pmap.c revision 229007
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 229007 2011-12-30 18:16:15Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#else
129#include <sys/cpuset.h>
130#endif
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#include <xen/interface/xen.h>
157#include <xen/hypervisor.h>
158#include <machine/xen/hypercall.h>
159#include <machine/xen/xenvar.h>
160#include <machine/xen/xenfunc.h>
161
162#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
163#define CPU_ENABLE_SSE
164#endif
165
166#ifndef PMAP_SHPGPERPROC
167#define PMAP_SHPGPERPROC 200
168#endif
169
170#define DIAGNOSTIC
171
172#if !defined(DIAGNOSTIC)
173#ifdef __GNUC_GNU_INLINE__
174#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
175#else
176#define PMAP_INLINE	extern inline
177#endif
178#else
179#define PMAP_INLINE
180#endif
181
182#define PV_STATS
183#ifdef PV_STATS
184#define PV_STAT(x)	do { x ; } while (0)
185#else
186#define PV_STAT(x)	do { } while (0)
187#endif
188
189/*
190 * Get PDEs and PTEs for user/kernel address space
191 */
192#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
193#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
194
195#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
196#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
197#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
198#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
199#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
200
201#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
202
203#define HAMFISTED_LOCKING
204#ifdef HAMFISTED_LOCKING
205static struct mtx createdelete_lock;
206#endif
207
208struct pmap kernel_pmap_store;
209LIST_HEAD(pmaplist, pmap);
210static struct pmaplist allpmaps;
211static struct mtx allpmaps_lock;
212
213vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
214vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
215int pgeflag = 0;		/* PG_G or-in */
216int pseflag = 0;		/* PG_PS or-in */
217
218int nkpt;
219vm_offset_t kernel_vm_end;
220extern u_int32_t KERNend;
221
222#ifdef PAE
223pt_entry_t pg_nx;
224#endif
225
226static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
227
228static int pat_works;			/* Is page attribute table sane? */
229
230/*
231 * Data for the pv entry allocation mechanism
232 */
233static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
234static int shpgperproc = PMAP_SHPGPERPROC;
235
236struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
237int pv_maxchunks;			/* How many chunks we have KVA for */
238vm_offset_t pv_vafree;			/* freelist stored in the PTE */
239
240/*
241 * All those kernel PT submaps that BSD is so fond of
242 */
243struct sysmaps {
244	struct	mtx lock;
245	pt_entry_t *CMAP1;
246	pt_entry_t *CMAP2;
247	caddr_t	CADDR1;
248	caddr_t	CADDR2;
249};
250static struct sysmaps sysmaps_pcpu[MAXCPU];
251static pt_entry_t *CMAP3;
252caddr_t ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
281static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
282static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
283static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
284		    vm_offset_t va);
285
286static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
287    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
288static void pmap_flush_page(vm_page_t m);
289static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
290static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
291    vm_page_t *free);
292static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
293    vm_page_t *free);
294static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
295					vm_offset_t va);
296static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
297    vm_page_t m);
298
299static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
300
301static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
302static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
303static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
304static void pmap_pte_release(pt_entry_t *pte);
305static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
306static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
307
308static __inline void pagezero(void *page);
309
310CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
311CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
312
313/*
314 * If you get an error here, then you set KVA_PAGES wrong! See the
315 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
316 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
317 */
318CTASSERT(KERNBASE % (1 << 24) == 0);
319
320void
321pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
322{
323	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
324
325	switch (type) {
326	case SH_PD_SET_VA:
327#if 0
328		xen_queue_pt_update(shadow_pdir_ma,
329				    xpmap_ptom(val & ~(PG_RW)));
330#endif
331		xen_queue_pt_update(pdir_ma,
332				    xpmap_ptom(val));
333		break;
334	case SH_PD_SET_VA_MA:
335#if 0
336		xen_queue_pt_update(shadow_pdir_ma,
337				    val & ~(PG_RW));
338#endif
339		xen_queue_pt_update(pdir_ma, val);
340		break;
341	case SH_PD_SET_VA_CLEAR:
342#if 0
343		xen_queue_pt_update(shadow_pdir_ma, 0);
344#endif
345		xen_queue_pt_update(pdir_ma, 0);
346		break;
347	}
348}
349
350/*
351 *	Bootstrap the system enough to run with virtual memory.
352 *
353 *	On the i386 this is called after mapping has already been enabled
354 *	and just syncs the pmap module with what has already been done.
355 *	[We can't call it easily with mapping off since the kernel is not
356 *	mapped with PA == VA, hence we would have to relocate every address
357 *	from the linked base (virtual) address "KERNBASE" to the actual
358 *	(physical) address starting relative to 0]
359 */
360void
361pmap_bootstrap(vm_paddr_t firstaddr)
362{
363	vm_offset_t va;
364	pt_entry_t *pte, *unused;
365	struct sysmaps *sysmaps;
366	int i;
367
368	/*
369	 * Initialize the first available kernel virtual address.  However,
370	 * using "firstaddr" may waste a few pages of the kernel virtual
371	 * address space, because locore may not have mapped every physical
372	 * page that it allocated.  Preferably, locore would provide a first
373	 * unused virtual address in addition to "firstaddr".
374	 */
375	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
376
377	virtual_end = VM_MAX_KERNEL_ADDRESS;
378
379	/*
380	 * Initialize the kernel pmap (which is statically allocated).
381	 */
382	PMAP_LOCK_INIT(kernel_pmap);
383	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
384#ifdef PAE
385	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
386#endif
387	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
388	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
389	LIST_INIT(&allpmaps);
390	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
391	mtx_lock_spin(&allpmaps_lock);
392	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
393	mtx_unlock_spin(&allpmaps_lock);
394	if (nkpt == 0)
395		nkpt = NKPT;
396
397	/*
398	 * Reserve some special page table entries/VA space for temporary
399	 * mapping of pages.
400	 */
401#define	SYSMAP(c, p, v, n)	\
402	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
403
404	va = virtual_avail;
405	pte = vtopte(va);
406
407	/*
408	 * CMAP1/CMAP2 are used for zeroing and copying pages.
409	 * CMAP3 is used for the idle process page zeroing.
410	 */
411	for (i = 0; i < MAXCPU; i++) {
412		sysmaps = &sysmaps_pcpu[i];
413		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
414		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
415		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
416		PT_SET_MA(sysmaps->CADDR1, 0);
417		PT_SET_MA(sysmaps->CADDR2, 0);
418	}
419	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
420	PT_SET_MA(CADDR3, 0);
421
422	/*
423	 * Crashdump maps.
424	 */
425	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
426
427	/*
428	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
429	 */
430	SYSMAP(caddr_t, unused, ptvmmap, 1)
431
432	/*
433	 * msgbufp is used to map the system message buffer.
434	 */
435	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
436
437	/*
438	 * ptemap is used for pmap_pte_quick
439	 */
440	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
441	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
442
443	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
444
445	virtual_avail = va;
446
447	/*
448	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
449	 * physical memory region that is used by the ACPI wakeup code.  This
450	 * mapping must not have PG_G set.
451	 */
452#ifndef XEN
453	/*
454	 * leave here deliberately to show that this is not supported
455	 */
456#ifdef XBOX
457	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
458	 * an early stadium, we cannot yet neatly map video memory ... :-(
459	 * Better fixes are very welcome! */
460	if (!arch_i386_is_xbox)
461#endif
462	for (i = 1; i < NKPT; i++)
463		PTD[i] = 0;
464
465	/* Initialize the PAT MSR if present. */
466	pmap_init_pat();
467
468	/* Turn on PG_G on kernel page(s) */
469	pmap_set_pg();
470#endif
471
472#ifdef HAMFISTED_LOCKING
473	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
474#endif
475}
476
477/*
478 * Setup the PAT MSR.
479 */
480void
481pmap_init_pat(void)
482{
483	uint64_t pat_msr;
484
485	/* Bail if this CPU doesn't implement PAT. */
486	if (!(cpu_feature & CPUID_PAT))
487		return;
488
489	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
490	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
491		/*
492		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
493		 * Program 4 and 5 as WP and WC.
494		 * Leave 6 and 7 as UC and UC-.
495		 */
496		pat_msr = rdmsr(MSR_PAT);
497		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
498		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
499		    PAT_VALUE(5, PAT_WRITE_COMBINING);
500		pat_works = 1;
501	} else {
502		/*
503		 * Due to some Intel errata, we can only safely use the lower 4
504		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
505		 * of UC-.
506		 *
507		 *   Intel Pentium III Processor Specification Update
508		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
509		 * or Mode C Paging)
510		 *
511		 *   Intel Pentium IV  Processor Specification Update
512		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
513		 */
514		pat_msr = rdmsr(MSR_PAT);
515		pat_msr &= ~PAT_MASK(2);
516		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
517		pat_works = 0;
518	}
519	wrmsr(MSR_PAT, pat_msr);
520}
521
522/*
523 * Initialize a vm_page's machine-dependent fields.
524 */
525void
526pmap_page_init(vm_page_t m)
527{
528
529	TAILQ_INIT(&m->md.pv_list);
530	m->md.pat_mode = PAT_WRITE_BACK;
531}
532
533/*
534 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
535 * Requirements:
536 *  - Must deal with pages in order to ensure that none of the PG_* bits
537 *    are ever set, PG_V in particular.
538 *  - Assumes we can write to ptes without pte_store() atomic ops, even
539 *    on PAE systems.  This should be ok.
540 *  - Assumes nothing will ever test these addresses for 0 to indicate
541 *    no mapping instead of correctly checking PG_V.
542 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
543 * Because PG_V is never set, there can be no mappings to invalidate.
544 */
545static int ptelist_count = 0;
546static vm_offset_t
547pmap_ptelist_alloc(vm_offset_t *head)
548{
549	vm_offset_t va;
550	vm_offset_t *phead = (vm_offset_t *)*head;
551
552	if (ptelist_count == 0) {
553		printf("out of memory!!!!!!\n");
554		return (0);	/* Out of memory */
555	}
556	ptelist_count--;
557	va = phead[ptelist_count];
558	return (va);
559}
560
561static void
562pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
563{
564	vm_offset_t *phead = (vm_offset_t *)*head;
565
566	phead[ptelist_count++] = va;
567}
568
569static void
570pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
571{
572	int i, nstackpages;
573	vm_offset_t va;
574	vm_page_t m;
575
576	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
577	for (i = 0; i < nstackpages; i++) {
578		va = (vm_offset_t)base + i * PAGE_SIZE;
579		m = vm_page_alloc(NULL, i,
580		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
581		    VM_ALLOC_ZERO);
582		pmap_qenter(va, &m, 1);
583	}
584
585	*head = (vm_offset_t)base;
586	for (i = npages - 1; i >= nstackpages; i--) {
587		va = (vm_offset_t)base + i * PAGE_SIZE;
588		pmap_ptelist_free(head, va);
589	}
590}
591
592
593/*
594 *	Initialize the pmap module.
595 *	Called by vm_init, to initialize any structures that the pmap
596 *	system needs to map virtual memory.
597 */
598void
599pmap_init(void)
600{
601
602	/*
603	 * Initialize the address space (zone) for the pv entries.  Set a
604	 * high water mark so that the system can recover from excessive
605	 * numbers of pv entries.
606	 */
607	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
608	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
609	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
610	pv_entry_max = roundup(pv_entry_max, _NPCPV);
611	pv_entry_high_water = 9 * (pv_entry_max / 10);
612
613	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
614	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
615	    PAGE_SIZE * pv_maxchunks);
616	if (pv_chunkbase == NULL)
617		panic("pmap_init: not enough kvm for pv chunks");
618	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
619}
620
621
622SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
623	"Max number of PV entries");
624SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
625	"Page share factor per proc");
626
627static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
628    "2/4MB page mapping counters");
629
630static u_long pmap_pde_mappings;
631SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
632    &pmap_pde_mappings, 0, "2/4MB page mappings");
633
634/***************************************************
635 * Low level helper routines.....
636 ***************************************************/
637
638/*
639 * Determine the appropriate bits to set in a PTE or PDE for a specified
640 * caching mode.
641 */
642int
643pmap_cache_bits(int mode, boolean_t is_pde)
644{
645	int pat_flag, pat_index, cache_bits;
646
647	/* The PAT bit is different for PTE's and PDE's. */
648	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
649
650	/* If we don't support PAT, map extended modes to older ones. */
651	if (!(cpu_feature & CPUID_PAT)) {
652		switch (mode) {
653		case PAT_UNCACHEABLE:
654		case PAT_WRITE_THROUGH:
655		case PAT_WRITE_BACK:
656			break;
657		case PAT_UNCACHED:
658		case PAT_WRITE_COMBINING:
659		case PAT_WRITE_PROTECTED:
660			mode = PAT_UNCACHEABLE;
661			break;
662		}
663	}
664
665	/* Map the caching mode to a PAT index. */
666	if (pat_works) {
667		switch (mode) {
668			case PAT_UNCACHEABLE:
669				pat_index = 3;
670				break;
671			case PAT_WRITE_THROUGH:
672				pat_index = 1;
673				break;
674			case PAT_WRITE_BACK:
675				pat_index = 0;
676				break;
677			case PAT_UNCACHED:
678				pat_index = 2;
679				break;
680			case PAT_WRITE_COMBINING:
681				pat_index = 5;
682				break;
683			case PAT_WRITE_PROTECTED:
684				pat_index = 4;
685				break;
686			default:
687				panic("Unknown caching mode %d\n", mode);
688		}
689	} else {
690		switch (mode) {
691			case PAT_UNCACHED:
692			case PAT_UNCACHEABLE:
693			case PAT_WRITE_PROTECTED:
694				pat_index = 3;
695				break;
696			case PAT_WRITE_THROUGH:
697				pat_index = 1;
698				break;
699			case PAT_WRITE_BACK:
700				pat_index = 0;
701				break;
702			case PAT_WRITE_COMBINING:
703				pat_index = 2;
704				break;
705			default:
706				panic("Unknown caching mode %d\n", mode);
707		}
708	}
709
710	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
711	cache_bits = 0;
712	if (pat_index & 0x4)
713		cache_bits |= pat_flag;
714	if (pat_index & 0x2)
715		cache_bits |= PG_NC_PCD;
716	if (pat_index & 0x1)
717		cache_bits |= PG_NC_PWT;
718	return (cache_bits);
719}
720#ifdef SMP
721/*
722 * For SMP, these functions have to use the IPI mechanism for coherence.
723 *
724 * N.B.: Before calling any of the following TLB invalidation functions,
725 * the calling processor must ensure that all stores updating a non-
726 * kernel page table are globally performed.  Otherwise, another
727 * processor could cache an old, pre-update entry without being
728 * invalidated.  This can happen one of two ways: (1) The pmap becomes
729 * active on another processor after its pm_active field is checked by
730 * one of the following functions but before a store updating the page
731 * table is globally performed. (2) The pmap becomes active on another
732 * processor before its pm_active field is checked but due to
733 * speculative loads one of the following functions stills reads the
734 * pmap as inactive on the other processor.
735 *
736 * The kernel page table is exempt because its pm_active field is
737 * immutable.  The kernel page table is always active on every
738 * processor.
739 */
740void
741pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
742{
743	cpuset_t other_cpus;
744	u_int cpuid;
745
746	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
747	    pmap, va);
748
749	sched_pin();
750	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
751		invlpg(va);
752		smp_invlpg(va);
753	} else {
754		cpuid = PCPU_GET(cpuid);
755		other_cpus = all_cpus;
756		CPU_CLR(cpuid, &other_cpus);
757		if (CPU_ISSET(cpuid, &pmap->pm_active))
758			invlpg(va);
759		CPU_AND(&other_cpus, &pmap->pm_active);
760		if (!CPU_EMPTY(&other_cpus))
761			smp_masked_invlpg(other_cpus, va);
762	}
763	sched_unpin();
764	PT_UPDATES_FLUSH();
765}
766
767void
768pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
769{
770	cpuset_t other_cpus;
771	vm_offset_t addr;
772	u_int cpuid;
773
774	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
775	    pmap, sva, eva);
776
777	sched_pin();
778	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
779		for (addr = sva; addr < eva; addr += PAGE_SIZE)
780			invlpg(addr);
781		smp_invlpg_range(sva, eva);
782	} else {
783		cpuid = PCPU_GET(cpuid);
784		other_cpus = all_cpus;
785		CPU_CLR(cpuid, &other_cpus);
786		if (CPU_ISSET(cpuid, &pmap->pm_active))
787			for (addr = sva; addr < eva; addr += PAGE_SIZE)
788				invlpg(addr);
789		CPU_AND(&other_cpus, &pmap->pm_active);
790		if (!CPU_EMPTY(&other_cpus))
791			smp_masked_invlpg_range(other_cpus, sva, eva);
792	}
793	sched_unpin();
794	PT_UPDATES_FLUSH();
795}
796
797void
798pmap_invalidate_all(pmap_t pmap)
799{
800	cpuset_t other_cpus;
801	u_int cpuid;
802
803	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
804
805	sched_pin();
806	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
807		invltlb();
808		smp_invltlb();
809	} else {
810		cpuid = PCPU_GET(cpuid);
811		other_cpus = all_cpus;
812		CPU_CLR(cpuid, &other_cpus);
813		if (CPU_ISSET(cpuid, &pmap->pm_active))
814			invltlb();
815		CPU_AND(&other_cpus, &pmap->pm_active);
816		if (!CPU_EMPTY(&other_cpus))
817			smp_masked_invltlb(other_cpus);
818	}
819	sched_unpin();
820}
821
822void
823pmap_invalidate_cache(void)
824{
825
826	sched_pin();
827	wbinvd();
828	smp_cache_flush();
829	sched_unpin();
830}
831#else /* !SMP */
832/*
833 * Normal, non-SMP, 486+ invalidation functions.
834 * We inline these within pmap.c for speed.
835 */
836PMAP_INLINE void
837pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
838{
839	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
840	    pmap, va);
841
842	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
843		invlpg(va);
844	PT_UPDATES_FLUSH();
845}
846
847PMAP_INLINE void
848pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
849{
850	vm_offset_t addr;
851
852	if (eva - sva > PAGE_SIZE)
853		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
854		    pmap, sva, eva);
855
856	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
857		for (addr = sva; addr < eva; addr += PAGE_SIZE)
858			invlpg(addr);
859	PT_UPDATES_FLUSH();
860}
861
862PMAP_INLINE void
863pmap_invalidate_all(pmap_t pmap)
864{
865
866	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
867
868	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
869		invltlb();
870}
871
872PMAP_INLINE void
873pmap_invalidate_cache(void)
874{
875
876	wbinvd();
877}
878#endif /* !SMP */
879
880#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
881
882void
883pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
884{
885
886	KASSERT((sva & PAGE_MASK) == 0,
887	    ("pmap_invalidate_cache_range: sva not page-aligned"));
888	KASSERT((eva & PAGE_MASK) == 0,
889	    ("pmap_invalidate_cache_range: eva not page-aligned"));
890
891	if (cpu_feature & CPUID_SS)
892		; /* If "Self Snoop" is supported, do nothing. */
893	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
894	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
895
896		/*
897		 * Otherwise, do per-cache line flush.  Use the mfence
898		 * instruction to insure that previous stores are
899		 * included in the write-back.  The processor
900		 * propagates flush to other processors in the cache
901		 * coherence domain.
902		 */
903		mfence();
904		for (; sva < eva; sva += cpu_clflush_line_size)
905			clflush(sva);
906		mfence();
907	} else {
908
909		/*
910		 * No targeted cache flush methods are supported by CPU,
911		 * or the supplied range is bigger than 2MB.
912		 * Globally invalidate cache.
913		 */
914		pmap_invalidate_cache();
915	}
916}
917
918void
919pmap_invalidate_cache_pages(vm_page_t *pages, int count)
920{
921	int i;
922
923	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
924	    (cpu_feature & CPUID_CLFSH) == 0) {
925		pmap_invalidate_cache();
926	} else {
927		for (i = 0; i < count; i++)
928			pmap_flush_page(pages[i]);
929	}
930}
931
932/*
933 * Are we current address space or kernel?  N.B. We return FALSE when
934 * a pmap's page table is in use because a kernel thread is borrowing
935 * it.  The borrowed page table can change spontaneously, making any
936 * dependence on its continued use subject to a race condition.
937 */
938static __inline int
939pmap_is_current(pmap_t pmap)
940{
941
942	return (pmap == kernel_pmap ||
943	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
944	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
945}
946
947/*
948 * If the given pmap is not the current or kernel pmap, the returned pte must
949 * be released by passing it to pmap_pte_release().
950 */
951pt_entry_t *
952pmap_pte(pmap_t pmap, vm_offset_t va)
953{
954	pd_entry_t newpf;
955	pd_entry_t *pde;
956
957	pde = pmap_pde(pmap, va);
958	if (*pde & PG_PS)
959		return (pde);
960	if (*pde != 0) {
961		/* are we current address space or kernel? */
962		if (pmap_is_current(pmap))
963			return (vtopte(va));
964		mtx_lock(&PMAP2mutex);
965		newpf = *pde & PG_FRAME;
966		if ((*PMAP2 & PG_FRAME) != newpf) {
967			vm_page_lock_queues();
968			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
969			vm_page_unlock_queues();
970			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
971			    pmap, va, (*PMAP2 & 0xffffffff));
972		}
973		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
974	}
975	return (NULL);
976}
977
978/*
979 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
980 * being NULL.
981 */
982static __inline void
983pmap_pte_release(pt_entry_t *pte)
984{
985
986	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
987		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
988		    *PMAP2);
989		vm_page_lock_queues();
990		PT_SET_VA(PMAP2, 0, TRUE);
991		vm_page_unlock_queues();
992		mtx_unlock(&PMAP2mutex);
993	}
994}
995
996static __inline void
997invlcaddr(void *caddr)
998{
999
1000	invlpg((u_int)caddr);
1001	PT_UPDATES_FLUSH();
1002}
1003
1004/*
1005 * Super fast pmap_pte routine best used when scanning
1006 * the pv lists.  This eliminates many coarse-grained
1007 * invltlb calls.  Note that many of the pv list
1008 * scans are across different pmaps.  It is very wasteful
1009 * to do an entire invltlb for checking a single mapping.
1010 *
1011 * If the given pmap is not the current pmap, vm_page_queue_mtx
1012 * must be held and curthread pinned to a CPU.
1013 */
1014static pt_entry_t *
1015pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1016{
1017	pd_entry_t newpf;
1018	pd_entry_t *pde;
1019
1020	pde = pmap_pde(pmap, va);
1021	if (*pde & PG_PS)
1022		return (pde);
1023	if (*pde != 0) {
1024		/* are we current address space or kernel? */
1025		if (pmap_is_current(pmap))
1026			return (vtopte(va));
1027		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1028		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1029		newpf = *pde & PG_FRAME;
1030		if ((*PMAP1 & PG_FRAME) != newpf) {
1031			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1032			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1033			    pmap, va, (u_long)*PMAP1);
1034
1035#ifdef SMP
1036			PMAP1cpu = PCPU_GET(cpuid);
1037#endif
1038			PMAP1changed++;
1039		} else
1040#ifdef SMP
1041		if (PMAP1cpu != PCPU_GET(cpuid)) {
1042			PMAP1cpu = PCPU_GET(cpuid);
1043			invlcaddr(PADDR1);
1044			PMAP1changedcpu++;
1045		} else
1046#endif
1047			PMAP1unchanged++;
1048		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1049	}
1050	return (0);
1051}
1052
1053/*
1054 *	Routine:	pmap_extract
1055 *	Function:
1056 *		Extract the physical page address associated
1057 *		with the given map/virtual_address pair.
1058 */
1059vm_paddr_t
1060pmap_extract(pmap_t pmap, vm_offset_t va)
1061{
1062	vm_paddr_t rtval;
1063	pt_entry_t *pte;
1064	pd_entry_t pde;
1065	pt_entry_t pteval;
1066
1067	rtval = 0;
1068	PMAP_LOCK(pmap);
1069	pde = pmap->pm_pdir[va >> PDRSHIFT];
1070	if (pde != 0) {
1071		if ((pde & PG_PS) != 0) {
1072			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1073			PMAP_UNLOCK(pmap);
1074			return rtval;
1075		}
1076		pte = pmap_pte(pmap, va);
1077		pteval = *pte ? xpmap_mtop(*pte) : 0;
1078		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1079		pmap_pte_release(pte);
1080	}
1081	PMAP_UNLOCK(pmap);
1082	return (rtval);
1083}
1084
1085/*
1086 *	Routine:	pmap_extract_ma
1087 *	Function:
1088 *		Like pmap_extract, but returns machine address
1089 */
1090vm_paddr_t
1091pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1092{
1093	vm_paddr_t rtval;
1094	pt_entry_t *pte;
1095	pd_entry_t pde;
1096
1097	rtval = 0;
1098	PMAP_LOCK(pmap);
1099	pde = pmap->pm_pdir[va >> PDRSHIFT];
1100	if (pde != 0) {
1101		if ((pde & PG_PS) != 0) {
1102			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1103			PMAP_UNLOCK(pmap);
1104			return rtval;
1105		}
1106		pte = pmap_pte(pmap, va);
1107		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1108		pmap_pte_release(pte);
1109	}
1110	PMAP_UNLOCK(pmap);
1111	return (rtval);
1112}
1113
1114/*
1115 *	Routine:	pmap_extract_and_hold
1116 *	Function:
1117 *		Atomically extract and hold the physical page
1118 *		with the given pmap and virtual address pair
1119 *		if that mapping permits the given protection.
1120 */
1121vm_page_t
1122pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1123{
1124	pd_entry_t pde;
1125	pt_entry_t pte, *ptep;
1126	vm_page_t m;
1127	vm_paddr_t pa;
1128
1129	pa = 0;
1130	m = NULL;
1131	PMAP_LOCK(pmap);
1132retry:
1133	pde = PT_GET(pmap_pde(pmap, va));
1134	if (pde != 0) {
1135		if (pde & PG_PS) {
1136			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1137				if (vm_page_pa_tryrelock(pmap, (pde &
1138				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1139					goto retry;
1140				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1141				    (va & PDRMASK));
1142				vm_page_hold(m);
1143			}
1144		} else {
1145			ptep = pmap_pte(pmap, va);
1146			pte = PT_GET(ptep);
1147			pmap_pte_release(ptep);
1148			if (pte != 0 &&
1149			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1150				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1151				    &pa))
1152					goto retry;
1153				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1154				vm_page_hold(m);
1155			}
1156		}
1157	}
1158	PA_UNLOCK_COND(pa);
1159	PMAP_UNLOCK(pmap);
1160	return (m);
1161}
1162
1163/***************************************************
1164 * Low level mapping routines.....
1165 ***************************************************/
1166
1167/*
1168 * Add a wired page to the kva.
1169 * Note: not SMP coherent.
1170 *
1171 * This function may be used before pmap_bootstrap() is called.
1172 */
1173void
1174pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1175{
1176
1177	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1178}
1179
1180void
1181pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1182{
1183	pt_entry_t *pte;
1184
1185	pte = vtopte(va);
1186	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1187}
1188
1189static __inline void
1190pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1191{
1192
1193	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1194}
1195
1196/*
1197 * Remove a page from the kernel pagetables.
1198 * Note: not SMP coherent.
1199 *
1200 * This function may be used before pmap_bootstrap() is called.
1201 */
1202PMAP_INLINE void
1203pmap_kremove(vm_offset_t va)
1204{
1205	pt_entry_t *pte;
1206
1207	pte = vtopte(va);
1208	PT_CLEAR_VA(pte, FALSE);
1209}
1210
1211/*
1212 *	Used to map a range of physical addresses into kernel
1213 *	virtual address space.
1214 *
1215 *	The value passed in '*virt' is a suggested virtual address for
1216 *	the mapping. Architectures which can support a direct-mapped
1217 *	physical to virtual region can return the appropriate address
1218 *	within that region, leaving '*virt' unchanged. Other
1219 *	architectures should map the pages starting at '*virt' and
1220 *	update '*virt' with the first usable address after the mapped
1221 *	region.
1222 */
1223vm_offset_t
1224pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1225{
1226	vm_offset_t va, sva;
1227
1228	va = sva = *virt;
1229	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1230	    va, start, end, prot);
1231	while (start < end) {
1232		pmap_kenter(va, start);
1233		va += PAGE_SIZE;
1234		start += PAGE_SIZE;
1235	}
1236	pmap_invalidate_range(kernel_pmap, sva, va);
1237	*virt = va;
1238	return (sva);
1239}
1240
1241
1242/*
1243 * Add a list of wired pages to the kva
1244 * this routine is only used for temporary
1245 * kernel mappings that do not need to have
1246 * page modification or references recorded.
1247 * Note that old mappings are simply written
1248 * over.  The page *must* be wired.
1249 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1250 */
1251void
1252pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1253{
1254	pt_entry_t *endpte, *pte;
1255	vm_paddr_t pa;
1256	vm_offset_t va = sva;
1257	int mclcount = 0;
1258	multicall_entry_t mcl[16];
1259	multicall_entry_t *mclp = mcl;
1260	int error;
1261
1262	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1263	pte = vtopte(sva);
1264	endpte = pte + count;
1265	while (pte < endpte) {
1266		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1267
1268		mclp->op = __HYPERVISOR_update_va_mapping;
1269		mclp->args[0] = va;
1270		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1271		mclp->args[2] = (uint32_t)(pa >> 32);
1272		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1273
1274		va += PAGE_SIZE;
1275		pte++;
1276		ma++;
1277		mclp++;
1278		mclcount++;
1279		if (mclcount == 16) {
1280			error = HYPERVISOR_multicall(mcl, mclcount);
1281			mclp = mcl;
1282			mclcount = 0;
1283			KASSERT(error == 0, ("bad multicall %d", error));
1284		}
1285	}
1286	if (mclcount) {
1287		error = HYPERVISOR_multicall(mcl, mclcount);
1288		KASSERT(error == 0, ("bad multicall %d", error));
1289	}
1290
1291#ifdef INVARIANTS
1292	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1293		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1294#endif
1295}
1296
1297/*
1298 * This routine tears out page mappings from the
1299 * kernel -- it is meant only for temporary mappings.
1300 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1301 */
1302void
1303pmap_qremove(vm_offset_t sva, int count)
1304{
1305	vm_offset_t va;
1306
1307	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1308	va = sva;
1309	vm_page_lock_queues();
1310	critical_enter();
1311	while (count-- > 0) {
1312		pmap_kremove(va);
1313		va += PAGE_SIZE;
1314	}
1315	PT_UPDATES_FLUSH();
1316	pmap_invalidate_range(kernel_pmap, sva, va);
1317	critical_exit();
1318	vm_page_unlock_queues();
1319}
1320
1321/***************************************************
1322 * Page table page management routines.....
1323 ***************************************************/
1324static __inline void
1325pmap_free_zero_pages(vm_page_t free)
1326{
1327	vm_page_t m;
1328
1329	while (free != NULL) {
1330		m = free;
1331		free = m->right;
1332		vm_page_free_zero(m);
1333	}
1334}
1335
1336/*
1337 * This routine unholds page table pages, and if the hold count
1338 * drops to zero, then it decrements the wire count.
1339 */
1340static __inline int
1341pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1342{
1343
1344	--m->wire_count;
1345	if (m->wire_count == 0)
1346		return (_pmap_unwire_pte_hold(pmap, m, free));
1347	else
1348		return (0);
1349}
1350
1351static int
1352_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1353{
1354	vm_offset_t pteva;
1355
1356	PT_UPDATES_FLUSH();
1357	/*
1358	 * unmap the page table page
1359	 */
1360	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1361	/*
1362	 * page *might* contain residual mapping :-/
1363	 */
1364	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1365	pmap_zero_page(m);
1366	--pmap->pm_stats.resident_count;
1367
1368	/*
1369	 * This is a release store so that the ordinary store unmapping
1370	 * the page table page is globally performed before TLB shoot-
1371	 * down is begun.
1372	 */
1373	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1374
1375	/*
1376	 * Do an invltlb to make the invalidated mapping
1377	 * take effect immediately.
1378	 */
1379	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1380	pmap_invalidate_page(pmap, pteva);
1381
1382	/*
1383	 * Put page on a list so that it is released after
1384	 * *ALL* TLB shootdown is done
1385	 */
1386	m->right = *free;
1387	*free = m;
1388
1389	return (1);
1390}
1391
1392/*
1393 * After removing a page table entry, this routine is used to
1394 * conditionally free the page, and manage the hold/wire counts.
1395 */
1396static int
1397pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1398{
1399	pd_entry_t ptepde;
1400	vm_page_t mpte;
1401
1402	if (va >= VM_MAXUSER_ADDRESS)
1403		return (0);
1404	ptepde = PT_GET(pmap_pde(pmap, va));
1405	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1406	return (pmap_unwire_pte_hold(pmap, mpte, free));
1407}
1408
1409/*
1410 * Initialize the pmap for the swapper process.
1411 */
1412void
1413pmap_pinit0(pmap_t pmap)
1414{
1415
1416	PMAP_LOCK_INIT(pmap);
1417	/*
1418	 * Since the page table directory is shared with the kernel pmap,
1419	 * which is already included in the list "allpmaps", this pmap does
1420	 * not need to be inserted into that list.
1421	 */
1422	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1423#ifdef PAE
1424	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1425#endif
1426	CPU_ZERO(&pmap->pm_active);
1427	PCPU_SET(curpmap, pmap);
1428	TAILQ_INIT(&pmap->pm_pvchunk);
1429	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1430}
1431
1432/*
1433 * Initialize a preallocated and zeroed pmap structure,
1434 * such as one in a vmspace structure.
1435 */
1436int
1437pmap_pinit(pmap_t pmap)
1438{
1439	vm_page_t m, ptdpg[NPGPTD + 1];
1440	int npgptd = NPGPTD + 1;
1441	int i;
1442
1443#ifdef HAMFISTED_LOCKING
1444	mtx_lock(&createdelete_lock);
1445#endif
1446
1447	PMAP_LOCK_INIT(pmap);
1448
1449	/*
1450	 * No need to allocate page table space yet but we do need a valid
1451	 * page directory table.
1452	 */
1453	if (pmap->pm_pdir == NULL) {
1454		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1455		    NBPTD);
1456		if (pmap->pm_pdir == NULL) {
1457			PMAP_LOCK_DESTROY(pmap);
1458#ifdef HAMFISTED_LOCKING
1459			mtx_unlock(&createdelete_lock);
1460#endif
1461			return (0);
1462		}
1463#ifdef PAE
1464		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1465#endif
1466	}
1467
1468	/*
1469	 * allocate the page directory page(s)
1470	 */
1471	for (i = 0; i < npgptd;) {
1472		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1473		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1474		if (m == NULL)
1475			VM_WAIT;
1476		else {
1477			ptdpg[i++] = m;
1478		}
1479	}
1480
1481	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1482
1483	for (i = 0; i < NPGPTD; i++)
1484		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1485			pagezero(pmap->pm_pdir + (i * NPDEPG));
1486
1487	mtx_lock_spin(&allpmaps_lock);
1488	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1489	/* Copy the kernel page table directory entries. */
1490	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1491	mtx_unlock_spin(&allpmaps_lock);
1492
1493#ifdef PAE
1494	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1495	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1496		bzero(pmap->pm_pdpt, PAGE_SIZE);
1497	for (i = 0; i < NPGPTD; i++) {
1498		vm_paddr_t ma;
1499
1500		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1501		pmap->pm_pdpt[i] = ma | PG_V;
1502
1503	}
1504#endif
1505	for (i = 0; i < NPGPTD; i++) {
1506		pt_entry_t *pd;
1507		vm_paddr_t ma;
1508
1509		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1510		pd = pmap->pm_pdir + (i * NPDEPG);
1511		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1512#if 0
1513		xen_pgd_pin(ma);
1514#endif
1515	}
1516
1517#ifdef PAE
1518	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1519#endif
1520	vm_page_lock_queues();
1521	xen_flush_queue();
1522	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1523	for (i = 0; i < NPGPTD; i++) {
1524		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1525		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1526	}
1527	xen_flush_queue();
1528	vm_page_unlock_queues();
1529	CPU_ZERO(&pmap->pm_active);
1530	TAILQ_INIT(&pmap->pm_pvchunk);
1531	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1532
1533#ifdef HAMFISTED_LOCKING
1534	mtx_unlock(&createdelete_lock);
1535#endif
1536	return (1);
1537}
1538
1539/*
1540 * this routine is called if the page table page is not
1541 * mapped correctly.
1542 */
1543static vm_page_t
1544_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1545{
1546	vm_paddr_t ptema;
1547	vm_page_t m;
1548
1549	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1550	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1551	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1552
1553	/*
1554	 * Allocate a page table page.
1555	 */
1556	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1557	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1558		if (flags & M_WAITOK) {
1559			PMAP_UNLOCK(pmap);
1560			vm_page_unlock_queues();
1561			VM_WAIT;
1562			vm_page_lock_queues();
1563			PMAP_LOCK(pmap);
1564		}
1565
1566		/*
1567		 * Indicate the need to retry.  While waiting, the page table
1568		 * page may have been allocated.
1569		 */
1570		return (NULL);
1571	}
1572	if ((m->flags & PG_ZERO) == 0)
1573		pmap_zero_page(m);
1574
1575	/*
1576	 * Map the pagetable page into the process address space, if
1577	 * it isn't already there.
1578	 */
1579
1580	pmap->pm_stats.resident_count++;
1581
1582	ptema = VM_PAGE_TO_MACH(m);
1583	xen_pt_pin(ptema);
1584	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1585		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1586
1587	KASSERT(pmap->pm_pdir[ptepindex],
1588	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1589	return (m);
1590}
1591
1592static vm_page_t
1593pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1594{
1595	u_int ptepindex;
1596	pd_entry_t ptema;
1597	vm_page_t m;
1598
1599	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1600	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1601	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1602
1603	/*
1604	 * Calculate pagetable page index
1605	 */
1606	ptepindex = va >> PDRSHIFT;
1607retry:
1608	/*
1609	 * Get the page directory entry
1610	 */
1611	ptema = pmap->pm_pdir[ptepindex];
1612
1613	/*
1614	 * This supports switching from a 4MB page to a
1615	 * normal 4K page.
1616	 */
1617	if (ptema & PG_PS) {
1618		/*
1619		 * XXX
1620		 */
1621		pmap->pm_pdir[ptepindex] = 0;
1622		ptema = 0;
1623		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1624		pmap_invalidate_all(kernel_pmap);
1625	}
1626
1627	/*
1628	 * If the page table page is mapped, we just increment the
1629	 * hold count, and activate it.
1630	 */
1631	if (ptema & PG_V) {
1632		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1633		m->wire_count++;
1634	} else {
1635		/*
1636		 * Here if the pte page isn't mapped, or if it has
1637		 * been deallocated.
1638		 */
1639		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1640		    pmap, va, flags);
1641		m = _pmap_allocpte(pmap, ptepindex, flags);
1642		if (m == NULL && (flags & M_WAITOK))
1643			goto retry;
1644
1645		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1646	}
1647	return (m);
1648}
1649
1650
1651/***************************************************
1652* Pmap allocation/deallocation routines.
1653 ***************************************************/
1654
1655#ifdef SMP
1656/*
1657 * Deal with a SMP shootdown of other users of the pmap that we are
1658 * trying to dispose of.  This can be a bit hairy.
1659 */
1660static cpuset_t *lazymask;
1661static u_int lazyptd;
1662static volatile u_int lazywait;
1663
1664void pmap_lazyfix_action(void);
1665
1666void
1667pmap_lazyfix_action(void)
1668{
1669
1670#ifdef COUNT_IPIS
1671	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1672#endif
1673	if (rcr3() == lazyptd)
1674		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1675	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1676	atomic_store_rel_int(&lazywait, 1);
1677}
1678
1679static void
1680pmap_lazyfix_self(u_int cpuid)
1681{
1682
1683	if (rcr3() == lazyptd)
1684		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1685	CPU_CLR_ATOMIC(cpuid, lazymask);
1686}
1687
1688
1689static void
1690pmap_lazyfix(pmap_t pmap)
1691{
1692	cpuset_t mymask, mask;
1693	u_int cpuid, spins;
1694	int lsb;
1695
1696	mask = pmap->pm_active;
1697	while (!CPU_EMPTY(&mask)) {
1698		spins = 50000000;
1699
1700		/* Find least significant set bit. */
1701		lsb = cpusetobj_ffs(&mask);
1702		MPASS(lsb != 0);
1703		lsb--;
1704		CPU_SETOF(lsb, &mask);
1705		mtx_lock_spin(&smp_ipi_mtx);
1706#ifdef PAE
1707		lazyptd = vtophys(pmap->pm_pdpt);
1708#else
1709		lazyptd = vtophys(pmap->pm_pdir);
1710#endif
1711		cpuid = PCPU_GET(cpuid);
1712
1713		/* Use a cpuset just for having an easy check. */
1714		CPU_SETOF(cpuid, &mymask);
1715		if (!CPU_CMP(&mask, &mymask)) {
1716			lazymask = &pmap->pm_active;
1717			pmap_lazyfix_self(cpuid);
1718		} else {
1719			atomic_store_rel_int((u_int *)&lazymask,
1720			    (u_int)&pmap->pm_active);
1721			atomic_store_rel_int(&lazywait, 0);
1722			ipi_selected(mask, IPI_LAZYPMAP);
1723			while (lazywait == 0) {
1724				ia32_pause();
1725				if (--spins == 0)
1726					break;
1727			}
1728		}
1729		mtx_unlock_spin(&smp_ipi_mtx);
1730		if (spins == 0)
1731			printf("pmap_lazyfix: spun for 50000000\n");
1732		mask = pmap->pm_active;
1733	}
1734}
1735
1736#else	/* SMP */
1737
1738/*
1739 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1740 * unlikely to have to even execute this code, including the fact
1741 * that the cleanup is deferred until the parent does a wait(2), which
1742 * means that another userland process has run.
1743 */
1744static void
1745pmap_lazyfix(pmap_t pmap)
1746{
1747	u_int cr3;
1748
1749	cr3 = vtophys(pmap->pm_pdir);
1750	if (cr3 == rcr3()) {
1751		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1752		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1753	}
1754}
1755#endif	/* SMP */
1756
1757/*
1758 * Release any resources held by the given physical map.
1759 * Called when a pmap initialized by pmap_pinit is being released.
1760 * Should only be called if the map contains no valid mappings.
1761 */
1762void
1763pmap_release(pmap_t pmap)
1764{
1765	vm_page_t m, ptdpg[2*NPGPTD+1];
1766	vm_paddr_t ma;
1767	int i;
1768#ifdef PAE
1769	int npgptd = NPGPTD + 1;
1770#else
1771	int npgptd = NPGPTD;
1772#endif
1773
1774	KASSERT(pmap->pm_stats.resident_count == 0,
1775	    ("pmap_release: pmap resident count %ld != 0",
1776	    pmap->pm_stats.resident_count));
1777	PT_UPDATES_FLUSH();
1778
1779#ifdef HAMFISTED_LOCKING
1780	mtx_lock(&createdelete_lock);
1781#endif
1782
1783	pmap_lazyfix(pmap);
1784	mtx_lock_spin(&allpmaps_lock);
1785	LIST_REMOVE(pmap, pm_list);
1786	mtx_unlock_spin(&allpmaps_lock);
1787
1788	for (i = 0; i < NPGPTD; i++)
1789		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1790	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1791#ifdef PAE
1792	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1793#endif
1794
1795	for (i = 0; i < npgptd; i++) {
1796		m = ptdpg[i];
1797		ma = VM_PAGE_TO_MACH(m);
1798		/* unpinning L1 and L2 treated the same */
1799#if 0
1800                xen_pgd_unpin(ma);
1801#else
1802		if (i == NPGPTD)
1803	                xen_pgd_unpin(ma);
1804#endif
1805#ifdef PAE
1806		if (i < NPGPTD)
1807			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1808			    ("pmap_release: got wrong ptd page"));
1809#endif
1810		m->wire_count--;
1811		atomic_subtract_int(&cnt.v_wire_count, 1);
1812		vm_page_free(m);
1813	}
1814#ifdef PAE
1815	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1816#endif
1817	PMAP_LOCK_DESTROY(pmap);
1818
1819#ifdef HAMFISTED_LOCKING
1820	mtx_unlock(&createdelete_lock);
1821#endif
1822}
1823
1824static int
1825kvm_size(SYSCTL_HANDLER_ARGS)
1826{
1827	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1828
1829	return (sysctl_handle_long(oidp, &ksize, 0, req));
1830}
1831SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1832    0, 0, kvm_size, "IU", "Size of KVM");
1833
1834static int
1835kvm_free(SYSCTL_HANDLER_ARGS)
1836{
1837	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1838
1839	return (sysctl_handle_long(oidp, &kfree, 0, req));
1840}
1841SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1842    0, 0, kvm_free, "IU", "Amount of KVM free");
1843
1844/*
1845 * grow the number of kernel page table entries, if needed
1846 */
1847void
1848pmap_growkernel(vm_offset_t addr)
1849{
1850	struct pmap *pmap;
1851	vm_paddr_t ptppaddr;
1852	vm_page_t nkpg;
1853	pd_entry_t newpdir;
1854
1855	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1856	if (kernel_vm_end == 0) {
1857		kernel_vm_end = KERNBASE;
1858		nkpt = 0;
1859		while (pdir_pde(PTD, kernel_vm_end)) {
1860			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1861			nkpt++;
1862			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1863				kernel_vm_end = kernel_map->max_offset;
1864				break;
1865			}
1866		}
1867	}
1868	addr = roundup2(addr, NBPDR);
1869	if (addr - 1 >= kernel_map->max_offset)
1870		addr = kernel_map->max_offset;
1871	while (kernel_vm_end < addr) {
1872		if (pdir_pde(PTD, kernel_vm_end)) {
1873			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1874			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1875				kernel_vm_end = kernel_map->max_offset;
1876				break;
1877			}
1878			continue;
1879		}
1880
1881		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1882		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1883		    VM_ALLOC_ZERO);
1884		if (nkpg == NULL)
1885			panic("pmap_growkernel: no memory to grow kernel");
1886
1887		nkpt++;
1888
1889		if ((nkpg->flags & PG_ZERO) == 0)
1890			pmap_zero_page(nkpg);
1891		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1892		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1893		vm_page_lock_queues();
1894		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1895		mtx_lock_spin(&allpmaps_lock);
1896		LIST_FOREACH(pmap, &allpmaps, pm_list)
1897			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1898
1899		mtx_unlock_spin(&allpmaps_lock);
1900		vm_page_unlock_queues();
1901
1902		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1903		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1904			kernel_vm_end = kernel_map->max_offset;
1905			break;
1906		}
1907	}
1908}
1909
1910
1911/***************************************************
1912 * page management routines.
1913 ***************************************************/
1914
1915CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1916CTASSERT(_NPCM == 11);
1917
1918static __inline struct pv_chunk *
1919pv_to_chunk(pv_entry_t pv)
1920{
1921
1922	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1923}
1924
1925#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1926
1927#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1928#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1929
1930static uint32_t pc_freemask[11] = {
1931	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1932	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1933	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1934	PC_FREE0_9, PC_FREE10
1935};
1936
1937SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1938	"Current number of pv entries");
1939
1940#ifdef PV_STATS
1941static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1942
1943SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1944	"Current number of pv entry chunks");
1945SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1946	"Current number of pv entry chunks allocated");
1947SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1948	"Current number of pv entry chunks frees");
1949SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1950	"Number of times tried to get a chunk page but failed.");
1951
1952static long pv_entry_frees, pv_entry_allocs;
1953static int pv_entry_spare;
1954
1955SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1956	"Current number of pv entry frees");
1957SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1958	"Current number of pv entry allocs");
1959SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1960	"Current number of spare pv entries");
1961
1962static int pmap_collect_inactive, pmap_collect_active;
1963
1964SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1965	"Current number times pmap_collect called on inactive queue");
1966SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1967	"Current number times pmap_collect called on active queue");
1968#endif
1969
1970/*
1971 * We are in a serious low memory condition.  Resort to
1972 * drastic measures to free some pages so we can allocate
1973 * another pv entry chunk.  This is normally called to
1974 * unmap inactive pages, and if necessary, active pages.
1975 */
1976static void
1977pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1978{
1979	pmap_t pmap;
1980	pt_entry_t *pte, tpte;
1981	pv_entry_t next_pv, pv;
1982	vm_offset_t va;
1983	vm_page_t m, free;
1984
1985	sched_pin();
1986	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1987		if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
1988			continue;
1989		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1990			va = pv->pv_va;
1991			pmap = PV_PMAP(pv);
1992			/* Avoid deadlock and lock recursion. */
1993			if (pmap > locked_pmap)
1994				PMAP_LOCK(pmap);
1995			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1996				continue;
1997			pmap->pm_stats.resident_count--;
1998			pte = pmap_pte_quick(pmap, va);
1999			tpte = pte_load_clear(pte);
2000			KASSERT((tpte & PG_W) == 0,
2001			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2002			if (tpte & PG_A)
2003				vm_page_aflag_set(m, PGA_REFERENCED);
2004			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2005				vm_page_dirty(m);
2006			free = NULL;
2007			pmap_unuse_pt(pmap, va, &free);
2008			pmap_invalidate_page(pmap, va);
2009			pmap_free_zero_pages(free);
2010			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2011			free_pv_entry(pmap, pv);
2012			if (pmap != locked_pmap)
2013				PMAP_UNLOCK(pmap);
2014		}
2015		if (TAILQ_EMPTY(&m->md.pv_list))
2016			vm_page_aflag_clear(m, PGA_WRITEABLE);
2017	}
2018	sched_unpin();
2019}
2020
2021
2022/*
2023 * free the pv_entry back to the free list
2024 */
2025static void
2026free_pv_entry(pmap_t pmap, pv_entry_t pv)
2027{
2028	vm_page_t m;
2029	struct pv_chunk *pc;
2030	int idx, field, bit;
2031
2032	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2033	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2034	PV_STAT(pv_entry_frees++);
2035	PV_STAT(pv_entry_spare++);
2036	pv_entry_count--;
2037	pc = pv_to_chunk(pv);
2038	idx = pv - &pc->pc_pventry[0];
2039	field = idx / 32;
2040	bit = idx % 32;
2041	pc->pc_map[field] |= 1ul << bit;
2042	/* move to head of list */
2043	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2044	for (idx = 0; idx < _NPCM; idx++)
2045		if (pc->pc_map[idx] != pc_freemask[idx]) {
2046			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2047			return;
2048		}
2049	PV_STAT(pv_entry_spare -= _NPCPV);
2050	PV_STAT(pc_chunk_count--);
2051	PV_STAT(pc_chunk_frees++);
2052	/* entire chunk is free, return it */
2053	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2054	pmap_qremove((vm_offset_t)pc, 1);
2055	vm_page_unwire(m, 0);
2056	vm_page_free(m);
2057	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2058}
2059
2060/*
2061 * get a new pv_entry, allocating a block from the system
2062 * when needed.
2063 */
2064static pv_entry_t
2065get_pv_entry(pmap_t pmap, int try)
2066{
2067	static const struct timeval printinterval = { 60, 0 };
2068	static struct timeval lastprint;
2069	struct vpgqueues *pq;
2070	int bit, field;
2071	pv_entry_t pv;
2072	struct pv_chunk *pc;
2073	vm_page_t m;
2074
2075	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2076	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2077	PV_STAT(pv_entry_allocs++);
2078	pv_entry_count++;
2079	if (pv_entry_count > pv_entry_high_water)
2080		if (ratecheck(&lastprint, &printinterval))
2081			printf("Approaching the limit on PV entries, consider "
2082			    "increasing either the vm.pmap.shpgperproc or the "
2083			    "vm.pmap.pv_entry_max tunable.\n");
2084	pq = NULL;
2085retry:
2086	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2087	if (pc != NULL) {
2088		for (field = 0; field < _NPCM; field++) {
2089			if (pc->pc_map[field]) {
2090				bit = bsfl(pc->pc_map[field]);
2091				break;
2092			}
2093		}
2094		if (field < _NPCM) {
2095			pv = &pc->pc_pventry[field * 32 + bit];
2096			pc->pc_map[field] &= ~(1ul << bit);
2097			/* If this was the last item, move it to tail */
2098			for (field = 0; field < _NPCM; field++)
2099				if (pc->pc_map[field] != 0) {
2100					PV_STAT(pv_entry_spare--);
2101					return (pv);	/* not full, return */
2102				}
2103			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2104			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2105			PV_STAT(pv_entry_spare--);
2106			return (pv);
2107		}
2108	}
2109	/*
2110	 * Access to the ptelist "pv_vafree" is synchronized by the page
2111	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2112	 * remain non-empty until pmap_ptelist_alloc() completes.
2113	 */
2114	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, (pq ==
2115	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2116	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2117		if (try) {
2118			pv_entry_count--;
2119			PV_STAT(pc_chunk_tryfail++);
2120			return (NULL);
2121		}
2122		/*
2123		 * Reclaim pv entries: At first, destroy mappings to
2124		 * inactive pages.  After that, if a pv chunk entry
2125		 * is still needed, destroy mappings to active pages.
2126		 */
2127		if (pq == NULL) {
2128			PV_STAT(pmap_collect_inactive++);
2129			pq = &vm_page_queues[PQ_INACTIVE];
2130		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2131			PV_STAT(pmap_collect_active++);
2132			pq = &vm_page_queues[PQ_ACTIVE];
2133		} else
2134			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2135		pmap_collect(pmap, pq);
2136		goto retry;
2137	}
2138	PV_STAT(pc_chunk_count++);
2139	PV_STAT(pc_chunk_allocs++);
2140	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2141	pmap_qenter((vm_offset_t)pc, &m, 1);
2142	if ((m->flags & PG_ZERO) == 0)
2143		pagezero(pc);
2144	pc->pc_pmap = pmap;
2145	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2146	for (field = 1; field < _NPCM; field++)
2147		pc->pc_map[field] = pc_freemask[field];
2148	pv = &pc->pc_pventry[0];
2149	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2150	PV_STAT(pv_entry_spare += _NPCPV - 1);
2151	return (pv);
2152}
2153
2154static __inline pv_entry_t
2155pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2156{
2157	pv_entry_t pv;
2158
2159	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2160	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2161		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2162			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2163			break;
2164		}
2165	}
2166	return (pv);
2167}
2168
2169static void
2170pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2171{
2172	pv_entry_t pv;
2173
2174	pv = pmap_pvh_remove(pvh, pmap, va);
2175	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2176	free_pv_entry(pmap, pv);
2177}
2178
2179static void
2180pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2181{
2182
2183	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2184	pmap_pvh_free(&m->md, pmap, va);
2185	if (TAILQ_EMPTY(&m->md.pv_list))
2186		vm_page_aflag_clear(m, PGA_WRITEABLE);
2187}
2188
2189/*
2190 * Conditionally create a pv entry.
2191 */
2192static boolean_t
2193pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2194{
2195	pv_entry_t pv;
2196
2197	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2198	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2199	if (pv_entry_count < pv_entry_high_water &&
2200	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2201		pv->pv_va = va;
2202		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2203		return (TRUE);
2204	} else
2205		return (FALSE);
2206}
2207
2208/*
2209 * pmap_remove_pte: do the things to unmap a page in a process
2210 */
2211static int
2212pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2213{
2214	pt_entry_t oldpte;
2215	vm_page_t m;
2216
2217	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2218	    pmap, (u_long)*ptq, va);
2219
2220	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2221	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2222	oldpte = *ptq;
2223	PT_SET_VA_MA(ptq, 0, TRUE);
2224	if (oldpte & PG_W)
2225		pmap->pm_stats.wired_count -= 1;
2226	/*
2227	 * Machines that don't support invlpg, also don't support
2228	 * PG_G.
2229	 */
2230	if (oldpte & PG_G)
2231		pmap_invalidate_page(kernel_pmap, va);
2232	pmap->pm_stats.resident_count -= 1;
2233	if (oldpte & PG_MANAGED) {
2234		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2235		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2236			vm_page_dirty(m);
2237		if (oldpte & PG_A)
2238			vm_page_aflag_set(m, PGA_REFERENCED);
2239		pmap_remove_entry(pmap, m, va);
2240	}
2241	return (pmap_unuse_pt(pmap, va, free));
2242}
2243
2244/*
2245 * Remove a single page from a process address space
2246 */
2247static void
2248pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2249{
2250	pt_entry_t *pte;
2251
2252	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2253	    pmap, va);
2254
2255	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2256	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2257	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2258	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2259		return;
2260	pmap_remove_pte(pmap, pte, va, free);
2261	pmap_invalidate_page(pmap, va);
2262	if (*PMAP1)
2263		PT_SET_MA(PADDR1, 0);
2264
2265}
2266
2267/*
2268 *	Remove the given range of addresses from the specified map.
2269 *
2270 *	It is assumed that the start and end are properly
2271 *	rounded to the page size.
2272 */
2273void
2274pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2275{
2276	vm_offset_t pdnxt;
2277	pd_entry_t ptpaddr;
2278	pt_entry_t *pte;
2279	vm_page_t free = NULL;
2280	int anyvalid;
2281
2282	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2283	    pmap, sva, eva);
2284
2285	/*
2286	 * Perform an unsynchronized read.  This is, however, safe.
2287	 */
2288	if (pmap->pm_stats.resident_count == 0)
2289		return;
2290
2291	anyvalid = 0;
2292
2293	vm_page_lock_queues();
2294	sched_pin();
2295	PMAP_LOCK(pmap);
2296
2297	/*
2298	 * special handling of removing one page.  a very
2299	 * common operation and easy to short circuit some
2300	 * code.
2301	 */
2302	if ((sva + PAGE_SIZE == eva) &&
2303	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2304		pmap_remove_page(pmap, sva, &free);
2305		goto out;
2306	}
2307
2308	for (; sva < eva; sva = pdnxt) {
2309		u_int pdirindex;
2310
2311		/*
2312		 * Calculate index for next page table.
2313		 */
2314		pdnxt = (sva + NBPDR) & ~PDRMASK;
2315		if (pdnxt < sva)
2316			pdnxt = eva;
2317		if (pmap->pm_stats.resident_count == 0)
2318			break;
2319
2320		pdirindex = sva >> PDRSHIFT;
2321		ptpaddr = pmap->pm_pdir[pdirindex];
2322
2323		/*
2324		 * Weed out invalid mappings. Note: we assume that the page
2325		 * directory table is always allocated, and in kernel virtual.
2326		 */
2327		if (ptpaddr == 0)
2328			continue;
2329
2330		/*
2331		 * Check for large page.
2332		 */
2333		if ((ptpaddr & PG_PS) != 0) {
2334			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2335			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2336			anyvalid = 1;
2337			continue;
2338		}
2339
2340		/*
2341		 * Limit our scan to either the end of the va represented
2342		 * by the current page table page, or to the end of the
2343		 * range being removed.
2344		 */
2345		if (pdnxt > eva)
2346			pdnxt = eva;
2347
2348		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2349		    sva += PAGE_SIZE) {
2350			if ((*pte & PG_V) == 0)
2351				continue;
2352
2353			/*
2354			 * The TLB entry for a PG_G mapping is invalidated
2355			 * by pmap_remove_pte().
2356			 */
2357			if ((*pte & PG_G) == 0)
2358				anyvalid = 1;
2359			if (pmap_remove_pte(pmap, pte, sva, &free))
2360				break;
2361		}
2362	}
2363	PT_UPDATES_FLUSH();
2364	if (*PMAP1)
2365		PT_SET_VA_MA(PMAP1, 0, TRUE);
2366out:
2367	if (anyvalid)
2368		pmap_invalidate_all(pmap);
2369	sched_unpin();
2370	vm_page_unlock_queues();
2371	PMAP_UNLOCK(pmap);
2372	pmap_free_zero_pages(free);
2373}
2374
2375/*
2376 *	Routine:	pmap_remove_all
2377 *	Function:
2378 *		Removes this physical page from
2379 *		all physical maps in which it resides.
2380 *		Reflects back modify bits to the pager.
2381 *
2382 *	Notes:
2383 *		Original versions of this routine were very
2384 *		inefficient because they iteratively called
2385 *		pmap_remove (slow...)
2386 */
2387
2388void
2389pmap_remove_all(vm_page_t m)
2390{
2391	pv_entry_t pv;
2392	pmap_t pmap;
2393	pt_entry_t *pte, tpte;
2394	vm_page_t free;
2395
2396	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2397	    ("pmap_remove_all: page %p is not managed", m));
2398	free = NULL;
2399	vm_page_lock_queues();
2400	sched_pin();
2401	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2402		pmap = PV_PMAP(pv);
2403		PMAP_LOCK(pmap);
2404		pmap->pm_stats.resident_count--;
2405		pte = pmap_pte_quick(pmap, pv->pv_va);
2406		tpte = *pte;
2407		PT_SET_VA_MA(pte, 0, TRUE);
2408		if (tpte & PG_W)
2409			pmap->pm_stats.wired_count--;
2410		if (tpte & PG_A)
2411			vm_page_aflag_set(m, PGA_REFERENCED);
2412
2413		/*
2414		 * Update the vm_page_t clean and reference bits.
2415		 */
2416		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2417			vm_page_dirty(m);
2418		pmap_unuse_pt(pmap, pv->pv_va, &free);
2419		pmap_invalidate_page(pmap, pv->pv_va);
2420		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2421		free_pv_entry(pmap, pv);
2422		PMAP_UNLOCK(pmap);
2423	}
2424	vm_page_aflag_clear(m, PGA_WRITEABLE);
2425	PT_UPDATES_FLUSH();
2426	if (*PMAP1)
2427		PT_SET_MA(PADDR1, 0);
2428	sched_unpin();
2429	vm_page_unlock_queues();
2430	pmap_free_zero_pages(free);
2431}
2432
2433/*
2434 *	Set the physical protection on the
2435 *	specified range of this map as requested.
2436 */
2437void
2438pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2439{
2440	vm_offset_t pdnxt;
2441	pd_entry_t ptpaddr;
2442	pt_entry_t *pte;
2443	int anychanged;
2444
2445	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2446	    pmap, sva, eva, prot);
2447
2448	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2449		pmap_remove(pmap, sva, eva);
2450		return;
2451	}
2452
2453#ifdef PAE
2454	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2455	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2456		return;
2457#else
2458	if (prot & VM_PROT_WRITE)
2459		return;
2460#endif
2461
2462	anychanged = 0;
2463
2464	vm_page_lock_queues();
2465	sched_pin();
2466	PMAP_LOCK(pmap);
2467	for (; sva < eva; sva = pdnxt) {
2468		pt_entry_t obits, pbits;
2469		u_int pdirindex;
2470
2471		pdnxt = (sva + NBPDR) & ~PDRMASK;
2472		if (pdnxt < sva)
2473			pdnxt = eva;
2474
2475		pdirindex = sva >> PDRSHIFT;
2476		ptpaddr = pmap->pm_pdir[pdirindex];
2477
2478		/*
2479		 * Weed out invalid mappings. Note: we assume that the page
2480		 * directory table is always allocated, and in kernel virtual.
2481		 */
2482		if (ptpaddr == 0)
2483			continue;
2484
2485		/*
2486		 * Check for large page.
2487		 */
2488		if ((ptpaddr & PG_PS) != 0) {
2489			if ((prot & VM_PROT_WRITE) == 0)
2490				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2491#ifdef PAE
2492			if ((prot & VM_PROT_EXECUTE) == 0)
2493				pmap->pm_pdir[pdirindex] |= pg_nx;
2494#endif
2495			anychanged = 1;
2496			continue;
2497		}
2498
2499		if (pdnxt > eva)
2500			pdnxt = eva;
2501
2502		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2503		    sva += PAGE_SIZE) {
2504			vm_page_t m;
2505
2506retry:
2507			/*
2508			 * Regardless of whether a pte is 32 or 64 bits in
2509			 * size, PG_RW, PG_A, and PG_M are among the least
2510			 * significant 32 bits.
2511			 */
2512			obits = pbits = *pte;
2513			if ((pbits & PG_V) == 0)
2514				continue;
2515
2516			if ((prot & VM_PROT_WRITE) == 0) {
2517				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2518				    (PG_MANAGED | PG_M | PG_RW)) {
2519					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2520					    PG_FRAME);
2521					vm_page_dirty(m);
2522				}
2523				pbits &= ~(PG_RW | PG_M);
2524			}
2525#ifdef PAE
2526			if ((prot & VM_PROT_EXECUTE) == 0)
2527				pbits |= pg_nx;
2528#endif
2529
2530			if (pbits != obits) {
2531				obits = *pte;
2532				PT_SET_VA_MA(pte, pbits, TRUE);
2533				if (*pte != pbits)
2534					goto retry;
2535				if (obits & PG_G)
2536					pmap_invalidate_page(pmap, sva);
2537				else
2538					anychanged = 1;
2539			}
2540		}
2541	}
2542	PT_UPDATES_FLUSH();
2543	if (*PMAP1)
2544		PT_SET_VA_MA(PMAP1, 0, TRUE);
2545	if (anychanged)
2546		pmap_invalidate_all(pmap);
2547	sched_unpin();
2548	vm_page_unlock_queues();
2549	PMAP_UNLOCK(pmap);
2550}
2551
2552/*
2553 *	Insert the given physical page (p) at
2554 *	the specified virtual address (v) in the
2555 *	target physical map with the protection requested.
2556 *
2557 *	If specified, the page will be wired down, meaning
2558 *	that the related pte can not be reclaimed.
2559 *
2560 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2561 *	or lose information.  That is, this routine must actually
2562 *	insert this page into the given map NOW.
2563 */
2564void
2565pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2566    vm_prot_t prot, boolean_t wired)
2567{
2568	pd_entry_t *pde;
2569	pt_entry_t *pte;
2570	pt_entry_t newpte, origpte;
2571	pv_entry_t pv;
2572	vm_paddr_t opa, pa;
2573	vm_page_t mpte, om;
2574	boolean_t invlva;
2575
2576	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2577	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2578	va = trunc_page(va);
2579	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2580	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2581	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2582	    va));
2583	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
2584	    VM_OBJECT_LOCKED(m->object),
2585	    ("pmap_enter: page %p is not busy", m));
2586
2587	mpte = NULL;
2588
2589	vm_page_lock_queues();
2590	PMAP_LOCK(pmap);
2591	sched_pin();
2592
2593	/*
2594	 * In the case that a page table page is not
2595	 * resident, we are creating it here.
2596	 */
2597	if (va < VM_MAXUSER_ADDRESS) {
2598		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2599	}
2600
2601	pde = pmap_pde(pmap, va);
2602	if ((*pde & PG_PS) != 0)
2603		panic("pmap_enter: attempted pmap_enter on 4MB page");
2604	pte = pmap_pte_quick(pmap, va);
2605
2606	/*
2607	 * Page Directory table entry not valid, we need a new PT page
2608	 */
2609	if (pte == NULL) {
2610		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2611			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2612	}
2613
2614	pa = VM_PAGE_TO_PHYS(m);
2615	om = NULL;
2616	opa = origpte = 0;
2617
2618#if 0
2619	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2620		pte, *pte));
2621#endif
2622	origpte = *pte;
2623	if (origpte)
2624		origpte = xpmap_mtop(origpte);
2625	opa = origpte & PG_FRAME;
2626
2627	/*
2628	 * Mapping has not changed, must be protection or wiring change.
2629	 */
2630	if (origpte && (opa == pa)) {
2631		/*
2632		 * Wiring change, just update stats. We don't worry about
2633		 * wiring PT pages as they remain resident as long as there
2634		 * are valid mappings in them. Hence, if a user page is wired,
2635		 * the PT page will be also.
2636		 */
2637		if (wired && ((origpte & PG_W) == 0))
2638			pmap->pm_stats.wired_count++;
2639		else if (!wired && (origpte & PG_W))
2640			pmap->pm_stats.wired_count--;
2641
2642		/*
2643		 * Remove extra pte reference
2644		 */
2645		if (mpte)
2646			mpte->wire_count--;
2647
2648		if (origpte & PG_MANAGED) {
2649			om = m;
2650			pa |= PG_MANAGED;
2651		}
2652		goto validate;
2653	}
2654
2655	pv = NULL;
2656
2657	/*
2658	 * Mapping has changed, invalidate old range and fall through to
2659	 * handle validating new mapping.
2660	 */
2661	if (opa) {
2662		if (origpte & PG_W)
2663			pmap->pm_stats.wired_count--;
2664		if (origpte & PG_MANAGED) {
2665			om = PHYS_TO_VM_PAGE(opa);
2666			pv = pmap_pvh_remove(&om->md, pmap, va);
2667		} else if (va < VM_MAXUSER_ADDRESS)
2668			printf("va=0x%x is unmanaged :-( \n", va);
2669
2670		if (mpte != NULL) {
2671			mpte->wire_count--;
2672			KASSERT(mpte->wire_count > 0,
2673			    ("pmap_enter: missing reference to page table page,"
2674			     " va: 0x%x", va));
2675		}
2676	} else
2677		pmap->pm_stats.resident_count++;
2678
2679	/*
2680	 * Enter on the PV list if part of our managed memory.
2681	 */
2682	if ((m->oflags & VPO_UNMANAGED) == 0) {
2683		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2684		    ("pmap_enter: managed mapping within the clean submap"));
2685		if (pv == NULL)
2686			pv = get_pv_entry(pmap, FALSE);
2687		pv->pv_va = va;
2688		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2689		pa |= PG_MANAGED;
2690	} else if (pv != NULL)
2691		free_pv_entry(pmap, pv);
2692
2693	/*
2694	 * Increment counters
2695	 */
2696	if (wired)
2697		pmap->pm_stats.wired_count++;
2698
2699validate:
2700	/*
2701	 * Now validate mapping with desired protection/wiring.
2702	 */
2703	newpte = (pt_entry_t)(pa | PG_V);
2704	if ((prot & VM_PROT_WRITE) != 0) {
2705		newpte |= PG_RW;
2706		if ((newpte & PG_MANAGED) != 0)
2707			vm_page_aflag_set(m, PGA_WRITEABLE);
2708	}
2709#ifdef PAE
2710	if ((prot & VM_PROT_EXECUTE) == 0)
2711		newpte |= pg_nx;
2712#endif
2713	if (wired)
2714		newpte |= PG_W;
2715	if (va < VM_MAXUSER_ADDRESS)
2716		newpte |= PG_U;
2717	if (pmap == kernel_pmap)
2718		newpte |= pgeflag;
2719
2720	critical_enter();
2721	/*
2722	 * if the mapping or permission bits are different, we need
2723	 * to update the pte.
2724	 */
2725	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2726		if (origpte) {
2727			invlva = FALSE;
2728			origpte = *pte;
2729			PT_SET_VA(pte, newpte | PG_A, FALSE);
2730			if (origpte & PG_A) {
2731				if (origpte & PG_MANAGED)
2732					vm_page_aflag_set(om, PGA_REFERENCED);
2733				if (opa != VM_PAGE_TO_PHYS(m))
2734					invlva = TRUE;
2735#ifdef PAE
2736				if ((origpte & PG_NX) == 0 &&
2737				    (newpte & PG_NX) != 0)
2738					invlva = TRUE;
2739#endif
2740			}
2741			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2742				if ((origpte & PG_MANAGED) != 0)
2743					vm_page_dirty(om);
2744				if ((prot & VM_PROT_WRITE) == 0)
2745					invlva = TRUE;
2746			}
2747			if ((origpte & PG_MANAGED) != 0 &&
2748			    TAILQ_EMPTY(&om->md.pv_list))
2749				vm_page_aflag_clear(om, PGA_WRITEABLE);
2750			if (invlva)
2751				pmap_invalidate_page(pmap, va);
2752		} else{
2753			PT_SET_VA(pte, newpte | PG_A, FALSE);
2754		}
2755
2756	}
2757	PT_UPDATES_FLUSH();
2758	critical_exit();
2759	if (*PMAP1)
2760		PT_SET_VA_MA(PMAP1, 0, TRUE);
2761	sched_unpin();
2762	vm_page_unlock_queues();
2763	PMAP_UNLOCK(pmap);
2764}
2765
2766/*
2767 * Maps a sequence of resident pages belonging to the same object.
2768 * The sequence begins with the given page m_start.  This page is
2769 * mapped at the given virtual address start.  Each subsequent page is
2770 * mapped at a virtual address that is offset from start by the same
2771 * amount as the page is offset from m_start within the object.  The
2772 * last page in the sequence is the page with the largest offset from
2773 * m_start that can be mapped at a virtual address less than the given
2774 * virtual address end.  Not every virtual page between start and end
2775 * is mapped; only those for which a resident page exists with the
2776 * corresponding offset from m_start are mapped.
2777 */
2778void
2779pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2780    vm_page_t m_start, vm_prot_t prot)
2781{
2782	vm_page_t m, mpte;
2783	vm_pindex_t diff, psize;
2784	multicall_entry_t mcl[16];
2785	multicall_entry_t *mclp = mcl;
2786	int error, count = 0;
2787
2788	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2789	psize = atop(end - start);
2790	mpte = NULL;
2791	m = m_start;
2792	vm_page_lock_queues();
2793	PMAP_LOCK(pmap);
2794	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2795		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2796		    prot, mpte);
2797		m = TAILQ_NEXT(m, listq);
2798		if (count == 16) {
2799			error = HYPERVISOR_multicall(mcl, count);
2800			KASSERT(error == 0, ("bad multicall %d", error));
2801			mclp = mcl;
2802			count = 0;
2803		}
2804	}
2805	if (count) {
2806		error = HYPERVISOR_multicall(mcl, count);
2807		KASSERT(error == 0, ("bad multicall %d", error));
2808	}
2809	vm_page_unlock_queues();
2810	PMAP_UNLOCK(pmap);
2811}
2812
2813/*
2814 * this code makes some *MAJOR* assumptions:
2815 * 1. Current pmap & pmap exists.
2816 * 2. Not wired.
2817 * 3. Read access.
2818 * 4. No page table pages.
2819 * but is *MUCH* faster than pmap_enter...
2820 */
2821
2822void
2823pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2824{
2825	multicall_entry_t mcl, *mclp;
2826	int count = 0;
2827	mclp = &mcl;
2828
2829	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2830	    pmap, va, m, prot);
2831
2832	vm_page_lock_queues();
2833	PMAP_LOCK(pmap);
2834	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2835	if (count)
2836		HYPERVISOR_multicall(&mcl, count);
2837	vm_page_unlock_queues();
2838	PMAP_UNLOCK(pmap);
2839}
2840
2841#ifdef notyet
2842void
2843pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2844{
2845	int i, error, index = 0;
2846	multicall_entry_t mcl[16];
2847	multicall_entry_t *mclp = mcl;
2848
2849	PMAP_LOCK(pmap);
2850	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2851		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2852			continue;
2853
2854		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2855		if (index == 16) {
2856			error = HYPERVISOR_multicall(mcl, index);
2857			mclp = mcl;
2858			index = 0;
2859			KASSERT(error == 0, ("bad multicall %d", error));
2860		}
2861	}
2862	if (index) {
2863		error = HYPERVISOR_multicall(mcl, index);
2864		KASSERT(error == 0, ("bad multicall %d", error));
2865	}
2866
2867	PMAP_UNLOCK(pmap);
2868}
2869#endif
2870
2871static vm_page_t
2872pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2873    vm_prot_t prot, vm_page_t mpte)
2874{
2875	pt_entry_t *pte;
2876	vm_paddr_t pa;
2877	vm_page_t free;
2878	multicall_entry_t *mcl = *mclpp;
2879
2880	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2881	    (m->oflags & VPO_UNMANAGED) != 0,
2882	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2883	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2884	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2885
2886	/*
2887	 * In the case that a page table page is not
2888	 * resident, we are creating it here.
2889	 */
2890	if (va < VM_MAXUSER_ADDRESS) {
2891		u_int ptepindex;
2892		pd_entry_t ptema;
2893
2894		/*
2895		 * Calculate pagetable page index
2896		 */
2897		ptepindex = va >> PDRSHIFT;
2898		if (mpte && (mpte->pindex == ptepindex)) {
2899			mpte->wire_count++;
2900		} else {
2901			/*
2902			 * Get the page directory entry
2903			 */
2904			ptema = pmap->pm_pdir[ptepindex];
2905
2906			/*
2907			 * If the page table page is mapped, we just increment
2908			 * the hold count, and activate it.
2909			 */
2910			if (ptema & PG_V) {
2911				if (ptema & PG_PS)
2912					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2913				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2914				mpte->wire_count++;
2915			} else {
2916				mpte = _pmap_allocpte(pmap, ptepindex,
2917				    M_NOWAIT);
2918				if (mpte == NULL)
2919					return (mpte);
2920			}
2921		}
2922	} else {
2923		mpte = NULL;
2924	}
2925
2926	/*
2927	 * This call to vtopte makes the assumption that we are
2928	 * entering the page into the current pmap.  In order to support
2929	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2930	 * But that isn't as quick as vtopte.
2931	 */
2932	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2933	pte = vtopte(va);
2934	if (*pte & PG_V) {
2935		if (mpte != NULL) {
2936			mpte->wire_count--;
2937			mpte = NULL;
2938		}
2939		return (mpte);
2940	}
2941
2942	/*
2943	 * Enter on the PV list if part of our managed memory.
2944	 */
2945	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2946	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2947		if (mpte != NULL) {
2948			free = NULL;
2949			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2950				pmap_invalidate_page(pmap, va);
2951				pmap_free_zero_pages(free);
2952			}
2953
2954			mpte = NULL;
2955		}
2956		return (mpte);
2957	}
2958
2959	/*
2960	 * Increment counters
2961	 */
2962	pmap->pm_stats.resident_count++;
2963
2964	pa = VM_PAGE_TO_PHYS(m);
2965#ifdef PAE
2966	if ((prot & VM_PROT_EXECUTE) == 0)
2967		pa |= pg_nx;
2968#endif
2969
2970#if 0
2971	/*
2972	 * Now validate mapping with RO protection
2973	 */
2974	if ((m->oflags & VPO_UNMANAGED) != 0)
2975		pte_store(pte, pa | PG_V | PG_U);
2976	else
2977		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2978#else
2979	/*
2980	 * Now validate mapping with RO protection
2981	 */
2982	if ((m->oflags & VPO_UNMANAGED) != 0)
2983		pa = 	xpmap_ptom(pa | PG_V | PG_U);
2984	else
2985		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
2986
2987	mcl->op = __HYPERVISOR_update_va_mapping;
2988	mcl->args[0] = va;
2989	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
2990	mcl->args[2] = (uint32_t)(pa >> 32);
2991	mcl->args[3] = 0;
2992	*mclpp = mcl + 1;
2993	*count = *count + 1;
2994#endif
2995	return (mpte);
2996}
2997
2998/*
2999 * Make a temporary mapping for a physical address.  This is only intended
3000 * to be used for panic dumps.
3001 */
3002void *
3003pmap_kenter_temporary(vm_paddr_t pa, int i)
3004{
3005	vm_offset_t va;
3006	vm_paddr_t ma = xpmap_ptom(pa);
3007
3008	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3009	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3010	invlpg(va);
3011	return ((void *)crashdumpmap);
3012}
3013
3014/*
3015 * This code maps large physical mmap regions into the
3016 * processor address space.  Note that some shortcuts
3017 * are taken, but the code works.
3018 */
3019void
3020pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3021    vm_pindex_t pindex, vm_size_t size)
3022{
3023	pd_entry_t *pde;
3024	vm_paddr_t pa, ptepa;
3025	vm_page_t p;
3026	int pat_mode;
3027
3028	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3029	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3030	    ("pmap_object_init_pt: non-device object"));
3031	if (pseflag &&
3032	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3033		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3034			return;
3035		p = vm_page_lookup(object, pindex);
3036		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3037		    ("pmap_object_init_pt: invalid page %p", p));
3038		pat_mode = p->md.pat_mode;
3039
3040		/*
3041		 * Abort the mapping if the first page is not physically
3042		 * aligned to a 2/4MB page boundary.
3043		 */
3044		ptepa = VM_PAGE_TO_PHYS(p);
3045		if (ptepa & (NBPDR - 1))
3046			return;
3047
3048		/*
3049		 * Skip the first page.  Abort the mapping if the rest of
3050		 * the pages are not physically contiguous or have differing
3051		 * memory attributes.
3052		 */
3053		p = TAILQ_NEXT(p, listq);
3054		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3055		    pa += PAGE_SIZE) {
3056			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3057			    ("pmap_object_init_pt: invalid page %p", p));
3058			if (pa != VM_PAGE_TO_PHYS(p) ||
3059			    pat_mode != p->md.pat_mode)
3060				return;
3061			p = TAILQ_NEXT(p, listq);
3062		}
3063
3064		/*
3065		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3066		 * "size" is a multiple of 2/4M, adding the PAT setting to
3067		 * "pa" will not affect the termination of this loop.
3068		 */
3069		PMAP_LOCK(pmap);
3070		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3071		    size; pa += NBPDR) {
3072			pde = pmap_pde(pmap, addr);
3073			if (*pde == 0) {
3074				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3075				    PG_U | PG_RW | PG_V);
3076				pmap->pm_stats.resident_count += NBPDR /
3077				    PAGE_SIZE;
3078				pmap_pde_mappings++;
3079			}
3080			/* Else continue on if the PDE is already valid. */
3081			addr += NBPDR;
3082		}
3083		PMAP_UNLOCK(pmap);
3084	}
3085}
3086
3087/*
3088 *	Routine:	pmap_change_wiring
3089 *	Function:	Change the wiring attribute for a map/virtual-address
3090 *			pair.
3091 *	In/out conditions:
3092 *			The mapping must already exist in the pmap.
3093 */
3094void
3095pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3096{
3097	pt_entry_t *pte;
3098
3099	vm_page_lock_queues();
3100	PMAP_LOCK(pmap);
3101	pte = pmap_pte(pmap, va);
3102
3103	if (wired && !pmap_pte_w(pte)) {
3104		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3105		pmap->pm_stats.wired_count++;
3106	} else if (!wired && pmap_pte_w(pte)) {
3107		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3108		pmap->pm_stats.wired_count--;
3109	}
3110
3111	/*
3112	 * Wiring is not a hardware characteristic so there is no need to
3113	 * invalidate TLB.
3114	 */
3115	pmap_pte_release(pte);
3116	PMAP_UNLOCK(pmap);
3117	vm_page_unlock_queues();
3118}
3119
3120
3121
3122/*
3123 *	Copy the range specified by src_addr/len
3124 *	from the source map to the range dst_addr/len
3125 *	in the destination map.
3126 *
3127 *	This routine is only advisory and need not do anything.
3128 */
3129
3130void
3131pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3132    vm_offset_t src_addr)
3133{
3134	vm_page_t   free;
3135	vm_offset_t addr;
3136	vm_offset_t end_addr = src_addr + len;
3137	vm_offset_t pdnxt;
3138
3139	if (dst_addr != src_addr)
3140		return;
3141
3142	if (!pmap_is_current(src_pmap)) {
3143		CTR2(KTR_PMAP,
3144		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3145		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3146
3147		return;
3148	}
3149	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3150	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3151
3152#ifdef HAMFISTED_LOCKING
3153	mtx_lock(&createdelete_lock);
3154#endif
3155
3156	vm_page_lock_queues();
3157	if (dst_pmap < src_pmap) {
3158		PMAP_LOCK(dst_pmap);
3159		PMAP_LOCK(src_pmap);
3160	} else {
3161		PMAP_LOCK(src_pmap);
3162		PMAP_LOCK(dst_pmap);
3163	}
3164	sched_pin();
3165	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3166		pt_entry_t *src_pte, *dst_pte;
3167		vm_page_t dstmpte, srcmpte;
3168		pd_entry_t srcptepaddr;
3169		u_int ptepindex;
3170
3171		KASSERT(addr < UPT_MIN_ADDRESS,
3172		    ("pmap_copy: invalid to pmap_copy page tables"));
3173
3174		pdnxt = (addr + NBPDR) & ~PDRMASK;
3175		if (pdnxt < addr)
3176			pdnxt = end_addr;
3177		ptepindex = addr >> PDRSHIFT;
3178
3179		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3180		if (srcptepaddr == 0)
3181			continue;
3182
3183		if (srcptepaddr & PG_PS) {
3184			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3185				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3186				dst_pmap->pm_stats.resident_count +=
3187				    NBPDR / PAGE_SIZE;
3188			}
3189			continue;
3190		}
3191
3192		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3193		KASSERT(srcmpte->wire_count > 0,
3194		    ("pmap_copy: source page table page is unused"));
3195
3196		if (pdnxt > end_addr)
3197			pdnxt = end_addr;
3198
3199		src_pte = vtopte(addr);
3200		while (addr < pdnxt) {
3201			pt_entry_t ptetemp;
3202			ptetemp = *src_pte;
3203			/*
3204			 * we only virtual copy managed pages
3205			 */
3206			if ((ptetemp & PG_MANAGED) != 0) {
3207				dstmpte = pmap_allocpte(dst_pmap, addr,
3208				    M_NOWAIT);
3209				if (dstmpte == NULL)
3210					goto out;
3211				dst_pte = pmap_pte_quick(dst_pmap, addr);
3212				if (*dst_pte == 0 &&
3213				    pmap_try_insert_pv_entry(dst_pmap, addr,
3214				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3215					/*
3216					 * Clear the wired, modified, and
3217					 * accessed (referenced) bits
3218					 * during the copy.
3219					 */
3220					KASSERT(ptetemp != 0, ("src_pte not set"));
3221					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3222					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3223					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3224						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3225					dst_pmap->pm_stats.resident_count++;
3226	 			} else {
3227					free = NULL;
3228					if (pmap_unwire_pte_hold(dst_pmap,
3229					    dstmpte, &free)) {
3230						pmap_invalidate_page(dst_pmap,
3231						    addr);
3232						pmap_free_zero_pages(free);
3233					}
3234					goto out;
3235				}
3236				if (dstmpte->wire_count >= srcmpte->wire_count)
3237					break;
3238			}
3239			addr += PAGE_SIZE;
3240			src_pte++;
3241		}
3242	}
3243out:
3244	PT_UPDATES_FLUSH();
3245	sched_unpin();
3246	vm_page_unlock_queues();
3247	PMAP_UNLOCK(src_pmap);
3248	PMAP_UNLOCK(dst_pmap);
3249
3250#ifdef HAMFISTED_LOCKING
3251	mtx_unlock(&createdelete_lock);
3252#endif
3253}
3254
3255static __inline void
3256pagezero(void *page)
3257{
3258#if defined(I686_CPU)
3259	if (cpu_class == CPUCLASS_686) {
3260#if defined(CPU_ENABLE_SSE)
3261		if (cpu_feature & CPUID_SSE2)
3262			sse2_pagezero(page);
3263		else
3264#endif
3265			i686_pagezero(page);
3266	} else
3267#endif
3268		bzero(page, PAGE_SIZE);
3269}
3270
3271/*
3272 *	pmap_zero_page zeros the specified hardware page by mapping
3273 *	the page into KVM and using bzero to clear its contents.
3274 */
3275void
3276pmap_zero_page(vm_page_t m)
3277{
3278	struct sysmaps *sysmaps;
3279
3280	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3281	mtx_lock(&sysmaps->lock);
3282	if (*sysmaps->CMAP2)
3283		panic("pmap_zero_page: CMAP2 busy");
3284	sched_pin();
3285	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3286	pagezero(sysmaps->CADDR2);
3287	PT_SET_MA(sysmaps->CADDR2, 0);
3288	sched_unpin();
3289	mtx_unlock(&sysmaps->lock);
3290}
3291
3292/*
3293 *	pmap_zero_page_area zeros the specified hardware page by mapping
3294 *	the page into KVM and using bzero to clear its contents.
3295 *
3296 *	off and size may not cover an area beyond a single hardware page.
3297 */
3298void
3299pmap_zero_page_area(vm_page_t m, int off, int size)
3300{
3301	struct sysmaps *sysmaps;
3302
3303	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3304	mtx_lock(&sysmaps->lock);
3305	if (*sysmaps->CMAP2)
3306		panic("pmap_zero_page_area: CMAP2 busy");
3307	sched_pin();
3308	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3309
3310	if (off == 0 && size == PAGE_SIZE)
3311		pagezero(sysmaps->CADDR2);
3312	else
3313		bzero((char *)sysmaps->CADDR2 + off, size);
3314	PT_SET_MA(sysmaps->CADDR2, 0);
3315	sched_unpin();
3316	mtx_unlock(&sysmaps->lock);
3317}
3318
3319/*
3320 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3321 *	the page into KVM and using bzero to clear its contents.  This
3322 *	is intended to be called from the vm_pagezero process only and
3323 *	outside of Giant.
3324 */
3325void
3326pmap_zero_page_idle(vm_page_t m)
3327{
3328
3329	if (*CMAP3)
3330		panic("pmap_zero_page_idle: CMAP3 busy");
3331	sched_pin();
3332	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3333	pagezero(CADDR3);
3334	PT_SET_MA(CADDR3, 0);
3335	sched_unpin();
3336}
3337
3338/*
3339 *	pmap_copy_page copies the specified (machine independent)
3340 *	page by mapping the page into virtual memory and using
3341 *	bcopy to copy the page, one machine dependent page at a
3342 *	time.
3343 */
3344void
3345pmap_copy_page(vm_page_t src, vm_page_t dst)
3346{
3347	struct sysmaps *sysmaps;
3348
3349	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3350	mtx_lock(&sysmaps->lock);
3351	if (*sysmaps->CMAP1)
3352		panic("pmap_copy_page: CMAP1 busy");
3353	if (*sysmaps->CMAP2)
3354		panic("pmap_copy_page: CMAP2 busy");
3355	sched_pin();
3356	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3357	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3358	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3359	PT_SET_MA(sysmaps->CADDR1, 0);
3360	PT_SET_MA(sysmaps->CADDR2, 0);
3361	sched_unpin();
3362	mtx_unlock(&sysmaps->lock);
3363}
3364
3365/*
3366 * Returns true if the pmap's pv is one of the first
3367 * 16 pvs linked to from this page.  This count may
3368 * be changed upwards or downwards in the future; it
3369 * is only necessary that true be returned for a small
3370 * subset of pmaps for proper page aging.
3371 */
3372boolean_t
3373pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3374{
3375	pv_entry_t pv;
3376	int loops = 0;
3377	boolean_t rv;
3378
3379	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3380	    ("pmap_page_exists_quick: page %p is not managed", m));
3381	rv = FALSE;
3382	vm_page_lock_queues();
3383	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3384		if (PV_PMAP(pv) == pmap) {
3385			rv = TRUE;
3386			break;
3387		}
3388		loops++;
3389		if (loops >= 16)
3390			break;
3391	}
3392	vm_page_unlock_queues();
3393	return (rv);
3394}
3395
3396/*
3397 *	pmap_page_wired_mappings:
3398 *
3399 *	Return the number of managed mappings to the given physical page
3400 *	that are wired.
3401 */
3402int
3403pmap_page_wired_mappings(vm_page_t m)
3404{
3405	pv_entry_t pv;
3406	pt_entry_t *pte;
3407	pmap_t pmap;
3408	int count;
3409
3410	count = 0;
3411	if ((m->oflags & VPO_UNMANAGED) != 0)
3412		return (count);
3413	vm_page_lock_queues();
3414	sched_pin();
3415	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3416		pmap = PV_PMAP(pv);
3417		PMAP_LOCK(pmap);
3418		pte = pmap_pte_quick(pmap, pv->pv_va);
3419		if ((*pte & PG_W) != 0)
3420			count++;
3421		PMAP_UNLOCK(pmap);
3422	}
3423	sched_unpin();
3424	vm_page_unlock_queues();
3425	return (count);
3426}
3427
3428/*
3429 * Returns TRUE if the given page is mapped.  Otherwise, returns FALSE.
3430 */
3431boolean_t
3432pmap_page_is_mapped(vm_page_t m)
3433{
3434
3435	if ((m->oflags & VPO_UNMANAGED) != 0)
3436		return (FALSE);
3437	return (!TAILQ_EMPTY(&m->md.pv_list));
3438}
3439
3440/*
3441 * Remove all pages from specified address space
3442 * this aids process exit speeds.  Also, this code
3443 * is special cased for current process only, but
3444 * can have the more generic (and slightly slower)
3445 * mode enabled.  This is much faster than pmap_remove
3446 * in the case of running down an entire address space.
3447 */
3448void
3449pmap_remove_pages(pmap_t pmap)
3450{
3451	pt_entry_t *pte, tpte;
3452	vm_page_t m, free = NULL;
3453	pv_entry_t pv;
3454	struct pv_chunk *pc, *npc;
3455	int field, idx;
3456	int32_t bit;
3457	uint32_t inuse, bitmask;
3458	int allfree;
3459
3460	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3461
3462	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3463		printf("warning: pmap_remove_pages called with non-current pmap\n");
3464		return;
3465	}
3466	vm_page_lock_queues();
3467	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3468	PMAP_LOCK(pmap);
3469	sched_pin();
3470	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3471		allfree = 1;
3472		for (field = 0; field < _NPCM; field++) {
3473			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3474			while (inuse != 0) {
3475				bit = bsfl(inuse);
3476				bitmask = 1UL << bit;
3477				idx = field * 32 + bit;
3478				pv = &pc->pc_pventry[idx];
3479				inuse &= ~bitmask;
3480
3481				pte = vtopte(pv->pv_va);
3482				tpte = *pte ? xpmap_mtop(*pte) : 0;
3483
3484				if (tpte == 0) {
3485					printf(
3486					    "TPTE at %p  IS ZERO @ VA %08x\n",
3487					    pte, pv->pv_va);
3488					panic("bad pte");
3489				}
3490
3491/*
3492 * We cannot remove wired pages from a process' mapping at this time
3493 */
3494				if (tpte & PG_W) {
3495					allfree = 0;
3496					continue;
3497				}
3498
3499				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3500				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3501				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3502				    m, (uintmax_t)m->phys_addr,
3503				    (uintmax_t)tpte));
3504
3505				KASSERT(m < &vm_page_array[vm_page_array_size],
3506					("pmap_remove_pages: bad tpte %#jx",
3507					(uintmax_t)tpte));
3508
3509
3510				PT_CLEAR_VA(pte, FALSE);
3511
3512				/*
3513				 * Update the vm_page_t clean/reference bits.
3514				 */
3515				if (tpte & PG_M)
3516					vm_page_dirty(m);
3517
3518				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3519				if (TAILQ_EMPTY(&m->md.pv_list))
3520					vm_page_aflag_clear(m, PGA_WRITEABLE);
3521
3522				pmap_unuse_pt(pmap, pv->pv_va, &free);
3523
3524				/* Mark free */
3525				PV_STAT(pv_entry_frees++);
3526				PV_STAT(pv_entry_spare++);
3527				pv_entry_count--;
3528				pc->pc_map[field] |= bitmask;
3529				pmap->pm_stats.resident_count--;
3530			}
3531		}
3532		PT_UPDATES_FLUSH();
3533		if (allfree) {
3534			PV_STAT(pv_entry_spare -= _NPCPV);
3535			PV_STAT(pc_chunk_count--);
3536			PV_STAT(pc_chunk_frees++);
3537			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3538			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3539			pmap_qremove((vm_offset_t)pc, 1);
3540			vm_page_unwire(m, 0);
3541			vm_page_free(m);
3542			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3543		}
3544	}
3545	PT_UPDATES_FLUSH();
3546	if (*PMAP1)
3547		PT_SET_MA(PADDR1, 0);
3548
3549	sched_unpin();
3550	pmap_invalidate_all(pmap);
3551	vm_page_unlock_queues();
3552	PMAP_UNLOCK(pmap);
3553	pmap_free_zero_pages(free);
3554}
3555
3556/*
3557 *	pmap_is_modified:
3558 *
3559 *	Return whether or not the specified physical page was modified
3560 *	in any physical maps.
3561 */
3562boolean_t
3563pmap_is_modified(vm_page_t m)
3564{
3565	pv_entry_t pv;
3566	pt_entry_t *pte;
3567	pmap_t pmap;
3568	boolean_t rv;
3569
3570	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3571	    ("pmap_is_modified: page %p is not managed", m));
3572	rv = FALSE;
3573
3574	/*
3575	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
3576	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3577	 * is clear, no PTEs can have PG_M set.
3578	 */
3579	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3580	if ((m->oflags & VPO_BUSY) == 0 &&
3581	    (m->aflags & PGA_WRITEABLE) == 0)
3582		return (rv);
3583	vm_page_lock_queues();
3584	sched_pin();
3585	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3586		pmap = PV_PMAP(pv);
3587		PMAP_LOCK(pmap);
3588		pte = pmap_pte_quick(pmap, pv->pv_va);
3589		rv = (*pte & PG_M) != 0;
3590		PMAP_UNLOCK(pmap);
3591		if (rv)
3592			break;
3593	}
3594	if (*PMAP1)
3595		PT_SET_MA(PADDR1, 0);
3596	sched_unpin();
3597	vm_page_unlock_queues();
3598	return (rv);
3599}
3600
3601/*
3602 *	pmap_is_prefaultable:
3603 *
3604 *	Return whether or not the specified virtual address is elgible
3605 *	for prefault.
3606 */
3607static boolean_t
3608pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3609{
3610	pt_entry_t *pte;
3611	boolean_t rv = FALSE;
3612
3613	return (rv);
3614
3615	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3616		pte = vtopte(addr);
3617		rv = (*pte == 0);
3618	}
3619	return (rv);
3620}
3621
3622boolean_t
3623pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3624{
3625	boolean_t rv;
3626
3627	PMAP_LOCK(pmap);
3628	rv = pmap_is_prefaultable_locked(pmap, addr);
3629	PMAP_UNLOCK(pmap);
3630	return (rv);
3631}
3632
3633boolean_t
3634pmap_is_referenced(vm_page_t m)
3635{
3636	pv_entry_t pv;
3637	pt_entry_t *pte;
3638	pmap_t pmap;
3639	boolean_t rv;
3640
3641	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3642	    ("pmap_is_referenced: page %p is not managed", m));
3643	rv = FALSE;
3644	vm_page_lock_queues();
3645	sched_pin();
3646	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3647		pmap = PV_PMAP(pv);
3648		PMAP_LOCK(pmap);
3649		pte = pmap_pte_quick(pmap, pv->pv_va);
3650		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3651		PMAP_UNLOCK(pmap);
3652		if (rv)
3653			break;
3654	}
3655	if (*PMAP1)
3656		PT_SET_MA(PADDR1, 0);
3657	sched_unpin();
3658	vm_page_unlock_queues();
3659	return (rv);
3660}
3661
3662void
3663pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3664{
3665	int i, npages = round_page(len) >> PAGE_SHIFT;
3666	for (i = 0; i < npages; i++) {
3667		pt_entry_t *pte;
3668		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3669		vm_page_lock_queues();
3670		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3671		vm_page_unlock_queues();
3672		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3673		pmap_pte_release(pte);
3674	}
3675}
3676
3677void
3678pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3679{
3680	int i, npages = round_page(len) >> PAGE_SHIFT;
3681	for (i = 0; i < npages; i++) {
3682		pt_entry_t *pte;
3683		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3684		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3685		vm_page_lock_queues();
3686		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3687		vm_page_unlock_queues();
3688		pmap_pte_release(pte);
3689	}
3690}
3691
3692/*
3693 * Clear the write and modified bits in each of the given page's mappings.
3694 */
3695void
3696pmap_remove_write(vm_page_t m)
3697{
3698	pv_entry_t pv;
3699	pmap_t pmap;
3700	pt_entry_t oldpte, *pte;
3701
3702	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3703	    ("pmap_remove_write: page %p is not managed", m));
3704
3705	/*
3706	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
3707	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
3708	 * is clear, no page table entries need updating.
3709	 */
3710	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3711	if ((m->oflags & VPO_BUSY) == 0 &&
3712	    (m->aflags & PGA_WRITEABLE) == 0)
3713		return;
3714	vm_page_lock_queues();
3715	sched_pin();
3716	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3717		pmap = PV_PMAP(pv);
3718		PMAP_LOCK(pmap);
3719		pte = pmap_pte_quick(pmap, pv->pv_va);
3720retry:
3721		oldpte = *pte;
3722		if ((oldpte & PG_RW) != 0) {
3723			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3724
3725			/*
3726			 * Regardless of whether a pte is 32 or 64 bits
3727			 * in size, PG_RW and PG_M are among the least
3728			 * significant 32 bits.
3729			 */
3730			PT_SET_VA_MA(pte, newpte, TRUE);
3731			if (*pte != newpte)
3732				goto retry;
3733
3734			if ((oldpte & PG_M) != 0)
3735				vm_page_dirty(m);
3736			pmap_invalidate_page(pmap, pv->pv_va);
3737		}
3738		PMAP_UNLOCK(pmap);
3739	}
3740	vm_page_aflag_clear(m, PGA_WRITEABLE);
3741	PT_UPDATES_FLUSH();
3742	if (*PMAP1)
3743		PT_SET_MA(PADDR1, 0);
3744	sched_unpin();
3745	vm_page_unlock_queues();
3746}
3747
3748/*
3749 *	pmap_ts_referenced:
3750 *
3751 *	Return a count of reference bits for a page, clearing those bits.
3752 *	It is not necessary for every reference bit to be cleared, but it
3753 *	is necessary that 0 only be returned when there are truly no
3754 *	reference bits set.
3755 *
3756 *	XXX: The exact number of bits to check and clear is a matter that
3757 *	should be tested and standardized at some point in the future for
3758 *	optimal aging of shared pages.
3759 */
3760int
3761pmap_ts_referenced(vm_page_t m)
3762{
3763	pv_entry_t pv, pvf, pvn;
3764	pmap_t pmap;
3765	pt_entry_t *pte;
3766	int rtval = 0;
3767
3768	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3769	    ("pmap_ts_referenced: page %p is not managed", m));
3770	vm_page_lock_queues();
3771	sched_pin();
3772	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3773		pvf = pv;
3774		do {
3775			pvn = TAILQ_NEXT(pv, pv_list);
3776			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3777			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3778			pmap = PV_PMAP(pv);
3779			PMAP_LOCK(pmap);
3780			pte = pmap_pte_quick(pmap, pv->pv_va);
3781			if ((*pte & PG_A) != 0) {
3782				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3783				pmap_invalidate_page(pmap, pv->pv_va);
3784				rtval++;
3785				if (rtval > 4)
3786					pvn = NULL;
3787			}
3788			PMAP_UNLOCK(pmap);
3789		} while ((pv = pvn) != NULL && pv != pvf);
3790	}
3791	PT_UPDATES_FLUSH();
3792	if (*PMAP1)
3793		PT_SET_MA(PADDR1, 0);
3794	sched_unpin();
3795	vm_page_unlock_queues();
3796	return (rtval);
3797}
3798
3799/*
3800 *	Clear the modify bits on the specified physical page.
3801 */
3802void
3803pmap_clear_modify(vm_page_t m)
3804{
3805	pv_entry_t pv;
3806	pmap_t pmap;
3807	pt_entry_t *pte;
3808
3809	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3810	    ("pmap_clear_modify: page %p is not managed", m));
3811	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3812	KASSERT((m->oflags & VPO_BUSY) == 0,
3813	    ("pmap_clear_modify: page %p is busy", m));
3814
3815	/*
3816	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
3817	 * If the object containing the page is locked and the page is not
3818	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
3819	 */
3820	if ((m->aflags & PGA_WRITEABLE) == 0)
3821		return;
3822	vm_page_lock_queues();
3823	sched_pin();
3824	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3825		pmap = PV_PMAP(pv);
3826		PMAP_LOCK(pmap);
3827		pte = pmap_pte_quick(pmap, pv->pv_va);
3828		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3829			/*
3830			 * Regardless of whether a pte is 32 or 64 bits
3831			 * in size, PG_M is among the least significant
3832			 * 32 bits.
3833			 */
3834			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3835			pmap_invalidate_page(pmap, pv->pv_va);
3836		}
3837		PMAP_UNLOCK(pmap);
3838	}
3839	sched_unpin();
3840	vm_page_unlock_queues();
3841}
3842
3843/*
3844 *	pmap_clear_reference:
3845 *
3846 *	Clear the reference bit on the specified physical page.
3847 */
3848void
3849pmap_clear_reference(vm_page_t m)
3850{
3851	pv_entry_t pv;
3852	pmap_t pmap;
3853	pt_entry_t *pte;
3854
3855	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3856	    ("pmap_clear_reference: page %p is not managed", m));
3857	vm_page_lock_queues();
3858	sched_pin();
3859	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3860		pmap = PV_PMAP(pv);
3861		PMAP_LOCK(pmap);
3862		pte = pmap_pte_quick(pmap, pv->pv_va);
3863		if ((*pte & PG_A) != 0) {
3864			/*
3865			 * Regardless of whether a pte is 32 or 64 bits
3866			 * in size, PG_A is among the least significant
3867			 * 32 bits.
3868			 */
3869			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3870			pmap_invalidate_page(pmap, pv->pv_va);
3871		}
3872		PMAP_UNLOCK(pmap);
3873	}
3874	sched_unpin();
3875	vm_page_unlock_queues();
3876}
3877
3878/*
3879 * Miscellaneous support routines follow
3880 */
3881
3882/*
3883 * Map a set of physical memory pages into the kernel virtual
3884 * address space. Return a pointer to where it is mapped. This
3885 * routine is intended to be used for mapping device memory,
3886 * NOT real memory.
3887 */
3888void *
3889pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3890{
3891	vm_offset_t va, offset;
3892	vm_size_t tmpsize;
3893
3894	offset = pa & PAGE_MASK;
3895	size = roundup(offset + size, PAGE_SIZE);
3896	pa = pa & PG_FRAME;
3897
3898	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3899		va = KERNBASE + pa;
3900	else
3901		va = kmem_alloc_nofault(kernel_map, size);
3902	if (!va)
3903		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3904
3905	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3906		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3907	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3908	pmap_invalidate_cache_range(va, va + size);
3909	return ((void *)(va + offset));
3910}
3911
3912void *
3913pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3914{
3915
3916	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3917}
3918
3919void *
3920pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3921{
3922
3923	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3924}
3925
3926void
3927pmap_unmapdev(vm_offset_t va, vm_size_t size)
3928{
3929	vm_offset_t base, offset, tmpva;
3930
3931	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3932		return;
3933	base = trunc_page(va);
3934	offset = va & PAGE_MASK;
3935	size = roundup(offset + size, PAGE_SIZE);
3936	critical_enter();
3937	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3938		pmap_kremove(tmpva);
3939	pmap_invalidate_range(kernel_pmap, va, tmpva);
3940	critical_exit();
3941	kmem_free(kernel_map, base, size);
3942}
3943
3944/*
3945 * Sets the memory attribute for the specified page.
3946 */
3947void
3948pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3949{
3950
3951	m->md.pat_mode = ma;
3952	if ((m->flags & PG_FICTITIOUS) != 0)
3953		return;
3954
3955	/*
3956	 * If "m" is a normal page, flush it from the cache.
3957	 * See pmap_invalidate_cache_range().
3958	 *
3959	 * First, try to find an existing mapping of the page by sf
3960	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3961	 * flushes the cache.
3962	 */
3963	if (sf_buf_invalidate_cache(m))
3964		return;
3965
3966	/*
3967	 * If page is not mapped by sf buffer, but CPU does not
3968	 * support self snoop, map the page transient and do
3969	 * invalidation. In the worst case, whole cache is flushed by
3970	 * pmap_invalidate_cache_range().
3971	 */
3972	if ((cpu_feature & CPUID_SS) == 0)
3973		pmap_flush_page(m);
3974}
3975
3976static void
3977pmap_flush_page(vm_page_t m)
3978{
3979	struct sysmaps *sysmaps;
3980	vm_offset_t sva, eva;
3981
3982	if ((cpu_feature & CPUID_CLFSH) != 0) {
3983		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3984		mtx_lock(&sysmaps->lock);
3985		if (*sysmaps->CMAP2)
3986			panic("pmap_flush_page: CMAP2 busy");
3987		sched_pin();
3988		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3989		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
3990		    pmap_cache_bits(m->md.pat_mode, 0));
3991		invlcaddr(sysmaps->CADDR2);
3992		sva = (vm_offset_t)sysmaps->CADDR2;
3993		eva = sva + PAGE_SIZE;
3994
3995		/*
3996		 * Use mfence despite the ordering implied by
3997		 * mtx_{un,}lock() because clflush is not guaranteed
3998		 * to be ordered by any other instruction.
3999		 */
4000		mfence();
4001		for (; sva < eva; sva += cpu_clflush_line_size)
4002			clflush(sva);
4003		mfence();
4004		PT_SET_MA(sysmaps->CADDR2, 0);
4005		sched_unpin();
4006		mtx_unlock(&sysmaps->lock);
4007	} else
4008		pmap_invalidate_cache();
4009}
4010
4011/*
4012 * Changes the specified virtual address range's memory type to that given by
4013 * the parameter "mode".  The specified virtual address range must be
4014 * completely contained within either the kernel map.
4015 *
4016 * Returns zero if the change completed successfully, and either EINVAL or
4017 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4018 * of the virtual address range was not mapped, and ENOMEM is returned if
4019 * there was insufficient memory available to complete the change.
4020 */
4021int
4022pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4023{
4024	vm_offset_t base, offset, tmpva;
4025	pt_entry_t *pte;
4026	u_int opte, npte;
4027	pd_entry_t *pde;
4028	boolean_t changed;
4029
4030	base = trunc_page(va);
4031	offset = va & PAGE_MASK;
4032	size = roundup(offset + size, PAGE_SIZE);
4033
4034	/* Only supported on kernel virtual addresses. */
4035	if (base <= VM_MAXUSER_ADDRESS)
4036		return (EINVAL);
4037
4038	/* 4MB pages and pages that aren't mapped aren't supported. */
4039	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4040		pde = pmap_pde(kernel_pmap, tmpva);
4041		if (*pde & PG_PS)
4042			return (EINVAL);
4043		if ((*pde & PG_V) == 0)
4044			return (EINVAL);
4045		pte = vtopte(va);
4046		if ((*pte & PG_V) == 0)
4047			return (EINVAL);
4048	}
4049
4050	changed = FALSE;
4051
4052	/*
4053	 * Ok, all the pages exist and are 4k, so run through them updating
4054	 * their cache mode.
4055	 */
4056	for (tmpva = base; size > 0; ) {
4057		pte = vtopte(tmpva);
4058
4059		/*
4060		 * The cache mode bits are all in the low 32-bits of the
4061		 * PTE, so we can just spin on updating the low 32-bits.
4062		 */
4063		do {
4064			opte = *(u_int *)pte;
4065			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4066			npte |= pmap_cache_bits(mode, 0);
4067			PT_SET_VA_MA(pte, npte, TRUE);
4068		} while (npte != opte && (*pte != npte));
4069		if (npte != opte)
4070			changed = TRUE;
4071		tmpva += PAGE_SIZE;
4072		size -= PAGE_SIZE;
4073	}
4074
4075	/*
4076	 * Flush CPU caches to make sure any data isn't cached that
4077	 * shouldn't be, etc.
4078	 */
4079	if (changed) {
4080		pmap_invalidate_range(kernel_pmap, base, tmpva);
4081		pmap_invalidate_cache_range(base, tmpva);
4082	}
4083	return (0);
4084}
4085
4086/*
4087 * perform the pmap work for mincore
4088 */
4089int
4090pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4091{
4092	pt_entry_t *ptep, pte;
4093	vm_paddr_t pa;
4094	int val;
4095
4096	PMAP_LOCK(pmap);
4097retry:
4098	ptep = pmap_pte(pmap, addr);
4099	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4100	pmap_pte_release(ptep);
4101	val = 0;
4102	if ((pte & PG_V) != 0) {
4103		val |= MINCORE_INCORE;
4104		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4105			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4106		if ((pte & PG_A) != 0)
4107			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4108	}
4109	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4110	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4111	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4112		pa = pte & PG_FRAME;
4113		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4114		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4115			goto retry;
4116	} else
4117		PA_UNLOCK_COND(*locked_pa);
4118	PMAP_UNLOCK(pmap);
4119	return (val);
4120}
4121
4122void
4123pmap_activate(struct thread *td)
4124{
4125	pmap_t	pmap, oldpmap;
4126	u_int	cpuid;
4127	u_int32_t  cr3;
4128
4129	critical_enter();
4130	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4131	oldpmap = PCPU_GET(curpmap);
4132	cpuid = PCPU_GET(cpuid);
4133#if defined(SMP)
4134	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4135	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4136#else
4137	CPU_CLR(cpuid, &oldpmap->pm_active);
4138	CPU_SET(cpuid, &pmap->pm_active);
4139#endif
4140#ifdef PAE
4141	cr3 = vtophys(pmap->pm_pdpt);
4142#else
4143	cr3 = vtophys(pmap->pm_pdir);
4144#endif
4145	/*
4146	 * pmap_activate is for the current thread on the current cpu
4147	 */
4148	td->td_pcb->pcb_cr3 = cr3;
4149	PT_UPDATES_FLUSH();
4150	load_cr3(cr3);
4151	PCPU_SET(curpmap, pmap);
4152	critical_exit();
4153}
4154
4155void
4156pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4157{
4158}
4159
4160/*
4161 *	Increase the starting virtual address of the given mapping if a
4162 *	different alignment might result in more superpage mappings.
4163 */
4164void
4165pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4166    vm_offset_t *addr, vm_size_t size)
4167{
4168	vm_offset_t superpage_offset;
4169
4170	if (size < NBPDR)
4171		return;
4172	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4173		offset += ptoa(object->pg_color);
4174	superpage_offset = offset & PDRMASK;
4175	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4176	    (*addr & PDRMASK) == superpage_offset)
4177		return;
4178	if ((*addr & PDRMASK) < superpage_offset)
4179		*addr = (*addr & ~PDRMASK) + superpage_offset;
4180	else
4181		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4182}
4183
4184void
4185pmap_suspend()
4186{
4187	pmap_t pmap;
4188	int i, pdir, offset;
4189	vm_paddr_t pdirma;
4190	mmu_update_t mu[4];
4191
4192	/*
4193	 * We need to remove the recursive mapping structure from all
4194	 * our pmaps so that Xen doesn't get confused when it restores
4195	 * the page tables. The recursive map lives at page directory
4196	 * index PTDPTDI. We assume that the suspend code has stopped
4197	 * the other vcpus (if any).
4198	 */
4199	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4200		for (i = 0; i < 4; i++) {
4201			/*
4202			 * Figure out which page directory (L2) page
4203			 * contains this bit of the recursive map and
4204			 * the offset within that page of the map
4205			 * entry
4206			 */
4207			pdir = (PTDPTDI + i) / NPDEPG;
4208			offset = (PTDPTDI + i) % NPDEPG;
4209			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4210			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4211			mu[i].val = 0;
4212		}
4213		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4214	}
4215}
4216
4217void
4218pmap_resume()
4219{
4220	pmap_t pmap;
4221	int i, pdir, offset;
4222	vm_paddr_t pdirma;
4223	mmu_update_t mu[4];
4224
4225	/*
4226	 * Restore the recursive map that we removed on suspend.
4227	 */
4228	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4229		for (i = 0; i < 4; i++) {
4230			/*
4231			 * Figure out which page directory (L2) page
4232			 * contains this bit of the recursive map and
4233			 * the offset within that page of the map
4234			 * entry
4235			 */
4236			pdir = (PTDPTDI + i) / NPDEPG;
4237			offset = (PTDPTDI + i) % NPDEPG;
4238			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4239			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4240			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4241		}
4242		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4243	}
4244}
4245
4246#if defined(PMAP_DEBUG)
4247pmap_pid_dump(int pid)
4248{
4249	pmap_t pmap;
4250	struct proc *p;
4251	int npte = 0;
4252	int index;
4253
4254	sx_slock(&allproc_lock);
4255	FOREACH_PROC_IN_SYSTEM(p) {
4256		if (p->p_pid != pid)
4257			continue;
4258
4259		if (p->p_vmspace) {
4260			int i,j;
4261			index = 0;
4262			pmap = vmspace_pmap(p->p_vmspace);
4263			for (i = 0; i < NPDEPTD; i++) {
4264				pd_entry_t *pde;
4265				pt_entry_t *pte;
4266				vm_offset_t base = i << PDRSHIFT;
4267
4268				pde = &pmap->pm_pdir[i];
4269				if (pde && pmap_pde_v(pde)) {
4270					for (j = 0; j < NPTEPG; j++) {
4271						vm_offset_t va = base + (j << PAGE_SHIFT);
4272						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4273							if (index) {
4274								index = 0;
4275								printf("\n");
4276							}
4277							sx_sunlock(&allproc_lock);
4278							return (npte);
4279						}
4280						pte = pmap_pte(pmap, va);
4281						if (pte && pmap_pte_v(pte)) {
4282							pt_entry_t pa;
4283							vm_page_t m;
4284							pa = PT_GET(pte);
4285							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4286							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4287								va, pa, m->hold_count, m->wire_count, m->flags);
4288							npte++;
4289							index++;
4290							if (index >= 2) {
4291								index = 0;
4292								printf("\n");
4293							} else {
4294								printf(" ");
4295							}
4296						}
4297					}
4298				}
4299			}
4300		}
4301	}
4302	sx_sunlock(&allproc_lock);
4303	return (npte);
4304}
4305#endif
4306
4307#if defined(DEBUG)
4308
4309static void	pads(pmap_t pm);
4310void		pmap_pvdump(vm_paddr_t pa);
4311
4312/* print address space of pmap*/
4313static void
4314pads(pmap_t pm)
4315{
4316	int i, j;
4317	vm_paddr_t va;
4318	pt_entry_t *ptep;
4319
4320	if (pm == kernel_pmap)
4321		return;
4322	for (i = 0; i < NPDEPTD; i++)
4323		if (pm->pm_pdir[i])
4324			for (j = 0; j < NPTEPG; j++) {
4325				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4326				if (pm == kernel_pmap && va < KERNBASE)
4327					continue;
4328				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4329					continue;
4330				ptep = pmap_pte(pm, va);
4331				if (pmap_pte_v(ptep))
4332					printf("%x:%x ", va, *ptep);
4333			};
4334
4335}
4336
4337void
4338pmap_pvdump(vm_paddr_t pa)
4339{
4340	pv_entry_t pv;
4341	pmap_t pmap;
4342	vm_page_t m;
4343
4344	printf("pa %x", pa);
4345	m = PHYS_TO_VM_PAGE(pa);
4346	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4347		pmap = PV_PMAP(pv);
4348		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4349		pads(pmap);
4350	}
4351	printf(" ");
4352}
4353#endif
4354