364	vm_offset_t va;
365	pt_entry_t *pte, *unused;
366	struct sysmaps *sysmaps;
367	int i;
368
369	/*
370	 * Initialize the first available kernel virtual address.  However,
371	 * using "firstaddr" may waste a few pages of the kernel virtual
372	 * address space, because locore may not have mapped every physical
373	 * page that it allocated.  Preferably, locore would provide a first
374	 * unused virtual address in addition to "firstaddr".
375	 */
376	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
377
378	virtual_end = VM_MAX_KERNEL_ADDRESS;
379
380	/*
381	 * Initialize the kernel pmap (which is statically allocated).
382	 */
383	PMAP_LOCK_INIT(kernel_pmap);
384	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
385#ifdef PAE
386	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
387#endif
388	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
389	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
390	LIST_INIT(&allpmaps);
391	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
392	mtx_lock_spin(&allpmaps_lock);
393	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
394	mtx_unlock_spin(&allpmaps_lock);
395	if (nkpt == 0)
396		nkpt = NKPT;
397
398	/*
399	 * Reserve some special page table entries/VA space for temporary
400	 * mapping of pages.
401	 */
402#define	SYSMAP(c, p, v, n)	\
403	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
404
405	va = virtual_avail;
406	pte = vtopte(va);
407
408	/*
409	 * CMAP1/CMAP2 are used for zeroing and copying pages.
410	 * CMAP3 is used for the idle process page zeroing.
411	 */
412	for (i = 0; i < MAXCPU; i++) {
413		sysmaps = &sysmaps_pcpu[i];
414		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
415		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
416		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
417		PT_SET_MA(sysmaps->CADDR1, 0);
418		PT_SET_MA(sysmaps->CADDR2, 0);
419	}
420	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
421	PT_SET_MA(CADDR3, 0);
422
423	/*
424	 * Crashdump maps.
425	 */
426	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
427
428	/*
429	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
430	 */
431	SYSMAP(caddr_t, unused, ptvmmap, 1)
432
433	/*
434	 * msgbufp is used to map the system message buffer.
435	 */
436	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
437
438	/*
439	 * ptemap is used for pmap_pte_quick
440	 */
441	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
442	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
443
444	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
445
446	virtual_avail = va;
447
448	/*
449	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
450	 * physical memory region that is used by the ACPI wakeup code.  This
451	 * mapping must not have PG_G set.
452	 */
453#ifndef XEN
454	/*
455	 * leave here deliberately to show that this is not supported
456	 */
457#ifdef XBOX
458	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
459	 * an early stadium, we cannot yet neatly map video memory ... :-(
460	 * Better fixes are very welcome! */
461	if (!arch_i386_is_xbox)
462#endif
463	for (i = 1; i < NKPT; i++)
464		PTD[i] = 0;
465
466	/* Initialize the PAT MSR if present. */
467	pmap_init_pat();
468
469	/* Turn on PG_G on kernel page(s) */
470	pmap_set_pg();
471#endif
472
473#ifdef HAMFISTED_LOCKING
474	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
475#endif
476}
477
478/*
479 * Setup the PAT MSR.
480 */
481void
482pmap_init_pat(void)
483{
484	uint64_t pat_msr;
485
486	/* Bail if this CPU doesn't implement PAT. */
487	if (!(cpu_feature & CPUID_PAT))
488		return;
489
490	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
491	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
492		/*
493		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
494		 * Program 4 and 5 as WP and WC.
495		 * Leave 6 and 7 as UC and UC-.
496		 */
497		pat_msr = rdmsr(MSR_PAT);
498		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
499		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
500		    PAT_VALUE(5, PAT_WRITE_COMBINING);
501		pat_works = 1;
502	} else {
503		/*
504		 * Due to some Intel errata, we can only safely use the lower 4
505		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
506		 * of UC-.
507		 *
508		 *   Intel Pentium III Processor Specification Update
509		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
510		 * or Mode C Paging)
511		 *
512		 *   Intel Pentium IV  Processor Specification Update
513		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
514		 */
515		pat_msr = rdmsr(MSR_PAT);
516		pat_msr &= ~PAT_MASK(2);
517		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
518		pat_works = 0;
519	}
520	wrmsr(MSR_PAT, pat_msr);
521}
522
523/*
524 * Initialize a vm_page's machine-dependent fields.
525 */
526void
527pmap_page_init(vm_page_t m)
528{
529
530	TAILQ_INIT(&m->md.pv_list);
531	m->md.pat_mode = PAT_WRITE_BACK;
532}
533
534/*
535 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
536 * Requirements:
537 *  - Must deal with pages in order to ensure that none of the PG_* bits
538 *    are ever set, PG_V in particular.
539 *  - Assumes we can write to ptes without pte_store() atomic ops, even
540 *    on PAE systems.  This should be ok.
541 *  - Assumes nothing will ever test these addresses for 0 to indicate
542 *    no mapping instead of correctly checking PG_V.
543 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
544 * Because PG_V is never set, there can be no mappings to invalidate.
545 */
546static int ptelist_count = 0;
547static vm_offset_t
548pmap_ptelist_alloc(vm_offset_t *head)
549{
550	vm_offset_t va;
551	vm_offset_t *phead = (vm_offset_t *)*head;
552
553	if (ptelist_count == 0) {
554		printf("out of memory!!!!!!\n");
555		return (0);	/* Out of memory */
556	}
557	ptelist_count--;
558	va = phead[ptelist_count];
559	return (va);
560}
561
562static void
563pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
564{
565	vm_offset_t *phead = (vm_offset_t *)*head;
566
567	phead[ptelist_count++] = va;
568}
569
570static void
571pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
572{
573	int i, nstackpages;
574	vm_offset_t va;
575	vm_page_t m;
576
577	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
578	for (i = 0; i < nstackpages; i++) {
579		va = (vm_offset_t)base + i * PAGE_SIZE;
580		m = vm_page_alloc(NULL, i,
581		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
582		    VM_ALLOC_ZERO);
583		pmap_qenter(va, &m, 1);
584	}
585
586	*head = (vm_offset_t)base;
587	for (i = npages - 1; i >= nstackpages; i--) {
588		va = (vm_offset_t)base + i * PAGE_SIZE;
589		pmap_ptelist_free(head, va);
590	}
591}
592
593
594/*
595 *	Initialize the pmap module.
596 *	Called by vm_init, to initialize any structures that the pmap
597 *	system needs to map virtual memory.
598 */
599void
600pmap_init(void)
601{
602
603	/*
604	 * Initialize the address space (zone) for the pv entries.  Set a
605	 * high water mark so that the system can recover from excessive
606	 * numbers of pv entries.
607	 */
608	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
609	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
610	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
611	pv_entry_max = roundup(pv_entry_max, _NPCPV);
612	pv_entry_high_water = 9 * (pv_entry_max / 10);
613
614	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
615	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
616	    PAGE_SIZE * pv_maxchunks);
617	if (pv_chunkbase == NULL)
618		panic("pmap_init: not enough kvm for pv chunks");
619	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
620}
621
622
623SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
624	"Max number of PV entries");
625SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
626	"Page share factor per proc");
627
628static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
629    "2/4MB page mapping counters");
630
631static u_long pmap_pde_mappings;
632SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
633    &pmap_pde_mappings, 0, "2/4MB page mappings");
634
635/***************************************************
636 * Low level helper routines.....
637 ***************************************************/
638
639/*
640 * Determine the appropriate bits to set in a PTE or PDE for a specified
641 * caching mode.
642 */
643int
644pmap_cache_bits(int mode, boolean_t is_pde)
645{
646	int pat_flag, pat_index, cache_bits;
647
648	/* The PAT bit is different for PTE's and PDE's. */
649	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
650
651	/* If we don't support PAT, map extended modes to older ones. */
652	if (!(cpu_feature & CPUID_PAT)) {
653		switch (mode) {
654		case PAT_UNCACHEABLE:
655		case PAT_WRITE_THROUGH:
656		case PAT_WRITE_BACK:
657			break;
658		case PAT_UNCACHED:
659		case PAT_WRITE_COMBINING:
660		case PAT_WRITE_PROTECTED:
661			mode = PAT_UNCACHEABLE;
662			break;
663		}
664	}
665
666	/* Map the caching mode to a PAT index. */
667	if (pat_works) {
668		switch (mode) {
669			case PAT_UNCACHEABLE:
670				pat_index = 3;
671				break;
672			case PAT_WRITE_THROUGH:
673				pat_index = 1;
674				break;
675			case PAT_WRITE_BACK:
676				pat_index = 0;
677				break;
678			case PAT_UNCACHED:
679				pat_index = 2;
680				break;
681			case PAT_WRITE_COMBINING:
682				pat_index = 5;
683				break;
684			case PAT_WRITE_PROTECTED:
685				pat_index = 4;
686				break;
687			default:
688				panic("Unknown caching mode %d\n", mode);
689		}
690	} else {
691		switch (mode) {
692			case PAT_UNCACHED:
693			case PAT_UNCACHEABLE:
694			case PAT_WRITE_PROTECTED:
695				pat_index = 3;
696				break;
697			case PAT_WRITE_THROUGH:
698				pat_index = 1;
699				break;
700			case PAT_WRITE_BACK:
701				pat_index = 0;
702				break;
703			case PAT_WRITE_COMBINING:
704				pat_index = 2;
705				break;
706			default:
707				panic("Unknown caching mode %d\n", mode);
708		}
709	}
710
711	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
712	cache_bits = 0;
713	if (pat_index & 0x4)
714		cache_bits |= pat_flag;
715	if (pat_index & 0x2)
716		cache_bits |= PG_NC_PCD;
717	if (pat_index & 0x1)
718		cache_bits |= PG_NC_PWT;
719	return (cache_bits);
720}
721#ifdef SMP
722/*
723 * For SMP, these functions have to use the IPI mechanism for coherence.
724 *
725 * N.B.: Before calling any of the following TLB invalidation functions,
726 * the calling processor must ensure that all stores updating a non-
727 * kernel page table are globally performed.  Otherwise, another
728 * processor could cache an old, pre-update entry without being
729 * invalidated.  This can happen one of two ways: (1) The pmap becomes
730 * active on another processor after its pm_active field is checked by
731 * one of the following functions but before a store updating the page
732 * table is globally performed. (2) The pmap becomes active on another
733 * processor before its pm_active field is checked but due to
734 * speculative loads one of the following functions stills reads the
735 * pmap as inactive on the other processor.
736 *
737 * The kernel page table is exempt because its pm_active field is
738 * immutable.  The kernel page table is always active on every
739 * processor.
740 */
741void
742pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
743{
744	cpuset_t other_cpus;
745	u_int cpuid;
746
747	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
748	    pmap, va);
749
750	sched_pin();
751	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
752		invlpg(va);
753		smp_invlpg(va);
754	} else {
755		cpuid = PCPU_GET(cpuid);
756		other_cpus = all_cpus;
757		CPU_CLR(cpuid, &other_cpus);
758		if (CPU_ISSET(cpuid, &pmap->pm_active))
759			invlpg(va);
760		CPU_AND(&other_cpus, &pmap->pm_active);
761		if (!CPU_EMPTY(&other_cpus))
762			smp_masked_invlpg(other_cpus, va);
763	}
764	sched_unpin();
765	PT_UPDATES_FLUSH();
766}
767
768void
769pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
770{
771	cpuset_t other_cpus;
772	vm_offset_t addr;
773	u_int cpuid;
774
775	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
776	    pmap, sva, eva);
777
778	sched_pin();
779	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
780		for (addr = sva; addr < eva; addr += PAGE_SIZE)
781			invlpg(addr);
782		smp_invlpg_range(sva, eva);
783	} else {
784		cpuid = PCPU_GET(cpuid);
785		other_cpus = all_cpus;
786		CPU_CLR(cpuid, &other_cpus);
787		if (CPU_ISSET(cpuid, &pmap->pm_active))
788			for (addr = sva; addr < eva; addr += PAGE_SIZE)
789				invlpg(addr);
790		CPU_AND(&other_cpus, &pmap->pm_active);
791		if (!CPU_EMPTY(&other_cpus))
792			smp_masked_invlpg_range(other_cpus, sva, eva);
793	}
794	sched_unpin();
795	PT_UPDATES_FLUSH();
796}
797
798void
799pmap_invalidate_all(pmap_t pmap)
800{
801	cpuset_t other_cpus;
802	u_int cpuid;
803
804	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
805
806	sched_pin();
807	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
808		invltlb();
809		smp_invltlb();
810	} else {
811		cpuid = PCPU_GET(cpuid);
812		other_cpus = all_cpus;
813		CPU_CLR(cpuid, &other_cpus);
814		if (CPU_ISSET(cpuid, &pmap->pm_active))
815			invltlb();
816		CPU_AND(&other_cpus, &pmap->pm_active);
817		if (!CPU_EMPTY(&other_cpus))
818			smp_masked_invltlb(other_cpus);
819	}
820	sched_unpin();
821}
822
823void
824pmap_invalidate_cache(void)
825{
826
827	sched_pin();
828	wbinvd();
829	smp_cache_flush();
830	sched_unpin();
831}
832#else /* !SMP */
833/*
834 * Normal, non-SMP, 486+ invalidation functions.
835 * We inline these within pmap.c for speed.
836 */
837PMAP_INLINE void
838pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
839{
840	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
841	    pmap, va);
842
843	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
844		invlpg(va);
845	PT_UPDATES_FLUSH();
846}
847
848PMAP_INLINE void
849pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
850{
851	vm_offset_t addr;
852
853	if (eva - sva > PAGE_SIZE)
854		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
855		    pmap, sva, eva);
856
857	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
858		for (addr = sva; addr < eva; addr += PAGE_SIZE)
859			invlpg(addr);
860	PT_UPDATES_FLUSH();
861}
862
863PMAP_INLINE void
864pmap_invalidate_all(pmap_t pmap)
865{
866
867	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
868
869	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
870		invltlb();
871}
872
873PMAP_INLINE void
874pmap_invalidate_cache(void)
875{
876
877	wbinvd();
878}
879#endif /* !SMP */
880
881#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
882
883void
884pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
885{
886
887	KASSERT((sva & PAGE_MASK) == 0,
888	    ("pmap_invalidate_cache_range: sva not page-aligned"));
889	KASSERT((eva & PAGE_MASK) == 0,
890	    ("pmap_invalidate_cache_range: eva not page-aligned"));
891
892	if (cpu_feature & CPUID_SS)
893		; /* If "Self Snoop" is supported, do nothing. */
894	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
895	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
896
897		/*
898		 * Otherwise, do per-cache line flush.  Use the mfence
899		 * instruction to insure that previous stores are
900		 * included in the write-back.  The processor
901		 * propagates flush to other processors in the cache
902		 * coherence domain.
903		 */
904		mfence();
905		for (; sva < eva; sva += cpu_clflush_line_size)
906			clflush(sva);
907		mfence();
908	} else {
909
910		/*
911		 * No targeted cache flush methods are supported by CPU,
912		 * or the supplied range is bigger than 2MB.
913		 * Globally invalidate cache.
914		 */
915		pmap_invalidate_cache();
916	}
917}
918
919void
920pmap_invalidate_cache_pages(vm_page_t *pages, int count)
921{
922	int i;
923
924	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
925	    (cpu_feature & CPUID_CLFSH) == 0) {
926		pmap_invalidate_cache();
927	} else {
928		for (i = 0; i < count; i++)
929			pmap_flush_page(pages[i]);
930	}
931}
932
933/*
934 * Are we current address space or kernel?  N.B. We return FALSE when
935 * a pmap's page table is in use because a kernel thread is borrowing
936 * it.  The borrowed page table can change spontaneously, making any
937 * dependence on its continued use subject to a race condition.
938 */
939static __inline int
940pmap_is_current(pmap_t pmap)
941{
942
943	return (pmap == kernel_pmap ||
944	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
945	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
946}
947
948/*
949 * If the given pmap is not the current or kernel pmap, the returned pte must
950 * be released by passing it to pmap_pte_release().
951 */
952pt_entry_t *
953pmap_pte(pmap_t pmap, vm_offset_t va)
954{
955	pd_entry_t newpf;
956	pd_entry_t *pde;
957
958	pde = pmap_pde(pmap, va);
959	if (*pde & PG_PS)
960		return (pde);
961	if (*pde != 0) {
962		/* are we current address space or kernel? */
963		if (pmap_is_current(pmap))
964			return (vtopte(va));
965		mtx_lock(&PMAP2mutex);
966		newpf = *pde & PG_FRAME;
967		if ((*PMAP2 & PG_FRAME) != newpf) {
968			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
969			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
970			    pmap, va, (*PMAP2 & 0xffffffff));
971		}
972		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
973	}
974	return (NULL);
975}
976
977/*
978 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
979 * being NULL.
980 */
981static __inline void
982pmap_pte_release(pt_entry_t *pte)
983{
984
985	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
986		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
987		    *PMAP2);
988		vm_page_lock_queues();
989		PT_SET_VA(PMAP2, 0, TRUE);
990		vm_page_unlock_queues();
991		mtx_unlock(&PMAP2mutex);
992	}
993}
994
995static __inline void
996invlcaddr(void *caddr)
997{
998
999	invlpg((u_int)caddr);
1000	PT_UPDATES_FLUSH();
1001}
1002
1003/*
1004 * Super fast pmap_pte routine best used when scanning
1005 * the pv lists.  This eliminates many coarse-grained
1006 * invltlb calls.  Note that many of the pv list
1007 * scans are across different pmaps.  It is very wasteful
1008 * to do an entire invltlb for checking a single mapping.
1009 *
1010 * If the given pmap is not the current pmap, vm_page_queue_mtx
1011 * must be held and curthread pinned to a CPU.
1012 */
1013static pt_entry_t *
1014pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1015{
1016	pd_entry_t newpf;
1017	pd_entry_t *pde;
1018
1019	pde = pmap_pde(pmap, va);
1020	if (*pde & PG_PS)
1021		return (pde);
1022	if (*pde != 0) {
1023		/* are we current address space or kernel? */
1024		if (pmap_is_current(pmap))
1025			return (vtopte(va));
1026		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1027		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1028		newpf = *pde & PG_FRAME;
1029		if ((*PMAP1 & PG_FRAME) != newpf) {
1030			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1031			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1032			    pmap, va, (u_long)*PMAP1);
1033
1034#ifdef SMP
1035			PMAP1cpu = PCPU_GET(cpuid);
1036#endif
1037			PMAP1changed++;
1038		} else
1039#ifdef SMP
1040		if (PMAP1cpu != PCPU_GET(cpuid)) {
1041			PMAP1cpu = PCPU_GET(cpuid);
1042			invlcaddr(PADDR1);
1043			PMAP1changedcpu++;
1044		} else
1045#endif
1046			PMAP1unchanged++;
1047		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1048	}
1049	return (0);
1050}
1051
1052/*
1053 *	Routine:	pmap_extract
1054 *	Function:
1055 *		Extract the physical page address associated
1056 *		with the given map/virtual_address pair.
1057 */
1058vm_paddr_t
1059pmap_extract(pmap_t pmap, vm_offset_t va)
1060{
1061	vm_paddr_t rtval;
1062	pt_entry_t *pte;
1063	pd_entry_t pde;
1064	pt_entry_t pteval;
1065
1066	rtval = 0;
1067	PMAP_LOCK(pmap);
1068	pde = pmap->pm_pdir[va >> PDRSHIFT];
1069	if (pde != 0) {
1070		if ((pde & PG_PS) != 0) {
1071			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1072			PMAP_UNLOCK(pmap);
1073			return rtval;
1074		}
1075		pte = pmap_pte(pmap, va);
1076		pteval = *pte ? xpmap_mtop(*pte) : 0;
1077		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1078		pmap_pte_release(pte);
1079	}
1080	PMAP_UNLOCK(pmap);
1081	return (rtval);
1082}
1083
1084/*
1085 *	Routine:	pmap_extract_ma
1086 *	Function:
1087 *		Like pmap_extract, but returns machine address
1088 */
1089vm_paddr_t
1090pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1091{
1092	vm_paddr_t rtval;
1093	pt_entry_t *pte;
1094	pd_entry_t pde;
1095
1096	rtval = 0;
1097	PMAP_LOCK(pmap);
1098	pde = pmap->pm_pdir[va >> PDRSHIFT];
1099	if (pde != 0) {
1100		if ((pde & PG_PS) != 0) {
1101			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1102			PMAP_UNLOCK(pmap);
1103			return rtval;
1104		}
1105		pte = pmap_pte(pmap, va);
1106		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1107		pmap_pte_release(pte);
1108	}
1109	PMAP_UNLOCK(pmap);
1110	return (rtval);
1111}
1112
1113/*
1114 *	Routine:	pmap_extract_and_hold
1115 *	Function:
1116 *		Atomically extract and hold the physical page
1117 *		with the given pmap and virtual address pair
1118 *		if that mapping permits the given protection.
1119 */
1120vm_page_t
1121pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1122{
1123	pd_entry_t pde;
1124	pt_entry_t pte, *ptep;
1125	vm_page_t m;
1126	vm_paddr_t pa;
1127
1128	pa = 0;
1129	m = NULL;
1130	PMAP_LOCK(pmap);
1131retry:
1132	pde = PT_GET(pmap_pde(pmap, va));
1133	if (pde != 0) {
1134		if (pde & PG_PS) {
1135			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1136				if (vm_page_pa_tryrelock(pmap, (pde &
1137				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1138					goto retry;
1139				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1140				    (va & PDRMASK));
1141				vm_page_hold(m);
1142			}
1143		} else {
1144			ptep = pmap_pte(pmap, va);
1145			pte = PT_GET(ptep);
1146			pmap_pte_release(ptep);
1147			if (pte != 0 &&
1148			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1149				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1150				    &pa))
1151					goto retry;
1152				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1153				vm_page_hold(m);
1154			}
1155		}
1156	}
1157	PA_UNLOCK_COND(pa);
1158	PMAP_UNLOCK(pmap);
1159	return (m);
1160}
1161
1162/***************************************************
1163 * Low level mapping routines.....
1164 ***************************************************/
1165
1166/*
1167 * Add a wired page to the kva.
1168 * Note: not SMP coherent.
1169 *
1170 * This function may be used before pmap_bootstrap() is called.
1171 */
1172void
1173pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1174{
1175
1176	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1177}
1178
1179void
1180pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1181{
1182	pt_entry_t *pte;
1183
1184	pte = vtopte(va);
1185	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1186}
1187
1188static __inline void
1189pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1190{
1191
1192	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1193}
1194
1195/*
1196 * Remove a page from the kernel pagetables.
1197 * Note: not SMP coherent.
1198 *
1199 * This function may be used before pmap_bootstrap() is called.
1200 */
1201PMAP_INLINE void
1202pmap_kremove(vm_offset_t va)
1203{
1204	pt_entry_t *pte;
1205
1206	pte = vtopte(va);
1207	PT_CLEAR_VA(pte, FALSE);
1208}
1209
1210/*
1211 *	Used to map a range of physical addresses into kernel
1212 *	virtual address space.
1213 *
1214 *	The value passed in '*virt' is a suggested virtual address for
1215 *	the mapping. Architectures which can support a direct-mapped
1216 *	physical to virtual region can return the appropriate address
1217 *	within that region, leaving '*virt' unchanged. Other
1218 *	architectures should map the pages starting at '*virt' and
1219 *	update '*virt' with the first usable address after the mapped
1220 *	region.
1221 */
1222vm_offset_t
1223pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1224{
1225	vm_offset_t va, sva;
1226
1227	va = sva = *virt;
1228	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1229	    va, start, end, prot);
1230	while (start < end) {
1231		pmap_kenter(va, start);
1232		va += PAGE_SIZE;
1233		start += PAGE_SIZE;
1234	}
1235	pmap_invalidate_range(kernel_pmap, sva, va);
1236	*virt = va;
1237	return (sva);
1238}
1239
1240
1241/*
1242 * Add a list of wired pages to the kva
1243 * this routine is only used for temporary
1244 * kernel mappings that do not need to have
1245 * page modification or references recorded.
1246 * Note that old mappings are simply written
1247 * over.  The page *must* be wired.
1248 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1249 */
1250void
1251pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1252{
1253	pt_entry_t *endpte, *pte;
1254	vm_paddr_t pa;
1255	vm_offset_t va = sva;
1256	int mclcount = 0;
1257	multicall_entry_t mcl[16];
1258	multicall_entry_t *mclp = mcl;
1259	int error;
1260
1261	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1262	pte = vtopte(sva);
1263	endpte = pte + count;
1264	while (pte < endpte) {
1265		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1266
1267		mclp->op = __HYPERVISOR_update_va_mapping;
1268		mclp->args[0] = va;
1269		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1270		mclp->args[2] = (uint32_t)(pa >> 32);
1271		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1272
1273		va += PAGE_SIZE;
1274		pte++;
1275		ma++;
1276		mclp++;
1277		mclcount++;
1278		if (mclcount == 16) {
1279			error = HYPERVISOR_multicall(mcl, mclcount);
1280			mclp = mcl;
1281			mclcount = 0;
1282			KASSERT(error == 0, ("bad multicall %d", error));
1283		}
1284	}
1285	if (mclcount) {
1286		error = HYPERVISOR_multicall(mcl, mclcount);
1287		KASSERT(error == 0, ("bad multicall %d", error));
1288	}
1289
1290#ifdef INVARIANTS
1291	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1292		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1293#endif
1294}
1295
1296/*
1297 * This routine tears out page mappings from the
1298 * kernel -- it is meant only for temporary mappings.
1299 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1300 */
1301void
1302pmap_qremove(vm_offset_t sva, int count)
1303{
1304	vm_offset_t va;
1305
1306	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1307	va = sva;
1308	vm_page_lock_queues();
1309	critical_enter();
1310	while (count-- > 0) {
1311		pmap_kremove(va);
1312		va += PAGE_SIZE;
1313	}
1314	PT_UPDATES_FLUSH();
1315	pmap_invalidate_range(kernel_pmap, sva, va);
1316	critical_exit();
1317	vm_page_unlock_queues();
1318}
1319
1320/***************************************************
1321 * Page table page management routines.....
1322 ***************************************************/
1323static __inline void
1324pmap_free_zero_pages(vm_page_t free)
1325{
1326	vm_page_t m;
1327
1328	while (free != NULL) {
1329		m = free;
1330		free = m->right;
1331		vm_page_free_zero(m);
1332	}
1333}
1334
1335/*
1336 * Decrements a page table page's wire count, which is used to record the
1337 * number of valid page table entries within the page.  If the wire count
1338 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1339 * page table page was unmapped and FALSE otherwise.
1340 */
1341static inline boolean_t
1342pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1343{
1344
1345	--m->wire_count;
1346	if (m->wire_count == 0) {
1347		_pmap_unwire_ptp(pmap, m, free);
1348		return (TRUE);
1349	} else
1350		return (FALSE);
1351}
1352
1353static void
1354_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1355{
1356	vm_offset_t pteva;
1357
1358	PT_UPDATES_FLUSH();
1359	/*
1360	 * unmap the page table page
1361	 */
1362	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1363	/*
1364	 * page *might* contain residual mapping :-/
1365	 */
1366	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1367	pmap_zero_page(m);
1368	--pmap->pm_stats.resident_count;
1369
1370	/*
1371	 * This is a release store so that the ordinary store unmapping
1372	 * the page table page is globally performed before TLB shoot-
1373	 * down is begun.
1374	 */
1375	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1376
1377	/*
1378	 * Do an invltlb to make the invalidated mapping
1379	 * take effect immediately.
1380	 */
1381	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1382	pmap_invalidate_page(pmap, pteva);
1383
1384	/*
1385	 * Put page on a list so that it is released after
1386	 * *ALL* TLB shootdown is done
1387	 */
1388	m->right = *free;
1389	*free = m;
1390}
1391
1392/*
1393 * After removing a page table entry, this routine is used to
1394 * conditionally free the page, and manage the hold/wire counts.
1395 */
1396static int
1397pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1398{
1399	pd_entry_t ptepde;
1400	vm_page_t mpte;
1401
1402	if (va >= VM_MAXUSER_ADDRESS)
1403		return (0);
1404	ptepde = PT_GET(pmap_pde(pmap, va));
1405	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1406	return (pmap_unwire_ptp(pmap, mpte, free));
1407}
1408
1409/*
1410 * Initialize the pmap for the swapper process.
1411 */
1412void
1413pmap_pinit0(pmap_t pmap)
1414{
1415
1416	PMAP_LOCK_INIT(pmap);
1417	/*
1418	 * Since the page table directory is shared with the kernel pmap,
1419	 * which is already included in the list "allpmaps", this pmap does
1420	 * not need to be inserted into that list.
1421	 */
1422	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1423#ifdef PAE
1424	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1425#endif
1426	CPU_ZERO(&pmap->pm_active);
1427	PCPU_SET(curpmap, pmap);
1428	TAILQ_INIT(&pmap->pm_pvchunk);
1429	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1430}
1431
1432/*
1433 * Initialize a preallocated and zeroed pmap structure,
1434 * such as one in a vmspace structure.
1435 */
1436int
1437pmap_pinit(pmap_t pmap)
1438{
1439	vm_page_t m, ptdpg[NPGPTD + 1];
1440	int npgptd = NPGPTD + 1;
1441	int i;
1442
1443#ifdef HAMFISTED_LOCKING
1444	mtx_lock(&createdelete_lock);
1445#endif
1446
1447	PMAP_LOCK_INIT(pmap);
1448
1449	/*
1450	 * No need to allocate page table space yet but we do need a valid
1451	 * page directory table.
1452	 */
1453	if (pmap->pm_pdir == NULL) {
1454		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1455		    NBPTD);
1456		if (pmap->pm_pdir == NULL) {
1457			PMAP_LOCK_DESTROY(pmap);
1458#ifdef HAMFISTED_LOCKING
1459			mtx_unlock(&createdelete_lock);
1460#endif
1461			return (0);
1462		}
1463#ifdef PAE
1464		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1465#endif
1466	}
1467
1468	/*
1469	 * allocate the page directory page(s)
1470	 */
1471	for (i = 0; i < npgptd;) {
1472		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1473		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1474		if (m == NULL)
1475			VM_WAIT;
1476		else {
1477			ptdpg[i++] = m;
1478		}
1479	}
1480
1481	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1482
1483	for (i = 0; i < NPGPTD; i++)
1484		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1485			pagezero(pmap->pm_pdir + (i * NPDEPG));
1486
1487	mtx_lock_spin(&allpmaps_lock);
1488	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1489	/* Copy the kernel page table directory entries. */
1490	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1491	mtx_unlock_spin(&allpmaps_lock);
1492
1493#ifdef PAE
1494	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1495	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1496		bzero(pmap->pm_pdpt, PAGE_SIZE);
1497	for (i = 0; i < NPGPTD; i++) {
1498		vm_paddr_t ma;
1499
1500		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1501		pmap->pm_pdpt[i] = ma | PG_V;
1502
1503	}
1504#endif
1505	for (i = 0; i < NPGPTD; i++) {
1506		pt_entry_t *pd;
1507		vm_paddr_t ma;
1508
1509		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1510		pd = pmap->pm_pdir + (i * NPDEPG);
1511		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1512#if 0
1513		xen_pgd_pin(ma);
1514#endif
1515	}
1516
1517#ifdef PAE
1518	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1519#endif
1520	vm_page_lock_queues();
1521	xen_flush_queue();
1522	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1523	for (i = 0; i < NPGPTD; i++) {
1524		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1525		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1526	}
1527	xen_flush_queue();
1528	vm_page_unlock_queues();
1529	CPU_ZERO(&pmap->pm_active);
1530	TAILQ_INIT(&pmap->pm_pvchunk);
1531	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1532
1533#ifdef HAMFISTED_LOCKING
1534	mtx_unlock(&createdelete_lock);
1535#endif
1536	return (1);
1537}
1538
1539/*
1540 * this routine is called if the page table page is not
1541 * mapped correctly.
1542 */
1543static vm_page_t
1544_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1545{
1546	vm_paddr_t ptema;
1547	vm_page_t m;
1548
1549	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1550	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1551	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1552
1553	/*
1554	 * Allocate a page table page.
1555	 */
1556	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1557	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1558		if (flags & M_WAITOK) {
1559			PMAP_UNLOCK(pmap);
1560			vm_page_unlock_queues();
1561			VM_WAIT;
1562			vm_page_lock_queues();
1563			PMAP_LOCK(pmap);
1564		}
1565
1566		/*
1567		 * Indicate the need to retry.  While waiting, the page table
1568		 * page may have been allocated.
1569		 */
1570		return (NULL);
1571	}
1572	if ((m->flags & PG_ZERO) == 0)
1573		pmap_zero_page(m);
1574
1575	/*
1576	 * Map the pagetable page into the process address space, if
1577	 * it isn't already there.
1578	 */
1579
1580	pmap->pm_stats.resident_count++;
1581
1582	ptema = VM_PAGE_TO_MACH(m);
1583	xen_pt_pin(ptema);
1584	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1585		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1586
1587	KASSERT(pmap->pm_pdir[ptepindex],
1588	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1589	return (m);
1590}
1591
1592static vm_page_t
1593pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1594{
1595	u_int ptepindex;
1596	pd_entry_t ptema;
1597	vm_page_t m;
1598
1599	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1600	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1601	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1602
1603	/*
1604	 * Calculate pagetable page index
1605	 */
1606	ptepindex = va >> PDRSHIFT;
1607retry:
1608	/*
1609	 * Get the page directory entry
1610	 */
1611	ptema = pmap->pm_pdir[ptepindex];
1612
1613	/*
1614	 * This supports switching from a 4MB page to a
1615	 * normal 4K page.
1616	 */
1617	if (ptema & PG_PS) {
1618		/*
1619		 * XXX
1620		 */
1621		pmap->pm_pdir[ptepindex] = 0;
1622		ptema = 0;
1623		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1624		pmap_invalidate_all(kernel_pmap);
1625	}
1626
1627	/*
1628	 * If the page table page is mapped, we just increment the
1629	 * hold count, and activate it.
1630	 */
1631	if (ptema & PG_V) {
1632		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1633		m->wire_count++;
1634	} else {
1635		/*
1636		 * Here if the pte page isn't mapped, or if it has
1637		 * been deallocated.
1638		 */
1639		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1640		    pmap, va, flags);
1641		m = _pmap_allocpte(pmap, ptepindex, flags);
1642		if (m == NULL && (flags & M_WAITOK))
1643			goto retry;
1644
1645		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1646	}
1647	return (m);
1648}
1649
1650
1651/***************************************************
1652* Pmap allocation/deallocation routines.
1653 ***************************************************/
1654
1655#ifdef SMP
1656/*
1657 * Deal with a SMP shootdown of other users of the pmap that we are
1658 * trying to dispose of.  This can be a bit hairy.
1659 */
1660static cpuset_t *lazymask;
1661static u_int lazyptd;
1662static volatile u_int lazywait;
1663
1664void pmap_lazyfix_action(void);
1665
1666void
1667pmap_lazyfix_action(void)
1668{
1669
1670#ifdef COUNT_IPIS
1671	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1672#endif
1673	if (rcr3() == lazyptd)
1674		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1675	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1676	atomic_store_rel_int(&lazywait, 1);
1677}
1678
1679static void
1680pmap_lazyfix_self(u_int cpuid)
1681{
1682
1683	if (rcr3() == lazyptd)
1684		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1685	CPU_CLR_ATOMIC(cpuid, lazymask);
1686}
1687
1688
1689static void
1690pmap_lazyfix(pmap_t pmap)
1691{
1692	cpuset_t mymask, mask;
1693	u_int cpuid, spins;
1694	int lsb;
1695
1696	mask = pmap->pm_active;
1697	while (!CPU_EMPTY(&mask)) {
1698		spins = 50000000;
1699
1700		/* Find least significant set bit. */
1701		lsb = cpusetobj_ffs(&mask);
1702		MPASS(lsb != 0);
1703		lsb--;
1704		CPU_SETOF(lsb, &mask);
1705		mtx_lock_spin(&smp_ipi_mtx);
1706#ifdef PAE
1707		lazyptd = vtophys(pmap->pm_pdpt);
1708#else
1709		lazyptd = vtophys(pmap->pm_pdir);
1710#endif
1711		cpuid = PCPU_GET(cpuid);
1712
1713		/* Use a cpuset just for having an easy check. */
1714		CPU_SETOF(cpuid, &mymask);
1715		if (!CPU_CMP(&mask, &mymask)) {
1716			lazymask = &pmap->pm_active;
1717			pmap_lazyfix_self(cpuid);
1718		} else {
1719			atomic_store_rel_int((u_int *)&lazymask,
1720			    (u_int)&pmap->pm_active);
1721			atomic_store_rel_int(&lazywait, 0);
1722			ipi_selected(mask, IPI_LAZYPMAP);
1723			while (lazywait == 0) {
1724				ia32_pause();
1725				if (--spins == 0)
1726					break;
1727			}
1728		}
1729		mtx_unlock_spin(&smp_ipi_mtx);
1730		if (spins == 0)
1731			printf("pmap_lazyfix: spun for 50000000\n");
1732		mask = pmap->pm_active;
1733	}
1734}
1735
1736#else	/* SMP */
1737
1738/*
1739 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1740 * unlikely to have to even execute this code, including the fact
1741 * that the cleanup is deferred until the parent does a wait(2), which
1742 * means that another userland process has run.
1743 */
1744static void
1745pmap_lazyfix(pmap_t pmap)
1746{
1747	u_int cr3;
1748
1749	cr3 = vtophys(pmap->pm_pdir);
1750	if (cr3 == rcr3()) {
1751		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1752		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1753	}
1754}
1755#endif	/* SMP */
1756
1757/*
1758 * Release any resources held by the given physical map.
1759 * Called when a pmap initialized by pmap_pinit is being released.
1760 * Should only be called if the map contains no valid mappings.
1761 */
1762void
1763pmap_release(pmap_t pmap)
1764{
1765	vm_page_t m, ptdpg[2*NPGPTD+1];
1766	vm_paddr_t ma;
1767	int i;
1768#ifdef PAE
1769	int npgptd = NPGPTD + 1;
1770#else
1771	int npgptd = NPGPTD;
1772#endif
1773
1774	KASSERT(pmap->pm_stats.resident_count == 0,
1775	    ("pmap_release: pmap resident count %ld != 0",
1776	    pmap->pm_stats.resident_count));
1777	PT_UPDATES_FLUSH();
1778
1779#ifdef HAMFISTED_LOCKING
1780	mtx_lock(&createdelete_lock);
1781#endif
1782
1783	pmap_lazyfix(pmap);
1784	mtx_lock_spin(&allpmaps_lock);
1785	LIST_REMOVE(pmap, pm_list);
1786	mtx_unlock_spin(&allpmaps_lock);
1787
1788	for (i = 0; i < NPGPTD; i++)
1789		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1790	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1791#ifdef PAE
1792	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1793#endif
1794
1795	for (i = 0; i < npgptd; i++) {
1796		m = ptdpg[i];
1797		ma = VM_PAGE_TO_MACH(m);
1798		/* unpinning L1 and L2 treated the same */
1799#if 0
1800                xen_pgd_unpin(ma);
1801#else
1802		if (i == NPGPTD)
1803	                xen_pgd_unpin(ma);
1804#endif
1805#ifdef PAE
1806		if (i < NPGPTD)
1807			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1808			    ("pmap_release: got wrong ptd page"));
1809#endif
1810		m->wire_count--;
1811		atomic_subtract_int(&cnt.v_wire_count, 1);
1812		vm_page_free(m);
1813	}
1814#ifdef PAE
1815	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1816#endif
1817	PMAP_LOCK_DESTROY(pmap);
1818
1819#ifdef HAMFISTED_LOCKING
1820	mtx_unlock(&createdelete_lock);
1821#endif
1822}
1823
1824static int
1825kvm_size(SYSCTL_HANDLER_ARGS)
1826{
1827	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1828
1829	return (sysctl_handle_long(oidp, &ksize, 0, req));
1830}
1831SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1832    0, 0, kvm_size, "IU", "Size of KVM");
1833
1834static int
1835kvm_free(SYSCTL_HANDLER_ARGS)
1836{
1837	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1838
1839	return (sysctl_handle_long(oidp, &kfree, 0, req));
1840}
1841SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1842    0, 0, kvm_free, "IU", "Amount of KVM free");
1843
1844/*
1845 * grow the number of kernel page table entries, if needed
1846 */
1847void
1848pmap_growkernel(vm_offset_t addr)
1849{
1850	struct pmap *pmap;
1851	vm_paddr_t ptppaddr;
1852	vm_page_t nkpg;
1853	pd_entry_t newpdir;
1854
1855	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1856	if (kernel_vm_end == 0) {
1857		kernel_vm_end = KERNBASE;
1858		nkpt = 0;
1859		while (pdir_pde(PTD, kernel_vm_end)) {
1860			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1861			nkpt++;
1862			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1863				kernel_vm_end = kernel_map->max_offset;
1864				break;
1865			}
1866		}
1867	}
1868	addr = roundup2(addr, NBPDR);
1869	if (addr - 1 >= kernel_map->max_offset)
1870		addr = kernel_map->max_offset;
1871	while (kernel_vm_end < addr) {
1872		if (pdir_pde(PTD, kernel_vm_end)) {
1873			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1874			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1875				kernel_vm_end = kernel_map->max_offset;
1876				break;
1877			}
1878			continue;
1879		}
1880
1881		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1882		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1883		    VM_ALLOC_ZERO);
1884		if (nkpg == NULL)
1885			panic("pmap_growkernel: no memory to grow kernel");
1886
1887		nkpt++;
1888
1889		if ((nkpg->flags & PG_ZERO) == 0)
1890			pmap_zero_page(nkpg);
1891		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1892		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1893		vm_page_lock_queues();
1894		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1895		mtx_lock_spin(&allpmaps_lock);
1896		LIST_FOREACH(pmap, &allpmaps, pm_list)
1897			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1898
1899		mtx_unlock_spin(&allpmaps_lock);
1900		vm_page_unlock_queues();
1901
1902		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1903		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1904			kernel_vm_end = kernel_map->max_offset;
1905			break;
1906		}
1907	}
1908}
1909
1910
1911/***************************************************
1912 * page management routines.
1913 ***************************************************/
1914
1915CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1916CTASSERT(_NPCM == 11);
1917CTASSERT(_NPCPV == 336);
1918
1919static __inline struct pv_chunk *
1920pv_to_chunk(pv_entry_t pv)
1921{
1922
1923	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1924}
1925
1926#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1927
1928#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1929#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1930
1931static const uint32_t pc_freemask[_NPCM] = {
1932	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1933	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1934	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1935	PC_FREE0_9, PC_FREE10
1936};
1937
1938SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1939	"Current number of pv entries");
1940
1941#ifdef PV_STATS
1942static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1943
1944SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1945	"Current number of pv entry chunks");
1946SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1947	"Current number of pv entry chunks allocated");
1948SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1949	"Current number of pv entry chunks frees");
1950SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1951	"Number of times tried to get a chunk page but failed.");
1952
1953static long pv_entry_frees, pv_entry_allocs;
1954static int pv_entry_spare;
1955
1956SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1957	"Current number of pv entry frees");
1958SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1959	"Current number of pv entry allocs");
1960SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1961	"Current number of spare pv entries");
1962#endif
1963
1964/*
1965 * We are in a serious low memory condition.  Resort to
1966 * drastic measures to free some pages so we can allocate
1967 * another pv entry chunk.
1968 */
1969static vm_page_t
1970pmap_pv_reclaim(pmap_t locked_pmap)
1971{
1972	struct pch newtail;
1973	struct pv_chunk *pc;
1974	pmap_t pmap;
1975	pt_entry_t *pte, tpte;
1976	pv_entry_t pv;
1977	vm_offset_t va;
1978	vm_page_t free, m, m_pc;
1979	uint32_t inuse;
1980	int bit, field, freed;
1981
1982	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1983	pmap = NULL;
1984	free = m_pc = NULL;
1985	TAILQ_INIT(&newtail);
1986	sched_pin();
1987	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
1988	    free == NULL)) {
1989		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1990		if (pmap != pc->pc_pmap) {
1991			if (pmap != NULL) {
1992				pmap_invalidate_all(pmap);
1993				if (pmap != locked_pmap)
1994					PMAP_UNLOCK(pmap);
1995			}
1996			pmap = pc->pc_pmap;
1997			/* Avoid deadlock and lock recursion. */
1998			if (pmap > locked_pmap)
1999				PMAP_LOCK(pmap);
2000			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2001				pmap = NULL;
2002				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2003				continue;
2004			}
2005		}
2006
2007		/*
2008		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2009		 */
2010		freed = 0;
2011		for (field = 0; field < _NPCM; field++) {
2012			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2013			    inuse != 0; inuse &= ~(1UL << bit)) {
2014				bit = bsfl(inuse);
2015				pv = &pc->pc_pventry[field * 32 + bit];
2016				va = pv->pv_va;
2017				pte = pmap_pte_quick(pmap, va);
2018				if ((*pte & PG_W) != 0)
2019					continue;
2020				tpte = pte_load_clear(pte);
2021				if ((tpte & PG_G) != 0)
2022					pmap_invalidate_page(pmap, va);
2023				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2024				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2025					vm_page_dirty(m);
2026				if ((tpte & PG_A) != 0)
2027					vm_page_aflag_set(m, PGA_REFERENCED);
2028				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2029				if (TAILQ_EMPTY(&m->md.pv_list))
2030					vm_page_aflag_clear(m, PGA_WRITEABLE);
2031				pc->pc_map[field] |= 1UL << bit;
2032				pmap_unuse_pt(pmap, va, &free);
2033				freed++;
2034			}
2035		}
2036		if (freed == 0) {
2037			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2038			continue;
2039		}
2040		/* Every freed mapping is for a 4 KB page. */
2041		pmap->pm_stats.resident_count -= freed;
2042		PV_STAT(pv_entry_frees += freed);
2043		PV_STAT(pv_entry_spare += freed);
2044		pv_entry_count -= freed;
2045		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2046		for (field = 0; field < _NPCM; field++)
2047			if (pc->pc_map[field] != pc_freemask[field]) {
2048				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2049				    pc_list);
2050				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2051
2052				/*
2053				 * One freed pv entry in locked_pmap is
2054				 * sufficient.
2055				 */
2056				if (pmap == locked_pmap)
2057					goto out;
2058				break;
2059			}
2060		if (field == _NPCM) {
2061			PV_STAT(pv_entry_spare -= _NPCPV);
2062			PV_STAT(pc_chunk_count--);
2063			PV_STAT(pc_chunk_frees++);
2064			/* Entire chunk is free; return it. */
2065			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2066			pmap_qremove((vm_offset_t)pc, 1);
2067			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2068			break;
2069		}
2070	}
2071out:
2072	sched_unpin();
2073	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2074	if (pmap != NULL) {
2075		pmap_invalidate_all(pmap);
2076		if (pmap != locked_pmap)
2077			PMAP_UNLOCK(pmap);
2078	}
2079	if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
2080		m_pc = free;
2081		free = m_pc->right;
2082		/* Recycle a freed page table page. */
2083		m_pc->wire_count = 1;
2084		atomic_add_int(&cnt.v_wire_count, 1);
2085	}
2086	pmap_free_zero_pages(free);
2087	return (m_pc);
2088}
2089
2090/*
2091 * free the pv_entry back to the free list
2092 */
2093static void
2094free_pv_entry(pmap_t pmap, pv_entry_t pv)
2095{
2096	struct pv_chunk *pc;
2097	int idx, field, bit;
2098
2099	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2100	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2101	PV_STAT(pv_entry_frees++);
2102	PV_STAT(pv_entry_spare++);
2103	pv_entry_count--;
2104	pc = pv_to_chunk(pv);
2105	idx = pv - &pc->pc_pventry[0];
2106	field = idx / 32;
2107	bit = idx % 32;
2108	pc->pc_map[field] |= 1ul << bit;
2109	for (idx = 0; idx < _NPCM; idx++)
2110		if (pc->pc_map[idx] != pc_freemask[idx]) {
2111			/*
2112			 * 98% of the time, pc is already at the head of the
2113			 * list.  If it isn't already, move it to the head.
2114			 */
2115			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2116			    pc)) {
2117				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2118				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2119				    pc_list);
2120			}
2121			return;
2122		}
2123	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2124	free_pv_chunk(pc);
2125}
2126
2127static void
2128free_pv_chunk(struct pv_chunk *pc)
2129{
2130	vm_page_t m;
2131
2132 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2133	PV_STAT(pv_entry_spare -= _NPCPV);
2134	PV_STAT(pc_chunk_count--);
2135	PV_STAT(pc_chunk_frees++);
2136	/* entire chunk is free, return it */
2137	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2138	pmap_qremove((vm_offset_t)pc, 1);
2139	vm_page_unwire(m, 0);
2140	vm_page_free(m);
2141	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2142}
2143
2144/*
2145 * get a new pv_entry, allocating a block from the system
2146 * when needed.
2147 */
2148static pv_entry_t
2149get_pv_entry(pmap_t pmap, boolean_t try)
2150{
2151	static const struct timeval printinterval = { 60, 0 };
2152	static struct timeval lastprint;
2153	int bit, field;
2154	pv_entry_t pv;
2155	struct pv_chunk *pc;
2156	vm_page_t m;
2157
2158	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2159	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2160	PV_STAT(pv_entry_allocs++);
2161	pv_entry_count++;
2162	if (pv_entry_count > pv_entry_high_water)
2163		if (ratecheck(&lastprint, &printinterval))
2164			printf("Approaching the limit on PV entries, consider "
2165			    "increasing either the vm.pmap.shpgperproc or the "
2166			    "vm.pmap.pv_entry_max tunable.\n");
2167retry:
2168	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2169	if (pc != NULL) {
2170		for (field = 0; field < _NPCM; field++) {
2171			if (pc->pc_map[field]) {
2172				bit = bsfl(pc->pc_map[field]);
2173				break;
2174			}
2175		}
2176		if (field < _NPCM) {
2177			pv = &pc->pc_pventry[field * 32 + bit];
2178			pc->pc_map[field] &= ~(1ul << bit);
2179			/* If this was the last item, move it to tail */
2180			for (field = 0; field < _NPCM; field++)
2181				if (pc->pc_map[field] != 0) {
2182					PV_STAT(pv_entry_spare--);
2183					return (pv);	/* not full, return */
2184				}
2185			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2186			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2187			PV_STAT(pv_entry_spare--);
2188			return (pv);
2189		}
2190	}
2191	/*
2192	 * Access to the ptelist "pv_vafree" is synchronized by the page
2193	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2194	 * remain non-empty until pmap_ptelist_alloc() completes.
2195	 */
2196	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2197	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2198		if (try) {
2199			pv_entry_count--;
2200			PV_STAT(pc_chunk_tryfail++);
2201			return (NULL);
2202		}
2203		m = pmap_pv_reclaim(pmap);
2204		if (m == NULL)
2205			goto retry;
2206	}
2207	PV_STAT(pc_chunk_count++);
2208	PV_STAT(pc_chunk_allocs++);
2209	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2210	pmap_qenter((vm_offset_t)pc, &m, 1);
2211	if ((m->flags & PG_ZERO) == 0)
2212		pagezero(pc);
2213	pc->pc_pmap = pmap;
2214	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2215	for (field = 1; field < _NPCM; field++)
2216		pc->pc_map[field] = pc_freemask[field];
2217	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2218	pv = &pc->pc_pventry[0];
2219	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2220	PV_STAT(pv_entry_spare += _NPCPV - 1);
2221	return (pv);
2222}
2223
2224static __inline pv_entry_t
2225pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2226{
2227	pv_entry_t pv;
2228
2229	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2230	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2231		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2232			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2233			break;
2234		}
2235	}
2236	return (pv);
2237}
2238
2239static void
2240pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2241{
2242	pv_entry_t pv;
2243
2244	pv = pmap_pvh_remove(pvh, pmap, va);
2245	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2246	free_pv_entry(pmap, pv);
2247}
2248
2249static void
2250pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2251{
2252
2253	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2254	pmap_pvh_free(&m->md, pmap, va);
2255	if (TAILQ_EMPTY(&m->md.pv_list))
2256		vm_page_aflag_clear(m, PGA_WRITEABLE);
2257}
2258
2259/*
2260 * Conditionally create a pv entry.
2261 */
2262static boolean_t
2263pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2264{
2265	pv_entry_t pv;
2266
2267	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2268	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2269	if (pv_entry_count < pv_entry_high_water &&
2270	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2271		pv->pv_va = va;
2272		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2273		return (TRUE);
2274	} else
2275		return (FALSE);
2276}
2277
2278/*
2279 * pmap_remove_pte: do the things to unmap a page in a process
2280 */
2281static int
2282pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2283{
2284	pt_entry_t oldpte;
2285	vm_page_t m;
2286
2287	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2288	    pmap, (u_long)*ptq, va);
2289
2290	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2291	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2292	oldpte = *ptq;
2293	PT_SET_VA_MA(ptq, 0, TRUE);
2294	if (oldpte & PG_W)
2295		pmap->pm_stats.wired_count -= 1;
2296	/*
2297	 * Machines that don't support invlpg, also don't support
2298	 * PG_G.
2299	 */
2300	if (oldpte & PG_G)
2301		pmap_invalidate_page(kernel_pmap, va);
2302	pmap->pm_stats.resident_count -= 1;
2303	if (oldpte & PG_MANAGED) {
2304		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2305		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2306			vm_page_dirty(m);
2307		if (oldpte & PG_A)
2308			vm_page_aflag_set(m, PGA_REFERENCED);
2309		pmap_remove_entry(pmap, m, va);
2310	}
2311	return (pmap_unuse_pt(pmap, va, free));
2312}
2313
2314/*
2315 * Remove a single page from a process address space
2316 */
2317static void
2318pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2319{
2320	pt_entry_t *pte;
2321
2322	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2323	    pmap, va);
2324
2325	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2326	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2327	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2328	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2329		return;
2330	pmap_remove_pte(pmap, pte, va, free);
2331	pmap_invalidate_page(pmap, va);
2332	if (*PMAP1)
2333		PT_SET_MA(PADDR1, 0);
2334
2335}
2336
2337/*
2338 *	Remove the given range of addresses from the specified map.
2339 *
2340 *	It is assumed that the start and end are properly
2341 *	rounded to the page size.
2342 */
2343void
2344pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2345{
2346	vm_offset_t pdnxt;
2347	pd_entry_t ptpaddr;
2348	pt_entry_t *pte;
2349	vm_page_t free = NULL;
2350	int anyvalid;
2351
2352	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2353	    pmap, sva, eva);
2354
2355	/*
2356	 * Perform an unsynchronized read.  This is, however, safe.
2357	 */
2358	if (pmap->pm_stats.resident_count == 0)
2359		return;
2360
2361	anyvalid = 0;
2362
2363	vm_page_lock_queues();
2364	sched_pin();
2365	PMAP_LOCK(pmap);
2366
2367	/*
2368	 * special handling of removing one page.  a very
2369	 * common operation and easy to short circuit some
2370	 * code.
2371	 */
2372	if ((sva + PAGE_SIZE == eva) &&
2373	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2374		pmap_remove_page(pmap, sva, &free);
2375		goto out;
2376	}
2377
2378	for (; sva < eva; sva = pdnxt) {
2379		u_int pdirindex;
2380
2381		/*
2382		 * Calculate index for next page table.
2383		 */
2384		pdnxt = (sva + NBPDR) & ~PDRMASK;
2385		if (pdnxt < sva)
2386			pdnxt = eva;
2387		if (pmap->pm_stats.resident_count == 0)
2388			break;
2389
2390		pdirindex = sva >> PDRSHIFT;
2391		ptpaddr = pmap->pm_pdir[pdirindex];
2392
2393		/*
2394		 * Weed out invalid mappings. Note: we assume that the page
2395		 * directory table is always allocated, and in kernel virtual.
2396		 */
2397		if (ptpaddr == 0)
2398			continue;
2399
2400		/*
2401		 * Check for large page.
2402		 */
2403		if ((ptpaddr & PG_PS) != 0) {
2404			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2405			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2406			anyvalid = 1;
2407			continue;
2408		}
2409
2410		/*
2411		 * Limit our scan to either the end of the va represented
2412		 * by the current page table page, or to the end of the
2413		 * range being removed.
2414		 */
2415		if (pdnxt > eva)
2416			pdnxt = eva;
2417
2418		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2419		    sva += PAGE_SIZE) {
2420			if ((*pte & PG_V) == 0)
2421				continue;
2422
2423			/*
2424			 * The TLB entry for a PG_G mapping is invalidated
2425			 * by pmap_remove_pte().
2426			 */
2427			if ((*pte & PG_G) == 0)
2428				anyvalid = 1;
2429			if (pmap_remove_pte(pmap, pte, sva, &free))
2430				break;
2431		}
2432	}
2433	PT_UPDATES_FLUSH();
2434	if (*PMAP1)
2435		PT_SET_VA_MA(PMAP1, 0, TRUE);
2436out:
2437	if (anyvalid)
2438		pmap_invalidate_all(pmap);
2439	sched_unpin();
2440	vm_page_unlock_queues();
2441	PMAP_UNLOCK(pmap);
2442	pmap_free_zero_pages(free);
2443}
2444
2445/*
2446 *	Routine:	pmap_remove_all
2447 *	Function:
2448 *		Removes this physical page from
2449 *		all physical maps in which it resides.
2450 *		Reflects back modify bits to the pager.
2451 *
2452 *	Notes:
2453 *		Original versions of this routine were very
2454 *		inefficient because they iteratively called
2455 *		pmap_remove (slow...)
2456 */
2457
2458void
2459pmap_remove_all(vm_page_t m)
2460{
2461	pv_entry_t pv;
2462	pmap_t pmap;
2463	pt_entry_t *pte, tpte;
2464	vm_page_t free;
2465
2466	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2467	    ("pmap_remove_all: page %p is not managed", m));
2468	free = NULL;
2469	vm_page_lock_queues();
2470	sched_pin();
2471	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2472		pmap = PV_PMAP(pv);
2473		PMAP_LOCK(pmap);
2474		pmap->pm_stats.resident_count--;
2475		pte = pmap_pte_quick(pmap, pv->pv_va);
2476		tpte = *pte;
2477		PT_SET_VA_MA(pte, 0, TRUE);
2478		if (tpte & PG_W)
2479			pmap->pm_stats.wired_count--;
2480		if (tpte & PG_A)
2481			vm_page_aflag_set(m, PGA_REFERENCED);
2482
2483		/*
2484		 * Update the vm_page_t clean and reference bits.
2485		 */
2486		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2487			vm_page_dirty(m);
2488		pmap_unuse_pt(pmap, pv->pv_va, &free);
2489		pmap_invalidate_page(pmap, pv->pv_va);
2490		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2491		free_pv_entry(pmap, pv);
2492		PMAP_UNLOCK(pmap);
2493	}
2494	vm_page_aflag_clear(m, PGA_WRITEABLE);
2495	PT_UPDATES_FLUSH();
2496	if (*PMAP1)
2497		PT_SET_MA(PADDR1, 0);
2498	sched_unpin();
2499	vm_page_unlock_queues();
2500	pmap_free_zero_pages(free);
2501}
2502
2503/*
2504 *	Set the physical protection on the
2505 *	specified range of this map as requested.
2506 */
2507void
2508pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2509{
2510	vm_offset_t pdnxt;
2511	pd_entry_t ptpaddr;
2512	pt_entry_t *pte;
2513	int anychanged;
2514
2515	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2516	    pmap, sva, eva, prot);
2517
2518	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2519		pmap_remove(pmap, sva, eva);
2520		return;
2521	}
2522
2523#ifdef PAE
2524	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2525	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2526		return;
2527#else
2528	if (prot & VM_PROT_WRITE)
2529		return;
2530#endif
2531
2532	anychanged = 0;
2533
2534	vm_page_lock_queues();
2535	sched_pin();
2536	PMAP_LOCK(pmap);
2537	for (; sva < eva; sva = pdnxt) {
2538		pt_entry_t obits, pbits;
2539		u_int pdirindex;
2540
2541		pdnxt = (sva + NBPDR) & ~PDRMASK;
2542		if (pdnxt < sva)
2543			pdnxt = eva;
2544
2545		pdirindex = sva >> PDRSHIFT;
2546		ptpaddr = pmap->pm_pdir[pdirindex];
2547
2548		/*
2549		 * Weed out invalid mappings. Note: we assume that the page
2550		 * directory table is always allocated, and in kernel virtual.
2551		 */
2552		if (ptpaddr == 0)
2553			continue;
2554
2555		/*
2556		 * Check for large page.
2557		 */
2558		if ((ptpaddr & PG_PS) != 0) {
2559			if ((prot & VM_PROT_WRITE) == 0)
2560				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2561#ifdef PAE
2562			if ((prot & VM_PROT_EXECUTE) == 0)
2563				pmap->pm_pdir[pdirindex] |= pg_nx;
2564#endif
2565			anychanged = 1;
2566			continue;
2567		}
2568
2569		if (pdnxt > eva)
2570			pdnxt = eva;
2571
2572		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2573		    sva += PAGE_SIZE) {
2574			vm_page_t m;
2575
2576retry:
2577			/*
2578			 * Regardless of whether a pte is 32 or 64 bits in
2579			 * size, PG_RW, PG_A, and PG_M are among the least
2580			 * significant 32 bits.
2581			 */
2582			obits = pbits = *pte;
2583			if ((pbits & PG_V) == 0)
2584				continue;
2585
2586			if ((prot & VM_PROT_WRITE) == 0) {
2587				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2588				    (PG_MANAGED | PG_M | PG_RW)) {
2589					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2590					    PG_FRAME);
2591					vm_page_dirty(m);
2592				}
2593				pbits &= ~(PG_RW | PG_M);
2594			}
2595#ifdef PAE
2596			if ((prot & VM_PROT_EXECUTE) == 0)
2597				pbits |= pg_nx;
2598#endif
2599
2600			if (pbits != obits) {
2601				obits = *pte;
2602				PT_SET_VA_MA(pte, pbits, TRUE);
2603				if (*pte != pbits)
2604					goto retry;
2605				if (obits & PG_G)
2606					pmap_invalidate_page(pmap, sva);
2607				else
2608					anychanged = 1;
2609			}
2610		}
2611	}
2612	PT_UPDATES_FLUSH();
2613	if (*PMAP1)
2614		PT_SET_VA_MA(PMAP1, 0, TRUE);
2615	if (anychanged)
2616		pmap_invalidate_all(pmap);
2617	sched_unpin();
2618	vm_page_unlock_queues();
2619	PMAP_UNLOCK(pmap);
2620}
2621
2622/*
2623 *	Insert the given physical page (p) at
2624 *	the specified virtual address (v) in the
2625 *	target physical map with the protection requested.
2626 *
2627 *	If specified, the page will be wired down, meaning
2628 *	that the related pte can not be reclaimed.
2629 *
2630 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2631 *	or lose information.  That is, this routine must actually
2632 *	insert this page into the given map NOW.
2633 */
2634void
2635pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2636    vm_prot_t prot, boolean_t wired)
2637{
2638	pd_entry_t *pde;
2639	pt_entry_t *pte;
2640	pt_entry_t newpte, origpte;
2641	pv_entry_t pv;
2642	vm_paddr_t opa, pa;
2643	vm_page_t mpte, om;
2644	boolean_t invlva;
2645
2646	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2647	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2648	va = trunc_page(va);
2649	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2650	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2651	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2652	    va));
2653	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
2654	    VM_OBJECT_LOCKED(m->object),
2655	    ("pmap_enter: page %p is not busy", m));
2656
2657	mpte = NULL;
2658
2659	vm_page_lock_queues();
2660	PMAP_LOCK(pmap);
2661	sched_pin();
2662
2663	/*
2664	 * In the case that a page table page is not
2665	 * resident, we are creating it here.
2666	 */
2667	if (va < VM_MAXUSER_ADDRESS) {
2668		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2669	}
2670
2671	pde = pmap_pde(pmap, va);
2672	if ((*pde & PG_PS) != 0)
2673		panic("pmap_enter: attempted pmap_enter on 4MB page");
2674	pte = pmap_pte_quick(pmap, va);
2675
2676	/*
2677	 * Page Directory table entry not valid, we need a new PT page
2678	 */
2679	if (pte == NULL) {
2680		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2681			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2682	}
2683
2684	pa = VM_PAGE_TO_PHYS(m);
2685	om = NULL;
2686	opa = origpte = 0;
2687
2688#if 0
2689	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2690		pte, *pte));
2691#endif
2692	origpte = *pte;
2693	if (origpte)
2694		origpte = xpmap_mtop(origpte);
2695	opa = origpte & PG_FRAME;
2696
2697	/*
2698	 * Mapping has not changed, must be protection or wiring change.
2699	 */
2700	if (origpte && (opa == pa)) {
2701		/*
2702		 * Wiring change, just update stats. We don't worry about
2703		 * wiring PT pages as they remain resident as long as there
2704		 * are valid mappings in them. Hence, if a user page is wired,
2705		 * the PT page will be also.
2706		 */
2707		if (wired && ((origpte & PG_W) == 0))
2708			pmap->pm_stats.wired_count++;
2709		else if (!wired && (origpte & PG_W))
2710			pmap->pm_stats.wired_count--;
2711
2712		/*
2713		 * Remove extra pte reference
2714		 */
2715		if (mpte)
2716			mpte->wire_count--;
2717
2718		if (origpte & PG_MANAGED) {
2719			om = m;
2720			pa |= PG_MANAGED;
2721		}
2722		goto validate;
2723	}
2724
2725	pv = NULL;
2726
2727	/*
2728	 * Mapping has changed, invalidate old range and fall through to
2729	 * handle validating new mapping.
2730	 */
2731	if (opa) {
2732		if (origpte & PG_W)
2733			pmap->pm_stats.wired_count--;
2734		if (origpte & PG_MANAGED) {
2735			om = PHYS_TO_VM_PAGE(opa);
2736			pv = pmap_pvh_remove(&om->md, pmap, va);
2737		} else if (va < VM_MAXUSER_ADDRESS)
2738			printf("va=0x%x is unmanaged :-( \n", va);
2739
2740		if (mpte != NULL) {
2741			mpte->wire_count--;
2742			KASSERT(mpte->wire_count > 0,
2743			    ("pmap_enter: missing reference to page table page,"
2744			     " va: 0x%x", va));
2745		}
2746	} else
2747		pmap->pm_stats.resident_count++;
2748
2749	/*
2750	 * Enter on the PV list if part of our managed memory.
2751	 */
2752	if ((m->oflags & VPO_UNMANAGED) == 0) {
2753		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2754		    ("pmap_enter: managed mapping within the clean submap"));
2755		if (pv == NULL)
2756			pv = get_pv_entry(pmap, FALSE);
2757		pv->pv_va = va;
2758		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2759		pa |= PG_MANAGED;
2760	} else if (pv != NULL)
2761		free_pv_entry(pmap, pv);
2762
2763	/*
2764	 * Increment counters
2765	 */
2766	if (wired)
2767		pmap->pm_stats.wired_count++;
2768
2769validate:
2770	/*
2771	 * Now validate mapping with desired protection/wiring.
2772	 */
2773	newpte = (pt_entry_t)(pa | PG_V);
2774	if ((prot & VM_PROT_WRITE) != 0) {
2775		newpte |= PG_RW;
2776		if ((newpte & PG_MANAGED) != 0)
2777			vm_page_aflag_set(m, PGA_WRITEABLE);
2778	}
2779#ifdef PAE
2780	if ((prot & VM_PROT_EXECUTE) == 0)
2781		newpte |= pg_nx;
2782#endif
2783	if (wired)
2784		newpte |= PG_W;
2785	if (va < VM_MAXUSER_ADDRESS)
2786		newpte |= PG_U;
2787	if (pmap == kernel_pmap)
2788		newpte |= pgeflag;
2789
2790	critical_enter();
2791	/*
2792	 * if the mapping or permission bits are different, we need
2793	 * to update the pte.
2794	 */
2795	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2796		if (origpte) {
2797			invlva = FALSE;
2798			origpte = *pte;
2799			PT_SET_VA(pte, newpte | PG_A, FALSE);
2800			if (origpte & PG_A) {
2801				if (origpte & PG_MANAGED)
2802					vm_page_aflag_set(om, PGA_REFERENCED);
2803				if (opa != VM_PAGE_TO_PHYS(m))
2804					invlva = TRUE;
2805#ifdef PAE
2806				if ((origpte & PG_NX) == 0 &&
2807				    (newpte & PG_NX) != 0)
2808					invlva = TRUE;
2809#endif
2810			}
2811			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2812				if ((origpte & PG_MANAGED) != 0)
2813					vm_page_dirty(om);
2814				if ((prot & VM_PROT_WRITE) == 0)
2815					invlva = TRUE;
2816			}
2817			if ((origpte & PG_MANAGED) != 0 &&
2818			    TAILQ_EMPTY(&om->md.pv_list))
2819				vm_page_aflag_clear(om, PGA_WRITEABLE);
2820			if (invlva)
2821				pmap_invalidate_page(pmap, va);
2822		} else{
2823			PT_SET_VA(pte, newpte | PG_A, FALSE);
2824		}
2825
2826	}
2827	PT_UPDATES_FLUSH();
2828	critical_exit();
2829	if (*PMAP1)
2830		PT_SET_VA_MA(PMAP1, 0, TRUE);
2831	sched_unpin();
2832	vm_page_unlock_queues();
2833	PMAP_UNLOCK(pmap);
2834}
2835
2836/*
2837 * Maps a sequence of resident pages belonging to the same object.
2838 * The sequence begins with the given page m_start.  This page is
2839 * mapped at the given virtual address start.  Each subsequent page is
2840 * mapped at a virtual address that is offset from start by the same
2841 * amount as the page is offset from m_start within the object.  The
2842 * last page in the sequence is the page with the largest offset from
2843 * m_start that can be mapped at a virtual address less than the given
2844 * virtual address end.  Not every virtual page between start and end
2845 * is mapped; only those for which a resident page exists with the
2846 * corresponding offset from m_start are mapped.
2847 */
2848void
2849pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2850    vm_page_t m_start, vm_prot_t prot)
2851{
2852	vm_page_t m, mpte;
2853	vm_pindex_t diff, psize;
2854	multicall_entry_t mcl[16];
2855	multicall_entry_t *mclp = mcl;
2856	int error, count = 0;
2857
2858	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2859	psize = atop(end - start);
2860	mpte = NULL;
2861	m = m_start;
2862	vm_page_lock_queues();
2863	PMAP_LOCK(pmap);
2864	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2865		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2866		    prot, mpte);
2867		m = TAILQ_NEXT(m, listq);
2868		if (count == 16) {
2869			error = HYPERVISOR_multicall(mcl, count);
2870			KASSERT(error == 0, ("bad multicall %d", error));
2871			mclp = mcl;
2872			count = 0;
2873		}
2874	}
2875	if (count) {
2876		error = HYPERVISOR_multicall(mcl, count);
2877		KASSERT(error == 0, ("bad multicall %d", error));
2878	}
2879	vm_page_unlock_queues();
2880	PMAP_UNLOCK(pmap);
2881}
2882
2883/*
2884 * this code makes some *MAJOR* assumptions:
2885 * 1. Current pmap & pmap exists.
2886 * 2. Not wired.
2887 * 3. Read access.
2888 * 4. No page table pages.
2889 * but is *MUCH* faster than pmap_enter...
2890 */
2891
2892void
2893pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2894{
2895	multicall_entry_t mcl, *mclp;
2896	int count = 0;
2897	mclp = &mcl;
2898
2899	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2900	    pmap, va, m, prot);
2901
2902	vm_page_lock_queues();
2903	PMAP_LOCK(pmap);
2904	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2905	if (count)
2906		HYPERVISOR_multicall(&mcl, count);
2907	vm_page_unlock_queues();
2908	PMAP_UNLOCK(pmap);
2909}
2910
2911#ifdef notyet
2912void
2913pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2914{
2915	int i, error, index = 0;
2916	multicall_entry_t mcl[16];
2917	multicall_entry_t *mclp = mcl;
2918
2919	PMAP_LOCK(pmap);
2920	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2921		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2922			continue;
2923
2924		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2925		if (index == 16) {
2926			error = HYPERVISOR_multicall(mcl, index);
2927			mclp = mcl;
2928			index = 0;
2929			KASSERT(error == 0, ("bad multicall %d", error));
2930		}
2931	}
2932	if (index) {
2933		error = HYPERVISOR_multicall(mcl, index);
2934		KASSERT(error == 0, ("bad multicall %d", error));
2935	}
2936
2937	PMAP_UNLOCK(pmap);
2938}
2939#endif
2940
2941static vm_page_t
2942pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2943    vm_prot_t prot, vm_page_t mpte)
2944{
2945	pt_entry_t *pte;
2946	vm_paddr_t pa;
2947	vm_page_t free;
2948	multicall_entry_t *mcl = *mclpp;
2949
2950	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2951	    (m->oflags & VPO_UNMANAGED) != 0,
2952	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2953	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2954	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2955
2956	/*
2957	 * In the case that a page table page is not
2958	 * resident, we are creating it here.
2959	 */
2960	if (va < VM_MAXUSER_ADDRESS) {
2961		u_int ptepindex;
2962		pd_entry_t ptema;
2963
2964		/*
2965		 * Calculate pagetable page index
2966		 */
2967		ptepindex = va >> PDRSHIFT;
2968		if (mpte && (mpte->pindex == ptepindex)) {
2969			mpte->wire_count++;
2970		} else {
2971			/*
2972			 * Get the page directory entry
2973			 */
2974			ptema = pmap->pm_pdir[ptepindex];
2975
2976			/*
2977			 * If the page table page is mapped, we just increment
2978			 * the hold count, and activate it.
2979			 */
2980			if (ptema & PG_V) {
2981				if (ptema & PG_PS)
2982					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2983				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2984				mpte->wire_count++;
2985			} else {
2986				mpte = _pmap_allocpte(pmap, ptepindex,
2987				    M_NOWAIT);
2988				if (mpte == NULL)
2989					return (mpte);
2990			}
2991		}
2992	} else {
2993		mpte = NULL;
2994	}
2995
2996	/*
2997	 * This call to vtopte makes the assumption that we are
2998	 * entering the page into the current pmap.  In order to support
2999	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3000	 * But that isn't as quick as vtopte.
3001	 */
3002	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3003	pte = vtopte(va);
3004	if (*pte & PG_V) {
3005		if (mpte != NULL) {
3006			mpte->wire_count--;
3007			mpte = NULL;
3008		}
3009		return (mpte);
3010	}
3011
3012	/*
3013	 * Enter on the PV list if part of our managed memory.
3014	 */
3015	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3016	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3017		if (mpte != NULL) {
3018			free = NULL;
3019			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3020				pmap_invalidate_page(pmap, va);
3021				pmap_free_zero_pages(free);
3022			}
3023
3024			mpte = NULL;
3025		}
3026		return (mpte);
3027	}
3028
3029	/*
3030	 * Increment counters
3031	 */
3032	pmap->pm_stats.resident_count++;
3033
3034	pa = VM_PAGE_TO_PHYS(m);
3035#ifdef PAE
3036	if ((prot & VM_PROT_EXECUTE) == 0)
3037		pa |= pg_nx;
3038#endif
3039
3040#if 0
3041	/*
3042	 * Now validate mapping with RO protection
3043	 */
3044	if ((m->oflags & VPO_UNMANAGED) != 0)
3045		pte_store(pte, pa | PG_V | PG_U);
3046	else
3047		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3048#else
3049	/*
3050	 * Now validate mapping with RO protection
3051	 */
3052	if ((m->oflags & VPO_UNMANAGED) != 0)
3053		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3054	else
3055		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3056
3057	mcl->op = __HYPERVISOR_update_va_mapping;
3058	mcl->args[0] = va;
3059	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3060	mcl->args[2] = (uint32_t)(pa >> 32);
3061	mcl->args[3] = 0;
3062	*mclpp = mcl + 1;
3063	*count = *count + 1;
3064#endif
3065	return (mpte);
3066}
3067
3068/*
3069 * Make a temporary mapping for a physical address.  This is only intended
3070 * to be used for panic dumps.
3071 */
3072void *
3073pmap_kenter_temporary(vm_paddr_t pa, int i)
3074{
3075	vm_offset_t va;
3076	vm_paddr_t ma = xpmap_ptom(pa);
3077
3078	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3079	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3080	invlpg(va);
3081	return ((void *)crashdumpmap);
3082}
3083
3084/*
3085 * This code maps large physical mmap regions into the
3086 * processor address space.  Note that some shortcuts
3087 * are taken, but the code works.
3088 */
3089void
3090pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3091    vm_pindex_t pindex, vm_size_t size)
3092{
3093	pd_entry_t *pde;
3094	vm_paddr_t pa, ptepa;
3095	vm_page_t p;
3096	int pat_mode;
3097
3098	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3099	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3100	    ("pmap_object_init_pt: non-device object"));
3101	if (pseflag &&
3102	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3103		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3104			return;
3105		p = vm_page_lookup(object, pindex);
3106		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3107		    ("pmap_object_init_pt: invalid page %p", p));
3108		pat_mode = p->md.pat_mode;
3109
3110		/*
3111		 * Abort the mapping if the first page is not physically
3112		 * aligned to a 2/4MB page boundary.
3113		 */
3114		ptepa = VM_PAGE_TO_PHYS(p);
3115		if (ptepa & (NBPDR - 1))
3116			return;
3117
3118		/*
3119		 * Skip the first page.  Abort the mapping if the rest of
3120		 * the pages are not physically contiguous or have differing
3121		 * memory attributes.
3122		 */
3123		p = TAILQ_NEXT(p, listq);
3124		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3125		    pa += PAGE_SIZE) {
3126			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3127			    ("pmap_object_init_pt: invalid page %p", p));
3128			if (pa != VM_PAGE_TO_PHYS(p) ||
3129			    pat_mode != p->md.pat_mode)
3130				return;
3131			p = TAILQ_NEXT(p, listq);
3132		}
3133
3134		/*
3135		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3136		 * "size" is a multiple of 2/4M, adding the PAT setting to
3137		 * "pa" will not affect the termination of this loop.
3138		 */
3139		PMAP_LOCK(pmap);
3140		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3141		    size; pa += NBPDR) {
3142			pde = pmap_pde(pmap, addr);
3143			if (*pde == 0) {
3144				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3145				    PG_U | PG_RW | PG_V);
3146				pmap->pm_stats.resident_count += NBPDR /
3147				    PAGE_SIZE;
3148				pmap_pde_mappings++;
3149			}
3150			/* Else continue on if the PDE is already valid. */
3151			addr += NBPDR;
3152		}
3153		PMAP_UNLOCK(pmap);
3154	}
3155}
3156
3157/*
3158 *	Routine:	pmap_change_wiring
3159 *	Function:	Change the wiring attribute for a map/virtual-address
3160 *			pair.
3161 *	In/out conditions:
3162 *			The mapping must already exist in the pmap.
3163 */
3164void
3165pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3166{
3167	pt_entry_t *pte;
3168
3169	vm_page_lock_queues();
3170	PMAP_LOCK(pmap);
3171	pte = pmap_pte(pmap, va);
3172
3173	if (wired && !pmap_pte_w(pte)) {
3174		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3175		pmap->pm_stats.wired_count++;
3176	} else if (!wired && pmap_pte_w(pte)) {
3177		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3178		pmap->pm_stats.wired_count--;
3179	}
3180
3181	/*
3182	 * Wiring is not a hardware characteristic so there is no need to
3183	 * invalidate TLB.
3184	 */
3185	pmap_pte_release(pte);
3186	PMAP_UNLOCK(pmap);
3187	vm_page_unlock_queues();
3188}
3189
3190
3191
3192/*
3193 *	Copy the range specified by src_addr/len
3194 *	from the source map to the range dst_addr/len
3195 *	in the destination map.
3196 *
3197 *	This routine is only advisory and need not do anything.
3198 */
3199
3200void
3201pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3202    vm_offset_t src_addr)
3203{
3204	vm_page_t   free;
3205	vm_offset_t addr;
3206	vm_offset_t end_addr = src_addr + len;
3207	vm_offset_t pdnxt;
3208
3209	if (dst_addr != src_addr)
3210		return;
3211
3212	if (!pmap_is_current(src_pmap)) {
3213		CTR2(KTR_PMAP,
3214		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3215		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3216
3217		return;
3218	}
3219	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3220	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3221
3222#ifdef HAMFISTED_LOCKING
3223	mtx_lock(&createdelete_lock);
3224#endif
3225
3226	vm_page_lock_queues();
3227	if (dst_pmap < src_pmap) {
3228		PMAP_LOCK(dst_pmap);
3229		PMAP_LOCK(src_pmap);
3230	} else {
3231		PMAP_LOCK(src_pmap);
3232		PMAP_LOCK(dst_pmap);
3233	}
3234	sched_pin();
3235	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3236		pt_entry_t *src_pte, *dst_pte;
3237		vm_page_t dstmpte, srcmpte;
3238		pd_entry_t srcptepaddr;
3239		u_int ptepindex;
3240
3241		KASSERT(addr < UPT_MIN_ADDRESS,
3242		    ("pmap_copy: invalid to pmap_copy page tables"));
3243
3244		pdnxt = (addr + NBPDR) & ~PDRMASK;
3245		if (pdnxt < addr)
3246			pdnxt = end_addr;
3247		ptepindex = addr >> PDRSHIFT;
3248
3249		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3250		if (srcptepaddr == 0)
3251			continue;
3252
3253		if (srcptepaddr & PG_PS) {
3254			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3255				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3256				dst_pmap->pm_stats.resident_count +=
3257				    NBPDR / PAGE_SIZE;
3258			}
3259			continue;
3260		}
3261
3262		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3263		KASSERT(srcmpte->wire_count > 0,
3264		    ("pmap_copy: source page table page is unused"));
3265
3266		if (pdnxt > end_addr)
3267			pdnxt = end_addr;
3268
3269		src_pte = vtopte(addr);
3270		while (addr < pdnxt) {
3271			pt_entry_t ptetemp;
3272			ptetemp = *src_pte;
3273			/*
3274			 * we only virtual copy managed pages
3275			 */
3276			if ((ptetemp & PG_MANAGED) != 0) {
3277				dstmpte = pmap_allocpte(dst_pmap, addr,
3278				    M_NOWAIT);
3279				if (dstmpte == NULL)
3280					goto out;
3281				dst_pte = pmap_pte_quick(dst_pmap, addr);
3282				if (*dst_pte == 0 &&
3283				    pmap_try_insert_pv_entry(dst_pmap, addr,
3284				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3285					/*
3286					 * Clear the wired, modified, and
3287					 * accessed (referenced) bits
3288					 * during the copy.
3289					 */
3290					KASSERT(ptetemp != 0, ("src_pte not set"));
3291					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3292					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3293					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3294						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3295					dst_pmap->pm_stats.resident_count++;
3296	 			} else {
3297					free = NULL;
3298					if (pmap_unwire_ptp(dst_pmap, dstmpte,
3299					    &free)) {
3300						pmap_invalidate_page(dst_pmap,
3301						    addr);
3302						pmap_free_zero_pages(free);
3303					}
3304					goto out;
3305				}
3306				if (dstmpte->wire_count >= srcmpte->wire_count)
3307					break;
3308			}
3309			addr += PAGE_SIZE;
3310			src_pte++;
3311		}
3312	}
3313out:
3314	PT_UPDATES_FLUSH();
3315	sched_unpin();
3316	vm_page_unlock_queues();
3317	PMAP_UNLOCK(src_pmap);
3318	PMAP_UNLOCK(dst_pmap);
3319
3320#ifdef HAMFISTED_LOCKING
3321	mtx_unlock(&createdelete_lock);
3322#endif
3323}
3324
3325static __inline void
3326pagezero(void *page)
3327{
3328#if defined(I686_CPU)
3329	if (cpu_class == CPUCLASS_686) {
3330#if defined(CPU_ENABLE_SSE)
3331		if (cpu_feature & CPUID_SSE2)
3332			sse2_pagezero(page);
3333		else
3334#endif
3335			i686_pagezero(page);
3336	} else
3337#endif
3338		bzero(page, PAGE_SIZE);
3339}
3340
3341/*
3342 *	pmap_zero_page zeros the specified hardware page by mapping
3343 *	the page into KVM and using bzero to clear its contents.
3344 */
3345void
3346pmap_zero_page(vm_page_t m)
3347{
3348	struct sysmaps *sysmaps;
3349
3350	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3351	mtx_lock(&sysmaps->lock);
3352	if (*sysmaps->CMAP2)
3353		panic("pmap_zero_page: CMAP2 busy");
3354	sched_pin();
3355	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3356	pagezero(sysmaps->CADDR2);
3357	PT_SET_MA(sysmaps->CADDR2, 0);
3358	sched_unpin();
3359	mtx_unlock(&sysmaps->lock);
3360}
3361
3362/*
3363 *	pmap_zero_page_area zeros the specified hardware page by mapping
3364 *	the page into KVM and using bzero to clear its contents.
3365 *
3366 *	off and size may not cover an area beyond a single hardware page.
3367 */
3368void
3369pmap_zero_page_area(vm_page_t m, int off, int size)
3370{
3371	struct sysmaps *sysmaps;
3372
3373	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3374	mtx_lock(&sysmaps->lock);
3375	if (*sysmaps->CMAP2)
3376		panic("pmap_zero_page_area: CMAP2 busy");
3377	sched_pin();
3378	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3379
3380	if (off == 0 && size == PAGE_SIZE)
3381		pagezero(sysmaps->CADDR2);
3382	else
3383		bzero((char *)sysmaps->CADDR2 + off, size);
3384	PT_SET_MA(sysmaps->CADDR2, 0);
3385	sched_unpin();
3386	mtx_unlock(&sysmaps->lock);
3387}
3388
3389/*
3390 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3391 *	the page into KVM and using bzero to clear its contents.  This
3392 *	is intended to be called from the vm_pagezero process only and
3393 *	outside of Giant.
3394 */
3395void
3396pmap_zero_page_idle(vm_page_t m)
3397{
3398
3399	if (*CMAP3)
3400		panic("pmap_zero_page_idle: CMAP3 busy");
3401	sched_pin();
3402	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3403	pagezero(CADDR3);
3404	PT_SET_MA(CADDR3, 0);
3405	sched_unpin();
3406}
3407
3408/*
3409 *	pmap_copy_page copies the specified (machine independent)
3410 *	page by mapping the page into virtual memory and using
3411 *	bcopy to copy the page, one machine dependent page at a
3412 *	time.
3413 */
3414void
3415pmap_copy_page(vm_page_t src, vm_page_t dst)
3416{
3417	struct sysmaps *sysmaps;
3418
3419	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3420	mtx_lock(&sysmaps->lock);
3421	if (*sysmaps->CMAP1)
3422		panic("pmap_copy_page: CMAP1 busy");
3423	if (*sysmaps->CMAP2)
3424		panic("pmap_copy_page: CMAP2 busy");
3425	sched_pin();
3426	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3427	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3428	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3429	PT_SET_MA(sysmaps->CADDR1, 0);
3430	PT_SET_MA(sysmaps->CADDR2, 0);
3431	sched_unpin();
3432	mtx_unlock(&sysmaps->lock);
3433}
3434
3435/*
3436 * Returns true if the pmap's pv is one of the first
3437 * 16 pvs linked to from this page.  This count may
3438 * be changed upwards or downwards in the future; it
3439 * is only necessary that true be returned for a small
3440 * subset of pmaps for proper page aging.
3441 */
3442boolean_t
3443pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3444{
3445	pv_entry_t pv;
3446	int loops = 0;
3447	boolean_t rv;
3448
3449	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3450	    ("pmap_page_exists_quick: page %p is not managed", m));
3451	rv = FALSE;
3452	vm_page_lock_queues();
3453	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3454		if (PV_PMAP(pv) == pmap) {
3455			rv = TRUE;
3456			break;
3457		}
3458		loops++;
3459		if (loops >= 16)
3460			break;
3461	}
3462	vm_page_unlock_queues();
3463	return (rv);
3464}
3465
3466/*
3467 *	pmap_page_wired_mappings:
3468 *
3469 *	Return the number of managed mappings to the given physical page
3470 *	that are wired.
3471 */
3472int
3473pmap_page_wired_mappings(vm_page_t m)
3474{
3475	pv_entry_t pv;
3476	pt_entry_t *pte;
3477	pmap_t pmap;
3478	int count;
3479
3480	count = 0;
3481	if ((m->oflags & VPO_UNMANAGED) != 0)
3482		return (count);
3483	vm_page_lock_queues();
3484	sched_pin();
3485	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3486		pmap = PV_PMAP(pv);
3487		PMAP_LOCK(pmap);
3488		pte = pmap_pte_quick(pmap, pv->pv_va);
3489		if ((*pte & PG_W) != 0)
3490			count++;
3491		PMAP_UNLOCK(pmap);
3492	}
3493	sched_unpin();
3494	vm_page_unlock_queues();
3495	return (count);
3496}
3497
3498/*
3499 * Returns TRUE if the given page is mapped.  Otherwise, returns FALSE.
3500 */
3501boolean_t
3502pmap_page_is_mapped(vm_page_t m)
3503{
3504
3505	if ((m->oflags & VPO_UNMANAGED) != 0)
3506		return (FALSE);
3507	return (!TAILQ_EMPTY(&m->md.pv_list));
3508}
3509
3510/*
3511 * Remove all pages from specified address space
3512 * this aids process exit speeds.  Also, this code
3513 * is special cased for current process only, but
3514 * can have the more generic (and slightly slower)
3515 * mode enabled.  This is much faster than pmap_remove
3516 * in the case of running down an entire address space.
3517 */
3518void
3519pmap_remove_pages(pmap_t pmap)
3520{
3521	pt_entry_t *pte, tpte;
3522	vm_page_t m, free = NULL;
3523	pv_entry_t pv;
3524	struct pv_chunk *pc, *npc;
3525	int field, idx;
3526	int32_t bit;
3527	uint32_t inuse, bitmask;
3528	int allfree;
3529
3530	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3531
3532	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3533		printf("warning: pmap_remove_pages called with non-current pmap\n");
3534		return;
3535	}
3536	vm_page_lock_queues();
3537	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3538	PMAP_LOCK(pmap);
3539	sched_pin();
3540	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3541		allfree = 1;
3542		for (field = 0; field < _NPCM; field++) {
3543			inuse = ~pc->pc_map[field] & pc_freemask[field];
3544			while (inuse != 0) {
3545				bit = bsfl(inuse);
3546				bitmask = 1UL << bit;
3547				idx = field * 32 + bit;
3548				pv = &pc->pc_pventry[idx];
3549				inuse &= ~bitmask;
3550
3551				pte = vtopte(pv->pv_va);
3552				tpte = *pte ? xpmap_mtop(*pte) : 0;
3553
3554				if (tpte == 0) {
3555					printf(
3556					    "TPTE at %p  IS ZERO @ VA %08x\n",
3557					    pte, pv->pv_va);
3558					panic("bad pte");
3559				}
3560
3561/*
3562 * We cannot remove wired pages from a process' mapping at this time
3563 */
3564				if (tpte & PG_W) {
3565					allfree = 0;
3566					continue;
3567				}
3568
3569				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3570				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3571				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3572				    m, (uintmax_t)m->phys_addr,
3573				    (uintmax_t)tpte));
3574
3575				KASSERT(m < &vm_page_array[vm_page_array_size],
3576					("pmap_remove_pages: bad tpte %#jx",
3577					(uintmax_t)tpte));
3578
3579
3580				PT_CLEAR_VA(pte, FALSE);
3581
3582				/*
3583				 * Update the vm_page_t clean/reference bits.
3584				 */
3585				if (tpte & PG_M)
3586					vm_page_dirty(m);
3587
3588				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3589				if (TAILQ_EMPTY(&m->md.pv_list))
3590					vm_page_aflag_clear(m, PGA_WRITEABLE);
3591
3592				pmap_unuse_pt(pmap, pv->pv_va, &free);
3593
3594				/* Mark free */
3595				PV_STAT(pv_entry_frees++);
3596				PV_STAT(pv_entry_spare++);
3597				pv_entry_count--;
3598				pc->pc_map[field] |= bitmask;
3599				pmap->pm_stats.resident_count--;
3600			}
3601		}
3602		PT_UPDATES_FLUSH();
3603		if (allfree) {
3604			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3605			free_pv_chunk(pc);
3606		}
3607	}
3608	PT_UPDATES_FLUSH();
3609	if (*PMAP1)
3610		PT_SET_MA(PADDR1, 0);
3611
3612	sched_unpin();
3613	pmap_invalidate_all(pmap);
3614	vm_page_unlock_queues();
3615	PMAP_UNLOCK(pmap);
3616	pmap_free_zero_pages(free);
3617}
3618
3619/*
3620 *	pmap_is_modified:
3621 *
3622 *	Return whether or not the specified physical page was modified
3623 *	in any physical maps.
3624 */
3625boolean_t
3626pmap_is_modified(vm_page_t m)
3627{
3628	pv_entry_t pv;
3629	pt_entry_t *pte;
3630	pmap_t pmap;
3631	boolean_t rv;
3632
3633	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3634	    ("pmap_is_modified: page %p is not managed", m));
3635	rv = FALSE;
3636
3637	/*
3638	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
3639	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3640	 * is clear, no PTEs can have PG_M set.
3641	 */
3642	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3643	if ((m->oflags & VPO_BUSY) == 0 &&
3644	    (m->aflags & PGA_WRITEABLE) == 0)
3645		return (rv);
3646	vm_page_lock_queues();
3647	sched_pin();
3648	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3649		pmap = PV_PMAP(pv);
3650		PMAP_LOCK(pmap);
3651		pte = pmap_pte_quick(pmap, pv->pv_va);
3652		rv = (*pte & PG_M) != 0;
3653		PMAP_UNLOCK(pmap);
3654		if (rv)
3655			break;
3656	}
3657	if (*PMAP1)
3658		PT_SET_MA(PADDR1, 0);
3659	sched_unpin();
3660	vm_page_unlock_queues();
3661	return (rv);
3662}
3663
3664/*
3665 *	pmap_is_prefaultable:
3666 *
3667 *	Return whether or not the specified virtual address is elgible
3668 *	for prefault.
3669 */
3670static boolean_t
3671pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3672{
3673	pt_entry_t *pte;
3674	boolean_t rv = FALSE;
3675
3676	return (rv);
3677
3678	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3679		pte = vtopte(addr);
3680		rv = (*pte == 0);
3681	}
3682	return (rv);
3683}
3684
3685boolean_t
3686pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3687{
3688	boolean_t rv;
3689
3690	PMAP_LOCK(pmap);
3691	rv = pmap_is_prefaultable_locked(pmap, addr);
3692	PMAP_UNLOCK(pmap);
3693	return (rv);
3694}
3695
3696boolean_t
3697pmap_is_referenced(vm_page_t m)
3698{
3699	pv_entry_t pv;
3700	pt_entry_t *pte;
3701	pmap_t pmap;
3702	boolean_t rv;
3703
3704	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3705	    ("pmap_is_referenced: page %p is not managed", m));
3706	rv = FALSE;
3707	vm_page_lock_queues();
3708	sched_pin();
3709	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3710		pmap = PV_PMAP(pv);
3711		PMAP_LOCK(pmap);
3712		pte = pmap_pte_quick(pmap, pv->pv_va);
3713		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3714		PMAP_UNLOCK(pmap);
3715		if (rv)
3716			break;
3717	}
3718	if (*PMAP1)
3719		PT_SET_MA(PADDR1, 0);
3720	sched_unpin();
3721	vm_page_unlock_queues();
3722	return (rv);
3723}
3724
3725void
3726pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3727{
3728	int i, npages = round_page(len) >> PAGE_SHIFT;
3729	for (i = 0; i < npages; i++) {
3730		pt_entry_t *pte;
3731		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3732		vm_page_lock_queues();
3733		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3734		vm_page_unlock_queues();
3735		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3736		pmap_pte_release(pte);
3737	}
3738}
3739
3740void
3741pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3742{
3743	int i, npages = round_page(len) >> PAGE_SHIFT;
3744	for (i = 0; i < npages; i++) {
3745		pt_entry_t *pte;
3746		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3747		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3748		vm_page_lock_queues();
3749		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3750		vm_page_unlock_queues();
3751		pmap_pte_release(pte);
3752	}
3753}
3754
3755/*
3756 * Clear the write and modified bits in each of the given page's mappings.
3757 */
3758void
3759pmap_remove_write(vm_page_t m)
3760{
3761	pv_entry_t pv;
3762	pmap_t pmap;
3763	pt_entry_t oldpte, *pte;
3764
3765	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3766	    ("pmap_remove_write: page %p is not managed", m));
3767
3768	/*
3769	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
3770	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
3771	 * is clear, no page table entries need updating.
3772	 */
3773	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3774	if ((m->oflags & VPO_BUSY) == 0 &&
3775	    (m->aflags & PGA_WRITEABLE) == 0)
3776		return;
3777	vm_page_lock_queues();
3778	sched_pin();
3779	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3780		pmap = PV_PMAP(pv);
3781		PMAP_LOCK(pmap);
3782		pte = pmap_pte_quick(pmap, pv->pv_va);
3783retry:
3784		oldpte = *pte;
3785		if ((oldpte & PG_RW) != 0) {
3786			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3787
3788			/*
3789			 * Regardless of whether a pte is 32 or 64 bits
3790			 * in size, PG_RW and PG_M are among the least
3791			 * significant 32 bits.
3792			 */
3793			PT_SET_VA_MA(pte, newpte, TRUE);
3794			if (*pte != newpte)
3795				goto retry;
3796
3797			if ((oldpte & PG_M) != 0)
3798				vm_page_dirty(m);
3799			pmap_invalidate_page(pmap, pv->pv_va);
3800		}
3801		PMAP_UNLOCK(pmap);
3802	}
3803	vm_page_aflag_clear(m, PGA_WRITEABLE);
3804	PT_UPDATES_FLUSH();
3805	if (*PMAP1)
3806		PT_SET_MA(PADDR1, 0);
3807	sched_unpin();
3808	vm_page_unlock_queues();
3809}
3810
3811/*
3812 *	pmap_ts_referenced:
3813 *
3814 *	Return a count of reference bits for a page, clearing those bits.
3815 *	It is not necessary for every reference bit to be cleared, but it
3816 *	is necessary that 0 only be returned when there are truly no
3817 *	reference bits set.
3818 *
3819 *	XXX: The exact number of bits to check and clear is a matter that
3820 *	should be tested and standardized at some point in the future for
3821 *	optimal aging of shared pages.
3822 */
3823int
3824pmap_ts_referenced(vm_page_t m)
3825{
3826	pv_entry_t pv, pvf, pvn;
3827	pmap_t pmap;
3828	pt_entry_t *pte;
3829	int rtval = 0;
3830
3831	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3832	    ("pmap_ts_referenced: page %p is not managed", m));
3833	vm_page_lock_queues();
3834	sched_pin();
3835	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3836		pvf = pv;
3837		do {
3838			pvn = TAILQ_NEXT(pv, pv_list);
3839			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3840			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3841			pmap = PV_PMAP(pv);
3842			PMAP_LOCK(pmap);
3843			pte = pmap_pte_quick(pmap, pv->pv_va);
3844			if ((*pte & PG_A) != 0) {
3845				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3846				pmap_invalidate_page(pmap, pv->pv_va);
3847				rtval++;
3848				if (rtval > 4)
3849					pvn = NULL;
3850			}
3851			PMAP_UNLOCK(pmap);
3852		} while ((pv = pvn) != NULL && pv != pvf);
3853	}
3854	PT_UPDATES_FLUSH();
3855	if (*PMAP1)
3856		PT_SET_MA(PADDR1, 0);
3857	sched_unpin();
3858	vm_page_unlock_queues();
3859	return (rtval);
3860}
3861
3862/*
3863 *	Clear the modify bits on the specified physical page.
3864 */
3865void
3866pmap_clear_modify(vm_page_t m)
3867{
3868	pv_entry_t pv;
3869	pmap_t pmap;
3870	pt_entry_t *pte;
3871
3872	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3873	    ("pmap_clear_modify: page %p is not managed", m));
3874	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3875	KASSERT((m->oflags & VPO_BUSY) == 0,
3876	    ("pmap_clear_modify: page %p is busy", m));
3877
3878	/*
3879	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
3880	 * If the object containing the page is locked and the page is not
3881	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
3882	 */
3883	if ((m->aflags & PGA_WRITEABLE) == 0)
3884		return;
3885	vm_page_lock_queues();
3886	sched_pin();
3887	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3888		pmap = PV_PMAP(pv);
3889		PMAP_LOCK(pmap);
3890		pte = pmap_pte_quick(pmap, pv->pv_va);
3891		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3892			/*
3893			 * Regardless of whether a pte is 32 or 64 bits
3894			 * in size, PG_M is among the least significant
3895			 * 32 bits.
3896			 */
3897			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3898			pmap_invalidate_page(pmap, pv->pv_va);
3899		}
3900		PMAP_UNLOCK(pmap);
3901	}
3902	sched_unpin();
3903	vm_page_unlock_queues();
3904}
3905
3906/*
3907 *	pmap_clear_reference:
3908 *
3909 *	Clear the reference bit on the specified physical page.
3910 */
3911void
3912pmap_clear_reference(vm_page_t m)
3913{
3914	pv_entry_t pv;
3915	pmap_t pmap;
3916	pt_entry_t *pte;
3917
3918	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3919	    ("pmap_clear_reference: page %p is not managed", m));
3920	vm_page_lock_queues();
3921	sched_pin();
3922	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3923		pmap = PV_PMAP(pv);
3924		PMAP_LOCK(pmap);
3925		pte = pmap_pte_quick(pmap, pv->pv_va);
3926		if ((*pte & PG_A) != 0) {
3927			/*
3928			 * Regardless of whether a pte is 32 or 64 bits
3929			 * in size, PG_A is among the least significant
3930			 * 32 bits.
3931			 */
3932			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3933			pmap_invalidate_page(pmap, pv->pv_va);
3934		}
3935		PMAP_UNLOCK(pmap);
3936	}
3937	sched_unpin();
3938	vm_page_unlock_queues();
3939}
3940
3941/*
3942 * Miscellaneous support routines follow
3943 */
3944
3945/*
3946 * Map a set of physical memory pages into the kernel virtual
3947 * address space. Return a pointer to where it is mapped. This
3948 * routine is intended to be used for mapping device memory,
3949 * NOT real memory.
3950 */
3951void *
3952pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3953{
3954	vm_offset_t va, offset;
3955	vm_size_t tmpsize;
3956
3957	offset = pa & PAGE_MASK;
3958	size = roundup(offset + size, PAGE_SIZE);
3959	pa = pa & PG_FRAME;
3960
3961	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3962		va = KERNBASE + pa;
3963	else
3964		va = kmem_alloc_nofault(kernel_map, size);
3965	if (!va)
3966		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3967
3968	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3969		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3970	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3971	pmap_invalidate_cache_range(va, va + size);
3972	return ((void *)(va + offset));
3973}
3974
3975void *
3976pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3977{
3978
3979	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3980}
3981
3982void *
3983pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3984{
3985
3986	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3987}
3988
3989void
3990pmap_unmapdev(vm_offset_t va, vm_size_t size)
3991{
3992	vm_offset_t base, offset, tmpva;
3993
3994	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3995		return;
3996	base = trunc_page(va);
3997	offset = va & PAGE_MASK;
3998	size = roundup(offset + size, PAGE_SIZE);
3999	critical_enter();
4000	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4001		pmap_kremove(tmpva);
4002	pmap_invalidate_range(kernel_pmap, va, tmpva);
4003	critical_exit();
4004	kmem_free(kernel_map, base, size);
4005}
4006
4007/*
4008 * Sets the memory attribute for the specified page.
4009 */
4010void
4011pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4012{
4013
4014	m->md.pat_mode = ma;
4015	if ((m->flags & PG_FICTITIOUS) != 0)
4016		return;
4017
4018	/*
4019	 * If "m" is a normal page, flush it from the cache.
4020	 * See pmap_invalidate_cache_range().
4021	 *
4022	 * First, try to find an existing mapping of the page by sf
4023	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4024	 * flushes the cache.
4025	 */
4026	if (sf_buf_invalidate_cache(m))
4027		return;
4028
4029	/*
4030	 * If page is not mapped by sf buffer, but CPU does not
4031	 * support self snoop, map the page transient and do
4032	 * invalidation. In the worst case, whole cache is flushed by
4033	 * pmap_invalidate_cache_range().
4034	 */
4035	if ((cpu_feature & CPUID_SS) == 0)
4036		pmap_flush_page(m);
4037}
4038
4039static void
4040pmap_flush_page(vm_page_t m)
4041{
4042	struct sysmaps *sysmaps;
4043	vm_offset_t sva, eva;
4044
4045	if ((cpu_feature & CPUID_CLFSH) != 0) {
4046		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4047		mtx_lock(&sysmaps->lock);
4048		if (*sysmaps->CMAP2)
4049			panic("pmap_flush_page: CMAP2 busy");
4050		sched_pin();
4051		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4052		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4053		    pmap_cache_bits(m->md.pat_mode, 0));
4054		invlcaddr(sysmaps->CADDR2);
4055		sva = (vm_offset_t)sysmaps->CADDR2;
4056		eva = sva + PAGE_SIZE;
4057
4058		/*
4059		 * Use mfence despite the ordering implied by
4060		 * mtx_{un,}lock() because clflush is not guaranteed
4061		 * to be ordered by any other instruction.
4062		 */
4063		mfence();
4064		for (; sva < eva; sva += cpu_clflush_line_size)
4065			clflush(sva);
4066		mfence();
4067		PT_SET_MA(sysmaps->CADDR2, 0);
4068		sched_unpin();
4069		mtx_unlock(&sysmaps->lock);
4070	} else
4071		pmap_invalidate_cache();
4072}
4073
4074/*
4075 * Changes the specified virtual address range's memory type to that given by
4076 * the parameter "mode".  The specified virtual address range must be
4077 * completely contained within either the kernel map.
4078 *
4079 * Returns zero if the change completed successfully, and either EINVAL or
4080 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4081 * of the virtual address range was not mapped, and ENOMEM is returned if
4082 * there was insufficient memory available to complete the change.
4083 */
4084int
4085pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4086{
4087	vm_offset_t base, offset, tmpva;
4088	pt_entry_t *pte;
4089	u_int opte, npte;
4090	pd_entry_t *pde;
4091	boolean_t changed;
4092
4093	base = trunc_page(va);
4094	offset = va & PAGE_MASK;
4095	size = roundup(offset + size, PAGE_SIZE);
4096
4097	/* Only supported on kernel virtual addresses. */
4098	if (base <= VM_MAXUSER_ADDRESS)
4099		return (EINVAL);
4100
4101	/* 4MB pages and pages that aren't mapped aren't supported. */
4102	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4103		pde = pmap_pde(kernel_pmap, tmpva);
4104		if (*pde & PG_PS)
4105			return (EINVAL);
4106		if ((*pde & PG_V) == 0)
4107			return (EINVAL);
4108		pte = vtopte(va);
4109		if ((*pte & PG_V) == 0)
4110			return (EINVAL);
4111	}
4112
4113	changed = FALSE;
4114
4115	/*
4116	 * Ok, all the pages exist and are 4k, so run through them updating
4117	 * their cache mode.
4118	 */
4119	for (tmpva = base; size > 0; ) {
4120		pte = vtopte(tmpva);
4121
4122		/*
4123		 * The cache mode bits are all in the low 32-bits of the
4124		 * PTE, so we can just spin on updating the low 32-bits.
4125		 */
4126		do {
4127			opte = *(u_int *)pte;
4128			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4129			npte |= pmap_cache_bits(mode, 0);
4130			PT_SET_VA_MA(pte, npte, TRUE);
4131		} while (npte != opte && (*pte != npte));
4132		if (npte != opte)
4133			changed = TRUE;
4134		tmpva += PAGE_SIZE;
4135		size -= PAGE_SIZE;
4136	}
4137
4138	/*
4139	 * Flush CPU caches to make sure any data isn't cached that
4140	 * shouldn't be, etc.
4141	 */
4142	if (changed) {
4143		pmap_invalidate_range(kernel_pmap, base, tmpva);
4144		pmap_invalidate_cache_range(base, tmpva);
4145	}
4146	return (0);
4147}
4148
4149/*
4150 * perform the pmap work for mincore
4151 */
4152int
4153pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4154{
4155	pt_entry_t *ptep, pte;
4156	vm_paddr_t pa;
4157	int val;
4158
4159	PMAP_LOCK(pmap);
4160retry:
4161	ptep = pmap_pte(pmap, addr);
4162	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4163	pmap_pte_release(ptep);
4164	val = 0;
4165	if ((pte & PG_V) != 0) {
4166		val |= MINCORE_INCORE;
4167		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4168			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4169		if ((pte & PG_A) != 0)
4170			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4171	}
4172	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4173	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4174	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4175		pa = pte & PG_FRAME;
4176		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4177		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4178			goto retry;
4179	} else
4180		PA_UNLOCK_COND(*locked_pa);
4181	PMAP_UNLOCK(pmap);
4182	return (val);
4183}
4184
4185void
4186pmap_activate(struct thread *td)
4187{
4188	pmap_t	pmap, oldpmap;
4189	u_int	cpuid;
4190	u_int32_t  cr3;
4191
4192	critical_enter();
4193	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4194	oldpmap = PCPU_GET(curpmap);
4195	cpuid = PCPU_GET(cpuid);
4196#if defined(SMP)
4197	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4198	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4199#else
4200	CPU_CLR(cpuid, &oldpmap->pm_active);
4201	CPU_SET(cpuid, &pmap->pm_active);
4202#endif
4203#ifdef PAE
4204	cr3 = vtophys(pmap->pm_pdpt);
4205#else
4206	cr3 = vtophys(pmap->pm_pdir);
4207#endif
4208	/*
4209	 * pmap_activate is for the current thread on the current cpu
4210	 */
4211	td->td_pcb->pcb_cr3 = cr3;
4212	PT_UPDATES_FLUSH();
4213	load_cr3(cr3);
4214	PCPU_SET(curpmap, pmap);
4215	critical_exit();
4216}
4217
4218void
4219pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4220{
4221}
4222
4223/*
4224 *	Increase the starting virtual address of the given mapping if a
4225 *	different alignment might result in more superpage mappings.
4226 */
4227void
4228pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4229    vm_offset_t *addr, vm_size_t size)
4230{
4231	vm_offset_t superpage_offset;
4232
4233	if (size < NBPDR)
4234		return;
4235	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4236		offset += ptoa(object->pg_color);
4237	superpage_offset = offset & PDRMASK;
4238	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4239	    (*addr & PDRMASK) == superpage_offset)
4240		return;
4241	if ((*addr & PDRMASK) < superpage_offset)
4242		*addr = (*addr & ~PDRMASK) + superpage_offset;
4243	else
4244		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4245}
4246
4247void
4248pmap_suspend()
4249{
4250	pmap_t pmap;
4251	int i, pdir, offset;
4252	vm_paddr_t pdirma;
4253	mmu_update_t mu[4];
4254
4255	/*
4256	 * We need to remove the recursive mapping structure from all
4257	 * our pmaps so that Xen doesn't get confused when it restores
4258	 * the page tables. The recursive map lives at page directory
4259	 * index PTDPTDI. We assume that the suspend code has stopped
4260	 * the other vcpus (if any).
4261	 */
4262	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4263		for (i = 0; i < 4; i++) {
4264			/*
4265			 * Figure out which page directory (L2) page
4266			 * contains this bit of the recursive map and
4267			 * the offset within that page of the map
4268			 * entry
4269			 */
4270			pdir = (PTDPTDI + i) / NPDEPG;
4271			offset = (PTDPTDI + i) % NPDEPG;
4272			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4273			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4274			mu[i].val = 0;
4275		}
4276		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4277	}
4278}
4279
4280void
4281pmap_resume()
4282{
4283	pmap_t pmap;
4284	int i, pdir, offset;
4285	vm_paddr_t pdirma;
4286	mmu_update_t mu[4];
4287
4288	/*
4289	 * Restore the recursive map that we removed on suspend.
4290	 */
4291	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4292		for (i = 0; i < 4; i++) {
4293			/*
4294			 * Figure out which page directory (L2) page
4295			 * contains this bit of the recursive map and
4296			 * the offset within that page of the map
4297			 * entry
4298			 */
4299			pdir = (PTDPTDI + i) / NPDEPG;
4300			offset = (PTDPTDI + i) % NPDEPG;
4301			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4302			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4303			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4304		}
4305		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4306	}
4307}
4308
4309#if defined(PMAP_DEBUG)
4310pmap_pid_dump(int pid)
4311{
4312	pmap_t pmap;
4313	struct proc *p;
4314	int npte = 0;
4315	int index;
4316
4317	sx_slock(&allproc_lock);
4318	FOREACH_PROC_IN_SYSTEM(p) {
4319		if (p->p_pid != pid)
4320			continue;
4321
4322		if (p->p_vmspace) {
4323			int i,j;
4324			index = 0;
4325			pmap = vmspace_pmap(p->p_vmspace);
4326			for (i = 0; i < NPDEPTD; i++) {
4327				pd_entry_t *pde;
4328				pt_entry_t *pte;
4329				vm_offset_t base = i << PDRSHIFT;
4330
4331				pde = &pmap->pm_pdir[i];
4332				if (pde && pmap_pde_v(pde)) {
4333					for (j = 0; j < NPTEPG; j++) {
4334						vm_offset_t va = base + (j << PAGE_SHIFT);
4335						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4336							if (index) {
4337								index = 0;
4338								printf("\n");
4339							}
4340							sx_sunlock(&allproc_lock);
4341							return (npte);
4342						}
4343						pte = pmap_pte(pmap, va);
4344						if (pte && pmap_pte_v(pte)) {
4345							pt_entry_t pa;
4346							vm_page_t m;
4347							pa = PT_GET(pte);
4348							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4349							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4350								va, pa, m->hold_count, m->wire_count, m->flags);
4351							npte++;
4352							index++;
4353							if (index >= 2) {
4354								index = 0;
4355								printf("\n");
4356							} else {
4357								printf(" ");
4358							}
4359						}
4360					}
4361				}
4362			}
4363		}
4364	}
4365	sx_sunlock(&allproc_lock);
4366	return (npte);
4367}
4368#endif
4369
4370#if defined(DEBUG)
4371
4372static void	pads(pmap_t pm);
4373void		pmap_pvdump(vm_paddr_t pa);
4374
4375/* print address space of pmap*/
4376static void
4377pads(pmap_t pm)
4378{
4379	int i, j;
4380	vm_paddr_t va;
4381	pt_entry_t *ptep;
4382
4383	if (pm == kernel_pmap)
4384		return;
4385	for (i = 0; i < NPDEPTD; i++)
4386		if (pm->pm_pdir[i])
4387			for (j = 0; j < NPTEPG; j++) {
4388				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4389				if (pm == kernel_pmap && va < KERNBASE)
4390					continue;
4391				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4392					continue;
4393				ptep = pmap_pte(pm, va);
4394				if (pmap_pte_v(ptep))
4395					printf("%x:%x ", va, *ptep);
4396			};
4397
4398}
4399
4400void
4401pmap_pvdump(vm_paddr_t pa)
4402{
4403	pv_entry_t pv;
4404	pmap_t pmap;
4405	vm_page_t m;
4406
4407	printf("pa %x", pa);
4408	m = PHYS_TO_VM_PAGE(pa);
4409	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4410		pmap = PV_PMAP(pv);
4411		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4412		pads(pmap);
4413	}
4414	printf(" ");
4415}
4416#endif
4417