pmap.c revision 236378
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 236378 2012-06-01 04:26:50Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#else
129#include <sys/cpuset.h>
130#endif
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#include <xen/interface/xen.h>
157#include <xen/hypervisor.h>
158#include <machine/xen/hypercall.h>
159#include <machine/xen/xenvar.h>
160#include <machine/xen/xenfunc.h>
161
162#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
163#define CPU_ENABLE_SSE
164#endif
165
166#ifndef PMAP_SHPGPERPROC
167#define PMAP_SHPGPERPROC 200
168#endif
169
170#define DIAGNOSTIC
171
172#if !defined(DIAGNOSTIC)
173#ifdef __GNUC_GNU_INLINE__
174#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
175#else
176#define PMAP_INLINE	extern inline
177#endif
178#else
179#define PMAP_INLINE
180#endif
181
182#ifdef PV_STATS
183#define PV_STAT(x)	do { x ; } while (0)
184#else
185#define PV_STAT(x)	do { } while (0)
186#endif
187
188/*
189 * Get PDEs and PTEs for user/kernel address space
190 */
191#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
192#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
193
194#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
195#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
196#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
197#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
198#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
199
200#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
201
202#define HAMFISTED_LOCKING
203#ifdef HAMFISTED_LOCKING
204static struct mtx createdelete_lock;
205#endif
206
207struct pmap kernel_pmap_store;
208LIST_HEAD(pmaplist, pmap);
209static struct pmaplist allpmaps;
210static struct mtx allpmaps_lock;
211
212vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
213vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
214int pgeflag = 0;		/* PG_G or-in */
215int pseflag = 0;		/* PG_PS or-in */
216
217int nkpt;
218vm_offset_t kernel_vm_end;
219extern u_int32_t KERNend;
220
221#ifdef PAE
222pt_entry_t pg_nx;
223#endif
224
225static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
226
227static int pat_works;			/* Is page attribute table sane? */
228
229/*
230 * Data for the pv entry allocation mechanism
231 */
232static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
233static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
234static int shpgperproc = PMAP_SHPGPERPROC;
235
236struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
237int pv_maxchunks;			/* How many chunks we have KVA for */
238vm_offset_t pv_vafree;			/* freelist stored in the PTE */
239
240/*
241 * All those kernel PT submaps that BSD is so fond of
242 */
243struct sysmaps {
244	struct	mtx lock;
245	pt_entry_t *CMAP1;
246	pt_entry_t *CMAP2;
247	caddr_t	CADDR1;
248	caddr_t	CADDR2;
249};
250static struct sysmaps sysmaps_pcpu[MAXCPU];
251static pt_entry_t *CMAP3;
252caddr_t ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280static void	free_pv_chunk(struct pv_chunk *pc);
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
283static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
284static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
285		    vm_offset_t va);
286
287static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
288    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
289static void pmap_flush_page(vm_page_t m);
290static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
291static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
292    vm_page_t *free);
293static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
294    vm_page_t *free);
295static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
296					vm_offset_t va);
297static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
298    vm_page_t m);
299
300static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
301
302static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
303static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
304static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
305static void pmap_pte_release(pt_entry_t *pte);
306static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
307static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
308
309static __inline void pagezero(void *page);
310
311CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
312CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
313
314/*
315 * If you get an error here, then you set KVA_PAGES wrong! See the
316 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
317 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
318 */
319CTASSERT(KERNBASE % (1 << 24) == 0);
320
321void
322pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
323{
324	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
325
326	switch (type) {
327	case SH_PD_SET_VA:
328#if 0
329		xen_queue_pt_update(shadow_pdir_ma,
330				    xpmap_ptom(val & ~(PG_RW)));
331#endif
332		xen_queue_pt_update(pdir_ma,
333				    xpmap_ptom(val));
334		break;
335	case SH_PD_SET_VA_MA:
336#if 0
337		xen_queue_pt_update(shadow_pdir_ma,
338				    val & ~(PG_RW));
339#endif
340		xen_queue_pt_update(pdir_ma, val);
341		break;
342	case SH_PD_SET_VA_CLEAR:
343#if 0
344		xen_queue_pt_update(shadow_pdir_ma, 0);
345#endif
346		xen_queue_pt_update(pdir_ma, 0);
347		break;
348	}
349}
350
351/*
352 *	Bootstrap the system enough to run with virtual memory.
353 *
354 *	On the i386 this is called after mapping has already been enabled
355 *	and just syncs the pmap module with what has already been done.
356 *	[We can't call it easily with mapping off since the kernel is not
357 *	mapped with PA == VA, hence we would have to relocate every address
358 *	from the linked base (virtual) address "KERNBASE" to the actual
359 *	(physical) address starting relative to 0]
360 */
361void
362pmap_bootstrap(vm_paddr_t firstaddr)
363{
364	vm_offset_t va;
365	pt_entry_t *pte, *unused;
366	struct sysmaps *sysmaps;
367	int i;
368
369	/*
370	 * Initialize the first available kernel virtual address.  However,
371	 * using "firstaddr" may waste a few pages of the kernel virtual
372	 * address space, because locore may not have mapped every physical
373	 * page that it allocated.  Preferably, locore would provide a first
374	 * unused virtual address in addition to "firstaddr".
375	 */
376	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
377
378	virtual_end = VM_MAX_KERNEL_ADDRESS;
379
380	/*
381	 * Initialize the kernel pmap (which is statically allocated).
382	 */
383	PMAP_LOCK_INIT(kernel_pmap);
384	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
385#ifdef PAE
386	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
387#endif
388	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
389	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
390	LIST_INIT(&allpmaps);
391	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
392	mtx_lock_spin(&allpmaps_lock);
393	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
394	mtx_unlock_spin(&allpmaps_lock);
395	if (nkpt == 0)
396		nkpt = NKPT;
397
398	/*
399	 * Reserve some special page table entries/VA space for temporary
400	 * mapping of pages.
401	 */
402#define	SYSMAP(c, p, v, n)	\
403	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
404
405	va = virtual_avail;
406	pte = vtopte(va);
407
408	/*
409	 * CMAP1/CMAP2 are used for zeroing and copying pages.
410	 * CMAP3 is used for the idle process page zeroing.
411	 */
412	for (i = 0; i < MAXCPU; i++) {
413		sysmaps = &sysmaps_pcpu[i];
414		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
415		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
416		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
417		PT_SET_MA(sysmaps->CADDR1, 0);
418		PT_SET_MA(sysmaps->CADDR2, 0);
419	}
420	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
421	PT_SET_MA(CADDR3, 0);
422
423	/*
424	 * Crashdump maps.
425	 */
426	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
427
428	/*
429	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
430	 */
431	SYSMAP(caddr_t, unused, ptvmmap, 1)
432
433	/*
434	 * msgbufp is used to map the system message buffer.
435	 */
436	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
437
438	/*
439	 * ptemap is used for pmap_pte_quick
440	 */
441	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
442	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
443
444	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
445
446	virtual_avail = va;
447
448	/*
449	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
450	 * physical memory region that is used by the ACPI wakeup code.  This
451	 * mapping must not have PG_G set.
452	 */
453#ifndef XEN
454	/*
455	 * leave here deliberately to show that this is not supported
456	 */
457#ifdef XBOX
458	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
459	 * an early stadium, we cannot yet neatly map video memory ... :-(
460	 * Better fixes are very welcome! */
461	if (!arch_i386_is_xbox)
462#endif
463	for (i = 1; i < NKPT; i++)
464		PTD[i] = 0;
465
466	/* Initialize the PAT MSR if present. */
467	pmap_init_pat();
468
469	/* Turn on PG_G on kernel page(s) */
470	pmap_set_pg();
471#endif
472
473#ifdef HAMFISTED_LOCKING
474	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
475#endif
476}
477
478/*
479 * Setup the PAT MSR.
480 */
481void
482pmap_init_pat(void)
483{
484	uint64_t pat_msr;
485
486	/* Bail if this CPU doesn't implement PAT. */
487	if (!(cpu_feature & CPUID_PAT))
488		return;
489
490	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
491	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
492		/*
493		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
494		 * Program 4 and 5 as WP and WC.
495		 * Leave 6 and 7 as UC and UC-.
496		 */
497		pat_msr = rdmsr(MSR_PAT);
498		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
499		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
500		    PAT_VALUE(5, PAT_WRITE_COMBINING);
501		pat_works = 1;
502	} else {
503		/*
504		 * Due to some Intel errata, we can only safely use the lower 4
505		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
506		 * of UC-.
507		 *
508		 *   Intel Pentium III Processor Specification Update
509		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
510		 * or Mode C Paging)
511		 *
512		 *   Intel Pentium IV  Processor Specification Update
513		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
514		 */
515		pat_msr = rdmsr(MSR_PAT);
516		pat_msr &= ~PAT_MASK(2);
517		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
518		pat_works = 0;
519	}
520	wrmsr(MSR_PAT, pat_msr);
521}
522
523/*
524 * Initialize a vm_page's machine-dependent fields.
525 */
526void
527pmap_page_init(vm_page_t m)
528{
529
530	TAILQ_INIT(&m->md.pv_list);
531	m->md.pat_mode = PAT_WRITE_BACK;
532}
533
534/*
535 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
536 * Requirements:
537 *  - Must deal with pages in order to ensure that none of the PG_* bits
538 *    are ever set, PG_V in particular.
539 *  - Assumes we can write to ptes without pte_store() atomic ops, even
540 *    on PAE systems.  This should be ok.
541 *  - Assumes nothing will ever test these addresses for 0 to indicate
542 *    no mapping instead of correctly checking PG_V.
543 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
544 * Because PG_V is never set, there can be no mappings to invalidate.
545 */
546static int ptelist_count = 0;
547static vm_offset_t
548pmap_ptelist_alloc(vm_offset_t *head)
549{
550	vm_offset_t va;
551	vm_offset_t *phead = (vm_offset_t *)*head;
552
553	if (ptelist_count == 0) {
554		printf("out of memory!!!!!!\n");
555		return (0);	/* Out of memory */
556	}
557	ptelist_count--;
558	va = phead[ptelist_count];
559	return (va);
560}
561
562static void
563pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
564{
565	vm_offset_t *phead = (vm_offset_t *)*head;
566
567	phead[ptelist_count++] = va;
568}
569
570static void
571pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
572{
573	int i, nstackpages;
574	vm_offset_t va;
575	vm_page_t m;
576
577	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
578	for (i = 0; i < nstackpages; i++) {
579		va = (vm_offset_t)base + i * PAGE_SIZE;
580		m = vm_page_alloc(NULL, i,
581		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
582		    VM_ALLOC_ZERO);
583		pmap_qenter(va, &m, 1);
584	}
585
586	*head = (vm_offset_t)base;
587	for (i = npages - 1; i >= nstackpages; i--) {
588		va = (vm_offset_t)base + i * PAGE_SIZE;
589		pmap_ptelist_free(head, va);
590	}
591}
592
593
594/*
595 *	Initialize the pmap module.
596 *	Called by vm_init, to initialize any structures that the pmap
597 *	system needs to map virtual memory.
598 */
599void
600pmap_init(void)
601{
602
603	/*
604	 * Initialize the address space (zone) for the pv entries.  Set a
605	 * high water mark so that the system can recover from excessive
606	 * numbers of pv entries.
607	 */
608	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
609	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
610	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
611	pv_entry_max = roundup(pv_entry_max, _NPCPV);
612	pv_entry_high_water = 9 * (pv_entry_max / 10);
613
614	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
615	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
616	    PAGE_SIZE * pv_maxchunks);
617	if (pv_chunkbase == NULL)
618		panic("pmap_init: not enough kvm for pv chunks");
619	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
620}
621
622
623SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
624	"Max number of PV entries");
625SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
626	"Page share factor per proc");
627
628static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
629    "2/4MB page mapping counters");
630
631static u_long pmap_pde_mappings;
632SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
633    &pmap_pde_mappings, 0, "2/4MB page mappings");
634
635/***************************************************
636 * Low level helper routines.....
637 ***************************************************/
638
639/*
640 * Determine the appropriate bits to set in a PTE or PDE for a specified
641 * caching mode.
642 */
643int
644pmap_cache_bits(int mode, boolean_t is_pde)
645{
646	int pat_flag, pat_index, cache_bits;
647
648	/* The PAT bit is different for PTE's and PDE's. */
649	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
650
651	/* If we don't support PAT, map extended modes to older ones. */
652	if (!(cpu_feature & CPUID_PAT)) {
653		switch (mode) {
654		case PAT_UNCACHEABLE:
655		case PAT_WRITE_THROUGH:
656		case PAT_WRITE_BACK:
657			break;
658		case PAT_UNCACHED:
659		case PAT_WRITE_COMBINING:
660		case PAT_WRITE_PROTECTED:
661			mode = PAT_UNCACHEABLE;
662			break;
663		}
664	}
665
666	/* Map the caching mode to a PAT index. */
667	if (pat_works) {
668		switch (mode) {
669			case PAT_UNCACHEABLE:
670				pat_index = 3;
671				break;
672			case PAT_WRITE_THROUGH:
673				pat_index = 1;
674				break;
675			case PAT_WRITE_BACK:
676				pat_index = 0;
677				break;
678			case PAT_UNCACHED:
679				pat_index = 2;
680				break;
681			case PAT_WRITE_COMBINING:
682				pat_index = 5;
683				break;
684			case PAT_WRITE_PROTECTED:
685				pat_index = 4;
686				break;
687			default:
688				panic("Unknown caching mode %d\n", mode);
689		}
690	} else {
691		switch (mode) {
692			case PAT_UNCACHED:
693			case PAT_UNCACHEABLE:
694			case PAT_WRITE_PROTECTED:
695				pat_index = 3;
696				break;
697			case PAT_WRITE_THROUGH:
698				pat_index = 1;
699				break;
700			case PAT_WRITE_BACK:
701				pat_index = 0;
702				break;
703			case PAT_WRITE_COMBINING:
704				pat_index = 2;
705				break;
706			default:
707				panic("Unknown caching mode %d\n", mode);
708		}
709	}
710
711	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
712	cache_bits = 0;
713	if (pat_index & 0x4)
714		cache_bits |= pat_flag;
715	if (pat_index & 0x2)
716		cache_bits |= PG_NC_PCD;
717	if (pat_index & 0x1)
718		cache_bits |= PG_NC_PWT;
719	return (cache_bits);
720}
721#ifdef SMP
722/*
723 * For SMP, these functions have to use the IPI mechanism for coherence.
724 *
725 * N.B.: Before calling any of the following TLB invalidation functions,
726 * the calling processor must ensure that all stores updating a non-
727 * kernel page table are globally performed.  Otherwise, another
728 * processor could cache an old, pre-update entry without being
729 * invalidated.  This can happen one of two ways: (1) The pmap becomes
730 * active on another processor after its pm_active field is checked by
731 * one of the following functions but before a store updating the page
732 * table is globally performed. (2) The pmap becomes active on another
733 * processor before its pm_active field is checked but due to
734 * speculative loads one of the following functions stills reads the
735 * pmap as inactive on the other processor.
736 *
737 * The kernel page table is exempt because its pm_active field is
738 * immutable.  The kernel page table is always active on every
739 * processor.
740 */
741void
742pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
743{
744	cpuset_t other_cpus;
745	u_int cpuid;
746
747	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
748	    pmap, va);
749
750	sched_pin();
751	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
752		invlpg(va);
753		smp_invlpg(va);
754	} else {
755		cpuid = PCPU_GET(cpuid);
756		other_cpus = all_cpus;
757		CPU_CLR(cpuid, &other_cpus);
758		if (CPU_ISSET(cpuid, &pmap->pm_active))
759			invlpg(va);
760		CPU_AND(&other_cpus, &pmap->pm_active);
761		if (!CPU_EMPTY(&other_cpus))
762			smp_masked_invlpg(other_cpus, va);
763	}
764	sched_unpin();
765	PT_UPDATES_FLUSH();
766}
767
768void
769pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
770{
771	cpuset_t other_cpus;
772	vm_offset_t addr;
773	u_int cpuid;
774
775	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
776	    pmap, sva, eva);
777
778	sched_pin();
779	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
780		for (addr = sva; addr < eva; addr += PAGE_SIZE)
781			invlpg(addr);
782		smp_invlpg_range(sva, eva);
783	} else {
784		cpuid = PCPU_GET(cpuid);
785		other_cpus = all_cpus;
786		CPU_CLR(cpuid, &other_cpus);
787		if (CPU_ISSET(cpuid, &pmap->pm_active))
788			for (addr = sva; addr < eva; addr += PAGE_SIZE)
789				invlpg(addr);
790		CPU_AND(&other_cpus, &pmap->pm_active);
791		if (!CPU_EMPTY(&other_cpus))
792			smp_masked_invlpg_range(other_cpus, sva, eva);
793	}
794	sched_unpin();
795	PT_UPDATES_FLUSH();
796}
797
798void
799pmap_invalidate_all(pmap_t pmap)
800{
801	cpuset_t other_cpus;
802	u_int cpuid;
803
804	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
805
806	sched_pin();
807	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
808		invltlb();
809		smp_invltlb();
810	} else {
811		cpuid = PCPU_GET(cpuid);
812		other_cpus = all_cpus;
813		CPU_CLR(cpuid, &other_cpus);
814		if (CPU_ISSET(cpuid, &pmap->pm_active))
815			invltlb();
816		CPU_AND(&other_cpus, &pmap->pm_active);
817		if (!CPU_EMPTY(&other_cpus))
818			smp_masked_invltlb(other_cpus);
819	}
820	sched_unpin();
821}
822
823void
824pmap_invalidate_cache(void)
825{
826
827	sched_pin();
828	wbinvd();
829	smp_cache_flush();
830	sched_unpin();
831}
832#else /* !SMP */
833/*
834 * Normal, non-SMP, 486+ invalidation functions.
835 * We inline these within pmap.c for speed.
836 */
837PMAP_INLINE void
838pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
839{
840	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
841	    pmap, va);
842
843	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
844		invlpg(va);
845	PT_UPDATES_FLUSH();
846}
847
848PMAP_INLINE void
849pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
850{
851	vm_offset_t addr;
852
853	if (eva - sva > PAGE_SIZE)
854		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
855		    pmap, sva, eva);
856
857	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
858		for (addr = sva; addr < eva; addr += PAGE_SIZE)
859			invlpg(addr);
860	PT_UPDATES_FLUSH();
861}
862
863PMAP_INLINE void
864pmap_invalidate_all(pmap_t pmap)
865{
866
867	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
868
869	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
870		invltlb();
871}
872
873PMAP_INLINE void
874pmap_invalidate_cache(void)
875{
876
877	wbinvd();
878}
879#endif /* !SMP */
880
881#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
882
883void
884pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
885{
886
887	KASSERT((sva & PAGE_MASK) == 0,
888	    ("pmap_invalidate_cache_range: sva not page-aligned"));
889	KASSERT((eva & PAGE_MASK) == 0,
890	    ("pmap_invalidate_cache_range: eva not page-aligned"));
891
892	if (cpu_feature & CPUID_SS)
893		; /* If "Self Snoop" is supported, do nothing. */
894	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
895	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
896
897		/*
898		 * Otherwise, do per-cache line flush.  Use the mfence
899		 * instruction to insure that previous stores are
900		 * included in the write-back.  The processor
901		 * propagates flush to other processors in the cache
902		 * coherence domain.
903		 */
904		mfence();
905		for (; sva < eva; sva += cpu_clflush_line_size)
906			clflush(sva);
907		mfence();
908	} else {
909
910		/*
911		 * No targeted cache flush methods are supported by CPU,
912		 * or the supplied range is bigger than 2MB.
913		 * Globally invalidate cache.
914		 */
915		pmap_invalidate_cache();
916	}
917}
918
919void
920pmap_invalidate_cache_pages(vm_page_t *pages, int count)
921{
922	int i;
923
924	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
925	    (cpu_feature & CPUID_CLFSH) == 0) {
926		pmap_invalidate_cache();
927	} else {
928		for (i = 0; i < count; i++)
929			pmap_flush_page(pages[i]);
930	}
931}
932
933/*
934 * Are we current address space or kernel?  N.B. We return FALSE when
935 * a pmap's page table is in use because a kernel thread is borrowing
936 * it.  The borrowed page table can change spontaneously, making any
937 * dependence on its continued use subject to a race condition.
938 */
939static __inline int
940pmap_is_current(pmap_t pmap)
941{
942
943	return (pmap == kernel_pmap ||
944	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
945	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
946}
947
948/*
949 * If the given pmap is not the current or kernel pmap, the returned pte must
950 * be released by passing it to pmap_pte_release().
951 */
952pt_entry_t *
953pmap_pte(pmap_t pmap, vm_offset_t va)
954{
955	pd_entry_t newpf;
956	pd_entry_t *pde;
957
958	pde = pmap_pde(pmap, va);
959	if (*pde & PG_PS)
960		return (pde);
961	if (*pde != 0) {
962		/* are we current address space or kernel? */
963		if (pmap_is_current(pmap))
964			return (vtopte(va));
965		mtx_lock(&PMAP2mutex);
966		newpf = *pde & PG_FRAME;
967		if ((*PMAP2 & PG_FRAME) != newpf) {
968			vm_page_lock_queues();
969			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
970			vm_page_unlock_queues();
971			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
972			    pmap, va, (*PMAP2 & 0xffffffff));
973		}
974		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
975	}
976	return (NULL);
977}
978
979/*
980 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
981 * being NULL.
982 */
983static __inline void
984pmap_pte_release(pt_entry_t *pte)
985{
986
987	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
988		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
989		    *PMAP2);
990		vm_page_lock_queues();
991		PT_SET_VA(PMAP2, 0, TRUE);
992		vm_page_unlock_queues();
993		mtx_unlock(&PMAP2mutex);
994	}
995}
996
997static __inline void
998invlcaddr(void *caddr)
999{
1000
1001	invlpg((u_int)caddr);
1002	PT_UPDATES_FLUSH();
1003}
1004
1005/*
1006 * Super fast pmap_pte routine best used when scanning
1007 * the pv lists.  This eliminates many coarse-grained
1008 * invltlb calls.  Note that many of the pv list
1009 * scans are across different pmaps.  It is very wasteful
1010 * to do an entire invltlb for checking a single mapping.
1011 *
1012 * If the given pmap is not the current pmap, vm_page_queue_mtx
1013 * must be held and curthread pinned to a CPU.
1014 */
1015static pt_entry_t *
1016pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1017{
1018	pd_entry_t newpf;
1019	pd_entry_t *pde;
1020
1021	pde = pmap_pde(pmap, va);
1022	if (*pde & PG_PS)
1023		return (pde);
1024	if (*pde != 0) {
1025		/* are we current address space or kernel? */
1026		if (pmap_is_current(pmap))
1027			return (vtopte(va));
1028		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1029		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1030		newpf = *pde & PG_FRAME;
1031		if ((*PMAP1 & PG_FRAME) != newpf) {
1032			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1033			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1034			    pmap, va, (u_long)*PMAP1);
1035
1036#ifdef SMP
1037			PMAP1cpu = PCPU_GET(cpuid);
1038#endif
1039			PMAP1changed++;
1040		} else
1041#ifdef SMP
1042		if (PMAP1cpu != PCPU_GET(cpuid)) {
1043			PMAP1cpu = PCPU_GET(cpuid);
1044			invlcaddr(PADDR1);
1045			PMAP1changedcpu++;
1046		} else
1047#endif
1048			PMAP1unchanged++;
1049		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1050	}
1051	return (0);
1052}
1053
1054/*
1055 *	Routine:	pmap_extract
1056 *	Function:
1057 *		Extract the physical page address associated
1058 *		with the given map/virtual_address pair.
1059 */
1060vm_paddr_t
1061pmap_extract(pmap_t pmap, vm_offset_t va)
1062{
1063	vm_paddr_t rtval;
1064	pt_entry_t *pte;
1065	pd_entry_t pde;
1066	pt_entry_t pteval;
1067
1068	rtval = 0;
1069	PMAP_LOCK(pmap);
1070	pde = pmap->pm_pdir[va >> PDRSHIFT];
1071	if (pde != 0) {
1072		if ((pde & PG_PS) != 0) {
1073			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1074			PMAP_UNLOCK(pmap);
1075			return rtval;
1076		}
1077		pte = pmap_pte(pmap, va);
1078		pteval = *pte ? xpmap_mtop(*pte) : 0;
1079		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1080		pmap_pte_release(pte);
1081	}
1082	PMAP_UNLOCK(pmap);
1083	return (rtval);
1084}
1085
1086/*
1087 *	Routine:	pmap_extract_ma
1088 *	Function:
1089 *		Like pmap_extract, but returns machine address
1090 */
1091vm_paddr_t
1092pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1093{
1094	vm_paddr_t rtval;
1095	pt_entry_t *pte;
1096	pd_entry_t pde;
1097
1098	rtval = 0;
1099	PMAP_LOCK(pmap);
1100	pde = pmap->pm_pdir[va >> PDRSHIFT];
1101	if (pde != 0) {
1102		if ((pde & PG_PS) != 0) {
1103			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1104			PMAP_UNLOCK(pmap);
1105			return rtval;
1106		}
1107		pte = pmap_pte(pmap, va);
1108		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1109		pmap_pte_release(pte);
1110	}
1111	PMAP_UNLOCK(pmap);
1112	return (rtval);
1113}
1114
1115/*
1116 *	Routine:	pmap_extract_and_hold
1117 *	Function:
1118 *		Atomically extract and hold the physical page
1119 *		with the given pmap and virtual address pair
1120 *		if that mapping permits the given protection.
1121 */
1122vm_page_t
1123pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1124{
1125	pd_entry_t pde;
1126	pt_entry_t pte, *ptep;
1127	vm_page_t m;
1128	vm_paddr_t pa;
1129
1130	pa = 0;
1131	m = NULL;
1132	PMAP_LOCK(pmap);
1133retry:
1134	pde = PT_GET(pmap_pde(pmap, va));
1135	if (pde != 0) {
1136		if (pde & PG_PS) {
1137			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1138				if (vm_page_pa_tryrelock(pmap, (pde &
1139				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1140					goto retry;
1141				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1142				    (va & PDRMASK));
1143				vm_page_hold(m);
1144			}
1145		} else {
1146			ptep = pmap_pte(pmap, va);
1147			pte = PT_GET(ptep);
1148			pmap_pte_release(ptep);
1149			if (pte != 0 &&
1150			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1151				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1152				    &pa))
1153					goto retry;
1154				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1155				vm_page_hold(m);
1156			}
1157		}
1158	}
1159	PA_UNLOCK_COND(pa);
1160	PMAP_UNLOCK(pmap);
1161	return (m);
1162}
1163
1164/***************************************************
1165 * Low level mapping routines.....
1166 ***************************************************/
1167
1168/*
1169 * Add a wired page to the kva.
1170 * Note: not SMP coherent.
1171 *
1172 * This function may be used before pmap_bootstrap() is called.
1173 */
1174void
1175pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1176{
1177
1178	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1179}
1180
1181void
1182pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1183{
1184	pt_entry_t *pte;
1185
1186	pte = vtopte(va);
1187	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1188}
1189
1190static __inline void
1191pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1192{
1193
1194	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1195}
1196
1197/*
1198 * Remove a page from the kernel pagetables.
1199 * Note: not SMP coherent.
1200 *
1201 * This function may be used before pmap_bootstrap() is called.
1202 */
1203PMAP_INLINE void
1204pmap_kremove(vm_offset_t va)
1205{
1206	pt_entry_t *pte;
1207
1208	pte = vtopte(va);
1209	PT_CLEAR_VA(pte, FALSE);
1210}
1211
1212/*
1213 *	Used to map a range of physical addresses into kernel
1214 *	virtual address space.
1215 *
1216 *	The value passed in '*virt' is a suggested virtual address for
1217 *	the mapping. Architectures which can support a direct-mapped
1218 *	physical to virtual region can return the appropriate address
1219 *	within that region, leaving '*virt' unchanged. Other
1220 *	architectures should map the pages starting at '*virt' and
1221 *	update '*virt' with the first usable address after the mapped
1222 *	region.
1223 */
1224vm_offset_t
1225pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1226{
1227	vm_offset_t va, sva;
1228
1229	va = sva = *virt;
1230	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1231	    va, start, end, prot);
1232	while (start < end) {
1233		pmap_kenter(va, start);
1234		va += PAGE_SIZE;
1235		start += PAGE_SIZE;
1236	}
1237	pmap_invalidate_range(kernel_pmap, sva, va);
1238	*virt = va;
1239	return (sva);
1240}
1241
1242
1243/*
1244 * Add a list of wired pages to the kva
1245 * this routine is only used for temporary
1246 * kernel mappings that do not need to have
1247 * page modification or references recorded.
1248 * Note that old mappings are simply written
1249 * over.  The page *must* be wired.
1250 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1251 */
1252void
1253pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1254{
1255	pt_entry_t *endpte, *pte;
1256	vm_paddr_t pa;
1257	vm_offset_t va = sva;
1258	int mclcount = 0;
1259	multicall_entry_t mcl[16];
1260	multicall_entry_t *mclp = mcl;
1261	int error;
1262
1263	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1264	pte = vtopte(sva);
1265	endpte = pte + count;
1266	while (pte < endpte) {
1267		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1268
1269		mclp->op = __HYPERVISOR_update_va_mapping;
1270		mclp->args[0] = va;
1271		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1272		mclp->args[2] = (uint32_t)(pa >> 32);
1273		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1274
1275		va += PAGE_SIZE;
1276		pte++;
1277		ma++;
1278		mclp++;
1279		mclcount++;
1280		if (mclcount == 16) {
1281			error = HYPERVISOR_multicall(mcl, mclcount);
1282			mclp = mcl;
1283			mclcount = 0;
1284			KASSERT(error == 0, ("bad multicall %d", error));
1285		}
1286	}
1287	if (mclcount) {
1288		error = HYPERVISOR_multicall(mcl, mclcount);
1289		KASSERT(error == 0, ("bad multicall %d", error));
1290	}
1291
1292#ifdef INVARIANTS
1293	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1294		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1295#endif
1296}
1297
1298/*
1299 * This routine tears out page mappings from the
1300 * kernel -- it is meant only for temporary mappings.
1301 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1302 */
1303void
1304pmap_qremove(vm_offset_t sva, int count)
1305{
1306	vm_offset_t va;
1307
1308	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1309	va = sva;
1310	vm_page_lock_queues();
1311	critical_enter();
1312	while (count-- > 0) {
1313		pmap_kremove(va);
1314		va += PAGE_SIZE;
1315	}
1316	PT_UPDATES_FLUSH();
1317	pmap_invalidate_range(kernel_pmap, sva, va);
1318	critical_exit();
1319	vm_page_unlock_queues();
1320}
1321
1322/***************************************************
1323 * Page table page management routines.....
1324 ***************************************************/
1325static __inline void
1326pmap_free_zero_pages(vm_page_t free)
1327{
1328	vm_page_t m;
1329
1330	while (free != NULL) {
1331		m = free;
1332		free = m->right;
1333		vm_page_free_zero(m);
1334	}
1335}
1336
1337/*
1338 * This routine unholds page table pages, and if the hold count
1339 * drops to zero, then it decrements the wire count.
1340 */
1341static __inline int
1342pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1343{
1344
1345	--m->wire_count;
1346	if (m->wire_count == 0)
1347		return (_pmap_unwire_pte_hold(pmap, m, free));
1348	else
1349		return (0);
1350}
1351
1352static int
1353_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1354{
1355	vm_offset_t pteva;
1356
1357	PT_UPDATES_FLUSH();
1358	/*
1359	 * unmap the page table page
1360	 */
1361	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1362	/*
1363	 * page *might* contain residual mapping :-/
1364	 */
1365	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1366	pmap_zero_page(m);
1367	--pmap->pm_stats.resident_count;
1368
1369	/*
1370	 * This is a release store so that the ordinary store unmapping
1371	 * the page table page is globally performed before TLB shoot-
1372	 * down is begun.
1373	 */
1374	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1375
1376	/*
1377	 * Do an invltlb to make the invalidated mapping
1378	 * take effect immediately.
1379	 */
1380	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1381	pmap_invalidate_page(pmap, pteva);
1382
1383	/*
1384	 * Put page on a list so that it is released after
1385	 * *ALL* TLB shootdown is done
1386	 */
1387	m->right = *free;
1388	*free = m;
1389
1390	return (1);
1391}
1392
1393/*
1394 * After removing a page table entry, this routine is used to
1395 * conditionally free the page, and manage the hold/wire counts.
1396 */
1397static int
1398pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1399{
1400	pd_entry_t ptepde;
1401	vm_page_t mpte;
1402
1403	if (va >= VM_MAXUSER_ADDRESS)
1404		return (0);
1405	ptepde = PT_GET(pmap_pde(pmap, va));
1406	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1407	return (pmap_unwire_pte_hold(pmap, mpte, free));
1408}
1409
1410/*
1411 * Initialize the pmap for the swapper process.
1412 */
1413void
1414pmap_pinit0(pmap_t pmap)
1415{
1416
1417	PMAP_LOCK_INIT(pmap);
1418	/*
1419	 * Since the page table directory is shared with the kernel pmap,
1420	 * which is already included in the list "allpmaps", this pmap does
1421	 * not need to be inserted into that list.
1422	 */
1423	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1424#ifdef PAE
1425	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1426#endif
1427	CPU_ZERO(&pmap->pm_active);
1428	PCPU_SET(curpmap, pmap);
1429	TAILQ_INIT(&pmap->pm_pvchunk);
1430	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1431}
1432
1433/*
1434 * Initialize a preallocated and zeroed pmap structure,
1435 * such as one in a vmspace structure.
1436 */
1437int
1438pmap_pinit(pmap_t pmap)
1439{
1440	vm_page_t m, ptdpg[NPGPTD + 1];
1441	int npgptd = NPGPTD + 1;
1442	int i;
1443
1444#ifdef HAMFISTED_LOCKING
1445	mtx_lock(&createdelete_lock);
1446#endif
1447
1448	PMAP_LOCK_INIT(pmap);
1449
1450	/*
1451	 * No need to allocate page table space yet but we do need a valid
1452	 * page directory table.
1453	 */
1454	if (pmap->pm_pdir == NULL) {
1455		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1456		    NBPTD);
1457		if (pmap->pm_pdir == NULL) {
1458			PMAP_LOCK_DESTROY(pmap);
1459#ifdef HAMFISTED_LOCKING
1460			mtx_unlock(&createdelete_lock);
1461#endif
1462			return (0);
1463		}
1464#ifdef PAE
1465		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1466#endif
1467	}
1468
1469	/*
1470	 * allocate the page directory page(s)
1471	 */
1472	for (i = 0; i < npgptd;) {
1473		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1474		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1475		if (m == NULL)
1476			VM_WAIT;
1477		else {
1478			ptdpg[i++] = m;
1479		}
1480	}
1481
1482	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1483
1484	for (i = 0; i < NPGPTD; i++)
1485		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1486			pagezero(pmap->pm_pdir + (i * NPDEPG));
1487
1488	mtx_lock_spin(&allpmaps_lock);
1489	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1490	/* Copy the kernel page table directory entries. */
1491	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1492	mtx_unlock_spin(&allpmaps_lock);
1493
1494#ifdef PAE
1495	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1496	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1497		bzero(pmap->pm_pdpt, PAGE_SIZE);
1498	for (i = 0; i < NPGPTD; i++) {
1499		vm_paddr_t ma;
1500
1501		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1502		pmap->pm_pdpt[i] = ma | PG_V;
1503
1504	}
1505#endif
1506	for (i = 0; i < NPGPTD; i++) {
1507		pt_entry_t *pd;
1508		vm_paddr_t ma;
1509
1510		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1511		pd = pmap->pm_pdir + (i * NPDEPG);
1512		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1513#if 0
1514		xen_pgd_pin(ma);
1515#endif
1516	}
1517
1518#ifdef PAE
1519	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1520#endif
1521	vm_page_lock_queues();
1522	xen_flush_queue();
1523	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1524	for (i = 0; i < NPGPTD; i++) {
1525		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1526		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1527	}
1528	xen_flush_queue();
1529	vm_page_unlock_queues();
1530	CPU_ZERO(&pmap->pm_active);
1531	TAILQ_INIT(&pmap->pm_pvchunk);
1532	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1533
1534#ifdef HAMFISTED_LOCKING
1535	mtx_unlock(&createdelete_lock);
1536#endif
1537	return (1);
1538}
1539
1540/*
1541 * this routine is called if the page table page is not
1542 * mapped correctly.
1543 */
1544static vm_page_t
1545_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1546{
1547	vm_paddr_t ptema;
1548	vm_page_t m;
1549
1550	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1551	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1552	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1553
1554	/*
1555	 * Allocate a page table page.
1556	 */
1557	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1558	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1559		if (flags & M_WAITOK) {
1560			PMAP_UNLOCK(pmap);
1561			vm_page_unlock_queues();
1562			VM_WAIT;
1563			vm_page_lock_queues();
1564			PMAP_LOCK(pmap);
1565		}
1566
1567		/*
1568		 * Indicate the need to retry.  While waiting, the page table
1569		 * page may have been allocated.
1570		 */
1571		return (NULL);
1572	}
1573	if ((m->flags & PG_ZERO) == 0)
1574		pmap_zero_page(m);
1575
1576	/*
1577	 * Map the pagetable page into the process address space, if
1578	 * it isn't already there.
1579	 */
1580
1581	pmap->pm_stats.resident_count++;
1582
1583	ptema = VM_PAGE_TO_MACH(m);
1584	xen_pt_pin(ptema);
1585	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1586		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1587
1588	KASSERT(pmap->pm_pdir[ptepindex],
1589	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1590	return (m);
1591}
1592
1593static vm_page_t
1594pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1595{
1596	u_int ptepindex;
1597	pd_entry_t ptema;
1598	vm_page_t m;
1599
1600	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1601	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1602	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1603
1604	/*
1605	 * Calculate pagetable page index
1606	 */
1607	ptepindex = va >> PDRSHIFT;
1608retry:
1609	/*
1610	 * Get the page directory entry
1611	 */
1612	ptema = pmap->pm_pdir[ptepindex];
1613
1614	/*
1615	 * This supports switching from a 4MB page to a
1616	 * normal 4K page.
1617	 */
1618	if (ptema & PG_PS) {
1619		/*
1620		 * XXX
1621		 */
1622		pmap->pm_pdir[ptepindex] = 0;
1623		ptema = 0;
1624		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1625		pmap_invalidate_all(kernel_pmap);
1626	}
1627
1628	/*
1629	 * If the page table page is mapped, we just increment the
1630	 * hold count, and activate it.
1631	 */
1632	if (ptema & PG_V) {
1633		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1634		m->wire_count++;
1635	} else {
1636		/*
1637		 * Here if the pte page isn't mapped, or if it has
1638		 * been deallocated.
1639		 */
1640		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1641		    pmap, va, flags);
1642		m = _pmap_allocpte(pmap, ptepindex, flags);
1643		if (m == NULL && (flags & M_WAITOK))
1644			goto retry;
1645
1646		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1647	}
1648	return (m);
1649}
1650
1651
1652/***************************************************
1653* Pmap allocation/deallocation routines.
1654 ***************************************************/
1655
1656#ifdef SMP
1657/*
1658 * Deal with a SMP shootdown of other users of the pmap that we are
1659 * trying to dispose of.  This can be a bit hairy.
1660 */
1661static cpuset_t *lazymask;
1662static u_int lazyptd;
1663static volatile u_int lazywait;
1664
1665void pmap_lazyfix_action(void);
1666
1667void
1668pmap_lazyfix_action(void)
1669{
1670
1671#ifdef COUNT_IPIS
1672	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1673#endif
1674	if (rcr3() == lazyptd)
1675		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1676	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1677	atomic_store_rel_int(&lazywait, 1);
1678}
1679
1680static void
1681pmap_lazyfix_self(u_int cpuid)
1682{
1683
1684	if (rcr3() == lazyptd)
1685		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1686	CPU_CLR_ATOMIC(cpuid, lazymask);
1687}
1688
1689
1690static void
1691pmap_lazyfix(pmap_t pmap)
1692{
1693	cpuset_t mymask, mask;
1694	u_int cpuid, spins;
1695	int lsb;
1696
1697	mask = pmap->pm_active;
1698	while (!CPU_EMPTY(&mask)) {
1699		spins = 50000000;
1700
1701		/* Find least significant set bit. */
1702		lsb = cpusetobj_ffs(&mask);
1703		MPASS(lsb != 0);
1704		lsb--;
1705		CPU_SETOF(lsb, &mask);
1706		mtx_lock_spin(&smp_ipi_mtx);
1707#ifdef PAE
1708		lazyptd = vtophys(pmap->pm_pdpt);
1709#else
1710		lazyptd = vtophys(pmap->pm_pdir);
1711#endif
1712		cpuid = PCPU_GET(cpuid);
1713
1714		/* Use a cpuset just for having an easy check. */
1715		CPU_SETOF(cpuid, &mymask);
1716		if (!CPU_CMP(&mask, &mymask)) {
1717			lazymask = &pmap->pm_active;
1718			pmap_lazyfix_self(cpuid);
1719		} else {
1720			atomic_store_rel_int((u_int *)&lazymask,
1721			    (u_int)&pmap->pm_active);
1722			atomic_store_rel_int(&lazywait, 0);
1723			ipi_selected(mask, IPI_LAZYPMAP);
1724			while (lazywait == 0) {
1725				ia32_pause();
1726				if (--spins == 0)
1727					break;
1728			}
1729		}
1730		mtx_unlock_spin(&smp_ipi_mtx);
1731		if (spins == 0)
1732			printf("pmap_lazyfix: spun for 50000000\n");
1733		mask = pmap->pm_active;
1734	}
1735}
1736
1737#else	/* SMP */
1738
1739/*
1740 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1741 * unlikely to have to even execute this code, including the fact
1742 * that the cleanup is deferred until the parent does a wait(2), which
1743 * means that another userland process has run.
1744 */
1745static void
1746pmap_lazyfix(pmap_t pmap)
1747{
1748	u_int cr3;
1749
1750	cr3 = vtophys(pmap->pm_pdir);
1751	if (cr3 == rcr3()) {
1752		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1753		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1754	}
1755}
1756#endif	/* SMP */
1757
1758/*
1759 * Release any resources held by the given physical map.
1760 * Called when a pmap initialized by pmap_pinit is being released.
1761 * Should only be called if the map contains no valid mappings.
1762 */
1763void
1764pmap_release(pmap_t pmap)
1765{
1766	vm_page_t m, ptdpg[2*NPGPTD+1];
1767	vm_paddr_t ma;
1768	int i;
1769#ifdef PAE
1770	int npgptd = NPGPTD + 1;
1771#else
1772	int npgptd = NPGPTD;
1773#endif
1774
1775	KASSERT(pmap->pm_stats.resident_count == 0,
1776	    ("pmap_release: pmap resident count %ld != 0",
1777	    pmap->pm_stats.resident_count));
1778	PT_UPDATES_FLUSH();
1779
1780#ifdef HAMFISTED_LOCKING
1781	mtx_lock(&createdelete_lock);
1782#endif
1783
1784	pmap_lazyfix(pmap);
1785	mtx_lock_spin(&allpmaps_lock);
1786	LIST_REMOVE(pmap, pm_list);
1787	mtx_unlock_spin(&allpmaps_lock);
1788
1789	for (i = 0; i < NPGPTD; i++)
1790		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1791	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1792#ifdef PAE
1793	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1794#endif
1795
1796	for (i = 0; i < npgptd; i++) {
1797		m = ptdpg[i];
1798		ma = VM_PAGE_TO_MACH(m);
1799		/* unpinning L1 and L2 treated the same */
1800#if 0
1801                xen_pgd_unpin(ma);
1802#else
1803		if (i == NPGPTD)
1804	                xen_pgd_unpin(ma);
1805#endif
1806#ifdef PAE
1807		if (i < NPGPTD)
1808			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1809			    ("pmap_release: got wrong ptd page"));
1810#endif
1811		m->wire_count--;
1812		atomic_subtract_int(&cnt.v_wire_count, 1);
1813		vm_page_free(m);
1814	}
1815#ifdef PAE
1816	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1817#endif
1818	PMAP_LOCK_DESTROY(pmap);
1819
1820#ifdef HAMFISTED_LOCKING
1821	mtx_unlock(&createdelete_lock);
1822#endif
1823}
1824
1825static int
1826kvm_size(SYSCTL_HANDLER_ARGS)
1827{
1828	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1829
1830	return (sysctl_handle_long(oidp, &ksize, 0, req));
1831}
1832SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1833    0, 0, kvm_size, "IU", "Size of KVM");
1834
1835static int
1836kvm_free(SYSCTL_HANDLER_ARGS)
1837{
1838	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1839
1840	return (sysctl_handle_long(oidp, &kfree, 0, req));
1841}
1842SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1843    0, 0, kvm_free, "IU", "Amount of KVM free");
1844
1845/*
1846 * grow the number of kernel page table entries, if needed
1847 */
1848void
1849pmap_growkernel(vm_offset_t addr)
1850{
1851	struct pmap *pmap;
1852	vm_paddr_t ptppaddr;
1853	vm_page_t nkpg;
1854	pd_entry_t newpdir;
1855
1856	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1857	if (kernel_vm_end == 0) {
1858		kernel_vm_end = KERNBASE;
1859		nkpt = 0;
1860		while (pdir_pde(PTD, kernel_vm_end)) {
1861			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1862			nkpt++;
1863			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1864				kernel_vm_end = kernel_map->max_offset;
1865				break;
1866			}
1867		}
1868	}
1869	addr = roundup2(addr, NBPDR);
1870	if (addr - 1 >= kernel_map->max_offset)
1871		addr = kernel_map->max_offset;
1872	while (kernel_vm_end < addr) {
1873		if (pdir_pde(PTD, kernel_vm_end)) {
1874			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1875			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1876				kernel_vm_end = kernel_map->max_offset;
1877				break;
1878			}
1879			continue;
1880		}
1881
1882		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1883		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1884		    VM_ALLOC_ZERO);
1885		if (nkpg == NULL)
1886			panic("pmap_growkernel: no memory to grow kernel");
1887
1888		nkpt++;
1889
1890		if ((nkpg->flags & PG_ZERO) == 0)
1891			pmap_zero_page(nkpg);
1892		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1893		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1894		vm_page_lock_queues();
1895		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1896		mtx_lock_spin(&allpmaps_lock);
1897		LIST_FOREACH(pmap, &allpmaps, pm_list)
1898			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1899
1900		mtx_unlock_spin(&allpmaps_lock);
1901		vm_page_unlock_queues();
1902
1903		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1904		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1905			kernel_vm_end = kernel_map->max_offset;
1906			break;
1907		}
1908	}
1909}
1910
1911
1912/***************************************************
1913 * page management routines.
1914 ***************************************************/
1915
1916CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1917CTASSERT(_NPCM == 11);
1918CTASSERT(_NPCPV == 336);
1919
1920static __inline struct pv_chunk *
1921pv_to_chunk(pv_entry_t pv)
1922{
1923
1924	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1925}
1926
1927#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1928
1929#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1930#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1931
1932static uint32_t pc_freemask[_NPCM] = {
1933	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1934	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1935	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1936	PC_FREE0_9, PC_FREE10
1937};
1938
1939SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1940	"Current number of pv entries");
1941
1942#ifdef PV_STATS
1943static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1944
1945SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1946	"Current number of pv entry chunks");
1947SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1948	"Current number of pv entry chunks allocated");
1949SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1950	"Current number of pv entry chunks frees");
1951SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1952	"Number of times tried to get a chunk page but failed.");
1953
1954static long pv_entry_frees, pv_entry_allocs;
1955static int pv_entry_spare;
1956
1957SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1958	"Current number of pv entry frees");
1959SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1960	"Current number of pv entry allocs");
1961SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1962	"Current number of spare pv entries");
1963#endif
1964
1965/*
1966 * We are in a serious low memory condition.  Resort to
1967 * drastic measures to free some pages so we can allocate
1968 * another pv entry chunk.
1969 */
1970static vm_page_t
1971pmap_pv_reclaim(pmap_t locked_pmap)
1972{
1973	struct pch newtail;
1974	struct pv_chunk *pc;
1975	pmap_t pmap;
1976	pt_entry_t *pte, tpte;
1977	pv_entry_t pv;
1978	vm_offset_t va;
1979	vm_page_t free, m, m_pc;
1980	uint32_t inuse, freemask;
1981	int bit, field, freed;
1982
1983	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1984	pmap = NULL;
1985	free = m_pc = NULL;
1986	TAILQ_INIT(&newtail);
1987	sched_pin();
1988	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
1989	    free == NULL)) {
1990		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1991		if (pmap != pc->pc_pmap) {
1992			if (pmap != NULL) {
1993				pmap_invalidate_all(pmap);
1994				if (pmap != locked_pmap)
1995					PMAP_UNLOCK(pmap);
1996			}
1997			pmap = pc->pc_pmap;
1998			/* Avoid deadlock and lock recursion. */
1999			if (pmap > locked_pmap)
2000				PMAP_LOCK(pmap);
2001			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2002				pmap = NULL;
2003				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2004				continue;
2005			}
2006		}
2007
2008		/*
2009		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2010		 */
2011		freed = 0;
2012		for (field = 0; field < _NPCM; field++) {
2013			freemask = 0;
2014			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2015			    inuse != 0; inuse &= ~(1UL << bit)) {
2016				bit = bsfl(inuse);
2017				pv = &pc->pc_pventry[field * 32 + bit];
2018				va = pv->pv_va;
2019				pte = pmap_pte_quick(pmap, va);
2020				if ((*pte & PG_W) != 0)
2021					continue;
2022				tpte = pte_load_clear(pte);
2023				if ((tpte & PG_G) != 0)
2024					pmap_invalidate_page(pmap, va);
2025				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2026				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2027					vm_page_dirty(m);
2028				if ((tpte & PG_A) != 0)
2029					vm_page_aflag_set(m, PGA_REFERENCED);
2030				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2031				if (TAILQ_EMPTY(&m->md.pv_list))
2032					vm_page_aflag_clear(m, PGA_WRITEABLE);
2033				pmap_unuse_pt(pmap, va, &free);
2034				freemask |= 1UL << bit;
2035				freed++;
2036			}
2037			pc->pc_map[field] |= freemask;
2038		}
2039		if (freed == 0) {
2040			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2041			continue;
2042		}
2043		pmap->pm_stats.resident_count -= freed;
2044		PV_STAT(pv_entry_frees += freed);
2045		PV_STAT(pv_entry_spare += freed);
2046		pv_entry_count -= freed;
2047		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2048		for (field = 0; field < _NPCM; field++)
2049			if (pc->pc_map[field] != pc_freemask[field]) {
2050				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2051				    pc_list);
2052				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2053
2054				/*
2055				 * One freed pv entry in locked_pmap is
2056				 * sufficient.
2057				 */
2058				if (pmap == locked_pmap)
2059					goto out;
2060				break;
2061			}
2062		if (field == _NPCM) {
2063			PV_STAT(pv_entry_spare -= _NPCPV);
2064			PV_STAT(pc_chunk_count--);
2065			PV_STAT(pc_chunk_frees++);
2066			/* Entire chunk is free; return it. */
2067			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2068			pmap_qremove((vm_offset_t)pc, 1);
2069			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2070			break;
2071		}
2072	}
2073out:
2074	sched_unpin();
2075	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2076	if (pmap != NULL) {
2077		pmap_invalidate_all(pmap);
2078		if (pmap != locked_pmap)
2079			PMAP_UNLOCK(pmap);
2080	}
2081	if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
2082		m_pc = free;
2083		free = m_pc->right;
2084		/* Recycle a freed page table page. */
2085		m_pc->wire_count = 1;
2086		atomic_add_int(&cnt.v_wire_count, 1);
2087	}
2088	pmap_free_zero_pages(free);
2089	return (m_pc);
2090}
2091
2092/*
2093 * free the pv_entry back to the free list
2094 */
2095static void
2096free_pv_entry(pmap_t pmap, pv_entry_t pv)
2097{
2098	struct pv_chunk *pc;
2099	int idx, field, bit;
2100
2101	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2102	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2103	PV_STAT(pv_entry_frees++);
2104	PV_STAT(pv_entry_spare++);
2105	pv_entry_count--;
2106	pc = pv_to_chunk(pv);
2107	idx = pv - &pc->pc_pventry[0];
2108	field = idx / 32;
2109	bit = idx % 32;
2110	pc->pc_map[field] |= 1ul << bit;
2111	/* move to head of list */
2112	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2113	for (idx = 0; idx < _NPCM; idx++)
2114		if (pc->pc_map[idx] != pc_freemask[idx]) {
2115			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2116			return;
2117		}
2118	free_pv_chunk(pc);
2119}
2120
2121static void
2122free_pv_chunk(struct pv_chunk *pc)
2123{
2124	vm_page_t m;
2125
2126 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2127	PV_STAT(pv_entry_spare -= _NPCPV);
2128	PV_STAT(pc_chunk_count--);
2129	PV_STAT(pc_chunk_frees++);
2130	/* entire chunk is free, return it */
2131	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2132	pmap_qremove((vm_offset_t)pc, 1);
2133	vm_page_unwire(m, 0);
2134	vm_page_free(m);
2135	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2136}
2137
2138/*
2139 * get a new pv_entry, allocating a block from the system
2140 * when needed.
2141 */
2142static pv_entry_t
2143get_pv_entry(pmap_t pmap, boolean_t try)
2144{
2145	static const struct timeval printinterval = { 60, 0 };
2146	static struct timeval lastprint;
2147	int bit, field;
2148	pv_entry_t pv;
2149	struct pv_chunk *pc;
2150	vm_page_t m;
2151
2152	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2153	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2154	PV_STAT(pv_entry_allocs++);
2155	pv_entry_count++;
2156	if (pv_entry_count > pv_entry_high_water)
2157		if (ratecheck(&lastprint, &printinterval))
2158			printf("Approaching the limit on PV entries, consider "
2159			    "increasing either the vm.pmap.shpgperproc or the "
2160			    "vm.pmap.pv_entry_max tunable.\n");
2161retry:
2162	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2163	if (pc != NULL) {
2164		for (field = 0; field < _NPCM; field++) {
2165			if (pc->pc_map[field]) {
2166				bit = bsfl(pc->pc_map[field]);
2167				break;
2168			}
2169		}
2170		if (field < _NPCM) {
2171			pv = &pc->pc_pventry[field * 32 + bit];
2172			pc->pc_map[field] &= ~(1ul << bit);
2173			/* If this was the last item, move it to tail */
2174			for (field = 0; field < _NPCM; field++)
2175				if (pc->pc_map[field] != 0) {
2176					PV_STAT(pv_entry_spare--);
2177					return (pv);	/* not full, return */
2178				}
2179			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2180			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2181			if (pc != TAILQ_LAST(&pv_chunks, pch)) {
2182				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2183				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2184			}
2185			PV_STAT(pv_entry_spare--);
2186			return (pv);
2187		}
2188	}
2189	/*
2190	 * Access to the ptelist "pv_vafree" is synchronized by the page
2191	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2192	 * remain non-empty until pmap_ptelist_alloc() completes.
2193	 */
2194	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2195	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2196		if (try) {
2197			pv_entry_count--;
2198			PV_STAT(pc_chunk_tryfail++);
2199			return (NULL);
2200		}
2201		m = pmap_pv_reclaim(pmap);
2202		if (m == NULL)
2203			goto retry;
2204	}
2205	PV_STAT(pc_chunk_count++);
2206	PV_STAT(pc_chunk_allocs++);
2207	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2208	pmap_qenter((vm_offset_t)pc, &m, 1);
2209	if ((m->flags & PG_ZERO) == 0)
2210		pagezero(pc);
2211	pc->pc_pmap = pmap;
2212	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2213	for (field = 1; field < _NPCM; field++)
2214		pc->pc_map[field] = pc_freemask[field];
2215	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2216	pv = &pc->pc_pventry[0];
2217	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2218	PV_STAT(pv_entry_spare += _NPCPV - 1);
2219	return (pv);
2220}
2221
2222static __inline pv_entry_t
2223pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2224{
2225	pv_entry_t pv;
2226
2227	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2228	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2229		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2230			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2231			break;
2232		}
2233	}
2234	return (pv);
2235}
2236
2237static void
2238pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2239{
2240	pv_entry_t pv;
2241
2242	pv = pmap_pvh_remove(pvh, pmap, va);
2243	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2244	free_pv_entry(pmap, pv);
2245}
2246
2247static void
2248pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2249{
2250
2251	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2252	pmap_pvh_free(&m->md, pmap, va);
2253	if (TAILQ_EMPTY(&m->md.pv_list))
2254		vm_page_aflag_clear(m, PGA_WRITEABLE);
2255}
2256
2257/*
2258 * Conditionally create a pv entry.
2259 */
2260static boolean_t
2261pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2262{
2263	pv_entry_t pv;
2264
2265	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2266	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2267	if (pv_entry_count < pv_entry_high_water &&
2268	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2269		pv->pv_va = va;
2270		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2271		return (TRUE);
2272	} else
2273		return (FALSE);
2274}
2275
2276/*
2277 * pmap_remove_pte: do the things to unmap a page in a process
2278 */
2279static int
2280pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2281{
2282	pt_entry_t oldpte;
2283	vm_page_t m;
2284
2285	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2286	    pmap, (u_long)*ptq, va);
2287
2288	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2289	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2290	oldpte = *ptq;
2291	PT_SET_VA_MA(ptq, 0, TRUE);
2292	if (oldpte & PG_W)
2293		pmap->pm_stats.wired_count -= 1;
2294	/*
2295	 * Machines that don't support invlpg, also don't support
2296	 * PG_G.
2297	 */
2298	if (oldpte & PG_G)
2299		pmap_invalidate_page(kernel_pmap, va);
2300	pmap->pm_stats.resident_count -= 1;
2301	if (oldpte & PG_MANAGED) {
2302		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2303		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2304			vm_page_dirty(m);
2305		if (oldpte & PG_A)
2306			vm_page_aflag_set(m, PGA_REFERENCED);
2307		pmap_remove_entry(pmap, m, va);
2308	}
2309	return (pmap_unuse_pt(pmap, va, free));
2310}
2311
2312/*
2313 * Remove a single page from a process address space
2314 */
2315static void
2316pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2317{
2318	pt_entry_t *pte;
2319
2320	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2321	    pmap, va);
2322
2323	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2324	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2325	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2326	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2327		return;
2328	pmap_remove_pte(pmap, pte, va, free);
2329	pmap_invalidate_page(pmap, va);
2330	if (*PMAP1)
2331		PT_SET_MA(PADDR1, 0);
2332
2333}
2334
2335/*
2336 *	Remove the given range of addresses from the specified map.
2337 *
2338 *	It is assumed that the start and end are properly
2339 *	rounded to the page size.
2340 */
2341void
2342pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2343{
2344	vm_offset_t pdnxt;
2345	pd_entry_t ptpaddr;
2346	pt_entry_t *pte;
2347	vm_page_t free = NULL;
2348	int anyvalid;
2349
2350	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2351	    pmap, sva, eva);
2352
2353	/*
2354	 * Perform an unsynchronized read.  This is, however, safe.
2355	 */
2356	if (pmap->pm_stats.resident_count == 0)
2357		return;
2358
2359	anyvalid = 0;
2360
2361	vm_page_lock_queues();
2362	sched_pin();
2363	PMAP_LOCK(pmap);
2364
2365	/*
2366	 * special handling of removing one page.  a very
2367	 * common operation and easy to short circuit some
2368	 * code.
2369	 */
2370	if ((sva + PAGE_SIZE == eva) &&
2371	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2372		pmap_remove_page(pmap, sva, &free);
2373		goto out;
2374	}
2375
2376	for (; sva < eva; sva = pdnxt) {
2377		u_int pdirindex;
2378
2379		/*
2380		 * Calculate index for next page table.
2381		 */
2382		pdnxt = (sva + NBPDR) & ~PDRMASK;
2383		if (pdnxt < sva)
2384			pdnxt = eva;
2385		if (pmap->pm_stats.resident_count == 0)
2386			break;
2387
2388		pdirindex = sva >> PDRSHIFT;
2389		ptpaddr = pmap->pm_pdir[pdirindex];
2390
2391		/*
2392		 * Weed out invalid mappings. Note: we assume that the page
2393		 * directory table is always allocated, and in kernel virtual.
2394		 */
2395		if (ptpaddr == 0)
2396			continue;
2397
2398		/*
2399		 * Check for large page.
2400		 */
2401		if ((ptpaddr & PG_PS) != 0) {
2402			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2403			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2404			anyvalid = 1;
2405			continue;
2406		}
2407
2408		/*
2409		 * Limit our scan to either the end of the va represented
2410		 * by the current page table page, or to the end of the
2411		 * range being removed.
2412		 */
2413		if (pdnxt > eva)
2414			pdnxt = eva;
2415
2416		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2417		    sva += PAGE_SIZE) {
2418			if ((*pte & PG_V) == 0)
2419				continue;
2420
2421			/*
2422			 * The TLB entry for a PG_G mapping is invalidated
2423			 * by pmap_remove_pte().
2424			 */
2425			if ((*pte & PG_G) == 0)
2426				anyvalid = 1;
2427			if (pmap_remove_pte(pmap, pte, sva, &free))
2428				break;
2429		}
2430	}
2431	PT_UPDATES_FLUSH();
2432	if (*PMAP1)
2433		PT_SET_VA_MA(PMAP1, 0, TRUE);
2434out:
2435	if (anyvalid)
2436		pmap_invalidate_all(pmap);
2437	sched_unpin();
2438	vm_page_unlock_queues();
2439	PMAP_UNLOCK(pmap);
2440	pmap_free_zero_pages(free);
2441}
2442
2443/*
2444 *	Routine:	pmap_remove_all
2445 *	Function:
2446 *		Removes this physical page from
2447 *		all physical maps in which it resides.
2448 *		Reflects back modify bits to the pager.
2449 *
2450 *	Notes:
2451 *		Original versions of this routine were very
2452 *		inefficient because they iteratively called
2453 *		pmap_remove (slow...)
2454 */
2455
2456void
2457pmap_remove_all(vm_page_t m)
2458{
2459	pv_entry_t pv;
2460	pmap_t pmap;
2461	pt_entry_t *pte, tpte;
2462	vm_page_t free;
2463
2464	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2465	    ("pmap_remove_all: page %p is not managed", m));
2466	free = NULL;
2467	vm_page_lock_queues();
2468	sched_pin();
2469	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2470		pmap = PV_PMAP(pv);
2471		PMAP_LOCK(pmap);
2472		pmap->pm_stats.resident_count--;
2473		pte = pmap_pte_quick(pmap, pv->pv_va);
2474		tpte = *pte;
2475		PT_SET_VA_MA(pte, 0, TRUE);
2476		if (tpte & PG_W)
2477			pmap->pm_stats.wired_count--;
2478		if (tpte & PG_A)
2479			vm_page_aflag_set(m, PGA_REFERENCED);
2480
2481		/*
2482		 * Update the vm_page_t clean and reference bits.
2483		 */
2484		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2485			vm_page_dirty(m);
2486		pmap_unuse_pt(pmap, pv->pv_va, &free);
2487		pmap_invalidate_page(pmap, pv->pv_va);
2488		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2489		free_pv_entry(pmap, pv);
2490		PMAP_UNLOCK(pmap);
2491	}
2492	vm_page_aflag_clear(m, PGA_WRITEABLE);
2493	PT_UPDATES_FLUSH();
2494	if (*PMAP1)
2495		PT_SET_MA(PADDR1, 0);
2496	sched_unpin();
2497	vm_page_unlock_queues();
2498	pmap_free_zero_pages(free);
2499}
2500
2501/*
2502 *	Set the physical protection on the
2503 *	specified range of this map as requested.
2504 */
2505void
2506pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2507{
2508	vm_offset_t pdnxt;
2509	pd_entry_t ptpaddr;
2510	pt_entry_t *pte;
2511	int anychanged;
2512
2513	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2514	    pmap, sva, eva, prot);
2515
2516	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2517		pmap_remove(pmap, sva, eva);
2518		return;
2519	}
2520
2521#ifdef PAE
2522	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2523	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2524		return;
2525#else
2526	if (prot & VM_PROT_WRITE)
2527		return;
2528#endif
2529
2530	anychanged = 0;
2531
2532	vm_page_lock_queues();
2533	sched_pin();
2534	PMAP_LOCK(pmap);
2535	for (; sva < eva; sva = pdnxt) {
2536		pt_entry_t obits, pbits;
2537		u_int pdirindex;
2538
2539		pdnxt = (sva + NBPDR) & ~PDRMASK;
2540		if (pdnxt < sva)
2541			pdnxt = eva;
2542
2543		pdirindex = sva >> PDRSHIFT;
2544		ptpaddr = pmap->pm_pdir[pdirindex];
2545
2546		/*
2547		 * Weed out invalid mappings. Note: we assume that the page
2548		 * directory table is always allocated, and in kernel virtual.
2549		 */
2550		if (ptpaddr == 0)
2551			continue;
2552
2553		/*
2554		 * Check for large page.
2555		 */
2556		if ((ptpaddr & PG_PS) != 0) {
2557			if ((prot & VM_PROT_WRITE) == 0)
2558				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2559#ifdef PAE
2560			if ((prot & VM_PROT_EXECUTE) == 0)
2561				pmap->pm_pdir[pdirindex] |= pg_nx;
2562#endif
2563			anychanged = 1;
2564			continue;
2565		}
2566
2567		if (pdnxt > eva)
2568			pdnxt = eva;
2569
2570		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2571		    sva += PAGE_SIZE) {
2572			vm_page_t m;
2573
2574retry:
2575			/*
2576			 * Regardless of whether a pte is 32 or 64 bits in
2577			 * size, PG_RW, PG_A, and PG_M are among the least
2578			 * significant 32 bits.
2579			 */
2580			obits = pbits = *pte;
2581			if ((pbits & PG_V) == 0)
2582				continue;
2583
2584			if ((prot & VM_PROT_WRITE) == 0) {
2585				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2586				    (PG_MANAGED | PG_M | PG_RW)) {
2587					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2588					    PG_FRAME);
2589					vm_page_dirty(m);
2590				}
2591				pbits &= ~(PG_RW | PG_M);
2592			}
2593#ifdef PAE
2594			if ((prot & VM_PROT_EXECUTE) == 0)
2595				pbits |= pg_nx;
2596#endif
2597
2598			if (pbits != obits) {
2599				obits = *pte;
2600				PT_SET_VA_MA(pte, pbits, TRUE);
2601				if (*pte != pbits)
2602					goto retry;
2603				if (obits & PG_G)
2604					pmap_invalidate_page(pmap, sva);
2605				else
2606					anychanged = 1;
2607			}
2608		}
2609	}
2610	PT_UPDATES_FLUSH();
2611	if (*PMAP1)
2612		PT_SET_VA_MA(PMAP1, 0, TRUE);
2613	if (anychanged)
2614		pmap_invalidate_all(pmap);
2615	sched_unpin();
2616	vm_page_unlock_queues();
2617	PMAP_UNLOCK(pmap);
2618}
2619
2620/*
2621 *	Insert the given physical page (p) at
2622 *	the specified virtual address (v) in the
2623 *	target physical map with the protection requested.
2624 *
2625 *	If specified, the page will be wired down, meaning
2626 *	that the related pte can not be reclaimed.
2627 *
2628 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2629 *	or lose information.  That is, this routine must actually
2630 *	insert this page into the given map NOW.
2631 */
2632void
2633pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2634    vm_prot_t prot, boolean_t wired)
2635{
2636	pd_entry_t *pde;
2637	pt_entry_t *pte;
2638	pt_entry_t newpte, origpte;
2639	pv_entry_t pv;
2640	vm_paddr_t opa, pa;
2641	vm_page_t mpte, om;
2642	boolean_t invlva;
2643
2644	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2645	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2646	va = trunc_page(va);
2647	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2648	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2649	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2650	    va));
2651	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
2652	    VM_OBJECT_LOCKED(m->object),
2653	    ("pmap_enter: page %p is not busy", m));
2654
2655	mpte = NULL;
2656
2657	vm_page_lock_queues();
2658	PMAP_LOCK(pmap);
2659	sched_pin();
2660
2661	/*
2662	 * In the case that a page table page is not
2663	 * resident, we are creating it here.
2664	 */
2665	if (va < VM_MAXUSER_ADDRESS) {
2666		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2667	}
2668
2669	pde = pmap_pde(pmap, va);
2670	if ((*pde & PG_PS) != 0)
2671		panic("pmap_enter: attempted pmap_enter on 4MB page");
2672	pte = pmap_pte_quick(pmap, va);
2673
2674	/*
2675	 * Page Directory table entry not valid, we need a new PT page
2676	 */
2677	if (pte == NULL) {
2678		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2679			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2680	}
2681
2682	pa = VM_PAGE_TO_PHYS(m);
2683	om = NULL;
2684	opa = origpte = 0;
2685
2686#if 0
2687	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2688		pte, *pte));
2689#endif
2690	origpte = *pte;
2691	if (origpte)
2692		origpte = xpmap_mtop(origpte);
2693	opa = origpte & PG_FRAME;
2694
2695	/*
2696	 * Mapping has not changed, must be protection or wiring change.
2697	 */
2698	if (origpte && (opa == pa)) {
2699		/*
2700		 * Wiring change, just update stats. We don't worry about
2701		 * wiring PT pages as they remain resident as long as there
2702		 * are valid mappings in them. Hence, if a user page is wired,
2703		 * the PT page will be also.
2704		 */
2705		if (wired && ((origpte & PG_W) == 0))
2706			pmap->pm_stats.wired_count++;
2707		else if (!wired && (origpte & PG_W))
2708			pmap->pm_stats.wired_count--;
2709
2710		/*
2711		 * Remove extra pte reference
2712		 */
2713		if (mpte)
2714			mpte->wire_count--;
2715
2716		if (origpte & PG_MANAGED) {
2717			om = m;
2718			pa |= PG_MANAGED;
2719		}
2720		goto validate;
2721	}
2722
2723	pv = NULL;
2724
2725	/*
2726	 * Mapping has changed, invalidate old range and fall through to
2727	 * handle validating new mapping.
2728	 */
2729	if (opa) {
2730		if (origpte & PG_W)
2731			pmap->pm_stats.wired_count--;
2732		if (origpte & PG_MANAGED) {
2733			om = PHYS_TO_VM_PAGE(opa);
2734			pv = pmap_pvh_remove(&om->md, pmap, va);
2735		} else if (va < VM_MAXUSER_ADDRESS)
2736			printf("va=0x%x is unmanaged :-( \n", va);
2737
2738		if (mpte != NULL) {
2739			mpte->wire_count--;
2740			KASSERT(mpte->wire_count > 0,
2741			    ("pmap_enter: missing reference to page table page,"
2742			     " va: 0x%x", va));
2743		}
2744	} else
2745		pmap->pm_stats.resident_count++;
2746
2747	/*
2748	 * Enter on the PV list if part of our managed memory.
2749	 */
2750	if ((m->oflags & VPO_UNMANAGED) == 0) {
2751		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2752		    ("pmap_enter: managed mapping within the clean submap"));
2753		if (pv == NULL)
2754			pv = get_pv_entry(pmap, FALSE);
2755		pv->pv_va = va;
2756		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2757		pa |= PG_MANAGED;
2758	} else if (pv != NULL)
2759		free_pv_entry(pmap, pv);
2760
2761	/*
2762	 * Increment counters
2763	 */
2764	if (wired)
2765		pmap->pm_stats.wired_count++;
2766
2767validate:
2768	/*
2769	 * Now validate mapping with desired protection/wiring.
2770	 */
2771	newpte = (pt_entry_t)(pa | PG_V);
2772	if ((prot & VM_PROT_WRITE) != 0) {
2773		newpte |= PG_RW;
2774		if ((newpte & PG_MANAGED) != 0)
2775			vm_page_aflag_set(m, PGA_WRITEABLE);
2776	}
2777#ifdef PAE
2778	if ((prot & VM_PROT_EXECUTE) == 0)
2779		newpte |= pg_nx;
2780#endif
2781	if (wired)
2782		newpte |= PG_W;
2783	if (va < VM_MAXUSER_ADDRESS)
2784		newpte |= PG_U;
2785	if (pmap == kernel_pmap)
2786		newpte |= pgeflag;
2787
2788	critical_enter();
2789	/*
2790	 * if the mapping or permission bits are different, we need
2791	 * to update the pte.
2792	 */
2793	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2794		if (origpte) {
2795			invlva = FALSE;
2796			origpte = *pte;
2797			PT_SET_VA(pte, newpte | PG_A, FALSE);
2798			if (origpte & PG_A) {
2799				if (origpte & PG_MANAGED)
2800					vm_page_aflag_set(om, PGA_REFERENCED);
2801				if (opa != VM_PAGE_TO_PHYS(m))
2802					invlva = TRUE;
2803#ifdef PAE
2804				if ((origpte & PG_NX) == 0 &&
2805				    (newpte & PG_NX) != 0)
2806					invlva = TRUE;
2807#endif
2808			}
2809			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2810				if ((origpte & PG_MANAGED) != 0)
2811					vm_page_dirty(om);
2812				if ((prot & VM_PROT_WRITE) == 0)
2813					invlva = TRUE;
2814			}
2815			if ((origpte & PG_MANAGED) != 0 &&
2816			    TAILQ_EMPTY(&om->md.pv_list))
2817				vm_page_aflag_clear(om, PGA_WRITEABLE);
2818			if (invlva)
2819				pmap_invalidate_page(pmap, va);
2820		} else{
2821			PT_SET_VA(pte, newpte | PG_A, FALSE);
2822		}
2823
2824	}
2825	PT_UPDATES_FLUSH();
2826	critical_exit();
2827	if (*PMAP1)
2828		PT_SET_VA_MA(PMAP1, 0, TRUE);
2829	sched_unpin();
2830	vm_page_unlock_queues();
2831	PMAP_UNLOCK(pmap);
2832}
2833
2834/*
2835 * Maps a sequence of resident pages belonging to the same object.
2836 * The sequence begins with the given page m_start.  This page is
2837 * mapped at the given virtual address start.  Each subsequent page is
2838 * mapped at a virtual address that is offset from start by the same
2839 * amount as the page is offset from m_start within the object.  The
2840 * last page in the sequence is the page with the largest offset from
2841 * m_start that can be mapped at a virtual address less than the given
2842 * virtual address end.  Not every virtual page between start and end
2843 * is mapped; only those for which a resident page exists with the
2844 * corresponding offset from m_start are mapped.
2845 */
2846void
2847pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2848    vm_page_t m_start, vm_prot_t prot)
2849{
2850	vm_page_t m, mpte;
2851	vm_pindex_t diff, psize;
2852	multicall_entry_t mcl[16];
2853	multicall_entry_t *mclp = mcl;
2854	int error, count = 0;
2855
2856	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2857	psize = atop(end - start);
2858	mpte = NULL;
2859	m = m_start;
2860	vm_page_lock_queues();
2861	PMAP_LOCK(pmap);
2862	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2863		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2864		    prot, mpte);
2865		m = TAILQ_NEXT(m, listq);
2866		if (count == 16) {
2867			error = HYPERVISOR_multicall(mcl, count);
2868			KASSERT(error == 0, ("bad multicall %d", error));
2869			mclp = mcl;
2870			count = 0;
2871		}
2872	}
2873	if (count) {
2874		error = HYPERVISOR_multicall(mcl, count);
2875		KASSERT(error == 0, ("bad multicall %d", error));
2876	}
2877	vm_page_unlock_queues();
2878	PMAP_UNLOCK(pmap);
2879}
2880
2881/*
2882 * this code makes some *MAJOR* assumptions:
2883 * 1. Current pmap & pmap exists.
2884 * 2. Not wired.
2885 * 3. Read access.
2886 * 4. No page table pages.
2887 * but is *MUCH* faster than pmap_enter...
2888 */
2889
2890void
2891pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2892{
2893	multicall_entry_t mcl, *mclp;
2894	int count = 0;
2895	mclp = &mcl;
2896
2897	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2898	    pmap, va, m, prot);
2899
2900	vm_page_lock_queues();
2901	PMAP_LOCK(pmap);
2902	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2903	if (count)
2904		HYPERVISOR_multicall(&mcl, count);
2905	vm_page_unlock_queues();
2906	PMAP_UNLOCK(pmap);
2907}
2908
2909#ifdef notyet
2910void
2911pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2912{
2913	int i, error, index = 0;
2914	multicall_entry_t mcl[16];
2915	multicall_entry_t *mclp = mcl;
2916
2917	PMAP_LOCK(pmap);
2918	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2919		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2920			continue;
2921
2922		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2923		if (index == 16) {
2924			error = HYPERVISOR_multicall(mcl, index);
2925			mclp = mcl;
2926			index = 0;
2927			KASSERT(error == 0, ("bad multicall %d", error));
2928		}
2929	}
2930	if (index) {
2931		error = HYPERVISOR_multicall(mcl, index);
2932		KASSERT(error == 0, ("bad multicall %d", error));
2933	}
2934
2935	PMAP_UNLOCK(pmap);
2936}
2937#endif
2938
2939static vm_page_t
2940pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2941    vm_prot_t prot, vm_page_t mpte)
2942{
2943	pt_entry_t *pte;
2944	vm_paddr_t pa;
2945	vm_page_t free;
2946	multicall_entry_t *mcl = *mclpp;
2947
2948	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2949	    (m->oflags & VPO_UNMANAGED) != 0,
2950	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2951	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2952	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2953
2954	/*
2955	 * In the case that a page table page is not
2956	 * resident, we are creating it here.
2957	 */
2958	if (va < VM_MAXUSER_ADDRESS) {
2959		u_int ptepindex;
2960		pd_entry_t ptema;
2961
2962		/*
2963		 * Calculate pagetable page index
2964		 */
2965		ptepindex = va >> PDRSHIFT;
2966		if (mpte && (mpte->pindex == ptepindex)) {
2967			mpte->wire_count++;
2968		} else {
2969			/*
2970			 * Get the page directory entry
2971			 */
2972			ptema = pmap->pm_pdir[ptepindex];
2973
2974			/*
2975			 * If the page table page is mapped, we just increment
2976			 * the hold count, and activate it.
2977			 */
2978			if (ptema & PG_V) {
2979				if (ptema & PG_PS)
2980					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2981				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2982				mpte->wire_count++;
2983			} else {
2984				mpte = _pmap_allocpte(pmap, ptepindex,
2985				    M_NOWAIT);
2986				if (mpte == NULL)
2987					return (mpte);
2988			}
2989		}
2990	} else {
2991		mpte = NULL;
2992	}
2993
2994	/*
2995	 * This call to vtopte makes the assumption that we are
2996	 * entering the page into the current pmap.  In order to support
2997	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2998	 * But that isn't as quick as vtopte.
2999	 */
3000	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3001	pte = vtopte(va);
3002	if (*pte & PG_V) {
3003		if (mpte != NULL) {
3004			mpte->wire_count--;
3005			mpte = NULL;
3006		}
3007		return (mpte);
3008	}
3009
3010	/*
3011	 * Enter on the PV list if part of our managed memory.
3012	 */
3013	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3014	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3015		if (mpte != NULL) {
3016			free = NULL;
3017			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3018				pmap_invalidate_page(pmap, va);
3019				pmap_free_zero_pages(free);
3020			}
3021
3022			mpte = NULL;
3023		}
3024		return (mpte);
3025	}
3026
3027	/*
3028	 * Increment counters
3029	 */
3030	pmap->pm_stats.resident_count++;
3031
3032	pa = VM_PAGE_TO_PHYS(m);
3033#ifdef PAE
3034	if ((prot & VM_PROT_EXECUTE) == 0)
3035		pa |= pg_nx;
3036#endif
3037
3038#if 0
3039	/*
3040	 * Now validate mapping with RO protection
3041	 */
3042	if ((m->oflags & VPO_UNMANAGED) != 0)
3043		pte_store(pte, pa | PG_V | PG_U);
3044	else
3045		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3046#else
3047	/*
3048	 * Now validate mapping with RO protection
3049	 */
3050	if ((m->oflags & VPO_UNMANAGED) != 0)
3051		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3052	else
3053		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3054
3055	mcl->op = __HYPERVISOR_update_va_mapping;
3056	mcl->args[0] = va;
3057	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3058	mcl->args[2] = (uint32_t)(pa >> 32);
3059	mcl->args[3] = 0;
3060	*mclpp = mcl + 1;
3061	*count = *count + 1;
3062#endif
3063	return (mpte);
3064}
3065
3066/*
3067 * Make a temporary mapping for a physical address.  This is only intended
3068 * to be used for panic dumps.
3069 */
3070void *
3071pmap_kenter_temporary(vm_paddr_t pa, int i)
3072{
3073	vm_offset_t va;
3074	vm_paddr_t ma = xpmap_ptom(pa);
3075
3076	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3077	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3078	invlpg(va);
3079	return ((void *)crashdumpmap);
3080}
3081
3082/*
3083 * This code maps large physical mmap regions into the
3084 * processor address space.  Note that some shortcuts
3085 * are taken, but the code works.
3086 */
3087void
3088pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3089    vm_pindex_t pindex, vm_size_t size)
3090{
3091	pd_entry_t *pde;
3092	vm_paddr_t pa, ptepa;
3093	vm_page_t p;
3094	int pat_mode;
3095
3096	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3097	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3098	    ("pmap_object_init_pt: non-device object"));
3099	if (pseflag &&
3100	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3101		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3102			return;
3103		p = vm_page_lookup(object, pindex);
3104		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3105		    ("pmap_object_init_pt: invalid page %p", p));
3106		pat_mode = p->md.pat_mode;
3107
3108		/*
3109		 * Abort the mapping if the first page is not physically
3110		 * aligned to a 2/4MB page boundary.
3111		 */
3112		ptepa = VM_PAGE_TO_PHYS(p);
3113		if (ptepa & (NBPDR - 1))
3114			return;
3115
3116		/*
3117		 * Skip the first page.  Abort the mapping if the rest of
3118		 * the pages are not physically contiguous or have differing
3119		 * memory attributes.
3120		 */
3121		p = TAILQ_NEXT(p, listq);
3122		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3123		    pa += PAGE_SIZE) {
3124			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3125			    ("pmap_object_init_pt: invalid page %p", p));
3126			if (pa != VM_PAGE_TO_PHYS(p) ||
3127			    pat_mode != p->md.pat_mode)
3128				return;
3129			p = TAILQ_NEXT(p, listq);
3130		}
3131
3132		/*
3133		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3134		 * "size" is a multiple of 2/4M, adding the PAT setting to
3135		 * "pa" will not affect the termination of this loop.
3136		 */
3137		PMAP_LOCK(pmap);
3138		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3139		    size; pa += NBPDR) {
3140			pde = pmap_pde(pmap, addr);
3141			if (*pde == 0) {
3142				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3143				    PG_U | PG_RW | PG_V);
3144				pmap->pm_stats.resident_count += NBPDR /
3145				    PAGE_SIZE;
3146				pmap_pde_mappings++;
3147			}
3148			/* Else continue on if the PDE is already valid. */
3149			addr += NBPDR;
3150		}
3151		PMAP_UNLOCK(pmap);
3152	}
3153}
3154
3155/*
3156 *	Routine:	pmap_change_wiring
3157 *	Function:	Change the wiring attribute for a map/virtual-address
3158 *			pair.
3159 *	In/out conditions:
3160 *			The mapping must already exist in the pmap.
3161 */
3162void
3163pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3164{
3165	pt_entry_t *pte;
3166
3167	vm_page_lock_queues();
3168	PMAP_LOCK(pmap);
3169	pte = pmap_pte(pmap, va);
3170
3171	if (wired && !pmap_pte_w(pte)) {
3172		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3173		pmap->pm_stats.wired_count++;
3174	} else if (!wired && pmap_pte_w(pte)) {
3175		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3176		pmap->pm_stats.wired_count--;
3177	}
3178
3179	/*
3180	 * Wiring is not a hardware characteristic so there is no need to
3181	 * invalidate TLB.
3182	 */
3183	pmap_pte_release(pte);
3184	PMAP_UNLOCK(pmap);
3185	vm_page_unlock_queues();
3186}
3187
3188
3189
3190/*
3191 *	Copy the range specified by src_addr/len
3192 *	from the source map to the range dst_addr/len
3193 *	in the destination map.
3194 *
3195 *	This routine is only advisory and need not do anything.
3196 */
3197
3198void
3199pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3200    vm_offset_t src_addr)
3201{
3202	vm_page_t   free;
3203	vm_offset_t addr;
3204	vm_offset_t end_addr = src_addr + len;
3205	vm_offset_t pdnxt;
3206
3207	if (dst_addr != src_addr)
3208		return;
3209
3210	if (!pmap_is_current(src_pmap)) {
3211		CTR2(KTR_PMAP,
3212		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3213		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3214
3215		return;
3216	}
3217	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3218	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3219
3220#ifdef HAMFISTED_LOCKING
3221	mtx_lock(&createdelete_lock);
3222#endif
3223
3224	vm_page_lock_queues();
3225	if (dst_pmap < src_pmap) {
3226		PMAP_LOCK(dst_pmap);
3227		PMAP_LOCK(src_pmap);
3228	} else {
3229		PMAP_LOCK(src_pmap);
3230		PMAP_LOCK(dst_pmap);
3231	}
3232	sched_pin();
3233	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3234		pt_entry_t *src_pte, *dst_pte;
3235		vm_page_t dstmpte, srcmpte;
3236		pd_entry_t srcptepaddr;
3237		u_int ptepindex;
3238
3239		KASSERT(addr < UPT_MIN_ADDRESS,
3240		    ("pmap_copy: invalid to pmap_copy page tables"));
3241
3242		pdnxt = (addr + NBPDR) & ~PDRMASK;
3243		if (pdnxt < addr)
3244			pdnxt = end_addr;
3245		ptepindex = addr >> PDRSHIFT;
3246
3247		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3248		if (srcptepaddr == 0)
3249			continue;
3250
3251		if (srcptepaddr & PG_PS) {
3252			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3253				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3254				dst_pmap->pm_stats.resident_count +=
3255				    NBPDR / PAGE_SIZE;
3256			}
3257			continue;
3258		}
3259
3260		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3261		KASSERT(srcmpte->wire_count > 0,
3262		    ("pmap_copy: source page table page is unused"));
3263
3264		if (pdnxt > end_addr)
3265			pdnxt = end_addr;
3266
3267		src_pte = vtopte(addr);
3268		while (addr < pdnxt) {
3269			pt_entry_t ptetemp;
3270			ptetemp = *src_pte;
3271			/*
3272			 * we only virtual copy managed pages
3273			 */
3274			if ((ptetemp & PG_MANAGED) != 0) {
3275				dstmpte = pmap_allocpte(dst_pmap, addr,
3276				    M_NOWAIT);
3277				if (dstmpte == NULL)
3278					goto out;
3279				dst_pte = pmap_pte_quick(dst_pmap, addr);
3280				if (*dst_pte == 0 &&
3281				    pmap_try_insert_pv_entry(dst_pmap, addr,
3282				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3283					/*
3284					 * Clear the wired, modified, and
3285					 * accessed (referenced) bits
3286					 * during the copy.
3287					 */
3288					KASSERT(ptetemp != 0, ("src_pte not set"));
3289					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3290					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3291					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3292						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3293					dst_pmap->pm_stats.resident_count++;
3294	 			} else {
3295					free = NULL;
3296					if (pmap_unwire_pte_hold(dst_pmap,
3297					    dstmpte, &free)) {
3298						pmap_invalidate_page(dst_pmap,
3299						    addr);
3300						pmap_free_zero_pages(free);
3301					}
3302					goto out;
3303				}
3304				if (dstmpte->wire_count >= srcmpte->wire_count)
3305					break;
3306			}
3307			addr += PAGE_SIZE;
3308			src_pte++;
3309		}
3310	}
3311out:
3312	PT_UPDATES_FLUSH();
3313	sched_unpin();
3314	vm_page_unlock_queues();
3315	PMAP_UNLOCK(src_pmap);
3316	PMAP_UNLOCK(dst_pmap);
3317
3318#ifdef HAMFISTED_LOCKING
3319	mtx_unlock(&createdelete_lock);
3320#endif
3321}
3322
3323static __inline void
3324pagezero(void *page)
3325{
3326#if defined(I686_CPU)
3327	if (cpu_class == CPUCLASS_686) {
3328#if defined(CPU_ENABLE_SSE)
3329		if (cpu_feature & CPUID_SSE2)
3330			sse2_pagezero(page);
3331		else
3332#endif
3333			i686_pagezero(page);
3334	} else
3335#endif
3336		bzero(page, PAGE_SIZE);
3337}
3338
3339/*
3340 *	pmap_zero_page zeros the specified hardware page by mapping
3341 *	the page into KVM and using bzero to clear its contents.
3342 */
3343void
3344pmap_zero_page(vm_page_t m)
3345{
3346	struct sysmaps *sysmaps;
3347
3348	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3349	mtx_lock(&sysmaps->lock);
3350	if (*sysmaps->CMAP2)
3351		panic("pmap_zero_page: CMAP2 busy");
3352	sched_pin();
3353	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3354	pagezero(sysmaps->CADDR2);
3355	PT_SET_MA(sysmaps->CADDR2, 0);
3356	sched_unpin();
3357	mtx_unlock(&sysmaps->lock);
3358}
3359
3360/*
3361 *	pmap_zero_page_area zeros the specified hardware page by mapping
3362 *	the page into KVM and using bzero to clear its contents.
3363 *
3364 *	off and size may not cover an area beyond a single hardware page.
3365 */
3366void
3367pmap_zero_page_area(vm_page_t m, int off, int size)
3368{
3369	struct sysmaps *sysmaps;
3370
3371	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3372	mtx_lock(&sysmaps->lock);
3373	if (*sysmaps->CMAP2)
3374		panic("pmap_zero_page_area: CMAP2 busy");
3375	sched_pin();
3376	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3377
3378	if (off == 0 && size == PAGE_SIZE)
3379		pagezero(sysmaps->CADDR2);
3380	else
3381		bzero((char *)sysmaps->CADDR2 + off, size);
3382	PT_SET_MA(sysmaps->CADDR2, 0);
3383	sched_unpin();
3384	mtx_unlock(&sysmaps->lock);
3385}
3386
3387/*
3388 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3389 *	the page into KVM and using bzero to clear its contents.  This
3390 *	is intended to be called from the vm_pagezero process only and
3391 *	outside of Giant.
3392 */
3393void
3394pmap_zero_page_idle(vm_page_t m)
3395{
3396
3397	if (*CMAP3)
3398		panic("pmap_zero_page_idle: CMAP3 busy");
3399	sched_pin();
3400	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3401	pagezero(CADDR3);
3402	PT_SET_MA(CADDR3, 0);
3403	sched_unpin();
3404}
3405
3406/*
3407 *	pmap_copy_page copies the specified (machine independent)
3408 *	page by mapping the page into virtual memory and using
3409 *	bcopy to copy the page, one machine dependent page at a
3410 *	time.
3411 */
3412void
3413pmap_copy_page(vm_page_t src, vm_page_t dst)
3414{
3415	struct sysmaps *sysmaps;
3416
3417	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3418	mtx_lock(&sysmaps->lock);
3419	if (*sysmaps->CMAP1)
3420		panic("pmap_copy_page: CMAP1 busy");
3421	if (*sysmaps->CMAP2)
3422		panic("pmap_copy_page: CMAP2 busy");
3423	sched_pin();
3424	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3425	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3426	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3427	PT_SET_MA(sysmaps->CADDR1, 0);
3428	PT_SET_MA(sysmaps->CADDR2, 0);
3429	sched_unpin();
3430	mtx_unlock(&sysmaps->lock);
3431}
3432
3433/*
3434 * Returns true if the pmap's pv is one of the first
3435 * 16 pvs linked to from this page.  This count may
3436 * be changed upwards or downwards in the future; it
3437 * is only necessary that true be returned for a small
3438 * subset of pmaps for proper page aging.
3439 */
3440boolean_t
3441pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3442{
3443	pv_entry_t pv;
3444	int loops = 0;
3445	boolean_t rv;
3446
3447	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3448	    ("pmap_page_exists_quick: page %p is not managed", m));
3449	rv = FALSE;
3450	vm_page_lock_queues();
3451	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3452		if (PV_PMAP(pv) == pmap) {
3453			rv = TRUE;
3454			break;
3455		}
3456		loops++;
3457		if (loops >= 16)
3458			break;
3459	}
3460	vm_page_unlock_queues();
3461	return (rv);
3462}
3463
3464/*
3465 *	pmap_page_wired_mappings:
3466 *
3467 *	Return the number of managed mappings to the given physical page
3468 *	that are wired.
3469 */
3470int
3471pmap_page_wired_mappings(vm_page_t m)
3472{
3473	pv_entry_t pv;
3474	pt_entry_t *pte;
3475	pmap_t pmap;
3476	int count;
3477
3478	count = 0;
3479	if ((m->oflags & VPO_UNMANAGED) != 0)
3480		return (count);
3481	vm_page_lock_queues();
3482	sched_pin();
3483	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3484		pmap = PV_PMAP(pv);
3485		PMAP_LOCK(pmap);
3486		pte = pmap_pte_quick(pmap, pv->pv_va);
3487		if ((*pte & PG_W) != 0)
3488			count++;
3489		PMAP_UNLOCK(pmap);
3490	}
3491	sched_unpin();
3492	vm_page_unlock_queues();
3493	return (count);
3494}
3495
3496/*
3497 * Returns TRUE if the given page is mapped.  Otherwise, returns FALSE.
3498 */
3499boolean_t
3500pmap_page_is_mapped(vm_page_t m)
3501{
3502
3503	if ((m->oflags & VPO_UNMANAGED) != 0)
3504		return (FALSE);
3505	return (!TAILQ_EMPTY(&m->md.pv_list));
3506}
3507
3508/*
3509 * Remove all pages from specified address space
3510 * this aids process exit speeds.  Also, this code
3511 * is special cased for current process only, but
3512 * can have the more generic (and slightly slower)
3513 * mode enabled.  This is much faster than pmap_remove
3514 * in the case of running down an entire address space.
3515 */
3516void
3517pmap_remove_pages(pmap_t pmap)
3518{
3519	pt_entry_t *pte, tpte;
3520	vm_page_t m, free = NULL;
3521	pv_entry_t pv;
3522	struct pv_chunk *pc, *npc;
3523	int field, idx;
3524	int32_t bit;
3525	uint32_t inuse, bitmask;
3526	int allfree;
3527
3528	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3529
3530	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3531		printf("warning: pmap_remove_pages called with non-current pmap\n");
3532		return;
3533	}
3534	vm_page_lock_queues();
3535	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3536	PMAP_LOCK(pmap);
3537	sched_pin();
3538	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3539		allfree = 1;
3540		for (field = 0; field < _NPCM; field++) {
3541			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3542			while (inuse != 0) {
3543				bit = bsfl(inuse);
3544				bitmask = 1UL << bit;
3545				idx = field * 32 + bit;
3546				pv = &pc->pc_pventry[idx];
3547				inuse &= ~bitmask;
3548
3549				pte = vtopte(pv->pv_va);
3550				tpte = *pte ? xpmap_mtop(*pte) : 0;
3551
3552				if (tpte == 0) {
3553					printf(
3554					    "TPTE at %p  IS ZERO @ VA %08x\n",
3555					    pte, pv->pv_va);
3556					panic("bad pte");
3557				}
3558
3559/*
3560 * We cannot remove wired pages from a process' mapping at this time
3561 */
3562				if (tpte & PG_W) {
3563					allfree = 0;
3564					continue;
3565				}
3566
3567				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3568				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3569				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3570				    m, (uintmax_t)m->phys_addr,
3571				    (uintmax_t)tpte));
3572
3573				KASSERT(m < &vm_page_array[vm_page_array_size],
3574					("pmap_remove_pages: bad tpte %#jx",
3575					(uintmax_t)tpte));
3576
3577
3578				PT_CLEAR_VA(pte, FALSE);
3579
3580				/*
3581				 * Update the vm_page_t clean/reference bits.
3582				 */
3583				if (tpte & PG_M)
3584					vm_page_dirty(m);
3585
3586				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3587				if (TAILQ_EMPTY(&m->md.pv_list))
3588					vm_page_aflag_clear(m, PGA_WRITEABLE);
3589
3590				pmap_unuse_pt(pmap, pv->pv_va, &free);
3591
3592				/* Mark free */
3593				PV_STAT(pv_entry_frees++);
3594				PV_STAT(pv_entry_spare++);
3595				pv_entry_count--;
3596				pc->pc_map[field] |= bitmask;
3597				pmap->pm_stats.resident_count--;
3598			}
3599		}
3600		PT_UPDATES_FLUSH();
3601		if (allfree) {
3602			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3603			free_pv_chunk(pc);
3604		}
3605	}
3606	PT_UPDATES_FLUSH();
3607	if (*PMAP1)
3608		PT_SET_MA(PADDR1, 0);
3609
3610	sched_unpin();
3611	pmap_invalidate_all(pmap);
3612	vm_page_unlock_queues();
3613	PMAP_UNLOCK(pmap);
3614	pmap_free_zero_pages(free);
3615}
3616
3617/*
3618 *	pmap_is_modified:
3619 *
3620 *	Return whether or not the specified physical page was modified
3621 *	in any physical maps.
3622 */
3623boolean_t
3624pmap_is_modified(vm_page_t m)
3625{
3626	pv_entry_t pv;
3627	pt_entry_t *pte;
3628	pmap_t pmap;
3629	boolean_t rv;
3630
3631	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3632	    ("pmap_is_modified: page %p is not managed", m));
3633	rv = FALSE;
3634
3635	/*
3636	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
3637	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3638	 * is clear, no PTEs can have PG_M set.
3639	 */
3640	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3641	if ((m->oflags & VPO_BUSY) == 0 &&
3642	    (m->aflags & PGA_WRITEABLE) == 0)
3643		return (rv);
3644	vm_page_lock_queues();
3645	sched_pin();
3646	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3647		pmap = PV_PMAP(pv);
3648		PMAP_LOCK(pmap);
3649		pte = pmap_pte_quick(pmap, pv->pv_va);
3650		rv = (*pte & PG_M) != 0;
3651		PMAP_UNLOCK(pmap);
3652		if (rv)
3653			break;
3654	}
3655	if (*PMAP1)
3656		PT_SET_MA(PADDR1, 0);
3657	sched_unpin();
3658	vm_page_unlock_queues();
3659	return (rv);
3660}
3661
3662/*
3663 *	pmap_is_prefaultable:
3664 *
3665 *	Return whether or not the specified virtual address is elgible
3666 *	for prefault.
3667 */
3668static boolean_t
3669pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3670{
3671	pt_entry_t *pte;
3672	boolean_t rv = FALSE;
3673
3674	return (rv);
3675
3676	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3677		pte = vtopte(addr);
3678		rv = (*pte == 0);
3679	}
3680	return (rv);
3681}
3682
3683boolean_t
3684pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3685{
3686	boolean_t rv;
3687
3688	PMAP_LOCK(pmap);
3689	rv = pmap_is_prefaultable_locked(pmap, addr);
3690	PMAP_UNLOCK(pmap);
3691	return (rv);
3692}
3693
3694boolean_t
3695pmap_is_referenced(vm_page_t m)
3696{
3697	pv_entry_t pv;
3698	pt_entry_t *pte;
3699	pmap_t pmap;
3700	boolean_t rv;
3701
3702	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3703	    ("pmap_is_referenced: page %p is not managed", m));
3704	rv = FALSE;
3705	vm_page_lock_queues();
3706	sched_pin();
3707	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3708		pmap = PV_PMAP(pv);
3709		PMAP_LOCK(pmap);
3710		pte = pmap_pte_quick(pmap, pv->pv_va);
3711		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3712		PMAP_UNLOCK(pmap);
3713		if (rv)
3714			break;
3715	}
3716	if (*PMAP1)
3717		PT_SET_MA(PADDR1, 0);
3718	sched_unpin();
3719	vm_page_unlock_queues();
3720	return (rv);
3721}
3722
3723void
3724pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3725{
3726	int i, npages = round_page(len) >> PAGE_SHIFT;
3727	for (i = 0; i < npages; i++) {
3728		pt_entry_t *pte;
3729		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3730		vm_page_lock_queues();
3731		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3732		vm_page_unlock_queues();
3733		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3734		pmap_pte_release(pte);
3735	}
3736}
3737
3738void
3739pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3740{
3741	int i, npages = round_page(len) >> PAGE_SHIFT;
3742	for (i = 0; i < npages; i++) {
3743		pt_entry_t *pte;
3744		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3745		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3746		vm_page_lock_queues();
3747		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3748		vm_page_unlock_queues();
3749		pmap_pte_release(pte);
3750	}
3751}
3752
3753/*
3754 * Clear the write and modified bits in each of the given page's mappings.
3755 */
3756void
3757pmap_remove_write(vm_page_t m)
3758{
3759	pv_entry_t pv;
3760	pmap_t pmap;
3761	pt_entry_t oldpte, *pte;
3762
3763	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3764	    ("pmap_remove_write: page %p is not managed", m));
3765
3766	/*
3767	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
3768	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
3769	 * is clear, no page table entries need updating.
3770	 */
3771	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3772	if ((m->oflags & VPO_BUSY) == 0 &&
3773	    (m->aflags & PGA_WRITEABLE) == 0)
3774		return;
3775	vm_page_lock_queues();
3776	sched_pin();
3777	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3778		pmap = PV_PMAP(pv);
3779		PMAP_LOCK(pmap);
3780		pte = pmap_pte_quick(pmap, pv->pv_va);
3781retry:
3782		oldpte = *pte;
3783		if ((oldpte & PG_RW) != 0) {
3784			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3785
3786			/*
3787			 * Regardless of whether a pte is 32 or 64 bits
3788			 * in size, PG_RW and PG_M are among the least
3789			 * significant 32 bits.
3790			 */
3791			PT_SET_VA_MA(pte, newpte, TRUE);
3792			if (*pte != newpte)
3793				goto retry;
3794
3795			if ((oldpte & PG_M) != 0)
3796				vm_page_dirty(m);
3797			pmap_invalidate_page(pmap, pv->pv_va);
3798		}
3799		PMAP_UNLOCK(pmap);
3800	}
3801	vm_page_aflag_clear(m, PGA_WRITEABLE);
3802	PT_UPDATES_FLUSH();
3803	if (*PMAP1)
3804		PT_SET_MA(PADDR1, 0);
3805	sched_unpin();
3806	vm_page_unlock_queues();
3807}
3808
3809/*
3810 *	pmap_ts_referenced:
3811 *
3812 *	Return a count of reference bits for a page, clearing those bits.
3813 *	It is not necessary for every reference bit to be cleared, but it
3814 *	is necessary that 0 only be returned when there are truly no
3815 *	reference bits set.
3816 *
3817 *	XXX: The exact number of bits to check and clear is a matter that
3818 *	should be tested and standardized at some point in the future for
3819 *	optimal aging of shared pages.
3820 */
3821int
3822pmap_ts_referenced(vm_page_t m)
3823{
3824	pv_entry_t pv, pvf, pvn;
3825	pmap_t pmap;
3826	pt_entry_t *pte;
3827	int rtval = 0;
3828
3829	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3830	    ("pmap_ts_referenced: page %p is not managed", m));
3831	vm_page_lock_queues();
3832	sched_pin();
3833	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3834		pvf = pv;
3835		do {
3836			pvn = TAILQ_NEXT(pv, pv_list);
3837			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3838			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3839			pmap = PV_PMAP(pv);
3840			PMAP_LOCK(pmap);
3841			pte = pmap_pte_quick(pmap, pv->pv_va);
3842			if ((*pte & PG_A) != 0) {
3843				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3844				pmap_invalidate_page(pmap, pv->pv_va);
3845				rtval++;
3846				if (rtval > 4)
3847					pvn = NULL;
3848			}
3849			PMAP_UNLOCK(pmap);
3850		} while ((pv = pvn) != NULL && pv != pvf);
3851	}
3852	PT_UPDATES_FLUSH();
3853	if (*PMAP1)
3854		PT_SET_MA(PADDR1, 0);
3855	sched_unpin();
3856	vm_page_unlock_queues();
3857	return (rtval);
3858}
3859
3860/*
3861 *	Clear the modify bits on the specified physical page.
3862 */
3863void
3864pmap_clear_modify(vm_page_t m)
3865{
3866	pv_entry_t pv;
3867	pmap_t pmap;
3868	pt_entry_t *pte;
3869
3870	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3871	    ("pmap_clear_modify: page %p is not managed", m));
3872	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3873	KASSERT((m->oflags & VPO_BUSY) == 0,
3874	    ("pmap_clear_modify: page %p is busy", m));
3875
3876	/*
3877	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
3878	 * If the object containing the page is locked and the page is not
3879	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
3880	 */
3881	if ((m->aflags & PGA_WRITEABLE) == 0)
3882		return;
3883	vm_page_lock_queues();
3884	sched_pin();
3885	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3886		pmap = PV_PMAP(pv);
3887		PMAP_LOCK(pmap);
3888		pte = pmap_pte_quick(pmap, pv->pv_va);
3889		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3890			/*
3891			 * Regardless of whether a pte is 32 or 64 bits
3892			 * in size, PG_M is among the least significant
3893			 * 32 bits.
3894			 */
3895			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3896			pmap_invalidate_page(pmap, pv->pv_va);
3897		}
3898		PMAP_UNLOCK(pmap);
3899	}
3900	sched_unpin();
3901	vm_page_unlock_queues();
3902}
3903
3904/*
3905 *	pmap_clear_reference:
3906 *
3907 *	Clear the reference bit on the specified physical page.
3908 */
3909void
3910pmap_clear_reference(vm_page_t m)
3911{
3912	pv_entry_t pv;
3913	pmap_t pmap;
3914	pt_entry_t *pte;
3915
3916	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3917	    ("pmap_clear_reference: page %p is not managed", m));
3918	vm_page_lock_queues();
3919	sched_pin();
3920	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3921		pmap = PV_PMAP(pv);
3922		PMAP_LOCK(pmap);
3923		pte = pmap_pte_quick(pmap, pv->pv_va);
3924		if ((*pte & PG_A) != 0) {
3925			/*
3926			 * Regardless of whether a pte is 32 or 64 bits
3927			 * in size, PG_A is among the least significant
3928			 * 32 bits.
3929			 */
3930			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3931			pmap_invalidate_page(pmap, pv->pv_va);
3932		}
3933		PMAP_UNLOCK(pmap);
3934	}
3935	sched_unpin();
3936	vm_page_unlock_queues();
3937}
3938
3939/*
3940 * Miscellaneous support routines follow
3941 */
3942
3943/*
3944 * Map a set of physical memory pages into the kernel virtual
3945 * address space. Return a pointer to where it is mapped. This
3946 * routine is intended to be used for mapping device memory,
3947 * NOT real memory.
3948 */
3949void *
3950pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3951{
3952	vm_offset_t va, offset;
3953	vm_size_t tmpsize;
3954
3955	offset = pa & PAGE_MASK;
3956	size = roundup(offset + size, PAGE_SIZE);
3957	pa = pa & PG_FRAME;
3958
3959	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3960		va = KERNBASE + pa;
3961	else
3962		va = kmem_alloc_nofault(kernel_map, size);
3963	if (!va)
3964		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3965
3966	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3967		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3968	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3969	pmap_invalidate_cache_range(va, va + size);
3970	return ((void *)(va + offset));
3971}
3972
3973void *
3974pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3975{
3976
3977	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3978}
3979
3980void *
3981pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3982{
3983
3984	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3985}
3986
3987void
3988pmap_unmapdev(vm_offset_t va, vm_size_t size)
3989{
3990	vm_offset_t base, offset, tmpva;
3991
3992	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3993		return;
3994	base = trunc_page(va);
3995	offset = va & PAGE_MASK;
3996	size = roundup(offset + size, PAGE_SIZE);
3997	critical_enter();
3998	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3999		pmap_kremove(tmpva);
4000	pmap_invalidate_range(kernel_pmap, va, tmpva);
4001	critical_exit();
4002	kmem_free(kernel_map, base, size);
4003}
4004
4005/*
4006 * Sets the memory attribute for the specified page.
4007 */
4008void
4009pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4010{
4011
4012	m->md.pat_mode = ma;
4013	if ((m->flags & PG_FICTITIOUS) != 0)
4014		return;
4015
4016	/*
4017	 * If "m" is a normal page, flush it from the cache.
4018	 * See pmap_invalidate_cache_range().
4019	 *
4020	 * First, try to find an existing mapping of the page by sf
4021	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4022	 * flushes the cache.
4023	 */
4024	if (sf_buf_invalidate_cache(m))
4025		return;
4026
4027	/*
4028	 * If page is not mapped by sf buffer, but CPU does not
4029	 * support self snoop, map the page transient and do
4030	 * invalidation. In the worst case, whole cache is flushed by
4031	 * pmap_invalidate_cache_range().
4032	 */
4033	if ((cpu_feature & CPUID_SS) == 0)
4034		pmap_flush_page(m);
4035}
4036
4037static void
4038pmap_flush_page(vm_page_t m)
4039{
4040	struct sysmaps *sysmaps;
4041	vm_offset_t sva, eva;
4042
4043	if ((cpu_feature & CPUID_CLFSH) != 0) {
4044		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4045		mtx_lock(&sysmaps->lock);
4046		if (*sysmaps->CMAP2)
4047			panic("pmap_flush_page: CMAP2 busy");
4048		sched_pin();
4049		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4050		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4051		    pmap_cache_bits(m->md.pat_mode, 0));
4052		invlcaddr(sysmaps->CADDR2);
4053		sva = (vm_offset_t)sysmaps->CADDR2;
4054		eva = sva + PAGE_SIZE;
4055
4056		/*
4057		 * Use mfence despite the ordering implied by
4058		 * mtx_{un,}lock() because clflush is not guaranteed
4059		 * to be ordered by any other instruction.
4060		 */
4061		mfence();
4062		for (; sva < eva; sva += cpu_clflush_line_size)
4063			clflush(sva);
4064		mfence();
4065		PT_SET_MA(sysmaps->CADDR2, 0);
4066		sched_unpin();
4067		mtx_unlock(&sysmaps->lock);
4068	} else
4069		pmap_invalidate_cache();
4070}
4071
4072/*
4073 * Changes the specified virtual address range's memory type to that given by
4074 * the parameter "mode".  The specified virtual address range must be
4075 * completely contained within either the kernel map.
4076 *
4077 * Returns zero if the change completed successfully, and either EINVAL or
4078 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4079 * of the virtual address range was not mapped, and ENOMEM is returned if
4080 * there was insufficient memory available to complete the change.
4081 */
4082int
4083pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4084{
4085	vm_offset_t base, offset, tmpva;
4086	pt_entry_t *pte;
4087	u_int opte, npte;
4088	pd_entry_t *pde;
4089	boolean_t changed;
4090
4091	base = trunc_page(va);
4092	offset = va & PAGE_MASK;
4093	size = roundup(offset + size, PAGE_SIZE);
4094
4095	/* Only supported on kernel virtual addresses. */
4096	if (base <= VM_MAXUSER_ADDRESS)
4097		return (EINVAL);
4098
4099	/* 4MB pages and pages that aren't mapped aren't supported. */
4100	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4101		pde = pmap_pde(kernel_pmap, tmpva);
4102		if (*pde & PG_PS)
4103			return (EINVAL);
4104		if ((*pde & PG_V) == 0)
4105			return (EINVAL);
4106		pte = vtopte(va);
4107		if ((*pte & PG_V) == 0)
4108			return (EINVAL);
4109	}
4110
4111	changed = FALSE;
4112
4113	/*
4114	 * Ok, all the pages exist and are 4k, so run through them updating
4115	 * their cache mode.
4116	 */
4117	for (tmpva = base; size > 0; ) {
4118		pte = vtopte(tmpva);
4119
4120		/*
4121		 * The cache mode bits are all in the low 32-bits of the
4122		 * PTE, so we can just spin on updating the low 32-bits.
4123		 */
4124		do {
4125			opte = *(u_int *)pte;
4126			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4127			npte |= pmap_cache_bits(mode, 0);
4128			PT_SET_VA_MA(pte, npte, TRUE);
4129		} while (npte != opte && (*pte != npte));
4130		if (npte != opte)
4131			changed = TRUE;
4132		tmpva += PAGE_SIZE;
4133		size -= PAGE_SIZE;
4134	}
4135
4136	/*
4137	 * Flush CPU caches to make sure any data isn't cached that
4138	 * shouldn't be, etc.
4139	 */
4140	if (changed) {
4141		pmap_invalidate_range(kernel_pmap, base, tmpva);
4142		pmap_invalidate_cache_range(base, tmpva);
4143	}
4144	return (0);
4145}
4146
4147/*
4148 * perform the pmap work for mincore
4149 */
4150int
4151pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4152{
4153	pt_entry_t *ptep, pte;
4154	vm_paddr_t pa;
4155	int val;
4156
4157	PMAP_LOCK(pmap);
4158retry:
4159	ptep = pmap_pte(pmap, addr);
4160	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4161	pmap_pte_release(ptep);
4162	val = 0;
4163	if ((pte & PG_V) != 0) {
4164		val |= MINCORE_INCORE;
4165		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4166			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4167		if ((pte & PG_A) != 0)
4168			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4169	}
4170	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4171	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4172	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4173		pa = pte & PG_FRAME;
4174		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4175		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4176			goto retry;
4177	} else
4178		PA_UNLOCK_COND(*locked_pa);
4179	PMAP_UNLOCK(pmap);
4180	return (val);
4181}
4182
4183void
4184pmap_activate(struct thread *td)
4185{
4186	pmap_t	pmap, oldpmap;
4187	u_int	cpuid;
4188	u_int32_t  cr3;
4189
4190	critical_enter();
4191	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4192	oldpmap = PCPU_GET(curpmap);
4193	cpuid = PCPU_GET(cpuid);
4194#if defined(SMP)
4195	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4196	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4197#else
4198	CPU_CLR(cpuid, &oldpmap->pm_active);
4199	CPU_SET(cpuid, &pmap->pm_active);
4200#endif
4201#ifdef PAE
4202	cr3 = vtophys(pmap->pm_pdpt);
4203#else
4204	cr3 = vtophys(pmap->pm_pdir);
4205#endif
4206	/*
4207	 * pmap_activate is for the current thread on the current cpu
4208	 */
4209	td->td_pcb->pcb_cr3 = cr3;
4210	PT_UPDATES_FLUSH();
4211	load_cr3(cr3);
4212	PCPU_SET(curpmap, pmap);
4213	critical_exit();
4214}
4215
4216void
4217pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4218{
4219}
4220
4221/*
4222 *	Increase the starting virtual address of the given mapping if a
4223 *	different alignment might result in more superpage mappings.
4224 */
4225void
4226pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4227    vm_offset_t *addr, vm_size_t size)
4228{
4229	vm_offset_t superpage_offset;
4230
4231	if (size < NBPDR)
4232		return;
4233	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4234		offset += ptoa(object->pg_color);
4235	superpage_offset = offset & PDRMASK;
4236	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4237	    (*addr & PDRMASK) == superpage_offset)
4238		return;
4239	if ((*addr & PDRMASK) < superpage_offset)
4240		*addr = (*addr & ~PDRMASK) + superpage_offset;
4241	else
4242		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4243}
4244
4245void
4246pmap_suspend()
4247{
4248	pmap_t pmap;
4249	int i, pdir, offset;
4250	vm_paddr_t pdirma;
4251	mmu_update_t mu[4];
4252
4253	/*
4254	 * We need to remove the recursive mapping structure from all
4255	 * our pmaps so that Xen doesn't get confused when it restores
4256	 * the page tables. The recursive map lives at page directory
4257	 * index PTDPTDI. We assume that the suspend code has stopped
4258	 * the other vcpus (if any).
4259	 */
4260	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4261		for (i = 0; i < 4; i++) {
4262			/*
4263			 * Figure out which page directory (L2) page
4264			 * contains this bit of the recursive map and
4265			 * the offset within that page of the map
4266			 * entry
4267			 */
4268			pdir = (PTDPTDI + i) / NPDEPG;
4269			offset = (PTDPTDI + i) % NPDEPG;
4270			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4271			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4272			mu[i].val = 0;
4273		}
4274		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4275	}
4276}
4277
4278void
4279pmap_resume()
4280{
4281	pmap_t pmap;
4282	int i, pdir, offset;
4283	vm_paddr_t pdirma;
4284	mmu_update_t mu[4];
4285
4286	/*
4287	 * Restore the recursive map that we removed on suspend.
4288	 */
4289	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4290		for (i = 0; i < 4; i++) {
4291			/*
4292			 * Figure out which page directory (L2) page
4293			 * contains this bit of the recursive map and
4294			 * the offset within that page of the map
4295			 * entry
4296			 */
4297			pdir = (PTDPTDI + i) / NPDEPG;
4298			offset = (PTDPTDI + i) % NPDEPG;
4299			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4300			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4301			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4302		}
4303		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4304	}
4305}
4306
4307#if defined(PMAP_DEBUG)
4308pmap_pid_dump(int pid)
4309{
4310	pmap_t pmap;
4311	struct proc *p;
4312	int npte = 0;
4313	int index;
4314
4315	sx_slock(&allproc_lock);
4316	FOREACH_PROC_IN_SYSTEM(p) {
4317		if (p->p_pid != pid)
4318			continue;
4319
4320		if (p->p_vmspace) {
4321			int i,j;
4322			index = 0;
4323			pmap = vmspace_pmap(p->p_vmspace);
4324			for (i = 0; i < NPDEPTD; i++) {
4325				pd_entry_t *pde;
4326				pt_entry_t *pte;
4327				vm_offset_t base = i << PDRSHIFT;
4328
4329				pde = &pmap->pm_pdir[i];
4330				if (pde && pmap_pde_v(pde)) {
4331					for (j = 0; j < NPTEPG; j++) {
4332						vm_offset_t va = base + (j << PAGE_SHIFT);
4333						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4334							if (index) {
4335								index = 0;
4336								printf("\n");
4337							}
4338							sx_sunlock(&allproc_lock);
4339							return (npte);
4340						}
4341						pte = pmap_pte(pmap, va);
4342						if (pte && pmap_pte_v(pte)) {
4343							pt_entry_t pa;
4344							vm_page_t m;
4345							pa = PT_GET(pte);
4346							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4347							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4348								va, pa, m->hold_count, m->wire_count, m->flags);
4349							npte++;
4350							index++;
4351							if (index >= 2) {
4352								index = 0;
4353								printf("\n");
4354							} else {
4355								printf(" ");
4356							}
4357						}
4358					}
4359				}
4360			}
4361		}
4362	}
4363	sx_sunlock(&allproc_lock);
4364	return (npte);
4365}
4366#endif
4367
4368#if defined(DEBUG)
4369
4370static void	pads(pmap_t pm);
4371void		pmap_pvdump(vm_paddr_t pa);
4372
4373/* print address space of pmap*/
4374static void
4375pads(pmap_t pm)
4376{
4377	int i, j;
4378	vm_paddr_t va;
4379	pt_entry_t *ptep;
4380
4381	if (pm == kernel_pmap)
4382		return;
4383	for (i = 0; i < NPDEPTD; i++)
4384		if (pm->pm_pdir[i])
4385			for (j = 0; j < NPTEPG; j++) {
4386				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4387				if (pm == kernel_pmap && va < KERNBASE)
4388					continue;
4389				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4390					continue;
4391				ptep = pmap_pte(pm, va);
4392				if (pmap_pte_v(ptep))
4393					printf("%x:%x ", va, *ptep);
4394			};
4395
4396}
4397
4398void
4399pmap_pvdump(vm_paddr_t pa)
4400{
4401	pv_entry_t pv;
4402	pmap_t pmap;
4403	vm_page_t m;
4404
4405	printf("pa %x", pa);
4406	m = PHYS_TO_VM_PAGE(pa);
4407	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4408		pmap = PV_PMAP(pv);
4409		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4410		pads(pmap);
4411	}
4412	printf(" ");
4413}
4414#endif
4415