pmap.c revision 236240
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 236240 2012-05-29 15:41:20Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#else
129#include <sys/cpuset.h>
130#endif
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#include <xen/interface/xen.h>
157#include <xen/hypervisor.h>
158#include <machine/xen/hypercall.h>
159#include <machine/xen/xenvar.h>
160#include <machine/xen/xenfunc.h>
161
162#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
163#define CPU_ENABLE_SSE
164#endif
165
166#ifndef PMAP_SHPGPERPROC
167#define PMAP_SHPGPERPROC 200
168#endif
169
170#define DIAGNOSTIC
171
172#if !defined(DIAGNOSTIC)
173#ifdef __GNUC_GNU_INLINE__
174#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
175#else
176#define PMAP_INLINE	extern inline
177#endif
178#else
179#define PMAP_INLINE
180#endif
181
182#define PV_STATS
183#ifdef PV_STATS
184#define PV_STAT(x)	do { x ; } while (0)
185#else
186#define PV_STAT(x)	do { } while (0)
187#endif
188
189/*
190 * Get PDEs and PTEs for user/kernel address space
191 */
192#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
193#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
194
195#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
196#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
197#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
198#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
199#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
200
201#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
202
203#define HAMFISTED_LOCKING
204#ifdef HAMFISTED_LOCKING
205static struct mtx createdelete_lock;
206#endif
207
208struct pmap kernel_pmap_store;
209LIST_HEAD(pmaplist, pmap);
210static struct pmaplist allpmaps;
211static struct mtx allpmaps_lock;
212
213vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
214vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
215int pgeflag = 0;		/* PG_G or-in */
216int pseflag = 0;		/* PG_PS or-in */
217
218int nkpt;
219vm_offset_t kernel_vm_end;
220extern u_int32_t KERNend;
221
222#ifdef PAE
223pt_entry_t pg_nx;
224#endif
225
226static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
227
228static int pat_works;			/* Is page attribute table sane? */
229
230/*
231 * Data for the pv entry allocation mechanism
232 */
233static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
234static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
235static int shpgperproc = PMAP_SHPGPERPROC;
236
237struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
238int pv_maxchunks;			/* How many chunks we have KVA for */
239vm_offset_t pv_vafree;			/* freelist stored in the PTE */
240
241/*
242 * All those kernel PT submaps that BSD is so fond of
243 */
244struct sysmaps {
245	struct	mtx lock;
246	pt_entry_t *CMAP1;
247	pt_entry_t *CMAP2;
248	caddr_t	CADDR1;
249	caddr_t	CADDR2;
250};
251static struct sysmaps sysmaps_pcpu[MAXCPU];
252static pt_entry_t *CMAP3;
253caddr_t ptvmmap = 0;
254static caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
283static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
284static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
285		    vm_offset_t va);
286
287static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
288    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
289static void pmap_flush_page(vm_page_t m);
290static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
291static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
292    vm_page_t *free);
293static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
294    vm_page_t *free);
295static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
296					vm_offset_t va);
297static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
298    vm_page_t m);
299
300static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
301
302static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
303static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
304static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
305static void pmap_pte_release(pt_entry_t *pte);
306static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
307static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
308
309static __inline void pagezero(void *page);
310
311CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
312CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
313
314/*
315 * If you get an error here, then you set KVA_PAGES wrong! See the
316 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
317 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
318 */
319CTASSERT(KERNBASE % (1 << 24) == 0);
320
321void
322pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
323{
324	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
325
326	switch (type) {
327	case SH_PD_SET_VA:
328#if 0
329		xen_queue_pt_update(shadow_pdir_ma,
330				    xpmap_ptom(val & ~(PG_RW)));
331#endif
332		xen_queue_pt_update(pdir_ma,
333				    xpmap_ptom(val));
334		break;
335	case SH_PD_SET_VA_MA:
336#if 0
337		xen_queue_pt_update(shadow_pdir_ma,
338				    val & ~(PG_RW));
339#endif
340		xen_queue_pt_update(pdir_ma, val);
341		break;
342	case SH_PD_SET_VA_CLEAR:
343#if 0
344		xen_queue_pt_update(shadow_pdir_ma, 0);
345#endif
346		xen_queue_pt_update(pdir_ma, 0);
347		break;
348	}
349}
350
351/*
352 *	Bootstrap the system enough to run with virtual memory.
353 *
354 *	On the i386 this is called after mapping has already been enabled
355 *	and just syncs the pmap module with what has already been done.
356 *	[We can't call it easily with mapping off since the kernel is not
357 *	mapped with PA == VA, hence we would have to relocate every address
358 *	from the linked base (virtual) address "KERNBASE" to the actual
359 *	(physical) address starting relative to 0]
360 */
361void
362pmap_bootstrap(vm_paddr_t firstaddr)
363{
364	vm_offset_t va;
365	pt_entry_t *pte, *unused;
366	struct sysmaps *sysmaps;
367	int i;
368
369	/*
370	 * Initialize the first available kernel virtual address.  However,
371	 * using "firstaddr" may waste a few pages of the kernel virtual
372	 * address space, because locore may not have mapped every physical
373	 * page that it allocated.  Preferably, locore would provide a first
374	 * unused virtual address in addition to "firstaddr".
375	 */
376	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
377
378	virtual_end = VM_MAX_KERNEL_ADDRESS;
379
380	/*
381	 * Initialize the kernel pmap (which is statically allocated).
382	 */
383	PMAP_LOCK_INIT(kernel_pmap);
384	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
385#ifdef PAE
386	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
387#endif
388	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
389	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
390	LIST_INIT(&allpmaps);
391	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
392	mtx_lock_spin(&allpmaps_lock);
393	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
394	mtx_unlock_spin(&allpmaps_lock);
395	if (nkpt == 0)
396		nkpt = NKPT;
397
398	/*
399	 * Reserve some special page table entries/VA space for temporary
400	 * mapping of pages.
401	 */
402#define	SYSMAP(c, p, v, n)	\
403	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
404
405	va = virtual_avail;
406	pte = vtopte(va);
407
408	/*
409	 * CMAP1/CMAP2 are used for zeroing and copying pages.
410	 * CMAP3 is used for the idle process page zeroing.
411	 */
412	for (i = 0; i < MAXCPU; i++) {
413		sysmaps = &sysmaps_pcpu[i];
414		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
415		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
416		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
417		PT_SET_MA(sysmaps->CADDR1, 0);
418		PT_SET_MA(sysmaps->CADDR2, 0);
419	}
420	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
421	PT_SET_MA(CADDR3, 0);
422
423	/*
424	 * Crashdump maps.
425	 */
426	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
427
428	/*
429	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
430	 */
431	SYSMAP(caddr_t, unused, ptvmmap, 1)
432
433	/*
434	 * msgbufp is used to map the system message buffer.
435	 */
436	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
437
438	/*
439	 * ptemap is used for pmap_pte_quick
440	 */
441	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
442	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
443
444	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
445
446	virtual_avail = va;
447
448	/*
449	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
450	 * physical memory region that is used by the ACPI wakeup code.  This
451	 * mapping must not have PG_G set.
452	 */
453#ifndef XEN
454	/*
455	 * leave here deliberately to show that this is not supported
456	 */
457#ifdef XBOX
458	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
459	 * an early stadium, we cannot yet neatly map video memory ... :-(
460	 * Better fixes are very welcome! */
461	if (!arch_i386_is_xbox)
462#endif
463	for (i = 1; i < NKPT; i++)
464		PTD[i] = 0;
465
466	/* Initialize the PAT MSR if present. */
467	pmap_init_pat();
468
469	/* Turn on PG_G on kernel page(s) */
470	pmap_set_pg();
471#endif
472
473#ifdef HAMFISTED_LOCKING
474	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
475#endif
476}
477
478/*
479 * Setup the PAT MSR.
480 */
481void
482pmap_init_pat(void)
483{
484	uint64_t pat_msr;
485
486	/* Bail if this CPU doesn't implement PAT. */
487	if (!(cpu_feature & CPUID_PAT))
488		return;
489
490	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
491	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
492		/*
493		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
494		 * Program 4 and 5 as WP and WC.
495		 * Leave 6 and 7 as UC and UC-.
496		 */
497		pat_msr = rdmsr(MSR_PAT);
498		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
499		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
500		    PAT_VALUE(5, PAT_WRITE_COMBINING);
501		pat_works = 1;
502	} else {
503		/*
504		 * Due to some Intel errata, we can only safely use the lower 4
505		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
506		 * of UC-.
507		 *
508		 *   Intel Pentium III Processor Specification Update
509		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
510		 * or Mode C Paging)
511		 *
512		 *   Intel Pentium IV  Processor Specification Update
513		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
514		 */
515		pat_msr = rdmsr(MSR_PAT);
516		pat_msr &= ~PAT_MASK(2);
517		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
518		pat_works = 0;
519	}
520	wrmsr(MSR_PAT, pat_msr);
521}
522
523/*
524 * Initialize a vm_page's machine-dependent fields.
525 */
526void
527pmap_page_init(vm_page_t m)
528{
529
530	TAILQ_INIT(&m->md.pv_list);
531	m->md.pat_mode = PAT_WRITE_BACK;
532}
533
534/*
535 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
536 * Requirements:
537 *  - Must deal with pages in order to ensure that none of the PG_* bits
538 *    are ever set, PG_V in particular.
539 *  - Assumes we can write to ptes without pte_store() atomic ops, even
540 *    on PAE systems.  This should be ok.
541 *  - Assumes nothing will ever test these addresses for 0 to indicate
542 *    no mapping instead of correctly checking PG_V.
543 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
544 * Because PG_V is never set, there can be no mappings to invalidate.
545 */
546static int ptelist_count = 0;
547static vm_offset_t
548pmap_ptelist_alloc(vm_offset_t *head)
549{
550	vm_offset_t va;
551	vm_offset_t *phead = (vm_offset_t *)*head;
552
553	if (ptelist_count == 0) {
554		printf("out of memory!!!!!!\n");
555		return (0);	/* Out of memory */
556	}
557	ptelist_count--;
558	va = phead[ptelist_count];
559	return (va);
560}
561
562static void
563pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
564{
565	vm_offset_t *phead = (vm_offset_t *)*head;
566
567	phead[ptelist_count++] = va;
568}
569
570static void
571pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
572{
573	int i, nstackpages;
574	vm_offset_t va;
575	vm_page_t m;
576
577	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
578	for (i = 0; i < nstackpages; i++) {
579		va = (vm_offset_t)base + i * PAGE_SIZE;
580		m = vm_page_alloc(NULL, i,
581		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
582		    VM_ALLOC_ZERO);
583		pmap_qenter(va, &m, 1);
584	}
585
586	*head = (vm_offset_t)base;
587	for (i = npages - 1; i >= nstackpages; i--) {
588		va = (vm_offset_t)base + i * PAGE_SIZE;
589		pmap_ptelist_free(head, va);
590	}
591}
592
593
594/*
595 *	Initialize the pmap module.
596 *	Called by vm_init, to initialize any structures that the pmap
597 *	system needs to map virtual memory.
598 */
599void
600pmap_init(void)
601{
602
603	/*
604	 * Initialize the address space (zone) for the pv entries.  Set a
605	 * high water mark so that the system can recover from excessive
606	 * numbers of pv entries.
607	 */
608	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
609	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
610	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
611	pv_entry_max = roundup(pv_entry_max, _NPCPV);
612	pv_entry_high_water = 9 * (pv_entry_max / 10);
613
614	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
615	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
616	    PAGE_SIZE * pv_maxchunks);
617	if (pv_chunkbase == NULL)
618		panic("pmap_init: not enough kvm for pv chunks");
619	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
620}
621
622
623SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
624	"Max number of PV entries");
625SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
626	"Page share factor per proc");
627
628static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
629    "2/4MB page mapping counters");
630
631static u_long pmap_pde_mappings;
632SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
633    &pmap_pde_mappings, 0, "2/4MB page mappings");
634
635/***************************************************
636 * Low level helper routines.....
637 ***************************************************/
638
639/*
640 * Determine the appropriate bits to set in a PTE or PDE for a specified
641 * caching mode.
642 */
643int
644pmap_cache_bits(int mode, boolean_t is_pde)
645{
646	int pat_flag, pat_index, cache_bits;
647
648	/* The PAT bit is different for PTE's and PDE's. */
649	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
650
651	/* If we don't support PAT, map extended modes to older ones. */
652	if (!(cpu_feature & CPUID_PAT)) {
653		switch (mode) {
654		case PAT_UNCACHEABLE:
655		case PAT_WRITE_THROUGH:
656		case PAT_WRITE_BACK:
657			break;
658		case PAT_UNCACHED:
659		case PAT_WRITE_COMBINING:
660		case PAT_WRITE_PROTECTED:
661			mode = PAT_UNCACHEABLE;
662			break;
663		}
664	}
665
666	/* Map the caching mode to a PAT index. */
667	if (pat_works) {
668		switch (mode) {
669			case PAT_UNCACHEABLE:
670				pat_index = 3;
671				break;
672			case PAT_WRITE_THROUGH:
673				pat_index = 1;
674				break;
675			case PAT_WRITE_BACK:
676				pat_index = 0;
677				break;
678			case PAT_UNCACHED:
679				pat_index = 2;
680				break;
681			case PAT_WRITE_COMBINING:
682				pat_index = 5;
683				break;
684			case PAT_WRITE_PROTECTED:
685				pat_index = 4;
686				break;
687			default:
688				panic("Unknown caching mode %d\n", mode);
689		}
690	} else {
691		switch (mode) {
692			case PAT_UNCACHED:
693			case PAT_UNCACHEABLE:
694			case PAT_WRITE_PROTECTED:
695				pat_index = 3;
696				break;
697			case PAT_WRITE_THROUGH:
698				pat_index = 1;
699				break;
700			case PAT_WRITE_BACK:
701				pat_index = 0;
702				break;
703			case PAT_WRITE_COMBINING:
704				pat_index = 2;
705				break;
706			default:
707				panic("Unknown caching mode %d\n", mode);
708		}
709	}
710
711	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
712	cache_bits = 0;
713	if (pat_index & 0x4)
714		cache_bits |= pat_flag;
715	if (pat_index & 0x2)
716		cache_bits |= PG_NC_PCD;
717	if (pat_index & 0x1)
718		cache_bits |= PG_NC_PWT;
719	return (cache_bits);
720}
721#ifdef SMP
722/*
723 * For SMP, these functions have to use the IPI mechanism for coherence.
724 *
725 * N.B.: Before calling any of the following TLB invalidation functions,
726 * the calling processor must ensure that all stores updating a non-
727 * kernel page table are globally performed.  Otherwise, another
728 * processor could cache an old, pre-update entry without being
729 * invalidated.  This can happen one of two ways: (1) The pmap becomes
730 * active on another processor after its pm_active field is checked by
731 * one of the following functions but before a store updating the page
732 * table is globally performed. (2) The pmap becomes active on another
733 * processor before its pm_active field is checked but due to
734 * speculative loads one of the following functions stills reads the
735 * pmap as inactive on the other processor.
736 *
737 * The kernel page table is exempt because its pm_active field is
738 * immutable.  The kernel page table is always active on every
739 * processor.
740 */
741void
742pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
743{
744	cpuset_t other_cpus;
745	u_int cpuid;
746
747	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
748	    pmap, va);
749
750	sched_pin();
751	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
752		invlpg(va);
753		smp_invlpg(va);
754	} else {
755		cpuid = PCPU_GET(cpuid);
756		other_cpus = all_cpus;
757		CPU_CLR(cpuid, &other_cpus);
758		if (CPU_ISSET(cpuid, &pmap->pm_active))
759			invlpg(va);
760		CPU_AND(&other_cpus, &pmap->pm_active);
761		if (!CPU_EMPTY(&other_cpus))
762			smp_masked_invlpg(other_cpus, va);
763	}
764	sched_unpin();
765	PT_UPDATES_FLUSH();
766}
767
768void
769pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
770{
771	cpuset_t other_cpus;
772	vm_offset_t addr;
773	u_int cpuid;
774
775	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
776	    pmap, sva, eva);
777
778	sched_pin();
779	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
780		for (addr = sva; addr < eva; addr += PAGE_SIZE)
781			invlpg(addr);
782		smp_invlpg_range(sva, eva);
783	} else {
784		cpuid = PCPU_GET(cpuid);
785		other_cpus = all_cpus;
786		CPU_CLR(cpuid, &other_cpus);
787		if (CPU_ISSET(cpuid, &pmap->pm_active))
788			for (addr = sva; addr < eva; addr += PAGE_SIZE)
789				invlpg(addr);
790		CPU_AND(&other_cpus, &pmap->pm_active);
791		if (!CPU_EMPTY(&other_cpus))
792			smp_masked_invlpg_range(other_cpus, sva, eva);
793	}
794	sched_unpin();
795	PT_UPDATES_FLUSH();
796}
797
798void
799pmap_invalidate_all(pmap_t pmap)
800{
801	cpuset_t other_cpus;
802	u_int cpuid;
803
804	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
805
806	sched_pin();
807	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
808		invltlb();
809		smp_invltlb();
810	} else {
811		cpuid = PCPU_GET(cpuid);
812		other_cpus = all_cpus;
813		CPU_CLR(cpuid, &other_cpus);
814		if (CPU_ISSET(cpuid, &pmap->pm_active))
815			invltlb();
816		CPU_AND(&other_cpus, &pmap->pm_active);
817		if (!CPU_EMPTY(&other_cpus))
818			smp_masked_invltlb(other_cpus);
819	}
820	sched_unpin();
821}
822
823void
824pmap_invalidate_cache(void)
825{
826
827	sched_pin();
828	wbinvd();
829	smp_cache_flush();
830	sched_unpin();
831}
832#else /* !SMP */
833/*
834 * Normal, non-SMP, 486+ invalidation functions.
835 * We inline these within pmap.c for speed.
836 */
837PMAP_INLINE void
838pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
839{
840	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
841	    pmap, va);
842
843	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
844		invlpg(va);
845	PT_UPDATES_FLUSH();
846}
847
848PMAP_INLINE void
849pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
850{
851	vm_offset_t addr;
852
853	if (eva - sva > PAGE_SIZE)
854		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
855		    pmap, sva, eva);
856
857	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
858		for (addr = sva; addr < eva; addr += PAGE_SIZE)
859			invlpg(addr);
860	PT_UPDATES_FLUSH();
861}
862
863PMAP_INLINE void
864pmap_invalidate_all(pmap_t pmap)
865{
866
867	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
868
869	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
870		invltlb();
871}
872
873PMAP_INLINE void
874pmap_invalidate_cache(void)
875{
876
877	wbinvd();
878}
879#endif /* !SMP */
880
881#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
882
883void
884pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
885{
886
887	KASSERT((sva & PAGE_MASK) == 0,
888	    ("pmap_invalidate_cache_range: sva not page-aligned"));
889	KASSERT((eva & PAGE_MASK) == 0,
890	    ("pmap_invalidate_cache_range: eva not page-aligned"));
891
892	if (cpu_feature & CPUID_SS)
893		; /* If "Self Snoop" is supported, do nothing. */
894	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
895	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
896
897		/*
898		 * Otherwise, do per-cache line flush.  Use the mfence
899		 * instruction to insure that previous stores are
900		 * included in the write-back.  The processor
901		 * propagates flush to other processors in the cache
902		 * coherence domain.
903		 */
904		mfence();
905		for (; sva < eva; sva += cpu_clflush_line_size)
906			clflush(sva);
907		mfence();
908	} else {
909
910		/*
911		 * No targeted cache flush methods are supported by CPU,
912		 * or the supplied range is bigger than 2MB.
913		 * Globally invalidate cache.
914		 */
915		pmap_invalidate_cache();
916	}
917}
918
919void
920pmap_invalidate_cache_pages(vm_page_t *pages, int count)
921{
922	int i;
923
924	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
925	    (cpu_feature & CPUID_CLFSH) == 0) {
926		pmap_invalidate_cache();
927	} else {
928		for (i = 0; i < count; i++)
929			pmap_flush_page(pages[i]);
930	}
931}
932
933/*
934 * Are we current address space or kernel?  N.B. We return FALSE when
935 * a pmap's page table is in use because a kernel thread is borrowing
936 * it.  The borrowed page table can change spontaneously, making any
937 * dependence on its continued use subject to a race condition.
938 */
939static __inline int
940pmap_is_current(pmap_t pmap)
941{
942
943	return (pmap == kernel_pmap ||
944	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
945	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
946}
947
948/*
949 * If the given pmap is not the current or kernel pmap, the returned pte must
950 * be released by passing it to pmap_pte_release().
951 */
952pt_entry_t *
953pmap_pte(pmap_t pmap, vm_offset_t va)
954{
955	pd_entry_t newpf;
956	pd_entry_t *pde;
957
958	pde = pmap_pde(pmap, va);
959	if (*pde & PG_PS)
960		return (pde);
961	if (*pde != 0) {
962		/* are we current address space or kernel? */
963		if (pmap_is_current(pmap))
964			return (vtopte(va));
965		mtx_lock(&PMAP2mutex);
966		newpf = *pde & PG_FRAME;
967		if ((*PMAP2 & PG_FRAME) != newpf) {
968			vm_page_lock_queues();
969			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
970			vm_page_unlock_queues();
971			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
972			    pmap, va, (*PMAP2 & 0xffffffff));
973		}
974		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
975	}
976	return (NULL);
977}
978
979/*
980 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
981 * being NULL.
982 */
983static __inline void
984pmap_pte_release(pt_entry_t *pte)
985{
986
987	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
988		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
989		    *PMAP2);
990		vm_page_lock_queues();
991		PT_SET_VA(PMAP2, 0, TRUE);
992		vm_page_unlock_queues();
993		mtx_unlock(&PMAP2mutex);
994	}
995}
996
997static __inline void
998invlcaddr(void *caddr)
999{
1000
1001	invlpg((u_int)caddr);
1002	PT_UPDATES_FLUSH();
1003}
1004
1005/*
1006 * Super fast pmap_pte routine best used when scanning
1007 * the pv lists.  This eliminates many coarse-grained
1008 * invltlb calls.  Note that many of the pv list
1009 * scans are across different pmaps.  It is very wasteful
1010 * to do an entire invltlb for checking a single mapping.
1011 *
1012 * If the given pmap is not the current pmap, vm_page_queue_mtx
1013 * must be held and curthread pinned to a CPU.
1014 */
1015static pt_entry_t *
1016pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1017{
1018	pd_entry_t newpf;
1019	pd_entry_t *pde;
1020
1021	pde = pmap_pde(pmap, va);
1022	if (*pde & PG_PS)
1023		return (pde);
1024	if (*pde != 0) {
1025		/* are we current address space or kernel? */
1026		if (pmap_is_current(pmap))
1027			return (vtopte(va));
1028		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1029		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1030		newpf = *pde & PG_FRAME;
1031		if ((*PMAP1 & PG_FRAME) != newpf) {
1032			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1033			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1034			    pmap, va, (u_long)*PMAP1);
1035
1036#ifdef SMP
1037			PMAP1cpu = PCPU_GET(cpuid);
1038#endif
1039			PMAP1changed++;
1040		} else
1041#ifdef SMP
1042		if (PMAP1cpu != PCPU_GET(cpuid)) {
1043			PMAP1cpu = PCPU_GET(cpuid);
1044			invlcaddr(PADDR1);
1045			PMAP1changedcpu++;
1046		} else
1047#endif
1048			PMAP1unchanged++;
1049		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1050	}
1051	return (0);
1052}
1053
1054/*
1055 *	Routine:	pmap_extract
1056 *	Function:
1057 *		Extract the physical page address associated
1058 *		with the given map/virtual_address pair.
1059 */
1060vm_paddr_t
1061pmap_extract(pmap_t pmap, vm_offset_t va)
1062{
1063	vm_paddr_t rtval;
1064	pt_entry_t *pte;
1065	pd_entry_t pde;
1066	pt_entry_t pteval;
1067
1068	rtval = 0;
1069	PMAP_LOCK(pmap);
1070	pde = pmap->pm_pdir[va >> PDRSHIFT];
1071	if (pde != 0) {
1072		if ((pde & PG_PS) != 0) {
1073			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1074			PMAP_UNLOCK(pmap);
1075			return rtval;
1076		}
1077		pte = pmap_pte(pmap, va);
1078		pteval = *pte ? xpmap_mtop(*pte) : 0;
1079		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1080		pmap_pte_release(pte);
1081	}
1082	PMAP_UNLOCK(pmap);
1083	return (rtval);
1084}
1085
1086/*
1087 *	Routine:	pmap_extract_ma
1088 *	Function:
1089 *		Like pmap_extract, but returns machine address
1090 */
1091vm_paddr_t
1092pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1093{
1094	vm_paddr_t rtval;
1095	pt_entry_t *pte;
1096	pd_entry_t pde;
1097
1098	rtval = 0;
1099	PMAP_LOCK(pmap);
1100	pde = pmap->pm_pdir[va >> PDRSHIFT];
1101	if (pde != 0) {
1102		if ((pde & PG_PS) != 0) {
1103			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1104			PMAP_UNLOCK(pmap);
1105			return rtval;
1106		}
1107		pte = pmap_pte(pmap, va);
1108		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1109		pmap_pte_release(pte);
1110	}
1111	PMAP_UNLOCK(pmap);
1112	return (rtval);
1113}
1114
1115/*
1116 *	Routine:	pmap_extract_and_hold
1117 *	Function:
1118 *		Atomically extract and hold the physical page
1119 *		with the given pmap and virtual address pair
1120 *		if that mapping permits the given protection.
1121 */
1122vm_page_t
1123pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1124{
1125	pd_entry_t pde;
1126	pt_entry_t pte, *ptep;
1127	vm_page_t m;
1128	vm_paddr_t pa;
1129
1130	pa = 0;
1131	m = NULL;
1132	PMAP_LOCK(pmap);
1133retry:
1134	pde = PT_GET(pmap_pde(pmap, va));
1135	if (pde != 0) {
1136		if (pde & PG_PS) {
1137			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1138				if (vm_page_pa_tryrelock(pmap, (pde &
1139				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1140					goto retry;
1141				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1142				    (va & PDRMASK));
1143				vm_page_hold(m);
1144			}
1145		} else {
1146			ptep = pmap_pte(pmap, va);
1147			pte = PT_GET(ptep);
1148			pmap_pte_release(ptep);
1149			if (pte != 0 &&
1150			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1151				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1152				    &pa))
1153					goto retry;
1154				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1155				vm_page_hold(m);
1156			}
1157		}
1158	}
1159	PA_UNLOCK_COND(pa);
1160	PMAP_UNLOCK(pmap);
1161	return (m);
1162}
1163
1164/***************************************************
1165 * Low level mapping routines.....
1166 ***************************************************/
1167
1168/*
1169 * Add a wired page to the kva.
1170 * Note: not SMP coherent.
1171 *
1172 * This function may be used before pmap_bootstrap() is called.
1173 */
1174void
1175pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1176{
1177
1178	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1179}
1180
1181void
1182pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1183{
1184	pt_entry_t *pte;
1185
1186	pte = vtopte(va);
1187	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1188}
1189
1190static __inline void
1191pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1192{
1193
1194	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1195}
1196
1197/*
1198 * Remove a page from the kernel pagetables.
1199 * Note: not SMP coherent.
1200 *
1201 * This function may be used before pmap_bootstrap() is called.
1202 */
1203PMAP_INLINE void
1204pmap_kremove(vm_offset_t va)
1205{
1206	pt_entry_t *pte;
1207
1208	pte = vtopte(va);
1209	PT_CLEAR_VA(pte, FALSE);
1210}
1211
1212/*
1213 *	Used to map a range of physical addresses into kernel
1214 *	virtual address space.
1215 *
1216 *	The value passed in '*virt' is a suggested virtual address for
1217 *	the mapping. Architectures which can support a direct-mapped
1218 *	physical to virtual region can return the appropriate address
1219 *	within that region, leaving '*virt' unchanged. Other
1220 *	architectures should map the pages starting at '*virt' and
1221 *	update '*virt' with the first usable address after the mapped
1222 *	region.
1223 */
1224vm_offset_t
1225pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1226{
1227	vm_offset_t va, sva;
1228
1229	va = sva = *virt;
1230	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1231	    va, start, end, prot);
1232	while (start < end) {
1233		pmap_kenter(va, start);
1234		va += PAGE_SIZE;
1235		start += PAGE_SIZE;
1236	}
1237	pmap_invalidate_range(kernel_pmap, sva, va);
1238	*virt = va;
1239	return (sva);
1240}
1241
1242
1243/*
1244 * Add a list of wired pages to the kva
1245 * this routine is only used for temporary
1246 * kernel mappings that do not need to have
1247 * page modification or references recorded.
1248 * Note that old mappings are simply written
1249 * over.  The page *must* be wired.
1250 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1251 */
1252void
1253pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1254{
1255	pt_entry_t *endpte, *pte;
1256	vm_paddr_t pa;
1257	vm_offset_t va = sva;
1258	int mclcount = 0;
1259	multicall_entry_t mcl[16];
1260	multicall_entry_t *mclp = mcl;
1261	int error;
1262
1263	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1264	pte = vtopte(sva);
1265	endpte = pte + count;
1266	while (pte < endpte) {
1267		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1268
1269		mclp->op = __HYPERVISOR_update_va_mapping;
1270		mclp->args[0] = va;
1271		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1272		mclp->args[2] = (uint32_t)(pa >> 32);
1273		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1274
1275		va += PAGE_SIZE;
1276		pte++;
1277		ma++;
1278		mclp++;
1279		mclcount++;
1280		if (mclcount == 16) {
1281			error = HYPERVISOR_multicall(mcl, mclcount);
1282			mclp = mcl;
1283			mclcount = 0;
1284			KASSERT(error == 0, ("bad multicall %d", error));
1285		}
1286	}
1287	if (mclcount) {
1288		error = HYPERVISOR_multicall(mcl, mclcount);
1289		KASSERT(error == 0, ("bad multicall %d", error));
1290	}
1291
1292#ifdef INVARIANTS
1293	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1294		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1295#endif
1296}
1297
1298/*
1299 * This routine tears out page mappings from the
1300 * kernel -- it is meant only for temporary mappings.
1301 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1302 */
1303void
1304pmap_qremove(vm_offset_t sva, int count)
1305{
1306	vm_offset_t va;
1307
1308	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1309	va = sva;
1310	vm_page_lock_queues();
1311	critical_enter();
1312	while (count-- > 0) {
1313		pmap_kremove(va);
1314		va += PAGE_SIZE;
1315	}
1316	PT_UPDATES_FLUSH();
1317	pmap_invalidate_range(kernel_pmap, sva, va);
1318	critical_exit();
1319	vm_page_unlock_queues();
1320}
1321
1322/***************************************************
1323 * Page table page management routines.....
1324 ***************************************************/
1325static __inline void
1326pmap_free_zero_pages(vm_page_t free)
1327{
1328	vm_page_t m;
1329
1330	while (free != NULL) {
1331		m = free;
1332		free = m->right;
1333		vm_page_free_zero(m);
1334	}
1335}
1336
1337/*
1338 * This routine unholds page table pages, and if the hold count
1339 * drops to zero, then it decrements the wire count.
1340 */
1341static __inline int
1342pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1343{
1344
1345	--m->wire_count;
1346	if (m->wire_count == 0)
1347		return (_pmap_unwire_pte_hold(pmap, m, free));
1348	else
1349		return (0);
1350}
1351
1352static int
1353_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1354{
1355	vm_offset_t pteva;
1356
1357	PT_UPDATES_FLUSH();
1358	/*
1359	 * unmap the page table page
1360	 */
1361	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1362	/*
1363	 * page *might* contain residual mapping :-/
1364	 */
1365	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1366	pmap_zero_page(m);
1367	--pmap->pm_stats.resident_count;
1368
1369	/*
1370	 * This is a release store so that the ordinary store unmapping
1371	 * the page table page is globally performed before TLB shoot-
1372	 * down is begun.
1373	 */
1374	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1375
1376	/*
1377	 * Do an invltlb to make the invalidated mapping
1378	 * take effect immediately.
1379	 */
1380	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1381	pmap_invalidate_page(pmap, pteva);
1382
1383	/*
1384	 * Put page on a list so that it is released after
1385	 * *ALL* TLB shootdown is done
1386	 */
1387	m->right = *free;
1388	*free = m;
1389
1390	return (1);
1391}
1392
1393/*
1394 * After removing a page table entry, this routine is used to
1395 * conditionally free the page, and manage the hold/wire counts.
1396 */
1397static int
1398pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1399{
1400	pd_entry_t ptepde;
1401	vm_page_t mpte;
1402
1403	if (va >= VM_MAXUSER_ADDRESS)
1404		return (0);
1405	ptepde = PT_GET(pmap_pde(pmap, va));
1406	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1407	return (pmap_unwire_pte_hold(pmap, mpte, free));
1408}
1409
1410/*
1411 * Initialize the pmap for the swapper process.
1412 */
1413void
1414pmap_pinit0(pmap_t pmap)
1415{
1416
1417	PMAP_LOCK_INIT(pmap);
1418	/*
1419	 * Since the page table directory is shared with the kernel pmap,
1420	 * which is already included in the list "allpmaps", this pmap does
1421	 * not need to be inserted into that list.
1422	 */
1423	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1424#ifdef PAE
1425	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1426#endif
1427	CPU_ZERO(&pmap->pm_active);
1428	PCPU_SET(curpmap, pmap);
1429	TAILQ_INIT(&pmap->pm_pvchunk);
1430	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1431}
1432
1433/*
1434 * Initialize a preallocated and zeroed pmap structure,
1435 * such as one in a vmspace structure.
1436 */
1437int
1438pmap_pinit(pmap_t pmap)
1439{
1440	vm_page_t m, ptdpg[NPGPTD + 1];
1441	int npgptd = NPGPTD + 1;
1442	int i;
1443
1444#ifdef HAMFISTED_LOCKING
1445	mtx_lock(&createdelete_lock);
1446#endif
1447
1448	PMAP_LOCK_INIT(pmap);
1449
1450	/*
1451	 * No need to allocate page table space yet but we do need a valid
1452	 * page directory table.
1453	 */
1454	if (pmap->pm_pdir == NULL) {
1455		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1456		    NBPTD);
1457		if (pmap->pm_pdir == NULL) {
1458			PMAP_LOCK_DESTROY(pmap);
1459#ifdef HAMFISTED_LOCKING
1460			mtx_unlock(&createdelete_lock);
1461#endif
1462			return (0);
1463		}
1464#ifdef PAE
1465		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1466#endif
1467	}
1468
1469	/*
1470	 * allocate the page directory page(s)
1471	 */
1472	for (i = 0; i < npgptd;) {
1473		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1474		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1475		if (m == NULL)
1476			VM_WAIT;
1477		else {
1478			ptdpg[i++] = m;
1479		}
1480	}
1481
1482	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1483
1484	for (i = 0; i < NPGPTD; i++)
1485		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1486			pagezero(pmap->pm_pdir + (i * NPDEPG));
1487
1488	mtx_lock_spin(&allpmaps_lock);
1489	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1490	/* Copy the kernel page table directory entries. */
1491	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1492	mtx_unlock_spin(&allpmaps_lock);
1493
1494#ifdef PAE
1495	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1496	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1497		bzero(pmap->pm_pdpt, PAGE_SIZE);
1498	for (i = 0; i < NPGPTD; i++) {
1499		vm_paddr_t ma;
1500
1501		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1502		pmap->pm_pdpt[i] = ma | PG_V;
1503
1504	}
1505#endif
1506	for (i = 0; i < NPGPTD; i++) {
1507		pt_entry_t *pd;
1508		vm_paddr_t ma;
1509
1510		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1511		pd = pmap->pm_pdir + (i * NPDEPG);
1512		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1513#if 0
1514		xen_pgd_pin(ma);
1515#endif
1516	}
1517
1518#ifdef PAE
1519	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1520#endif
1521	vm_page_lock_queues();
1522	xen_flush_queue();
1523	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1524	for (i = 0; i < NPGPTD; i++) {
1525		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1526		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1527	}
1528	xen_flush_queue();
1529	vm_page_unlock_queues();
1530	CPU_ZERO(&pmap->pm_active);
1531	TAILQ_INIT(&pmap->pm_pvchunk);
1532	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1533
1534#ifdef HAMFISTED_LOCKING
1535	mtx_unlock(&createdelete_lock);
1536#endif
1537	return (1);
1538}
1539
1540/*
1541 * this routine is called if the page table page is not
1542 * mapped correctly.
1543 */
1544static vm_page_t
1545_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1546{
1547	vm_paddr_t ptema;
1548	vm_page_t m;
1549
1550	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1551	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1552	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1553
1554	/*
1555	 * Allocate a page table page.
1556	 */
1557	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1558	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1559		if (flags & M_WAITOK) {
1560			PMAP_UNLOCK(pmap);
1561			vm_page_unlock_queues();
1562			VM_WAIT;
1563			vm_page_lock_queues();
1564			PMAP_LOCK(pmap);
1565		}
1566
1567		/*
1568		 * Indicate the need to retry.  While waiting, the page table
1569		 * page may have been allocated.
1570		 */
1571		return (NULL);
1572	}
1573	if ((m->flags & PG_ZERO) == 0)
1574		pmap_zero_page(m);
1575
1576	/*
1577	 * Map the pagetable page into the process address space, if
1578	 * it isn't already there.
1579	 */
1580
1581	pmap->pm_stats.resident_count++;
1582
1583	ptema = VM_PAGE_TO_MACH(m);
1584	xen_pt_pin(ptema);
1585	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1586		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1587
1588	KASSERT(pmap->pm_pdir[ptepindex],
1589	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1590	return (m);
1591}
1592
1593static vm_page_t
1594pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1595{
1596	u_int ptepindex;
1597	pd_entry_t ptema;
1598	vm_page_t m;
1599
1600	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1601	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1602	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1603
1604	/*
1605	 * Calculate pagetable page index
1606	 */
1607	ptepindex = va >> PDRSHIFT;
1608retry:
1609	/*
1610	 * Get the page directory entry
1611	 */
1612	ptema = pmap->pm_pdir[ptepindex];
1613
1614	/*
1615	 * This supports switching from a 4MB page to a
1616	 * normal 4K page.
1617	 */
1618	if (ptema & PG_PS) {
1619		/*
1620		 * XXX
1621		 */
1622		pmap->pm_pdir[ptepindex] = 0;
1623		ptema = 0;
1624		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1625		pmap_invalidate_all(kernel_pmap);
1626	}
1627
1628	/*
1629	 * If the page table page is mapped, we just increment the
1630	 * hold count, and activate it.
1631	 */
1632	if (ptema & PG_V) {
1633		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1634		m->wire_count++;
1635	} else {
1636		/*
1637		 * Here if the pte page isn't mapped, or if it has
1638		 * been deallocated.
1639		 */
1640		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1641		    pmap, va, flags);
1642		m = _pmap_allocpte(pmap, ptepindex, flags);
1643		if (m == NULL && (flags & M_WAITOK))
1644			goto retry;
1645
1646		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1647	}
1648	return (m);
1649}
1650
1651
1652/***************************************************
1653* Pmap allocation/deallocation routines.
1654 ***************************************************/
1655
1656#ifdef SMP
1657/*
1658 * Deal with a SMP shootdown of other users of the pmap that we are
1659 * trying to dispose of.  This can be a bit hairy.
1660 */
1661static cpuset_t *lazymask;
1662static u_int lazyptd;
1663static volatile u_int lazywait;
1664
1665void pmap_lazyfix_action(void);
1666
1667void
1668pmap_lazyfix_action(void)
1669{
1670
1671#ifdef COUNT_IPIS
1672	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1673#endif
1674	if (rcr3() == lazyptd)
1675		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1676	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1677	atomic_store_rel_int(&lazywait, 1);
1678}
1679
1680static void
1681pmap_lazyfix_self(u_int cpuid)
1682{
1683
1684	if (rcr3() == lazyptd)
1685		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1686	CPU_CLR_ATOMIC(cpuid, lazymask);
1687}
1688
1689
1690static void
1691pmap_lazyfix(pmap_t pmap)
1692{
1693	cpuset_t mymask, mask;
1694	u_int cpuid, spins;
1695	int lsb;
1696
1697	mask = pmap->pm_active;
1698	while (!CPU_EMPTY(&mask)) {
1699		spins = 50000000;
1700
1701		/* Find least significant set bit. */
1702		lsb = cpusetobj_ffs(&mask);
1703		MPASS(lsb != 0);
1704		lsb--;
1705		CPU_SETOF(lsb, &mask);
1706		mtx_lock_spin(&smp_ipi_mtx);
1707#ifdef PAE
1708		lazyptd = vtophys(pmap->pm_pdpt);
1709#else
1710		lazyptd = vtophys(pmap->pm_pdir);
1711#endif
1712		cpuid = PCPU_GET(cpuid);
1713
1714		/* Use a cpuset just for having an easy check. */
1715		CPU_SETOF(cpuid, &mymask);
1716		if (!CPU_CMP(&mask, &mymask)) {
1717			lazymask = &pmap->pm_active;
1718			pmap_lazyfix_self(cpuid);
1719		} else {
1720			atomic_store_rel_int((u_int *)&lazymask,
1721			    (u_int)&pmap->pm_active);
1722			atomic_store_rel_int(&lazywait, 0);
1723			ipi_selected(mask, IPI_LAZYPMAP);
1724			while (lazywait == 0) {
1725				ia32_pause();
1726				if (--spins == 0)
1727					break;
1728			}
1729		}
1730		mtx_unlock_spin(&smp_ipi_mtx);
1731		if (spins == 0)
1732			printf("pmap_lazyfix: spun for 50000000\n");
1733		mask = pmap->pm_active;
1734	}
1735}
1736
1737#else	/* SMP */
1738
1739/*
1740 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1741 * unlikely to have to even execute this code, including the fact
1742 * that the cleanup is deferred until the parent does a wait(2), which
1743 * means that another userland process has run.
1744 */
1745static void
1746pmap_lazyfix(pmap_t pmap)
1747{
1748	u_int cr3;
1749
1750	cr3 = vtophys(pmap->pm_pdir);
1751	if (cr3 == rcr3()) {
1752		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1753		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1754	}
1755}
1756#endif	/* SMP */
1757
1758/*
1759 * Release any resources held by the given physical map.
1760 * Called when a pmap initialized by pmap_pinit is being released.
1761 * Should only be called if the map contains no valid mappings.
1762 */
1763void
1764pmap_release(pmap_t pmap)
1765{
1766	vm_page_t m, ptdpg[2*NPGPTD+1];
1767	vm_paddr_t ma;
1768	int i;
1769#ifdef PAE
1770	int npgptd = NPGPTD + 1;
1771#else
1772	int npgptd = NPGPTD;
1773#endif
1774
1775	KASSERT(pmap->pm_stats.resident_count == 0,
1776	    ("pmap_release: pmap resident count %ld != 0",
1777	    pmap->pm_stats.resident_count));
1778	PT_UPDATES_FLUSH();
1779
1780#ifdef HAMFISTED_LOCKING
1781	mtx_lock(&createdelete_lock);
1782#endif
1783
1784	pmap_lazyfix(pmap);
1785	mtx_lock_spin(&allpmaps_lock);
1786	LIST_REMOVE(pmap, pm_list);
1787	mtx_unlock_spin(&allpmaps_lock);
1788
1789	for (i = 0; i < NPGPTD; i++)
1790		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1791	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1792#ifdef PAE
1793	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1794#endif
1795
1796	for (i = 0; i < npgptd; i++) {
1797		m = ptdpg[i];
1798		ma = VM_PAGE_TO_MACH(m);
1799		/* unpinning L1 and L2 treated the same */
1800#if 0
1801                xen_pgd_unpin(ma);
1802#else
1803		if (i == NPGPTD)
1804	                xen_pgd_unpin(ma);
1805#endif
1806#ifdef PAE
1807		if (i < NPGPTD)
1808			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1809			    ("pmap_release: got wrong ptd page"));
1810#endif
1811		m->wire_count--;
1812		atomic_subtract_int(&cnt.v_wire_count, 1);
1813		vm_page_free(m);
1814	}
1815#ifdef PAE
1816	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1817#endif
1818	PMAP_LOCK_DESTROY(pmap);
1819
1820#ifdef HAMFISTED_LOCKING
1821	mtx_unlock(&createdelete_lock);
1822#endif
1823}
1824
1825static int
1826kvm_size(SYSCTL_HANDLER_ARGS)
1827{
1828	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1829
1830	return (sysctl_handle_long(oidp, &ksize, 0, req));
1831}
1832SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1833    0, 0, kvm_size, "IU", "Size of KVM");
1834
1835static int
1836kvm_free(SYSCTL_HANDLER_ARGS)
1837{
1838	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1839
1840	return (sysctl_handle_long(oidp, &kfree, 0, req));
1841}
1842SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1843    0, 0, kvm_free, "IU", "Amount of KVM free");
1844
1845/*
1846 * grow the number of kernel page table entries, if needed
1847 */
1848void
1849pmap_growkernel(vm_offset_t addr)
1850{
1851	struct pmap *pmap;
1852	vm_paddr_t ptppaddr;
1853	vm_page_t nkpg;
1854	pd_entry_t newpdir;
1855
1856	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1857	if (kernel_vm_end == 0) {
1858		kernel_vm_end = KERNBASE;
1859		nkpt = 0;
1860		while (pdir_pde(PTD, kernel_vm_end)) {
1861			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1862			nkpt++;
1863			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1864				kernel_vm_end = kernel_map->max_offset;
1865				break;
1866			}
1867		}
1868	}
1869	addr = roundup2(addr, NBPDR);
1870	if (addr - 1 >= kernel_map->max_offset)
1871		addr = kernel_map->max_offset;
1872	while (kernel_vm_end < addr) {
1873		if (pdir_pde(PTD, kernel_vm_end)) {
1874			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1875			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1876				kernel_vm_end = kernel_map->max_offset;
1877				break;
1878			}
1879			continue;
1880		}
1881
1882		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1883		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1884		    VM_ALLOC_ZERO);
1885		if (nkpg == NULL)
1886			panic("pmap_growkernel: no memory to grow kernel");
1887
1888		nkpt++;
1889
1890		if ((nkpg->flags & PG_ZERO) == 0)
1891			pmap_zero_page(nkpg);
1892		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1893		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1894		vm_page_lock_queues();
1895		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1896		mtx_lock_spin(&allpmaps_lock);
1897		LIST_FOREACH(pmap, &allpmaps, pm_list)
1898			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1899
1900		mtx_unlock_spin(&allpmaps_lock);
1901		vm_page_unlock_queues();
1902
1903		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1904		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1905			kernel_vm_end = kernel_map->max_offset;
1906			break;
1907		}
1908	}
1909}
1910
1911
1912/***************************************************
1913 * page management routines.
1914 ***************************************************/
1915
1916CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1917CTASSERT(_NPCM == 11);
1918
1919static __inline struct pv_chunk *
1920pv_to_chunk(pv_entry_t pv)
1921{
1922
1923	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1924}
1925
1926#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1927
1928#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1929#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1930
1931static uint32_t pc_freemask[11] = {
1932	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1933	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1934	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1935	PC_FREE0_9, PC_FREE10
1936};
1937
1938SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1939	"Current number of pv entries");
1940
1941#ifdef PV_STATS
1942static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1943
1944SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1945	"Current number of pv entry chunks");
1946SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1947	"Current number of pv entry chunks allocated");
1948SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1949	"Current number of pv entry chunks frees");
1950SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1951	"Number of times tried to get a chunk page but failed.");
1952
1953static long pv_entry_frees, pv_entry_allocs;
1954static int pv_entry_spare;
1955
1956SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1957	"Current number of pv entry frees");
1958SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1959	"Current number of pv entry allocs");
1960SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1961	"Current number of spare pv entries");
1962#endif
1963
1964/*
1965 * We are in a serious low memory condition.  Resort to
1966 * drastic measures to free some pages so we can allocate
1967 * another pv entry chunk.
1968 */
1969static vm_page_t
1970pmap_pv_reclaim(pmap_t locked_pmap)
1971{
1972	struct pch newtail;
1973	struct pv_chunk *pc;
1974	pmap_t pmap;
1975	pt_entry_t *pte, tpte;
1976	pv_entry_t pv;
1977	vm_offset_t va;
1978	vm_page_t free, m, m_pc;
1979	uint32_t inuse, freemask;
1980	int bit, field, freed;
1981
1982	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1983	pmap = NULL;
1984	free = m_pc = NULL;
1985	TAILQ_INIT(&newtail);
1986	sched_pin();
1987	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
1988	    free == NULL)) {
1989		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1990		if (pmap != pc->pc_pmap) {
1991			if (pmap != NULL) {
1992				pmap_invalidate_all(pmap);
1993				if (pmap != locked_pmap)
1994					PMAP_UNLOCK(pmap);
1995			}
1996			pmap = pc->pc_pmap;
1997			/* Avoid deadlock and lock recursion. */
1998			if (pmap > locked_pmap)
1999				PMAP_LOCK(pmap);
2000			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2001				pmap = NULL;
2002				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2003				continue;
2004			}
2005		}
2006
2007		/*
2008		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2009		 */
2010		freed = 0;
2011		for (field = 0; field < _NPCM; field++) {
2012			freemask = 0;
2013			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2014			    inuse != 0; inuse &= ~(1UL << bit)) {
2015				bit = bsfl(inuse);
2016				pv = &pc->pc_pventry[field * 32 + bit];
2017				va = pv->pv_va;
2018				pte = pmap_pte_quick(pmap, va);
2019				if ((*pte & PG_W) != 0)
2020					continue;
2021				tpte = pte_load_clear(pte);
2022				if ((tpte & PG_G) != 0)
2023					pmap_invalidate_page(pmap, va);
2024				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2025				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2026					vm_page_dirty(m);
2027				if ((tpte & PG_A) != 0)
2028					vm_page_aflag_set(m, PGA_REFERENCED);
2029				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2030				if (TAILQ_EMPTY(&m->md.pv_list))
2031					vm_page_aflag_clear(m, PGA_WRITEABLE);
2032				pmap_unuse_pt(pmap, va, &free);
2033				freemask |= 1UL << bit;
2034				freed++;
2035			}
2036			pc->pc_map[field] |= freemask;
2037		}
2038		if (freed == 0) {
2039			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2040			continue;
2041		}
2042		pmap->pm_stats.resident_count -= freed;
2043		PV_STAT(pv_entry_frees += freed);
2044		PV_STAT(pv_entry_spare += freed);
2045		pv_entry_count -= freed;
2046		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2047		for (field = 0; field < _NPCM; field++)
2048			if (pc->pc_map[field] != pc_freemask[field]) {
2049				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2050				    pc_list);
2051				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2052
2053				/*
2054				 * One freed pv entry in locked_pmap is
2055				 * sufficient.
2056				 */
2057				if (pmap == locked_pmap)
2058					goto out;
2059				break;
2060			}
2061		if (field == _NPCM) {
2062			PV_STAT(pv_entry_spare -= _NPCPV);
2063			PV_STAT(pc_chunk_count--);
2064			PV_STAT(pc_chunk_frees++);
2065			/* Entire chunk is free; return it. */
2066			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2067			pmap_qremove((vm_offset_t)pc, 1);
2068			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2069			break;
2070		}
2071	}
2072out:
2073	sched_unpin();
2074	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2075	if (pmap != NULL) {
2076		pmap_invalidate_all(pmap);
2077		if (pmap != locked_pmap)
2078			PMAP_UNLOCK(pmap);
2079	}
2080	if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
2081		m_pc = free;
2082		free = m_pc->right;
2083		/* Recycle a freed page table page. */
2084		m_pc->wire_count = 1;
2085		atomic_add_int(&cnt.v_wire_count, 1);
2086	}
2087	pmap_free_zero_pages(free);
2088	return (m_pc);
2089}
2090
2091
2092/*
2093 * free the pv_entry back to the free list
2094 */
2095static void
2096free_pv_entry(pmap_t pmap, pv_entry_t pv)
2097{
2098	vm_page_t m;
2099	struct pv_chunk *pc;
2100	int idx, field, bit;
2101
2102	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2103	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2104	PV_STAT(pv_entry_frees++);
2105	PV_STAT(pv_entry_spare++);
2106	pv_entry_count--;
2107	pc = pv_to_chunk(pv);
2108	idx = pv - &pc->pc_pventry[0];
2109	field = idx / 32;
2110	bit = idx % 32;
2111	pc->pc_map[field] |= 1ul << bit;
2112	/* move to head of list */
2113	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2114	for (idx = 0; idx < _NPCM; idx++)
2115		if (pc->pc_map[idx] != pc_freemask[idx]) {
2116			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2117			return;
2118		}
2119 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2120	PV_STAT(pv_entry_spare -= _NPCPV);
2121	PV_STAT(pc_chunk_count--);
2122	PV_STAT(pc_chunk_frees++);
2123	/* entire chunk is free, return it */
2124	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2125	pmap_qremove((vm_offset_t)pc, 1);
2126	vm_page_unwire(m, 0);
2127	vm_page_free(m);
2128	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2129}
2130
2131/*
2132 * get a new pv_entry, allocating a block from the system
2133 * when needed.
2134 */
2135static pv_entry_t
2136get_pv_entry(pmap_t pmap, int try)
2137{
2138	static const struct timeval printinterval = { 60, 0 };
2139	static struct timeval lastprint;
2140	int bit, field;
2141	pv_entry_t pv;
2142	struct pv_chunk *pc;
2143	vm_page_t m;
2144
2145	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2146	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2147	PV_STAT(pv_entry_allocs++);
2148	pv_entry_count++;
2149	if (pv_entry_count > pv_entry_high_water)
2150		if (ratecheck(&lastprint, &printinterval))
2151			printf("Approaching the limit on PV entries, consider "
2152			    "increasing either the vm.pmap.shpgperproc or the "
2153			    "vm.pmap.pv_entry_max tunable.\n");
2154retry:
2155	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2156	if (pc != NULL) {
2157		for (field = 0; field < _NPCM; field++) {
2158			if (pc->pc_map[field]) {
2159				bit = bsfl(pc->pc_map[field]);
2160				break;
2161			}
2162		}
2163		if (field < _NPCM) {
2164			pv = &pc->pc_pventry[field * 32 + bit];
2165			pc->pc_map[field] &= ~(1ul << bit);
2166			/* If this was the last item, move it to tail */
2167			for (field = 0; field < _NPCM; field++)
2168				if (pc->pc_map[field] != 0) {
2169					PV_STAT(pv_entry_spare--);
2170					return (pv);	/* not full, return */
2171				}
2172			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2173			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2174			if (pc != TAILQ_LAST(&pv_chunks, pch)) {
2175				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2176				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2177			}
2178			PV_STAT(pv_entry_spare--);
2179			return (pv);
2180		}
2181	}
2182	/*
2183	 * Access to the ptelist "pv_vafree" is synchronized by the page
2184	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2185	 * remain non-empty until pmap_ptelist_alloc() completes.
2186	 */
2187	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2188	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2189		if (try) {
2190			pv_entry_count--;
2191			PV_STAT(pc_chunk_tryfail++);
2192			return (NULL);
2193		}
2194		m = pmap_pv_reclaim(pmap);
2195		if (m == NULL)
2196			goto retry;
2197	}
2198	PV_STAT(pc_chunk_count++);
2199	PV_STAT(pc_chunk_allocs++);
2200	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2201	pmap_qenter((vm_offset_t)pc, &m, 1);
2202	if ((m->flags & PG_ZERO) == 0)
2203		pagezero(pc);
2204	pc->pc_pmap = pmap;
2205	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2206	for (field = 1; field < _NPCM; field++)
2207		pc->pc_map[field] = pc_freemask[field];
2208	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2209	pv = &pc->pc_pventry[0];
2210	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2211	PV_STAT(pv_entry_spare += _NPCPV - 1);
2212	return (pv);
2213}
2214
2215static __inline pv_entry_t
2216pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2217{
2218	pv_entry_t pv;
2219
2220	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2221	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2222		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2223			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2224			break;
2225		}
2226	}
2227	return (pv);
2228}
2229
2230static void
2231pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2232{
2233	pv_entry_t pv;
2234
2235	pv = pmap_pvh_remove(pvh, pmap, va);
2236	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2237	free_pv_entry(pmap, pv);
2238}
2239
2240static void
2241pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2242{
2243
2244	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2245	pmap_pvh_free(&m->md, pmap, va);
2246	if (TAILQ_EMPTY(&m->md.pv_list))
2247		vm_page_aflag_clear(m, PGA_WRITEABLE);
2248}
2249
2250/*
2251 * Conditionally create a pv entry.
2252 */
2253static boolean_t
2254pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2255{
2256	pv_entry_t pv;
2257
2258	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2259	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2260	if (pv_entry_count < pv_entry_high_water &&
2261	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2262		pv->pv_va = va;
2263		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2264		return (TRUE);
2265	} else
2266		return (FALSE);
2267}
2268
2269/*
2270 * pmap_remove_pte: do the things to unmap a page in a process
2271 */
2272static int
2273pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2274{
2275	pt_entry_t oldpte;
2276	vm_page_t m;
2277
2278	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2279	    pmap, (u_long)*ptq, va);
2280
2281	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2282	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2283	oldpte = *ptq;
2284	PT_SET_VA_MA(ptq, 0, TRUE);
2285	if (oldpte & PG_W)
2286		pmap->pm_stats.wired_count -= 1;
2287	/*
2288	 * Machines that don't support invlpg, also don't support
2289	 * PG_G.
2290	 */
2291	if (oldpte & PG_G)
2292		pmap_invalidate_page(kernel_pmap, va);
2293	pmap->pm_stats.resident_count -= 1;
2294	if (oldpte & PG_MANAGED) {
2295		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2296		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2297			vm_page_dirty(m);
2298		if (oldpte & PG_A)
2299			vm_page_aflag_set(m, PGA_REFERENCED);
2300		pmap_remove_entry(pmap, m, va);
2301	}
2302	return (pmap_unuse_pt(pmap, va, free));
2303}
2304
2305/*
2306 * Remove a single page from a process address space
2307 */
2308static void
2309pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2310{
2311	pt_entry_t *pte;
2312
2313	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2314	    pmap, va);
2315
2316	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2317	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2318	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2319	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2320		return;
2321	pmap_remove_pte(pmap, pte, va, free);
2322	pmap_invalidate_page(pmap, va);
2323	if (*PMAP1)
2324		PT_SET_MA(PADDR1, 0);
2325
2326}
2327
2328/*
2329 *	Remove the given range of addresses from the specified map.
2330 *
2331 *	It is assumed that the start and end are properly
2332 *	rounded to the page size.
2333 */
2334void
2335pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2336{
2337	vm_offset_t pdnxt;
2338	pd_entry_t ptpaddr;
2339	pt_entry_t *pte;
2340	vm_page_t free = NULL;
2341	int anyvalid;
2342
2343	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2344	    pmap, sva, eva);
2345
2346	/*
2347	 * Perform an unsynchronized read.  This is, however, safe.
2348	 */
2349	if (pmap->pm_stats.resident_count == 0)
2350		return;
2351
2352	anyvalid = 0;
2353
2354	vm_page_lock_queues();
2355	sched_pin();
2356	PMAP_LOCK(pmap);
2357
2358	/*
2359	 * special handling of removing one page.  a very
2360	 * common operation and easy to short circuit some
2361	 * code.
2362	 */
2363	if ((sva + PAGE_SIZE == eva) &&
2364	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2365		pmap_remove_page(pmap, sva, &free);
2366		goto out;
2367	}
2368
2369	for (; sva < eva; sva = pdnxt) {
2370		u_int pdirindex;
2371
2372		/*
2373		 * Calculate index for next page table.
2374		 */
2375		pdnxt = (sva + NBPDR) & ~PDRMASK;
2376		if (pdnxt < sva)
2377			pdnxt = eva;
2378		if (pmap->pm_stats.resident_count == 0)
2379			break;
2380
2381		pdirindex = sva >> PDRSHIFT;
2382		ptpaddr = pmap->pm_pdir[pdirindex];
2383
2384		/*
2385		 * Weed out invalid mappings. Note: we assume that the page
2386		 * directory table is always allocated, and in kernel virtual.
2387		 */
2388		if (ptpaddr == 0)
2389			continue;
2390
2391		/*
2392		 * Check for large page.
2393		 */
2394		if ((ptpaddr & PG_PS) != 0) {
2395			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2396			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2397			anyvalid = 1;
2398			continue;
2399		}
2400
2401		/*
2402		 * Limit our scan to either the end of the va represented
2403		 * by the current page table page, or to the end of the
2404		 * range being removed.
2405		 */
2406		if (pdnxt > eva)
2407			pdnxt = eva;
2408
2409		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2410		    sva += PAGE_SIZE) {
2411			if ((*pte & PG_V) == 0)
2412				continue;
2413
2414			/*
2415			 * The TLB entry for a PG_G mapping is invalidated
2416			 * by pmap_remove_pte().
2417			 */
2418			if ((*pte & PG_G) == 0)
2419				anyvalid = 1;
2420			if (pmap_remove_pte(pmap, pte, sva, &free))
2421				break;
2422		}
2423	}
2424	PT_UPDATES_FLUSH();
2425	if (*PMAP1)
2426		PT_SET_VA_MA(PMAP1, 0, TRUE);
2427out:
2428	if (anyvalid)
2429		pmap_invalidate_all(pmap);
2430	sched_unpin();
2431	vm_page_unlock_queues();
2432	PMAP_UNLOCK(pmap);
2433	pmap_free_zero_pages(free);
2434}
2435
2436/*
2437 *	Routine:	pmap_remove_all
2438 *	Function:
2439 *		Removes this physical page from
2440 *		all physical maps in which it resides.
2441 *		Reflects back modify bits to the pager.
2442 *
2443 *	Notes:
2444 *		Original versions of this routine were very
2445 *		inefficient because they iteratively called
2446 *		pmap_remove (slow...)
2447 */
2448
2449void
2450pmap_remove_all(vm_page_t m)
2451{
2452	pv_entry_t pv;
2453	pmap_t pmap;
2454	pt_entry_t *pte, tpte;
2455	vm_page_t free;
2456
2457	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2458	    ("pmap_remove_all: page %p is not managed", m));
2459	free = NULL;
2460	vm_page_lock_queues();
2461	sched_pin();
2462	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2463		pmap = PV_PMAP(pv);
2464		PMAP_LOCK(pmap);
2465		pmap->pm_stats.resident_count--;
2466		pte = pmap_pte_quick(pmap, pv->pv_va);
2467		tpte = *pte;
2468		PT_SET_VA_MA(pte, 0, TRUE);
2469		if (tpte & PG_W)
2470			pmap->pm_stats.wired_count--;
2471		if (tpte & PG_A)
2472			vm_page_aflag_set(m, PGA_REFERENCED);
2473
2474		/*
2475		 * Update the vm_page_t clean and reference bits.
2476		 */
2477		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2478			vm_page_dirty(m);
2479		pmap_unuse_pt(pmap, pv->pv_va, &free);
2480		pmap_invalidate_page(pmap, pv->pv_va);
2481		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2482		free_pv_entry(pmap, pv);
2483		PMAP_UNLOCK(pmap);
2484	}
2485	vm_page_aflag_clear(m, PGA_WRITEABLE);
2486	PT_UPDATES_FLUSH();
2487	if (*PMAP1)
2488		PT_SET_MA(PADDR1, 0);
2489	sched_unpin();
2490	vm_page_unlock_queues();
2491	pmap_free_zero_pages(free);
2492}
2493
2494/*
2495 *	Set the physical protection on the
2496 *	specified range of this map as requested.
2497 */
2498void
2499pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2500{
2501	vm_offset_t pdnxt;
2502	pd_entry_t ptpaddr;
2503	pt_entry_t *pte;
2504	int anychanged;
2505
2506	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2507	    pmap, sva, eva, prot);
2508
2509	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2510		pmap_remove(pmap, sva, eva);
2511		return;
2512	}
2513
2514#ifdef PAE
2515	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2516	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2517		return;
2518#else
2519	if (prot & VM_PROT_WRITE)
2520		return;
2521#endif
2522
2523	anychanged = 0;
2524
2525	vm_page_lock_queues();
2526	sched_pin();
2527	PMAP_LOCK(pmap);
2528	for (; sva < eva; sva = pdnxt) {
2529		pt_entry_t obits, pbits;
2530		u_int pdirindex;
2531
2532		pdnxt = (sva + NBPDR) & ~PDRMASK;
2533		if (pdnxt < sva)
2534			pdnxt = eva;
2535
2536		pdirindex = sva >> PDRSHIFT;
2537		ptpaddr = pmap->pm_pdir[pdirindex];
2538
2539		/*
2540		 * Weed out invalid mappings. Note: we assume that the page
2541		 * directory table is always allocated, and in kernel virtual.
2542		 */
2543		if (ptpaddr == 0)
2544			continue;
2545
2546		/*
2547		 * Check for large page.
2548		 */
2549		if ((ptpaddr & PG_PS) != 0) {
2550			if ((prot & VM_PROT_WRITE) == 0)
2551				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2552#ifdef PAE
2553			if ((prot & VM_PROT_EXECUTE) == 0)
2554				pmap->pm_pdir[pdirindex] |= pg_nx;
2555#endif
2556			anychanged = 1;
2557			continue;
2558		}
2559
2560		if (pdnxt > eva)
2561			pdnxt = eva;
2562
2563		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2564		    sva += PAGE_SIZE) {
2565			vm_page_t m;
2566
2567retry:
2568			/*
2569			 * Regardless of whether a pte is 32 or 64 bits in
2570			 * size, PG_RW, PG_A, and PG_M are among the least
2571			 * significant 32 bits.
2572			 */
2573			obits = pbits = *pte;
2574			if ((pbits & PG_V) == 0)
2575				continue;
2576
2577			if ((prot & VM_PROT_WRITE) == 0) {
2578				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2579				    (PG_MANAGED | PG_M | PG_RW)) {
2580					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2581					    PG_FRAME);
2582					vm_page_dirty(m);
2583				}
2584				pbits &= ~(PG_RW | PG_M);
2585			}
2586#ifdef PAE
2587			if ((prot & VM_PROT_EXECUTE) == 0)
2588				pbits |= pg_nx;
2589#endif
2590
2591			if (pbits != obits) {
2592				obits = *pte;
2593				PT_SET_VA_MA(pte, pbits, TRUE);
2594				if (*pte != pbits)
2595					goto retry;
2596				if (obits & PG_G)
2597					pmap_invalidate_page(pmap, sva);
2598				else
2599					anychanged = 1;
2600			}
2601		}
2602	}
2603	PT_UPDATES_FLUSH();
2604	if (*PMAP1)
2605		PT_SET_VA_MA(PMAP1, 0, TRUE);
2606	if (anychanged)
2607		pmap_invalidate_all(pmap);
2608	sched_unpin();
2609	vm_page_unlock_queues();
2610	PMAP_UNLOCK(pmap);
2611}
2612
2613/*
2614 *	Insert the given physical page (p) at
2615 *	the specified virtual address (v) in the
2616 *	target physical map with the protection requested.
2617 *
2618 *	If specified, the page will be wired down, meaning
2619 *	that the related pte can not be reclaimed.
2620 *
2621 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2622 *	or lose information.  That is, this routine must actually
2623 *	insert this page into the given map NOW.
2624 */
2625void
2626pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2627    vm_prot_t prot, boolean_t wired)
2628{
2629	pd_entry_t *pde;
2630	pt_entry_t *pte;
2631	pt_entry_t newpte, origpte;
2632	pv_entry_t pv;
2633	vm_paddr_t opa, pa;
2634	vm_page_t mpte, om;
2635	boolean_t invlva;
2636
2637	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2638	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2639	va = trunc_page(va);
2640	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2641	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2642	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2643	    va));
2644	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
2645	    VM_OBJECT_LOCKED(m->object),
2646	    ("pmap_enter: page %p is not busy", m));
2647
2648	mpte = NULL;
2649
2650	vm_page_lock_queues();
2651	PMAP_LOCK(pmap);
2652	sched_pin();
2653
2654	/*
2655	 * In the case that a page table page is not
2656	 * resident, we are creating it here.
2657	 */
2658	if (va < VM_MAXUSER_ADDRESS) {
2659		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2660	}
2661
2662	pde = pmap_pde(pmap, va);
2663	if ((*pde & PG_PS) != 0)
2664		panic("pmap_enter: attempted pmap_enter on 4MB page");
2665	pte = pmap_pte_quick(pmap, va);
2666
2667	/*
2668	 * Page Directory table entry not valid, we need a new PT page
2669	 */
2670	if (pte == NULL) {
2671		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2672			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2673	}
2674
2675	pa = VM_PAGE_TO_PHYS(m);
2676	om = NULL;
2677	opa = origpte = 0;
2678
2679#if 0
2680	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2681		pte, *pte));
2682#endif
2683	origpte = *pte;
2684	if (origpte)
2685		origpte = xpmap_mtop(origpte);
2686	opa = origpte & PG_FRAME;
2687
2688	/*
2689	 * Mapping has not changed, must be protection or wiring change.
2690	 */
2691	if (origpte && (opa == pa)) {
2692		/*
2693		 * Wiring change, just update stats. We don't worry about
2694		 * wiring PT pages as they remain resident as long as there
2695		 * are valid mappings in them. Hence, if a user page is wired,
2696		 * the PT page will be also.
2697		 */
2698		if (wired && ((origpte & PG_W) == 0))
2699			pmap->pm_stats.wired_count++;
2700		else if (!wired && (origpte & PG_W))
2701			pmap->pm_stats.wired_count--;
2702
2703		/*
2704		 * Remove extra pte reference
2705		 */
2706		if (mpte)
2707			mpte->wire_count--;
2708
2709		if (origpte & PG_MANAGED) {
2710			om = m;
2711			pa |= PG_MANAGED;
2712		}
2713		goto validate;
2714	}
2715
2716	pv = NULL;
2717
2718	/*
2719	 * Mapping has changed, invalidate old range and fall through to
2720	 * handle validating new mapping.
2721	 */
2722	if (opa) {
2723		if (origpte & PG_W)
2724			pmap->pm_stats.wired_count--;
2725		if (origpte & PG_MANAGED) {
2726			om = PHYS_TO_VM_PAGE(opa);
2727			pv = pmap_pvh_remove(&om->md, pmap, va);
2728		} else if (va < VM_MAXUSER_ADDRESS)
2729			printf("va=0x%x is unmanaged :-( \n", va);
2730
2731		if (mpte != NULL) {
2732			mpte->wire_count--;
2733			KASSERT(mpte->wire_count > 0,
2734			    ("pmap_enter: missing reference to page table page,"
2735			     " va: 0x%x", va));
2736		}
2737	} else
2738		pmap->pm_stats.resident_count++;
2739
2740	/*
2741	 * Enter on the PV list if part of our managed memory.
2742	 */
2743	if ((m->oflags & VPO_UNMANAGED) == 0) {
2744		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2745		    ("pmap_enter: managed mapping within the clean submap"));
2746		if (pv == NULL)
2747			pv = get_pv_entry(pmap, FALSE);
2748		pv->pv_va = va;
2749		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2750		pa |= PG_MANAGED;
2751	} else if (pv != NULL)
2752		free_pv_entry(pmap, pv);
2753
2754	/*
2755	 * Increment counters
2756	 */
2757	if (wired)
2758		pmap->pm_stats.wired_count++;
2759
2760validate:
2761	/*
2762	 * Now validate mapping with desired protection/wiring.
2763	 */
2764	newpte = (pt_entry_t)(pa | PG_V);
2765	if ((prot & VM_PROT_WRITE) != 0) {
2766		newpte |= PG_RW;
2767		if ((newpte & PG_MANAGED) != 0)
2768			vm_page_aflag_set(m, PGA_WRITEABLE);
2769	}
2770#ifdef PAE
2771	if ((prot & VM_PROT_EXECUTE) == 0)
2772		newpte |= pg_nx;
2773#endif
2774	if (wired)
2775		newpte |= PG_W;
2776	if (va < VM_MAXUSER_ADDRESS)
2777		newpte |= PG_U;
2778	if (pmap == kernel_pmap)
2779		newpte |= pgeflag;
2780
2781	critical_enter();
2782	/*
2783	 * if the mapping or permission bits are different, we need
2784	 * to update the pte.
2785	 */
2786	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2787		if (origpte) {
2788			invlva = FALSE;
2789			origpte = *pte;
2790			PT_SET_VA(pte, newpte | PG_A, FALSE);
2791			if (origpte & PG_A) {
2792				if (origpte & PG_MANAGED)
2793					vm_page_aflag_set(om, PGA_REFERENCED);
2794				if (opa != VM_PAGE_TO_PHYS(m))
2795					invlva = TRUE;
2796#ifdef PAE
2797				if ((origpte & PG_NX) == 0 &&
2798				    (newpte & PG_NX) != 0)
2799					invlva = TRUE;
2800#endif
2801			}
2802			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2803				if ((origpte & PG_MANAGED) != 0)
2804					vm_page_dirty(om);
2805				if ((prot & VM_PROT_WRITE) == 0)
2806					invlva = TRUE;
2807			}
2808			if ((origpte & PG_MANAGED) != 0 &&
2809			    TAILQ_EMPTY(&om->md.pv_list))
2810				vm_page_aflag_clear(om, PGA_WRITEABLE);
2811			if (invlva)
2812				pmap_invalidate_page(pmap, va);
2813		} else{
2814			PT_SET_VA(pte, newpte | PG_A, FALSE);
2815		}
2816
2817	}
2818	PT_UPDATES_FLUSH();
2819	critical_exit();
2820	if (*PMAP1)
2821		PT_SET_VA_MA(PMAP1, 0, TRUE);
2822	sched_unpin();
2823	vm_page_unlock_queues();
2824	PMAP_UNLOCK(pmap);
2825}
2826
2827/*
2828 * Maps a sequence of resident pages belonging to the same object.
2829 * The sequence begins with the given page m_start.  This page is
2830 * mapped at the given virtual address start.  Each subsequent page is
2831 * mapped at a virtual address that is offset from start by the same
2832 * amount as the page is offset from m_start within the object.  The
2833 * last page in the sequence is the page with the largest offset from
2834 * m_start that can be mapped at a virtual address less than the given
2835 * virtual address end.  Not every virtual page between start and end
2836 * is mapped; only those for which a resident page exists with the
2837 * corresponding offset from m_start are mapped.
2838 */
2839void
2840pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2841    vm_page_t m_start, vm_prot_t prot)
2842{
2843	vm_page_t m, mpte;
2844	vm_pindex_t diff, psize;
2845	multicall_entry_t mcl[16];
2846	multicall_entry_t *mclp = mcl;
2847	int error, count = 0;
2848
2849	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2850	psize = atop(end - start);
2851	mpte = NULL;
2852	m = m_start;
2853	vm_page_lock_queues();
2854	PMAP_LOCK(pmap);
2855	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2856		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2857		    prot, mpte);
2858		m = TAILQ_NEXT(m, listq);
2859		if (count == 16) {
2860			error = HYPERVISOR_multicall(mcl, count);
2861			KASSERT(error == 0, ("bad multicall %d", error));
2862			mclp = mcl;
2863			count = 0;
2864		}
2865	}
2866	if (count) {
2867		error = HYPERVISOR_multicall(mcl, count);
2868		KASSERT(error == 0, ("bad multicall %d", error));
2869	}
2870	vm_page_unlock_queues();
2871	PMAP_UNLOCK(pmap);
2872}
2873
2874/*
2875 * this code makes some *MAJOR* assumptions:
2876 * 1. Current pmap & pmap exists.
2877 * 2. Not wired.
2878 * 3. Read access.
2879 * 4. No page table pages.
2880 * but is *MUCH* faster than pmap_enter...
2881 */
2882
2883void
2884pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2885{
2886	multicall_entry_t mcl, *mclp;
2887	int count = 0;
2888	mclp = &mcl;
2889
2890	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2891	    pmap, va, m, prot);
2892
2893	vm_page_lock_queues();
2894	PMAP_LOCK(pmap);
2895	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2896	if (count)
2897		HYPERVISOR_multicall(&mcl, count);
2898	vm_page_unlock_queues();
2899	PMAP_UNLOCK(pmap);
2900}
2901
2902#ifdef notyet
2903void
2904pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2905{
2906	int i, error, index = 0;
2907	multicall_entry_t mcl[16];
2908	multicall_entry_t *mclp = mcl;
2909
2910	PMAP_LOCK(pmap);
2911	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2912		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2913			continue;
2914
2915		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2916		if (index == 16) {
2917			error = HYPERVISOR_multicall(mcl, index);
2918			mclp = mcl;
2919			index = 0;
2920			KASSERT(error == 0, ("bad multicall %d", error));
2921		}
2922	}
2923	if (index) {
2924		error = HYPERVISOR_multicall(mcl, index);
2925		KASSERT(error == 0, ("bad multicall %d", error));
2926	}
2927
2928	PMAP_UNLOCK(pmap);
2929}
2930#endif
2931
2932static vm_page_t
2933pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2934    vm_prot_t prot, vm_page_t mpte)
2935{
2936	pt_entry_t *pte;
2937	vm_paddr_t pa;
2938	vm_page_t free;
2939	multicall_entry_t *mcl = *mclpp;
2940
2941	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2942	    (m->oflags & VPO_UNMANAGED) != 0,
2943	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2944	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2945	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2946
2947	/*
2948	 * In the case that a page table page is not
2949	 * resident, we are creating it here.
2950	 */
2951	if (va < VM_MAXUSER_ADDRESS) {
2952		u_int ptepindex;
2953		pd_entry_t ptema;
2954
2955		/*
2956		 * Calculate pagetable page index
2957		 */
2958		ptepindex = va >> PDRSHIFT;
2959		if (mpte && (mpte->pindex == ptepindex)) {
2960			mpte->wire_count++;
2961		} else {
2962			/*
2963			 * Get the page directory entry
2964			 */
2965			ptema = pmap->pm_pdir[ptepindex];
2966
2967			/*
2968			 * If the page table page is mapped, we just increment
2969			 * the hold count, and activate it.
2970			 */
2971			if (ptema & PG_V) {
2972				if (ptema & PG_PS)
2973					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2974				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2975				mpte->wire_count++;
2976			} else {
2977				mpte = _pmap_allocpte(pmap, ptepindex,
2978				    M_NOWAIT);
2979				if (mpte == NULL)
2980					return (mpte);
2981			}
2982		}
2983	} else {
2984		mpte = NULL;
2985	}
2986
2987	/*
2988	 * This call to vtopte makes the assumption that we are
2989	 * entering the page into the current pmap.  In order to support
2990	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2991	 * But that isn't as quick as vtopte.
2992	 */
2993	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2994	pte = vtopte(va);
2995	if (*pte & PG_V) {
2996		if (mpte != NULL) {
2997			mpte->wire_count--;
2998			mpte = NULL;
2999		}
3000		return (mpte);
3001	}
3002
3003	/*
3004	 * Enter on the PV list if part of our managed memory.
3005	 */
3006	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3007	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3008		if (mpte != NULL) {
3009			free = NULL;
3010			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3011				pmap_invalidate_page(pmap, va);
3012				pmap_free_zero_pages(free);
3013			}
3014
3015			mpte = NULL;
3016		}
3017		return (mpte);
3018	}
3019
3020	/*
3021	 * Increment counters
3022	 */
3023	pmap->pm_stats.resident_count++;
3024
3025	pa = VM_PAGE_TO_PHYS(m);
3026#ifdef PAE
3027	if ((prot & VM_PROT_EXECUTE) == 0)
3028		pa |= pg_nx;
3029#endif
3030
3031#if 0
3032	/*
3033	 * Now validate mapping with RO protection
3034	 */
3035	if ((m->oflags & VPO_UNMANAGED) != 0)
3036		pte_store(pte, pa | PG_V | PG_U);
3037	else
3038		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3039#else
3040	/*
3041	 * Now validate mapping with RO protection
3042	 */
3043	if ((m->oflags & VPO_UNMANAGED) != 0)
3044		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3045	else
3046		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3047
3048	mcl->op = __HYPERVISOR_update_va_mapping;
3049	mcl->args[0] = va;
3050	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3051	mcl->args[2] = (uint32_t)(pa >> 32);
3052	mcl->args[3] = 0;
3053	*mclpp = mcl + 1;
3054	*count = *count + 1;
3055#endif
3056	return (mpte);
3057}
3058
3059/*
3060 * Make a temporary mapping for a physical address.  This is only intended
3061 * to be used for panic dumps.
3062 */
3063void *
3064pmap_kenter_temporary(vm_paddr_t pa, int i)
3065{
3066	vm_offset_t va;
3067	vm_paddr_t ma = xpmap_ptom(pa);
3068
3069	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3070	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3071	invlpg(va);
3072	return ((void *)crashdumpmap);
3073}
3074
3075/*
3076 * This code maps large physical mmap regions into the
3077 * processor address space.  Note that some shortcuts
3078 * are taken, but the code works.
3079 */
3080void
3081pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3082    vm_pindex_t pindex, vm_size_t size)
3083{
3084	pd_entry_t *pde;
3085	vm_paddr_t pa, ptepa;
3086	vm_page_t p;
3087	int pat_mode;
3088
3089	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3090	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3091	    ("pmap_object_init_pt: non-device object"));
3092	if (pseflag &&
3093	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3094		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3095			return;
3096		p = vm_page_lookup(object, pindex);
3097		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3098		    ("pmap_object_init_pt: invalid page %p", p));
3099		pat_mode = p->md.pat_mode;
3100
3101		/*
3102		 * Abort the mapping if the first page is not physically
3103		 * aligned to a 2/4MB page boundary.
3104		 */
3105		ptepa = VM_PAGE_TO_PHYS(p);
3106		if (ptepa & (NBPDR - 1))
3107			return;
3108
3109		/*
3110		 * Skip the first page.  Abort the mapping if the rest of
3111		 * the pages are not physically contiguous or have differing
3112		 * memory attributes.
3113		 */
3114		p = TAILQ_NEXT(p, listq);
3115		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3116		    pa += PAGE_SIZE) {
3117			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3118			    ("pmap_object_init_pt: invalid page %p", p));
3119			if (pa != VM_PAGE_TO_PHYS(p) ||
3120			    pat_mode != p->md.pat_mode)
3121				return;
3122			p = TAILQ_NEXT(p, listq);
3123		}
3124
3125		/*
3126		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3127		 * "size" is a multiple of 2/4M, adding the PAT setting to
3128		 * "pa" will not affect the termination of this loop.
3129		 */
3130		PMAP_LOCK(pmap);
3131		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3132		    size; pa += NBPDR) {
3133			pde = pmap_pde(pmap, addr);
3134			if (*pde == 0) {
3135				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3136				    PG_U | PG_RW | PG_V);
3137				pmap->pm_stats.resident_count += NBPDR /
3138				    PAGE_SIZE;
3139				pmap_pde_mappings++;
3140			}
3141			/* Else continue on if the PDE is already valid. */
3142			addr += NBPDR;
3143		}
3144		PMAP_UNLOCK(pmap);
3145	}
3146}
3147
3148/*
3149 *	Routine:	pmap_change_wiring
3150 *	Function:	Change the wiring attribute for a map/virtual-address
3151 *			pair.
3152 *	In/out conditions:
3153 *			The mapping must already exist in the pmap.
3154 */
3155void
3156pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3157{
3158	pt_entry_t *pte;
3159
3160	vm_page_lock_queues();
3161	PMAP_LOCK(pmap);
3162	pte = pmap_pte(pmap, va);
3163
3164	if (wired && !pmap_pte_w(pte)) {
3165		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3166		pmap->pm_stats.wired_count++;
3167	} else if (!wired && pmap_pte_w(pte)) {
3168		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3169		pmap->pm_stats.wired_count--;
3170	}
3171
3172	/*
3173	 * Wiring is not a hardware characteristic so there is no need to
3174	 * invalidate TLB.
3175	 */
3176	pmap_pte_release(pte);
3177	PMAP_UNLOCK(pmap);
3178	vm_page_unlock_queues();
3179}
3180
3181
3182
3183/*
3184 *	Copy the range specified by src_addr/len
3185 *	from the source map to the range dst_addr/len
3186 *	in the destination map.
3187 *
3188 *	This routine is only advisory and need not do anything.
3189 */
3190
3191void
3192pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3193    vm_offset_t src_addr)
3194{
3195	vm_page_t   free;
3196	vm_offset_t addr;
3197	vm_offset_t end_addr = src_addr + len;
3198	vm_offset_t pdnxt;
3199
3200	if (dst_addr != src_addr)
3201		return;
3202
3203	if (!pmap_is_current(src_pmap)) {
3204		CTR2(KTR_PMAP,
3205		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3206		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3207
3208		return;
3209	}
3210	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3211	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3212
3213#ifdef HAMFISTED_LOCKING
3214	mtx_lock(&createdelete_lock);
3215#endif
3216
3217	vm_page_lock_queues();
3218	if (dst_pmap < src_pmap) {
3219		PMAP_LOCK(dst_pmap);
3220		PMAP_LOCK(src_pmap);
3221	} else {
3222		PMAP_LOCK(src_pmap);
3223		PMAP_LOCK(dst_pmap);
3224	}
3225	sched_pin();
3226	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3227		pt_entry_t *src_pte, *dst_pte;
3228		vm_page_t dstmpte, srcmpte;
3229		pd_entry_t srcptepaddr;
3230		u_int ptepindex;
3231
3232		KASSERT(addr < UPT_MIN_ADDRESS,
3233		    ("pmap_copy: invalid to pmap_copy page tables"));
3234
3235		pdnxt = (addr + NBPDR) & ~PDRMASK;
3236		if (pdnxt < addr)
3237			pdnxt = end_addr;
3238		ptepindex = addr >> PDRSHIFT;
3239
3240		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3241		if (srcptepaddr == 0)
3242			continue;
3243
3244		if (srcptepaddr & PG_PS) {
3245			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3246				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3247				dst_pmap->pm_stats.resident_count +=
3248				    NBPDR / PAGE_SIZE;
3249			}
3250			continue;
3251		}
3252
3253		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3254		KASSERT(srcmpte->wire_count > 0,
3255		    ("pmap_copy: source page table page is unused"));
3256
3257		if (pdnxt > end_addr)
3258			pdnxt = end_addr;
3259
3260		src_pte = vtopte(addr);
3261		while (addr < pdnxt) {
3262			pt_entry_t ptetemp;
3263			ptetemp = *src_pte;
3264			/*
3265			 * we only virtual copy managed pages
3266			 */
3267			if ((ptetemp & PG_MANAGED) != 0) {
3268				dstmpte = pmap_allocpte(dst_pmap, addr,
3269				    M_NOWAIT);
3270				if (dstmpte == NULL)
3271					goto out;
3272				dst_pte = pmap_pte_quick(dst_pmap, addr);
3273				if (*dst_pte == 0 &&
3274				    pmap_try_insert_pv_entry(dst_pmap, addr,
3275				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3276					/*
3277					 * Clear the wired, modified, and
3278					 * accessed (referenced) bits
3279					 * during the copy.
3280					 */
3281					KASSERT(ptetemp != 0, ("src_pte not set"));
3282					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3283					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3284					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3285						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3286					dst_pmap->pm_stats.resident_count++;
3287	 			} else {
3288					free = NULL;
3289					if (pmap_unwire_pte_hold(dst_pmap,
3290					    dstmpte, &free)) {
3291						pmap_invalidate_page(dst_pmap,
3292						    addr);
3293						pmap_free_zero_pages(free);
3294					}
3295					goto out;
3296				}
3297				if (dstmpte->wire_count >= srcmpte->wire_count)
3298					break;
3299			}
3300			addr += PAGE_SIZE;
3301			src_pte++;
3302		}
3303	}
3304out:
3305	PT_UPDATES_FLUSH();
3306	sched_unpin();
3307	vm_page_unlock_queues();
3308	PMAP_UNLOCK(src_pmap);
3309	PMAP_UNLOCK(dst_pmap);
3310
3311#ifdef HAMFISTED_LOCKING
3312	mtx_unlock(&createdelete_lock);
3313#endif
3314}
3315
3316static __inline void
3317pagezero(void *page)
3318{
3319#if defined(I686_CPU)
3320	if (cpu_class == CPUCLASS_686) {
3321#if defined(CPU_ENABLE_SSE)
3322		if (cpu_feature & CPUID_SSE2)
3323			sse2_pagezero(page);
3324		else
3325#endif
3326			i686_pagezero(page);
3327	} else
3328#endif
3329		bzero(page, PAGE_SIZE);
3330}
3331
3332/*
3333 *	pmap_zero_page zeros the specified hardware page by mapping
3334 *	the page into KVM and using bzero to clear its contents.
3335 */
3336void
3337pmap_zero_page(vm_page_t m)
3338{
3339	struct sysmaps *sysmaps;
3340
3341	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3342	mtx_lock(&sysmaps->lock);
3343	if (*sysmaps->CMAP2)
3344		panic("pmap_zero_page: CMAP2 busy");
3345	sched_pin();
3346	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3347	pagezero(sysmaps->CADDR2);
3348	PT_SET_MA(sysmaps->CADDR2, 0);
3349	sched_unpin();
3350	mtx_unlock(&sysmaps->lock);
3351}
3352
3353/*
3354 *	pmap_zero_page_area zeros the specified hardware page by mapping
3355 *	the page into KVM and using bzero to clear its contents.
3356 *
3357 *	off and size may not cover an area beyond a single hardware page.
3358 */
3359void
3360pmap_zero_page_area(vm_page_t m, int off, int size)
3361{
3362	struct sysmaps *sysmaps;
3363
3364	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3365	mtx_lock(&sysmaps->lock);
3366	if (*sysmaps->CMAP2)
3367		panic("pmap_zero_page_area: CMAP2 busy");
3368	sched_pin();
3369	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3370
3371	if (off == 0 && size == PAGE_SIZE)
3372		pagezero(sysmaps->CADDR2);
3373	else
3374		bzero((char *)sysmaps->CADDR2 + off, size);
3375	PT_SET_MA(sysmaps->CADDR2, 0);
3376	sched_unpin();
3377	mtx_unlock(&sysmaps->lock);
3378}
3379
3380/*
3381 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3382 *	the page into KVM and using bzero to clear its contents.  This
3383 *	is intended to be called from the vm_pagezero process only and
3384 *	outside of Giant.
3385 */
3386void
3387pmap_zero_page_idle(vm_page_t m)
3388{
3389
3390	if (*CMAP3)
3391		panic("pmap_zero_page_idle: CMAP3 busy");
3392	sched_pin();
3393	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3394	pagezero(CADDR3);
3395	PT_SET_MA(CADDR3, 0);
3396	sched_unpin();
3397}
3398
3399/*
3400 *	pmap_copy_page copies the specified (machine independent)
3401 *	page by mapping the page into virtual memory and using
3402 *	bcopy to copy the page, one machine dependent page at a
3403 *	time.
3404 */
3405void
3406pmap_copy_page(vm_page_t src, vm_page_t dst)
3407{
3408	struct sysmaps *sysmaps;
3409
3410	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3411	mtx_lock(&sysmaps->lock);
3412	if (*sysmaps->CMAP1)
3413		panic("pmap_copy_page: CMAP1 busy");
3414	if (*sysmaps->CMAP2)
3415		panic("pmap_copy_page: CMAP2 busy");
3416	sched_pin();
3417	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3418	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3419	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3420	PT_SET_MA(sysmaps->CADDR1, 0);
3421	PT_SET_MA(sysmaps->CADDR2, 0);
3422	sched_unpin();
3423	mtx_unlock(&sysmaps->lock);
3424}
3425
3426/*
3427 * Returns true if the pmap's pv is one of the first
3428 * 16 pvs linked to from this page.  This count may
3429 * be changed upwards or downwards in the future; it
3430 * is only necessary that true be returned for a small
3431 * subset of pmaps for proper page aging.
3432 */
3433boolean_t
3434pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3435{
3436	pv_entry_t pv;
3437	int loops = 0;
3438	boolean_t rv;
3439
3440	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3441	    ("pmap_page_exists_quick: page %p is not managed", m));
3442	rv = FALSE;
3443	vm_page_lock_queues();
3444	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3445		if (PV_PMAP(pv) == pmap) {
3446			rv = TRUE;
3447			break;
3448		}
3449		loops++;
3450		if (loops >= 16)
3451			break;
3452	}
3453	vm_page_unlock_queues();
3454	return (rv);
3455}
3456
3457/*
3458 *	pmap_page_wired_mappings:
3459 *
3460 *	Return the number of managed mappings to the given physical page
3461 *	that are wired.
3462 */
3463int
3464pmap_page_wired_mappings(vm_page_t m)
3465{
3466	pv_entry_t pv;
3467	pt_entry_t *pte;
3468	pmap_t pmap;
3469	int count;
3470
3471	count = 0;
3472	if ((m->oflags & VPO_UNMANAGED) != 0)
3473		return (count);
3474	vm_page_lock_queues();
3475	sched_pin();
3476	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3477		pmap = PV_PMAP(pv);
3478		PMAP_LOCK(pmap);
3479		pte = pmap_pte_quick(pmap, pv->pv_va);
3480		if ((*pte & PG_W) != 0)
3481			count++;
3482		PMAP_UNLOCK(pmap);
3483	}
3484	sched_unpin();
3485	vm_page_unlock_queues();
3486	return (count);
3487}
3488
3489/*
3490 * Returns TRUE if the given page is mapped.  Otherwise, returns FALSE.
3491 */
3492boolean_t
3493pmap_page_is_mapped(vm_page_t m)
3494{
3495
3496	if ((m->oflags & VPO_UNMANAGED) != 0)
3497		return (FALSE);
3498	return (!TAILQ_EMPTY(&m->md.pv_list));
3499}
3500
3501/*
3502 * Remove all pages from specified address space
3503 * this aids process exit speeds.  Also, this code
3504 * is special cased for current process only, but
3505 * can have the more generic (and slightly slower)
3506 * mode enabled.  This is much faster than pmap_remove
3507 * in the case of running down an entire address space.
3508 */
3509void
3510pmap_remove_pages(pmap_t pmap)
3511{
3512	pt_entry_t *pte, tpte;
3513	vm_page_t m, free = NULL;
3514	pv_entry_t pv;
3515	struct pv_chunk *pc, *npc;
3516	int field, idx;
3517	int32_t bit;
3518	uint32_t inuse, bitmask;
3519	int allfree;
3520
3521	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3522
3523	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3524		printf("warning: pmap_remove_pages called with non-current pmap\n");
3525		return;
3526	}
3527	vm_page_lock_queues();
3528	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3529	PMAP_LOCK(pmap);
3530	sched_pin();
3531	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3532		allfree = 1;
3533		for (field = 0; field < _NPCM; field++) {
3534			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3535			while (inuse != 0) {
3536				bit = bsfl(inuse);
3537				bitmask = 1UL << bit;
3538				idx = field * 32 + bit;
3539				pv = &pc->pc_pventry[idx];
3540				inuse &= ~bitmask;
3541
3542				pte = vtopte(pv->pv_va);
3543				tpte = *pte ? xpmap_mtop(*pte) : 0;
3544
3545				if (tpte == 0) {
3546					printf(
3547					    "TPTE at %p  IS ZERO @ VA %08x\n",
3548					    pte, pv->pv_va);
3549					panic("bad pte");
3550				}
3551
3552/*
3553 * We cannot remove wired pages from a process' mapping at this time
3554 */
3555				if (tpte & PG_W) {
3556					allfree = 0;
3557					continue;
3558				}
3559
3560				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3561				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3562				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3563				    m, (uintmax_t)m->phys_addr,
3564				    (uintmax_t)tpte));
3565
3566				KASSERT(m < &vm_page_array[vm_page_array_size],
3567					("pmap_remove_pages: bad tpte %#jx",
3568					(uintmax_t)tpte));
3569
3570
3571				PT_CLEAR_VA(pte, FALSE);
3572
3573				/*
3574				 * Update the vm_page_t clean/reference bits.
3575				 */
3576				if (tpte & PG_M)
3577					vm_page_dirty(m);
3578
3579				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3580				if (TAILQ_EMPTY(&m->md.pv_list))
3581					vm_page_aflag_clear(m, PGA_WRITEABLE);
3582
3583				pmap_unuse_pt(pmap, pv->pv_va, &free);
3584
3585				/* Mark free */
3586				PV_STAT(pv_entry_frees++);
3587				PV_STAT(pv_entry_spare++);
3588				pv_entry_count--;
3589				pc->pc_map[field] |= bitmask;
3590				pmap->pm_stats.resident_count--;
3591			}
3592		}
3593		PT_UPDATES_FLUSH();
3594		if (allfree) {
3595			PV_STAT(pv_entry_spare -= _NPCPV);
3596			PV_STAT(pc_chunk_count--);
3597			PV_STAT(pc_chunk_frees++);
3598			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3599			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
3600			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3601			pmap_qremove((vm_offset_t)pc, 1);
3602			vm_page_unwire(m, 0);
3603			vm_page_free(m);
3604			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3605		}
3606	}
3607	PT_UPDATES_FLUSH();
3608	if (*PMAP1)
3609		PT_SET_MA(PADDR1, 0);
3610
3611	sched_unpin();
3612	pmap_invalidate_all(pmap);
3613	vm_page_unlock_queues();
3614	PMAP_UNLOCK(pmap);
3615	pmap_free_zero_pages(free);
3616}
3617
3618/*
3619 *	pmap_is_modified:
3620 *
3621 *	Return whether or not the specified physical page was modified
3622 *	in any physical maps.
3623 */
3624boolean_t
3625pmap_is_modified(vm_page_t m)
3626{
3627	pv_entry_t pv;
3628	pt_entry_t *pte;
3629	pmap_t pmap;
3630	boolean_t rv;
3631
3632	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3633	    ("pmap_is_modified: page %p is not managed", m));
3634	rv = FALSE;
3635
3636	/*
3637	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
3638	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3639	 * is clear, no PTEs can have PG_M set.
3640	 */
3641	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3642	if ((m->oflags & VPO_BUSY) == 0 &&
3643	    (m->aflags & PGA_WRITEABLE) == 0)
3644		return (rv);
3645	vm_page_lock_queues();
3646	sched_pin();
3647	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3648		pmap = PV_PMAP(pv);
3649		PMAP_LOCK(pmap);
3650		pte = pmap_pte_quick(pmap, pv->pv_va);
3651		rv = (*pte & PG_M) != 0;
3652		PMAP_UNLOCK(pmap);
3653		if (rv)
3654			break;
3655	}
3656	if (*PMAP1)
3657		PT_SET_MA(PADDR1, 0);
3658	sched_unpin();
3659	vm_page_unlock_queues();
3660	return (rv);
3661}
3662
3663/*
3664 *	pmap_is_prefaultable:
3665 *
3666 *	Return whether or not the specified virtual address is elgible
3667 *	for prefault.
3668 */
3669static boolean_t
3670pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3671{
3672	pt_entry_t *pte;
3673	boolean_t rv = FALSE;
3674
3675	return (rv);
3676
3677	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3678		pte = vtopte(addr);
3679		rv = (*pte == 0);
3680	}
3681	return (rv);
3682}
3683
3684boolean_t
3685pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3686{
3687	boolean_t rv;
3688
3689	PMAP_LOCK(pmap);
3690	rv = pmap_is_prefaultable_locked(pmap, addr);
3691	PMAP_UNLOCK(pmap);
3692	return (rv);
3693}
3694
3695boolean_t
3696pmap_is_referenced(vm_page_t m)
3697{
3698	pv_entry_t pv;
3699	pt_entry_t *pte;
3700	pmap_t pmap;
3701	boolean_t rv;
3702
3703	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3704	    ("pmap_is_referenced: page %p is not managed", m));
3705	rv = FALSE;
3706	vm_page_lock_queues();
3707	sched_pin();
3708	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3709		pmap = PV_PMAP(pv);
3710		PMAP_LOCK(pmap);
3711		pte = pmap_pte_quick(pmap, pv->pv_va);
3712		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3713		PMAP_UNLOCK(pmap);
3714		if (rv)
3715			break;
3716	}
3717	if (*PMAP1)
3718		PT_SET_MA(PADDR1, 0);
3719	sched_unpin();
3720	vm_page_unlock_queues();
3721	return (rv);
3722}
3723
3724void
3725pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3726{
3727	int i, npages = round_page(len) >> PAGE_SHIFT;
3728	for (i = 0; i < npages; i++) {
3729		pt_entry_t *pte;
3730		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3731		vm_page_lock_queues();
3732		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3733		vm_page_unlock_queues();
3734		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3735		pmap_pte_release(pte);
3736	}
3737}
3738
3739void
3740pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3741{
3742	int i, npages = round_page(len) >> PAGE_SHIFT;
3743	for (i = 0; i < npages; i++) {
3744		pt_entry_t *pte;
3745		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3746		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3747		vm_page_lock_queues();
3748		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3749		vm_page_unlock_queues();
3750		pmap_pte_release(pte);
3751	}
3752}
3753
3754/*
3755 * Clear the write and modified bits in each of the given page's mappings.
3756 */
3757void
3758pmap_remove_write(vm_page_t m)
3759{
3760	pv_entry_t pv;
3761	pmap_t pmap;
3762	pt_entry_t oldpte, *pte;
3763
3764	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3765	    ("pmap_remove_write: page %p is not managed", m));
3766
3767	/*
3768	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
3769	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
3770	 * is clear, no page table entries need updating.
3771	 */
3772	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3773	if ((m->oflags & VPO_BUSY) == 0 &&
3774	    (m->aflags & PGA_WRITEABLE) == 0)
3775		return;
3776	vm_page_lock_queues();
3777	sched_pin();
3778	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3779		pmap = PV_PMAP(pv);
3780		PMAP_LOCK(pmap);
3781		pte = pmap_pte_quick(pmap, pv->pv_va);
3782retry:
3783		oldpte = *pte;
3784		if ((oldpte & PG_RW) != 0) {
3785			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3786
3787			/*
3788			 * Regardless of whether a pte is 32 or 64 bits
3789			 * in size, PG_RW and PG_M are among the least
3790			 * significant 32 bits.
3791			 */
3792			PT_SET_VA_MA(pte, newpte, TRUE);
3793			if (*pte != newpte)
3794				goto retry;
3795
3796			if ((oldpte & PG_M) != 0)
3797				vm_page_dirty(m);
3798			pmap_invalidate_page(pmap, pv->pv_va);
3799		}
3800		PMAP_UNLOCK(pmap);
3801	}
3802	vm_page_aflag_clear(m, PGA_WRITEABLE);
3803	PT_UPDATES_FLUSH();
3804	if (*PMAP1)
3805		PT_SET_MA(PADDR1, 0);
3806	sched_unpin();
3807	vm_page_unlock_queues();
3808}
3809
3810/*
3811 *	pmap_ts_referenced:
3812 *
3813 *	Return a count of reference bits for a page, clearing those bits.
3814 *	It is not necessary for every reference bit to be cleared, but it
3815 *	is necessary that 0 only be returned when there are truly no
3816 *	reference bits set.
3817 *
3818 *	XXX: The exact number of bits to check and clear is a matter that
3819 *	should be tested and standardized at some point in the future for
3820 *	optimal aging of shared pages.
3821 */
3822int
3823pmap_ts_referenced(vm_page_t m)
3824{
3825	pv_entry_t pv, pvf, pvn;
3826	pmap_t pmap;
3827	pt_entry_t *pte;
3828	int rtval = 0;
3829
3830	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3831	    ("pmap_ts_referenced: page %p is not managed", m));
3832	vm_page_lock_queues();
3833	sched_pin();
3834	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3835		pvf = pv;
3836		do {
3837			pvn = TAILQ_NEXT(pv, pv_list);
3838			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3839			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3840			pmap = PV_PMAP(pv);
3841			PMAP_LOCK(pmap);
3842			pte = pmap_pte_quick(pmap, pv->pv_va);
3843			if ((*pte & PG_A) != 0) {
3844				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3845				pmap_invalidate_page(pmap, pv->pv_va);
3846				rtval++;
3847				if (rtval > 4)
3848					pvn = NULL;
3849			}
3850			PMAP_UNLOCK(pmap);
3851		} while ((pv = pvn) != NULL && pv != pvf);
3852	}
3853	PT_UPDATES_FLUSH();
3854	if (*PMAP1)
3855		PT_SET_MA(PADDR1, 0);
3856	sched_unpin();
3857	vm_page_unlock_queues();
3858	return (rtval);
3859}
3860
3861/*
3862 *	Clear the modify bits on the specified physical page.
3863 */
3864void
3865pmap_clear_modify(vm_page_t m)
3866{
3867	pv_entry_t pv;
3868	pmap_t pmap;
3869	pt_entry_t *pte;
3870
3871	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3872	    ("pmap_clear_modify: page %p is not managed", m));
3873	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3874	KASSERT((m->oflags & VPO_BUSY) == 0,
3875	    ("pmap_clear_modify: page %p is busy", m));
3876
3877	/*
3878	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
3879	 * If the object containing the page is locked and the page is not
3880	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
3881	 */
3882	if ((m->aflags & PGA_WRITEABLE) == 0)
3883		return;
3884	vm_page_lock_queues();
3885	sched_pin();
3886	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3887		pmap = PV_PMAP(pv);
3888		PMAP_LOCK(pmap);
3889		pte = pmap_pte_quick(pmap, pv->pv_va);
3890		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3891			/*
3892			 * Regardless of whether a pte is 32 or 64 bits
3893			 * in size, PG_M is among the least significant
3894			 * 32 bits.
3895			 */
3896			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3897			pmap_invalidate_page(pmap, pv->pv_va);
3898		}
3899		PMAP_UNLOCK(pmap);
3900	}
3901	sched_unpin();
3902	vm_page_unlock_queues();
3903}
3904
3905/*
3906 *	pmap_clear_reference:
3907 *
3908 *	Clear the reference bit on the specified physical page.
3909 */
3910void
3911pmap_clear_reference(vm_page_t m)
3912{
3913	pv_entry_t pv;
3914	pmap_t pmap;
3915	pt_entry_t *pte;
3916
3917	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3918	    ("pmap_clear_reference: page %p is not managed", m));
3919	vm_page_lock_queues();
3920	sched_pin();
3921	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3922		pmap = PV_PMAP(pv);
3923		PMAP_LOCK(pmap);
3924		pte = pmap_pte_quick(pmap, pv->pv_va);
3925		if ((*pte & PG_A) != 0) {
3926			/*
3927			 * Regardless of whether a pte is 32 or 64 bits
3928			 * in size, PG_A is among the least significant
3929			 * 32 bits.
3930			 */
3931			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3932			pmap_invalidate_page(pmap, pv->pv_va);
3933		}
3934		PMAP_UNLOCK(pmap);
3935	}
3936	sched_unpin();
3937	vm_page_unlock_queues();
3938}
3939
3940/*
3941 * Miscellaneous support routines follow
3942 */
3943
3944/*
3945 * Map a set of physical memory pages into the kernel virtual
3946 * address space. Return a pointer to where it is mapped. This
3947 * routine is intended to be used for mapping device memory,
3948 * NOT real memory.
3949 */
3950void *
3951pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3952{
3953	vm_offset_t va, offset;
3954	vm_size_t tmpsize;
3955
3956	offset = pa & PAGE_MASK;
3957	size = roundup(offset + size, PAGE_SIZE);
3958	pa = pa & PG_FRAME;
3959
3960	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3961		va = KERNBASE + pa;
3962	else
3963		va = kmem_alloc_nofault(kernel_map, size);
3964	if (!va)
3965		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3966
3967	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3968		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3969	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3970	pmap_invalidate_cache_range(va, va + size);
3971	return ((void *)(va + offset));
3972}
3973
3974void *
3975pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3976{
3977
3978	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3979}
3980
3981void *
3982pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3983{
3984
3985	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3986}
3987
3988void
3989pmap_unmapdev(vm_offset_t va, vm_size_t size)
3990{
3991	vm_offset_t base, offset, tmpva;
3992
3993	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3994		return;
3995	base = trunc_page(va);
3996	offset = va & PAGE_MASK;
3997	size = roundup(offset + size, PAGE_SIZE);
3998	critical_enter();
3999	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4000		pmap_kremove(tmpva);
4001	pmap_invalidate_range(kernel_pmap, va, tmpva);
4002	critical_exit();
4003	kmem_free(kernel_map, base, size);
4004}
4005
4006/*
4007 * Sets the memory attribute for the specified page.
4008 */
4009void
4010pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4011{
4012
4013	m->md.pat_mode = ma;
4014	if ((m->flags & PG_FICTITIOUS) != 0)
4015		return;
4016
4017	/*
4018	 * If "m" is a normal page, flush it from the cache.
4019	 * See pmap_invalidate_cache_range().
4020	 *
4021	 * First, try to find an existing mapping of the page by sf
4022	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4023	 * flushes the cache.
4024	 */
4025	if (sf_buf_invalidate_cache(m))
4026		return;
4027
4028	/*
4029	 * If page is not mapped by sf buffer, but CPU does not
4030	 * support self snoop, map the page transient and do
4031	 * invalidation. In the worst case, whole cache is flushed by
4032	 * pmap_invalidate_cache_range().
4033	 */
4034	if ((cpu_feature & CPUID_SS) == 0)
4035		pmap_flush_page(m);
4036}
4037
4038static void
4039pmap_flush_page(vm_page_t m)
4040{
4041	struct sysmaps *sysmaps;
4042	vm_offset_t sva, eva;
4043
4044	if ((cpu_feature & CPUID_CLFSH) != 0) {
4045		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4046		mtx_lock(&sysmaps->lock);
4047		if (*sysmaps->CMAP2)
4048			panic("pmap_flush_page: CMAP2 busy");
4049		sched_pin();
4050		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4051		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4052		    pmap_cache_bits(m->md.pat_mode, 0));
4053		invlcaddr(sysmaps->CADDR2);
4054		sva = (vm_offset_t)sysmaps->CADDR2;
4055		eva = sva + PAGE_SIZE;
4056
4057		/*
4058		 * Use mfence despite the ordering implied by
4059		 * mtx_{un,}lock() because clflush is not guaranteed
4060		 * to be ordered by any other instruction.
4061		 */
4062		mfence();
4063		for (; sva < eva; sva += cpu_clflush_line_size)
4064			clflush(sva);
4065		mfence();
4066		PT_SET_MA(sysmaps->CADDR2, 0);
4067		sched_unpin();
4068		mtx_unlock(&sysmaps->lock);
4069	} else
4070		pmap_invalidate_cache();
4071}
4072
4073/*
4074 * Changes the specified virtual address range's memory type to that given by
4075 * the parameter "mode".  The specified virtual address range must be
4076 * completely contained within either the kernel map.
4077 *
4078 * Returns zero if the change completed successfully, and either EINVAL or
4079 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4080 * of the virtual address range was not mapped, and ENOMEM is returned if
4081 * there was insufficient memory available to complete the change.
4082 */
4083int
4084pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4085{
4086	vm_offset_t base, offset, tmpva;
4087	pt_entry_t *pte;
4088	u_int opte, npte;
4089	pd_entry_t *pde;
4090	boolean_t changed;
4091
4092	base = trunc_page(va);
4093	offset = va & PAGE_MASK;
4094	size = roundup(offset + size, PAGE_SIZE);
4095
4096	/* Only supported on kernel virtual addresses. */
4097	if (base <= VM_MAXUSER_ADDRESS)
4098		return (EINVAL);
4099
4100	/* 4MB pages and pages that aren't mapped aren't supported. */
4101	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4102		pde = pmap_pde(kernel_pmap, tmpva);
4103		if (*pde & PG_PS)
4104			return (EINVAL);
4105		if ((*pde & PG_V) == 0)
4106			return (EINVAL);
4107		pte = vtopte(va);
4108		if ((*pte & PG_V) == 0)
4109			return (EINVAL);
4110	}
4111
4112	changed = FALSE;
4113
4114	/*
4115	 * Ok, all the pages exist and are 4k, so run through them updating
4116	 * their cache mode.
4117	 */
4118	for (tmpva = base; size > 0; ) {
4119		pte = vtopte(tmpva);
4120
4121		/*
4122		 * The cache mode bits are all in the low 32-bits of the
4123		 * PTE, so we can just spin on updating the low 32-bits.
4124		 */
4125		do {
4126			opte = *(u_int *)pte;
4127			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4128			npte |= pmap_cache_bits(mode, 0);
4129			PT_SET_VA_MA(pte, npte, TRUE);
4130		} while (npte != opte && (*pte != npte));
4131		if (npte != opte)
4132			changed = TRUE;
4133		tmpva += PAGE_SIZE;
4134		size -= PAGE_SIZE;
4135	}
4136
4137	/*
4138	 * Flush CPU caches to make sure any data isn't cached that
4139	 * shouldn't be, etc.
4140	 */
4141	if (changed) {
4142		pmap_invalidate_range(kernel_pmap, base, tmpva);
4143		pmap_invalidate_cache_range(base, tmpva);
4144	}
4145	return (0);
4146}
4147
4148/*
4149 * perform the pmap work for mincore
4150 */
4151int
4152pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4153{
4154	pt_entry_t *ptep, pte;
4155	vm_paddr_t pa;
4156	int val;
4157
4158	PMAP_LOCK(pmap);
4159retry:
4160	ptep = pmap_pte(pmap, addr);
4161	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4162	pmap_pte_release(ptep);
4163	val = 0;
4164	if ((pte & PG_V) != 0) {
4165		val |= MINCORE_INCORE;
4166		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4167			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4168		if ((pte & PG_A) != 0)
4169			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4170	}
4171	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4172	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4173	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4174		pa = pte & PG_FRAME;
4175		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4176		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4177			goto retry;
4178	} else
4179		PA_UNLOCK_COND(*locked_pa);
4180	PMAP_UNLOCK(pmap);
4181	return (val);
4182}
4183
4184void
4185pmap_activate(struct thread *td)
4186{
4187	pmap_t	pmap, oldpmap;
4188	u_int	cpuid;
4189	u_int32_t  cr3;
4190
4191	critical_enter();
4192	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4193	oldpmap = PCPU_GET(curpmap);
4194	cpuid = PCPU_GET(cpuid);
4195#if defined(SMP)
4196	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4197	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4198#else
4199	CPU_CLR(cpuid, &oldpmap->pm_active);
4200	CPU_SET(cpuid, &pmap->pm_active);
4201#endif
4202#ifdef PAE
4203	cr3 = vtophys(pmap->pm_pdpt);
4204#else
4205	cr3 = vtophys(pmap->pm_pdir);
4206#endif
4207	/*
4208	 * pmap_activate is for the current thread on the current cpu
4209	 */
4210	td->td_pcb->pcb_cr3 = cr3;
4211	PT_UPDATES_FLUSH();
4212	load_cr3(cr3);
4213	PCPU_SET(curpmap, pmap);
4214	critical_exit();
4215}
4216
4217void
4218pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4219{
4220}
4221
4222/*
4223 *	Increase the starting virtual address of the given mapping if a
4224 *	different alignment might result in more superpage mappings.
4225 */
4226void
4227pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4228    vm_offset_t *addr, vm_size_t size)
4229{
4230	vm_offset_t superpage_offset;
4231
4232	if (size < NBPDR)
4233		return;
4234	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4235		offset += ptoa(object->pg_color);
4236	superpage_offset = offset & PDRMASK;
4237	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4238	    (*addr & PDRMASK) == superpage_offset)
4239		return;
4240	if ((*addr & PDRMASK) < superpage_offset)
4241		*addr = (*addr & ~PDRMASK) + superpage_offset;
4242	else
4243		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4244}
4245
4246void
4247pmap_suspend()
4248{
4249	pmap_t pmap;
4250	int i, pdir, offset;
4251	vm_paddr_t pdirma;
4252	mmu_update_t mu[4];
4253
4254	/*
4255	 * We need to remove the recursive mapping structure from all
4256	 * our pmaps so that Xen doesn't get confused when it restores
4257	 * the page tables. The recursive map lives at page directory
4258	 * index PTDPTDI. We assume that the suspend code has stopped
4259	 * the other vcpus (if any).
4260	 */
4261	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4262		for (i = 0; i < 4; i++) {
4263			/*
4264			 * Figure out which page directory (L2) page
4265			 * contains this bit of the recursive map and
4266			 * the offset within that page of the map
4267			 * entry
4268			 */
4269			pdir = (PTDPTDI + i) / NPDEPG;
4270			offset = (PTDPTDI + i) % NPDEPG;
4271			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4272			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4273			mu[i].val = 0;
4274		}
4275		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4276	}
4277}
4278
4279void
4280pmap_resume()
4281{
4282	pmap_t pmap;
4283	int i, pdir, offset;
4284	vm_paddr_t pdirma;
4285	mmu_update_t mu[4];
4286
4287	/*
4288	 * Restore the recursive map that we removed on suspend.
4289	 */
4290	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4291		for (i = 0; i < 4; i++) {
4292			/*
4293			 * Figure out which page directory (L2) page
4294			 * contains this bit of the recursive map and
4295			 * the offset within that page of the map
4296			 * entry
4297			 */
4298			pdir = (PTDPTDI + i) / NPDEPG;
4299			offset = (PTDPTDI + i) % NPDEPG;
4300			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4301			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4302			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4303		}
4304		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4305	}
4306}
4307
4308#if defined(PMAP_DEBUG)
4309pmap_pid_dump(int pid)
4310{
4311	pmap_t pmap;
4312	struct proc *p;
4313	int npte = 0;
4314	int index;
4315
4316	sx_slock(&allproc_lock);
4317	FOREACH_PROC_IN_SYSTEM(p) {
4318		if (p->p_pid != pid)
4319			continue;
4320
4321		if (p->p_vmspace) {
4322			int i,j;
4323			index = 0;
4324			pmap = vmspace_pmap(p->p_vmspace);
4325			for (i = 0; i < NPDEPTD; i++) {
4326				pd_entry_t *pde;
4327				pt_entry_t *pte;
4328				vm_offset_t base = i << PDRSHIFT;
4329
4330				pde = &pmap->pm_pdir[i];
4331				if (pde && pmap_pde_v(pde)) {
4332					for (j = 0; j < NPTEPG; j++) {
4333						vm_offset_t va = base + (j << PAGE_SHIFT);
4334						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4335							if (index) {
4336								index = 0;
4337								printf("\n");
4338							}
4339							sx_sunlock(&allproc_lock);
4340							return (npte);
4341						}
4342						pte = pmap_pte(pmap, va);
4343						if (pte && pmap_pte_v(pte)) {
4344							pt_entry_t pa;
4345							vm_page_t m;
4346							pa = PT_GET(pte);
4347							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4348							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4349								va, pa, m->hold_count, m->wire_count, m->flags);
4350							npte++;
4351							index++;
4352							if (index >= 2) {
4353								index = 0;
4354								printf("\n");
4355							} else {
4356								printf(" ");
4357							}
4358						}
4359					}
4360				}
4361			}
4362		}
4363	}
4364	sx_sunlock(&allproc_lock);
4365	return (npte);
4366}
4367#endif
4368
4369#if defined(DEBUG)
4370
4371static void	pads(pmap_t pm);
4372void		pmap_pvdump(vm_paddr_t pa);
4373
4374/* print address space of pmap*/
4375static void
4376pads(pmap_t pm)
4377{
4378	int i, j;
4379	vm_paddr_t va;
4380	pt_entry_t *ptep;
4381
4382	if (pm == kernel_pmap)
4383		return;
4384	for (i = 0; i < NPDEPTD; i++)
4385		if (pm->pm_pdir[i])
4386			for (j = 0; j < NPTEPG; j++) {
4387				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4388				if (pm == kernel_pmap && va < KERNBASE)
4389					continue;
4390				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4391					continue;
4392				ptep = pmap_pte(pm, va);
4393				if (pmap_pte_v(ptep))
4394					printf("%x:%x ", va, *ptep);
4395			};
4396
4397}
4398
4399void
4400pmap_pvdump(vm_paddr_t pa)
4401{
4402	pv_entry_t pv;
4403	pmap_t pmap;
4404	vm_page_t m;
4405
4406	printf("pa %x", pa);
4407	m = PHYS_TO_VM_PAGE(pa);
4408	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4409		pmap = PV_PMAP(pv);
4410		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4411		pads(pmap);
4412	}
4413	printf(" ");
4414}
4415#endif
4416