pmap.c revision 228923
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 228923 2011-12-27 23:53:00Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#else
129#include <sys/cpuset.h>
130#endif
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#include <xen/interface/xen.h>
157#include <xen/hypervisor.h>
158#include <machine/xen/hypercall.h>
159#include <machine/xen/xenvar.h>
160#include <machine/xen/xenfunc.h>
161
162#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
163#define CPU_ENABLE_SSE
164#endif
165
166#ifndef PMAP_SHPGPERPROC
167#define PMAP_SHPGPERPROC 200
168#endif
169
170#define DIAGNOSTIC
171
172#if !defined(DIAGNOSTIC)
173#ifdef __GNUC_GNU_INLINE__
174#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
175#else
176#define PMAP_INLINE	extern inline
177#endif
178#else
179#define PMAP_INLINE
180#endif
181
182#define PV_STATS
183#ifdef PV_STATS
184#define PV_STAT(x)	do { x ; } while (0)
185#else
186#define PV_STAT(x)	do { } while (0)
187#endif
188
189/*
190 * Get PDEs and PTEs for user/kernel address space
191 */
192#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
193#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
194
195#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
196#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
197#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
198#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
199#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
200
201#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
202
203#define HAMFISTED_LOCKING
204#ifdef HAMFISTED_LOCKING
205static struct mtx createdelete_lock;
206#endif
207
208struct pmap kernel_pmap_store;
209LIST_HEAD(pmaplist, pmap);
210static struct pmaplist allpmaps;
211static struct mtx allpmaps_lock;
212
213vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
214vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
215int pgeflag = 0;		/* PG_G or-in */
216int pseflag = 0;		/* PG_PS or-in */
217
218int nkpt;
219vm_offset_t kernel_vm_end;
220extern u_int32_t KERNend;
221
222#ifdef PAE
223pt_entry_t pg_nx;
224#endif
225
226static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
227
228static int pat_works;			/* Is page attribute table sane? */
229
230/*
231 * Data for the pv entry allocation mechanism
232 */
233static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
234static int shpgperproc = PMAP_SHPGPERPROC;
235
236struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
237int pv_maxchunks;			/* How many chunks we have KVA for */
238vm_offset_t pv_vafree;			/* freelist stored in the PTE */
239
240/*
241 * All those kernel PT submaps that BSD is so fond of
242 */
243struct sysmaps {
244	struct	mtx lock;
245	pt_entry_t *CMAP1;
246	pt_entry_t *CMAP2;
247	caddr_t	CADDR1;
248	caddr_t	CADDR2;
249};
250static struct sysmaps sysmaps_pcpu[MAXCPU];
251static pt_entry_t *CMAP3;
252caddr_t ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
281static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
282static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
283static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
284		    vm_offset_t va);
285
286static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
287    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
288static void pmap_flush_page(vm_page_t m);
289static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
290static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
291    vm_page_t *free);
292static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
293    vm_page_t *free);
294static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
295					vm_offset_t va);
296static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
297    vm_page_t m);
298
299static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
300
301static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
302static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
303static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
304static void pmap_pte_release(pt_entry_t *pte);
305static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
306static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
307
308static __inline void pagezero(void *page);
309
310CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
311CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
312
313/*
314 * If you get an error here, then you set KVA_PAGES wrong! See the
315 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
316 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
317 */
318CTASSERT(KERNBASE % (1 << 24) == 0);
319
320void
321pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
322{
323	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
324
325	switch (type) {
326	case SH_PD_SET_VA:
327#if 0
328		xen_queue_pt_update(shadow_pdir_ma,
329				    xpmap_ptom(val & ~(PG_RW)));
330#endif
331		xen_queue_pt_update(pdir_ma,
332				    xpmap_ptom(val));
333		break;
334	case SH_PD_SET_VA_MA:
335#if 0
336		xen_queue_pt_update(shadow_pdir_ma,
337				    val & ~(PG_RW));
338#endif
339		xen_queue_pt_update(pdir_ma, val);
340		break;
341	case SH_PD_SET_VA_CLEAR:
342#if 0
343		xen_queue_pt_update(shadow_pdir_ma, 0);
344#endif
345		xen_queue_pt_update(pdir_ma, 0);
346		break;
347	}
348}
349
350/*
351 *	Bootstrap the system enough to run with virtual memory.
352 *
353 *	On the i386 this is called after mapping has already been enabled
354 *	and just syncs the pmap module with what has already been done.
355 *	[We can't call it easily with mapping off since the kernel is not
356 *	mapped with PA == VA, hence we would have to relocate every address
357 *	from the linked base (virtual) address "KERNBASE" to the actual
358 *	(physical) address starting relative to 0]
359 */
360void
361pmap_bootstrap(vm_paddr_t firstaddr)
362{
363	vm_offset_t va;
364	pt_entry_t *pte, *unused;
365	struct sysmaps *sysmaps;
366	int i;
367
368	/*
369	 * Initialize the first available kernel virtual address.  However,
370	 * using "firstaddr" may waste a few pages of the kernel virtual
371	 * address space, because locore may not have mapped every physical
372	 * page that it allocated.  Preferably, locore would provide a first
373	 * unused virtual address in addition to "firstaddr".
374	 */
375	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
376
377	virtual_end = VM_MAX_KERNEL_ADDRESS;
378
379	/*
380	 * Initialize the kernel pmap (which is statically allocated).
381	 */
382	PMAP_LOCK_INIT(kernel_pmap);
383	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
384#ifdef PAE
385	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
386#endif
387	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
388	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
389	LIST_INIT(&allpmaps);
390	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
391	mtx_lock_spin(&allpmaps_lock);
392	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
393	mtx_unlock_spin(&allpmaps_lock);
394	if (nkpt == 0)
395		nkpt = NKPT;
396
397	/*
398	 * Reserve some special page table entries/VA space for temporary
399	 * mapping of pages.
400	 */
401#define	SYSMAP(c, p, v, n)	\
402	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
403
404	va = virtual_avail;
405	pte = vtopte(va);
406
407	/*
408	 * CMAP1/CMAP2 are used for zeroing and copying pages.
409	 * CMAP3 is used for the idle process page zeroing.
410	 */
411	for (i = 0; i < MAXCPU; i++) {
412		sysmaps = &sysmaps_pcpu[i];
413		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
414		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
415		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
416		PT_SET_MA(sysmaps->CADDR1, 0);
417		PT_SET_MA(sysmaps->CADDR2, 0);
418	}
419	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
420	PT_SET_MA(CADDR3, 0);
421
422	/*
423	 * Crashdump maps.
424	 */
425	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
426
427	/*
428	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
429	 */
430	SYSMAP(caddr_t, unused, ptvmmap, 1)
431
432	/*
433	 * msgbufp is used to map the system message buffer.
434	 */
435	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
436
437	/*
438	 * ptemap is used for pmap_pte_quick
439	 */
440	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
441	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
442
443	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
444
445	virtual_avail = va;
446
447	/*
448	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
449	 * physical memory region that is used by the ACPI wakeup code.  This
450	 * mapping must not have PG_G set.
451	 */
452#ifndef XEN
453	/*
454	 * leave here deliberately to show that this is not supported
455	 */
456#ifdef XBOX
457	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
458	 * an early stadium, we cannot yet neatly map video memory ... :-(
459	 * Better fixes are very welcome! */
460	if (!arch_i386_is_xbox)
461#endif
462	for (i = 1; i < NKPT; i++)
463		PTD[i] = 0;
464
465	/* Initialize the PAT MSR if present. */
466	pmap_init_pat();
467
468	/* Turn on PG_G on kernel page(s) */
469	pmap_set_pg();
470#endif
471
472#ifdef HAMFISTED_LOCKING
473	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
474#endif
475}
476
477/*
478 * Setup the PAT MSR.
479 */
480void
481pmap_init_pat(void)
482{
483	uint64_t pat_msr;
484
485	/* Bail if this CPU doesn't implement PAT. */
486	if (!(cpu_feature & CPUID_PAT))
487		return;
488
489	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
490	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
491		/*
492		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
493		 * Program 4 and 5 as WP and WC.
494		 * Leave 6 and 7 as UC and UC-.
495		 */
496		pat_msr = rdmsr(MSR_PAT);
497		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
498		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
499		    PAT_VALUE(5, PAT_WRITE_COMBINING);
500		pat_works = 1;
501	} else {
502		/*
503		 * Due to some Intel errata, we can only safely use the lower 4
504		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
505		 * of UC-.
506		 *
507		 *   Intel Pentium III Processor Specification Update
508		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
509		 * or Mode C Paging)
510		 *
511		 *   Intel Pentium IV  Processor Specification Update
512		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
513		 */
514		pat_msr = rdmsr(MSR_PAT);
515		pat_msr &= ~PAT_MASK(2);
516		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
517		pat_works = 0;
518	}
519	wrmsr(MSR_PAT, pat_msr);
520}
521
522/*
523 * Initialize a vm_page's machine-dependent fields.
524 */
525void
526pmap_page_init(vm_page_t m)
527{
528
529	TAILQ_INIT(&m->md.pv_list);
530	m->md.pat_mode = PAT_WRITE_BACK;
531}
532
533/*
534 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
535 * Requirements:
536 *  - Must deal with pages in order to ensure that none of the PG_* bits
537 *    are ever set, PG_V in particular.
538 *  - Assumes we can write to ptes without pte_store() atomic ops, even
539 *    on PAE systems.  This should be ok.
540 *  - Assumes nothing will ever test these addresses for 0 to indicate
541 *    no mapping instead of correctly checking PG_V.
542 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
543 * Because PG_V is never set, there can be no mappings to invalidate.
544 */
545static int ptelist_count = 0;
546static vm_offset_t
547pmap_ptelist_alloc(vm_offset_t *head)
548{
549	vm_offset_t va;
550	vm_offset_t *phead = (vm_offset_t *)*head;
551
552	if (ptelist_count == 0) {
553		printf("out of memory!!!!!!\n");
554		return (0);	/* Out of memory */
555	}
556	ptelist_count--;
557	va = phead[ptelist_count];
558	return (va);
559}
560
561static void
562pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
563{
564	vm_offset_t *phead = (vm_offset_t *)*head;
565
566	phead[ptelist_count++] = va;
567}
568
569static void
570pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
571{
572	int i, nstackpages;
573	vm_offset_t va;
574	vm_page_t m;
575
576	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
577	for (i = 0; i < nstackpages; i++) {
578		va = (vm_offset_t)base + i * PAGE_SIZE;
579		m = vm_page_alloc(NULL, i,
580		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
581		    VM_ALLOC_ZERO);
582		pmap_qenter(va, &m, 1);
583	}
584
585	*head = (vm_offset_t)base;
586	for (i = npages - 1; i >= nstackpages; i--) {
587		va = (vm_offset_t)base + i * PAGE_SIZE;
588		pmap_ptelist_free(head, va);
589	}
590}
591
592
593/*
594 *	Initialize the pmap module.
595 *	Called by vm_init, to initialize any structures that the pmap
596 *	system needs to map virtual memory.
597 */
598void
599pmap_init(void)
600{
601
602	/*
603	 * Initialize the address space (zone) for the pv entries.  Set a
604	 * high water mark so that the system can recover from excessive
605	 * numbers of pv entries.
606	 */
607	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
608	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
609	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
610	pv_entry_max = roundup(pv_entry_max, _NPCPV);
611	pv_entry_high_water = 9 * (pv_entry_max / 10);
612
613	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
614	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
615	    PAGE_SIZE * pv_maxchunks);
616	if (pv_chunkbase == NULL)
617		panic("pmap_init: not enough kvm for pv chunks");
618	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
619}
620
621
622SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
623	"Max number of PV entries");
624SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
625	"Page share factor per proc");
626
627static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
628    "2/4MB page mapping counters");
629
630static u_long pmap_pde_mappings;
631SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
632    &pmap_pde_mappings, 0, "2/4MB page mappings");
633
634/***************************************************
635 * Low level helper routines.....
636 ***************************************************/
637
638/*
639 * Determine the appropriate bits to set in a PTE or PDE for a specified
640 * caching mode.
641 */
642int
643pmap_cache_bits(int mode, boolean_t is_pde)
644{
645	int pat_flag, pat_index, cache_bits;
646
647	/* The PAT bit is different for PTE's and PDE's. */
648	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
649
650	/* If we don't support PAT, map extended modes to older ones. */
651	if (!(cpu_feature & CPUID_PAT)) {
652		switch (mode) {
653		case PAT_UNCACHEABLE:
654		case PAT_WRITE_THROUGH:
655		case PAT_WRITE_BACK:
656			break;
657		case PAT_UNCACHED:
658		case PAT_WRITE_COMBINING:
659		case PAT_WRITE_PROTECTED:
660			mode = PAT_UNCACHEABLE;
661			break;
662		}
663	}
664
665	/* Map the caching mode to a PAT index. */
666	if (pat_works) {
667		switch (mode) {
668			case PAT_UNCACHEABLE:
669				pat_index = 3;
670				break;
671			case PAT_WRITE_THROUGH:
672				pat_index = 1;
673				break;
674			case PAT_WRITE_BACK:
675				pat_index = 0;
676				break;
677			case PAT_UNCACHED:
678				pat_index = 2;
679				break;
680			case PAT_WRITE_COMBINING:
681				pat_index = 5;
682				break;
683			case PAT_WRITE_PROTECTED:
684				pat_index = 4;
685				break;
686			default:
687				panic("Unknown caching mode %d\n", mode);
688		}
689	} else {
690		switch (mode) {
691			case PAT_UNCACHED:
692			case PAT_UNCACHEABLE:
693			case PAT_WRITE_PROTECTED:
694				pat_index = 3;
695				break;
696			case PAT_WRITE_THROUGH:
697				pat_index = 1;
698				break;
699			case PAT_WRITE_BACK:
700				pat_index = 0;
701				break;
702			case PAT_WRITE_COMBINING:
703				pat_index = 2;
704				break;
705			default:
706				panic("Unknown caching mode %d\n", mode);
707		}
708	}
709
710	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
711	cache_bits = 0;
712	if (pat_index & 0x4)
713		cache_bits |= pat_flag;
714	if (pat_index & 0x2)
715		cache_bits |= PG_NC_PCD;
716	if (pat_index & 0x1)
717		cache_bits |= PG_NC_PWT;
718	return (cache_bits);
719}
720#ifdef SMP
721/*
722 * For SMP, these functions have to use the IPI mechanism for coherence.
723 *
724 * N.B.: Before calling any of the following TLB invalidation functions,
725 * the calling processor must ensure that all stores updating a non-
726 * kernel page table are globally performed.  Otherwise, another
727 * processor could cache an old, pre-update entry without being
728 * invalidated.  This can happen one of two ways: (1) The pmap becomes
729 * active on another processor after its pm_active field is checked by
730 * one of the following functions but before a store updating the page
731 * table is globally performed. (2) The pmap becomes active on another
732 * processor before its pm_active field is checked but due to
733 * speculative loads one of the following functions stills reads the
734 * pmap as inactive on the other processor.
735 *
736 * The kernel page table is exempt because its pm_active field is
737 * immutable.  The kernel page table is always active on every
738 * processor.
739 */
740void
741pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
742{
743	cpuset_t other_cpus;
744	u_int cpuid;
745
746	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
747	    pmap, va);
748
749	sched_pin();
750	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
751		invlpg(va);
752		smp_invlpg(va);
753	} else {
754		cpuid = PCPU_GET(cpuid);
755		other_cpus = all_cpus;
756		CPU_CLR(cpuid, &other_cpus);
757		if (CPU_ISSET(cpuid, &pmap->pm_active))
758			invlpg(va);
759		CPU_AND(&other_cpus, &pmap->pm_active);
760		if (!CPU_EMPTY(&other_cpus))
761			smp_masked_invlpg(other_cpus, va);
762	}
763	sched_unpin();
764	PT_UPDATES_FLUSH();
765}
766
767void
768pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
769{
770	cpuset_t other_cpus;
771	vm_offset_t addr;
772	u_int cpuid;
773
774	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
775	    pmap, sva, eva);
776
777	sched_pin();
778	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
779		for (addr = sva; addr < eva; addr += PAGE_SIZE)
780			invlpg(addr);
781		smp_invlpg_range(sva, eva);
782	} else {
783		cpuid = PCPU_GET(cpuid);
784		other_cpus = all_cpus;
785		CPU_CLR(cpuid, &other_cpus);
786		if (CPU_ISSET(cpuid, &pmap->pm_active))
787			for (addr = sva; addr < eva; addr += PAGE_SIZE)
788				invlpg(addr);
789		CPU_AND(&other_cpus, &pmap->pm_active);
790		if (!CPU_EMPTY(&other_cpus))
791			smp_masked_invlpg_range(other_cpus, sva, eva);
792	}
793	sched_unpin();
794	PT_UPDATES_FLUSH();
795}
796
797void
798pmap_invalidate_all(pmap_t pmap)
799{
800	cpuset_t other_cpus;
801	u_int cpuid;
802
803	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
804
805	sched_pin();
806	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
807		invltlb();
808		smp_invltlb();
809	} else {
810		cpuid = PCPU_GET(cpuid);
811		other_cpus = all_cpus;
812		CPU_CLR(cpuid, &other_cpus);
813		if (CPU_ISSET(cpuid, &pmap->pm_active))
814			invltlb();
815		CPU_AND(&other_cpus, &pmap->pm_active);
816		if (!CPU_EMPTY(&other_cpus))
817			smp_masked_invltlb(other_cpus);
818	}
819	sched_unpin();
820}
821
822void
823pmap_invalidate_cache(void)
824{
825
826	sched_pin();
827	wbinvd();
828	smp_cache_flush();
829	sched_unpin();
830}
831#else /* !SMP */
832/*
833 * Normal, non-SMP, 486+ invalidation functions.
834 * We inline these within pmap.c for speed.
835 */
836PMAP_INLINE void
837pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
838{
839	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
840	    pmap, va);
841
842	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
843		invlpg(va);
844	PT_UPDATES_FLUSH();
845}
846
847PMAP_INLINE void
848pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
849{
850	vm_offset_t addr;
851
852	if (eva - sva > PAGE_SIZE)
853		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
854		    pmap, sva, eva);
855
856	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
857		for (addr = sva; addr < eva; addr += PAGE_SIZE)
858			invlpg(addr);
859	PT_UPDATES_FLUSH();
860}
861
862PMAP_INLINE void
863pmap_invalidate_all(pmap_t pmap)
864{
865
866	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
867
868	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
869		invltlb();
870}
871
872PMAP_INLINE void
873pmap_invalidate_cache(void)
874{
875
876	wbinvd();
877}
878#endif /* !SMP */
879
880#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
881
882void
883pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
884{
885
886	KASSERT((sva & PAGE_MASK) == 0,
887	    ("pmap_invalidate_cache_range: sva not page-aligned"));
888	KASSERT((eva & PAGE_MASK) == 0,
889	    ("pmap_invalidate_cache_range: eva not page-aligned"));
890
891	if (cpu_feature & CPUID_SS)
892		; /* If "Self Snoop" is supported, do nothing. */
893	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
894	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
895
896		/*
897		 * Otherwise, do per-cache line flush.  Use the mfence
898		 * instruction to insure that previous stores are
899		 * included in the write-back.  The processor
900		 * propagates flush to other processors in the cache
901		 * coherence domain.
902		 */
903		mfence();
904		for (; sva < eva; sva += cpu_clflush_line_size)
905			clflush(sva);
906		mfence();
907	} else {
908
909		/*
910		 * No targeted cache flush methods are supported by CPU,
911		 * or the supplied range is bigger than 2MB.
912		 * Globally invalidate cache.
913		 */
914		pmap_invalidate_cache();
915	}
916}
917
918void
919pmap_invalidate_cache_pages(vm_page_t *pages, int count)
920{
921	int i;
922
923	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
924	    (cpu_feature & CPUID_CLFSH) == 0) {
925		pmap_invalidate_cache();
926	} else {
927		for (i = 0; i < count; i++)
928			pmap_flush_page(pages[i]);
929	}
930}
931
932/*
933 * Are we current address space or kernel?  N.B. We return FALSE when
934 * a pmap's page table is in use because a kernel thread is borrowing
935 * it.  The borrowed page table can change spontaneously, making any
936 * dependence on its continued use subject to a race condition.
937 */
938static __inline int
939pmap_is_current(pmap_t pmap)
940{
941
942	return (pmap == kernel_pmap ||
943	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
944	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
945}
946
947/*
948 * If the given pmap is not the current or kernel pmap, the returned pte must
949 * be released by passing it to pmap_pte_release().
950 */
951pt_entry_t *
952pmap_pte(pmap_t pmap, vm_offset_t va)
953{
954	pd_entry_t newpf;
955	pd_entry_t *pde;
956
957	pde = pmap_pde(pmap, va);
958	if (*pde & PG_PS)
959		return (pde);
960	if (*pde != 0) {
961		/* are we current address space or kernel? */
962		if (pmap_is_current(pmap))
963			return (vtopte(va));
964		mtx_lock(&PMAP2mutex);
965		newpf = *pde & PG_FRAME;
966		if ((*PMAP2 & PG_FRAME) != newpf) {
967			vm_page_lock_queues();
968			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
969			vm_page_unlock_queues();
970			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
971			    pmap, va, (*PMAP2 & 0xffffffff));
972		}
973		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
974	}
975	return (NULL);
976}
977
978/*
979 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
980 * being NULL.
981 */
982static __inline void
983pmap_pte_release(pt_entry_t *pte)
984{
985
986	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
987		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
988		    *PMAP2);
989		vm_page_lock_queues();
990		PT_SET_VA(PMAP2, 0, TRUE);
991		vm_page_unlock_queues();
992		mtx_unlock(&PMAP2mutex);
993	}
994}
995
996static __inline void
997invlcaddr(void *caddr)
998{
999
1000	invlpg((u_int)caddr);
1001	PT_UPDATES_FLUSH();
1002}
1003
1004/*
1005 * Super fast pmap_pte routine best used when scanning
1006 * the pv lists.  This eliminates many coarse-grained
1007 * invltlb calls.  Note that many of the pv list
1008 * scans are across different pmaps.  It is very wasteful
1009 * to do an entire invltlb for checking a single mapping.
1010 *
1011 * If the given pmap is not the current pmap, vm_page_queue_mtx
1012 * must be held and curthread pinned to a CPU.
1013 */
1014static pt_entry_t *
1015pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1016{
1017	pd_entry_t newpf;
1018	pd_entry_t *pde;
1019
1020	pde = pmap_pde(pmap, va);
1021	if (*pde & PG_PS)
1022		return (pde);
1023	if (*pde != 0) {
1024		/* are we current address space or kernel? */
1025		if (pmap_is_current(pmap))
1026			return (vtopte(va));
1027		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1028		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1029		newpf = *pde & PG_FRAME;
1030		if ((*PMAP1 & PG_FRAME) != newpf) {
1031			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1032			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1033			    pmap, va, (u_long)*PMAP1);
1034
1035#ifdef SMP
1036			PMAP1cpu = PCPU_GET(cpuid);
1037#endif
1038			PMAP1changed++;
1039		} else
1040#ifdef SMP
1041		if (PMAP1cpu != PCPU_GET(cpuid)) {
1042			PMAP1cpu = PCPU_GET(cpuid);
1043			invlcaddr(PADDR1);
1044			PMAP1changedcpu++;
1045		} else
1046#endif
1047			PMAP1unchanged++;
1048		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1049	}
1050	return (0);
1051}
1052
1053/*
1054 *	Routine:	pmap_extract
1055 *	Function:
1056 *		Extract the physical page address associated
1057 *		with the given map/virtual_address pair.
1058 */
1059vm_paddr_t
1060pmap_extract(pmap_t pmap, vm_offset_t va)
1061{
1062	vm_paddr_t rtval;
1063	pt_entry_t *pte;
1064	pd_entry_t pde;
1065	pt_entry_t pteval;
1066
1067	rtval = 0;
1068	PMAP_LOCK(pmap);
1069	pde = pmap->pm_pdir[va >> PDRSHIFT];
1070	if (pde != 0) {
1071		if ((pde & PG_PS) != 0) {
1072			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1073			PMAP_UNLOCK(pmap);
1074			return rtval;
1075		}
1076		pte = pmap_pte(pmap, va);
1077		pteval = *pte ? xpmap_mtop(*pte) : 0;
1078		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1079		pmap_pte_release(pte);
1080	}
1081	PMAP_UNLOCK(pmap);
1082	return (rtval);
1083}
1084
1085/*
1086 *	Routine:	pmap_extract_ma
1087 *	Function:
1088 *		Like pmap_extract, but returns machine address
1089 */
1090vm_paddr_t
1091pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1092{
1093	vm_paddr_t rtval;
1094	pt_entry_t *pte;
1095	pd_entry_t pde;
1096
1097	rtval = 0;
1098	PMAP_LOCK(pmap);
1099	pde = pmap->pm_pdir[va >> PDRSHIFT];
1100	if (pde != 0) {
1101		if ((pde & PG_PS) != 0) {
1102			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1103			PMAP_UNLOCK(pmap);
1104			return rtval;
1105		}
1106		pte = pmap_pte(pmap, va);
1107		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1108		pmap_pte_release(pte);
1109	}
1110	PMAP_UNLOCK(pmap);
1111	return (rtval);
1112}
1113
1114/*
1115 *	Routine:	pmap_extract_and_hold
1116 *	Function:
1117 *		Atomically extract and hold the physical page
1118 *		with the given pmap and virtual address pair
1119 *		if that mapping permits the given protection.
1120 */
1121vm_page_t
1122pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1123{
1124	pd_entry_t pde;
1125	pt_entry_t pte;
1126	vm_page_t m;
1127	vm_paddr_t pa;
1128
1129	pa = 0;
1130	m = NULL;
1131	PMAP_LOCK(pmap);
1132retry:
1133	pde = PT_GET(pmap_pde(pmap, va));
1134	if (pde != 0) {
1135		if (pde & PG_PS) {
1136			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1137				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1138				       (va & PDRMASK), &pa))
1139					goto retry;
1140				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1141				    (va & PDRMASK));
1142				vm_page_hold(m);
1143			}
1144		} else {
1145			sched_pin();
1146			pte = PT_GET(pmap_pte_quick(pmap, va));
1147			if (*PMAP1)
1148				PT_SET_MA(PADDR1, 0);
1149			if ((pte & PG_V) &&
1150			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1151				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1152					goto retry;
1153				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1154				vm_page_hold(m);
1155			}
1156			sched_unpin();
1157		}
1158	}
1159	PA_UNLOCK_COND(pa);
1160	PMAP_UNLOCK(pmap);
1161	return (m);
1162}
1163
1164/***************************************************
1165 * Low level mapping routines.....
1166 ***************************************************/
1167
1168/*
1169 * Add a wired page to the kva.
1170 * Note: not SMP coherent.
1171 *
1172 * This function may be used before pmap_bootstrap() is called.
1173 */
1174void
1175pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1176{
1177
1178	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1179}
1180
1181void
1182pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1183{
1184	pt_entry_t *pte;
1185
1186	pte = vtopte(va);
1187	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1188}
1189
1190static __inline void
1191pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1192{
1193
1194	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1195}
1196
1197/*
1198 * Remove a page from the kernel pagetables.
1199 * Note: not SMP coherent.
1200 *
1201 * This function may be used before pmap_bootstrap() is called.
1202 */
1203PMAP_INLINE void
1204pmap_kremove(vm_offset_t va)
1205{
1206	pt_entry_t *pte;
1207
1208	pte = vtopte(va);
1209	PT_CLEAR_VA(pte, FALSE);
1210}
1211
1212/*
1213 *	Used to map a range of physical addresses into kernel
1214 *	virtual address space.
1215 *
1216 *	The value passed in '*virt' is a suggested virtual address for
1217 *	the mapping. Architectures which can support a direct-mapped
1218 *	physical to virtual region can return the appropriate address
1219 *	within that region, leaving '*virt' unchanged. Other
1220 *	architectures should map the pages starting at '*virt' and
1221 *	update '*virt' with the first usable address after the mapped
1222 *	region.
1223 */
1224vm_offset_t
1225pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1226{
1227	vm_offset_t va, sva;
1228
1229	va = sva = *virt;
1230	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1231	    va, start, end, prot);
1232	while (start < end) {
1233		pmap_kenter(va, start);
1234		va += PAGE_SIZE;
1235		start += PAGE_SIZE;
1236	}
1237	pmap_invalidate_range(kernel_pmap, sva, va);
1238	*virt = va;
1239	return (sva);
1240}
1241
1242
1243/*
1244 * Add a list of wired pages to the kva
1245 * this routine is only used for temporary
1246 * kernel mappings that do not need to have
1247 * page modification or references recorded.
1248 * Note that old mappings are simply written
1249 * over.  The page *must* be wired.
1250 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1251 */
1252void
1253pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1254{
1255	pt_entry_t *endpte, *pte;
1256	vm_paddr_t pa;
1257	vm_offset_t va = sva;
1258	int mclcount = 0;
1259	multicall_entry_t mcl[16];
1260	multicall_entry_t *mclp = mcl;
1261	int error;
1262
1263	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1264	pte = vtopte(sva);
1265	endpte = pte + count;
1266	while (pte < endpte) {
1267		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1268
1269		mclp->op = __HYPERVISOR_update_va_mapping;
1270		mclp->args[0] = va;
1271		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1272		mclp->args[2] = (uint32_t)(pa >> 32);
1273		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1274
1275		va += PAGE_SIZE;
1276		pte++;
1277		ma++;
1278		mclp++;
1279		mclcount++;
1280		if (mclcount == 16) {
1281			error = HYPERVISOR_multicall(mcl, mclcount);
1282			mclp = mcl;
1283			mclcount = 0;
1284			KASSERT(error == 0, ("bad multicall %d", error));
1285		}
1286	}
1287	if (mclcount) {
1288		error = HYPERVISOR_multicall(mcl, mclcount);
1289		KASSERT(error == 0, ("bad multicall %d", error));
1290	}
1291
1292#ifdef INVARIANTS
1293	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1294		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1295#endif
1296}
1297
1298/*
1299 * This routine tears out page mappings from the
1300 * kernel -- it is meant only for temporary mappings.
1301 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1302 */
1303void
1304pmap_qremove(vm_offset_t sva, int count)
1305{
1306	vm_offset_t va;
1307
1308	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1309	va = sva;
1310	vm_page_lock_queues();
1311	critical_enter();
1312	while (count-- > 0) {
1313		pmap_kremove(va);
1314		va += PAGE_SIZE;
1315	}
1316	PT_UPDATES_FLUSH();
1317	pmap_invalidate_range(kernel_pmap, sva, va);
1318	critical_exit();
1319	vm_page_unlock_queues();
1320}
1321
1322/***************************************************
1323 * Page table page management routines.....
1324 ***************************************************/
1325static __inline void
1326pmap_free_zero_pages(vm_page_t free)
1327{
1328	vm_page_t m;
1329
1330	while (free != NULL) {
1331		m = free;
1332		free = m->right;
1333		vm_page_free_zero(m);
1334	}
1335}
1336
1337/*
1338 * This routine unholds page table pages, and if the hold count
1339 * drops to zero, then it decrements the wire count.
1340 */
1341static __inline int
1342pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1343{
1344
1345	--m->wire_count;
1346	if (m->wire_count == 0)
1347		return (_pmap_unwire_pte_hold(pmap, m, free));
1348	else
1349		return (0);
1350}
1351
1352static int
1353_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1354{
1355	vm_offset_t pteva;
1356
1357	PT_UPDATES_FLUSH();
1358	/*
1359	 * unmap the page table page
1360	 */
1361	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1362	/*
1363	 * page *might* contain residual mapping :-/
1364	 */
1365	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1366	pmap_zero_page(m);
1367	--pmap->pm_stats.resident_count;
1368
1369	/*
1370	 * This is a release store so that the ordinary store unmapping
1371	 * the page table page is globally performed before TLB shoot-
1372	 * down is begun.
1373	 */
1374	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1375
1376	/*
1377	 * Do an invltlb to make the invalidated mapping
1378	 * take effect immediately.
1379	 */
1380	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1381	pmap_invalidate_page(pmap, pteva);
1382
1383	/*
1384	 * Put page on a list so that it is released after
1385	 * *ALL* TLB shootdown is done
1386	 */
1387	m->right = *free;
1388	*free = m;
1389
1390	return (1);
1391}
1392
1393/*
1394 * After removing a page table entry, this routine is used to
1395 * conditionally free the page, and manage the hold/wire counts.
1396 */
1397static int
1398pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1399{
1400	pd_entry_t ptepde;
1401	vm_page_t mpte;
1402
1403	if (va >= VM_MAXUSER_ADDRESS)
1404		return (0);
1405	ptepde = PT_GET(pmap_pde(pmap, va));
1406	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1407	return (pmap_unwire_pte_hold(pmap, mpte, free));
1408}
1409
1410/*
1411 * Initialize the pmap for the swapper process.
1412 */
1413void
1414pmap_pinit0(pmap_t pmap)
1415{
1416
1417	PMAP_LOCK_INIT(pmap);
1418	/*
1419	 * Since the page table directory is shared with the kernel pmap,
1420	 * which is already included in the list "allpmaps", this pmap does
1421	 * not need to be inserted into that list.
1422	 */
1423	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1424#ifdef PAE
1425	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1426#endif
1427	CPU_ZERO(&pmap->pm_active);
1428	PCPU_SET(curpmap, pmap);
1429	TAILQ_INIT(&pmap->pm_pvchunk);
1430	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1431}
1432
1433/*
1434 * Initialize a preallocated and zeroed pmap structure,
1435 * such as one in a vmspace structure.
1436 */
1437int
1438pmap_pinit(pmap_t pmap)
1439{
1440	vm_page_t m, ptdpg[NPGPTD + 1];
1441	int npgptd = NPGPTD + 1;
1442	int i;
1443
1444#ifdef HAMFISTED_LOCKING
1445	mtx_lock(&createdelete_lock);
1446#endif
1447
1448	PMAP_LOCK_INIT(pmap);
1449
1450	/*
1451	 * No need to allocate page table space yet but we do need a valid
1452	 * page directory table.
1453	 */
1454	if (pmap->pm_pdir == NULL) {
1455		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1456		    NBPTD);
1457		if (pmap->pm_pdir == NULL) {
1458			PMAP_LOCK_DESTROY(pmap);
1459#ifdef HAMFISTED_LOCKING
1460			mtx_unlock(&createdelete_lock);
1461#endif
1462			return (0);
1463		}
1464#ifdef PAE
1465		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1466#endif
1467	}
1468
1469	/*
1470	 * allocate the page directory page(s)
1471	 */
1472	for (i = 0; i < npgptd;) {
1473		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1474		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1475		if (m == NULL)
1476			VM_WAIT;
1477		else {
1478			ptdpg[i++] = m;
1479		}
1480	}
1481
1482	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1483
1484	for (i = 0; i < NPGPTD; i++)
1485		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1486			pagezero(pmap->pm_pdir + (i * NPDEPG));
1487
1488	mtx_lock_spin(&allpmaps_lock);
1489	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1490	/* Copy the kernel page table directory entries. */
1491	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1492	mtx_unlock_spin(&allpmaps_lock);
1493
1494#ifdef PAE
1495	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1496	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1497		bzero(pmap->pm_pdpt, PAGE_SIZE);
1498	for (i = 0; i < NPGPTD; i++) {
1499		vm_paddr_t ma;
1500
1501		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1502		pmap->pm_pdpt[i] = ma | PG_V;
1503
1504	}
1505#endif
1506	for (i = 0; i < NPGPTD; i++) {
1507		pt_entry_t *pd;
1508		vm_paddr_t ma;
1509
1510		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1511		pd = pmap->pm_pdir + (i * NPDEPG);
1512		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1513#if 0
1514		xen_pgd_pin(ma);
1515#endif
1516	}
1517
1518#ifdef PAE
1519	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1520#endif
1521	vm_page_lock_queues();
1522	xen_flush_queue();
1523	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1524	for (i = 0; i < NPGPTD; i++) {
1525		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1526		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1527	}
1528	xen_flush_queue();
1529	vm_page_unlock_queues();
1530	CPU_ZERO(&pmap->pm_active);
1531	TAILQ_INIT(&pmap->pm_pvchunk);
1532	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1533
1534#ifdef HAMFISTED_LOCKING
1535	mtx_unlock(&createdelete_lock);
1536#endif
1537	return (1);
1538}
1539
1540/*
1541 * this routine is called if the page table page is not
1542 * mapped correctly.
1543 */
1544static vm_page_t
1545_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1546{
1547	vm_paddr_t ptema;
1548	vm_page_t m;
1549
1550	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1551	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1552	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1553
1554	/*
1555	 * Allocate a page table page.
1556	 */
1557	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1558	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1559		if (flags & M_WAITOK) {
1560			PMAP_UNLOCK(pmap);
1561			vm_page_unlock_queues();
1562			VM_WAIT;
1563			vm_page_lock_queues();
1564			PMAP_LOCK(pmap);
1565		}
1566
1567		/*
1568		 * Indicate the need to retry.  While waiting, the page table
1569		 * page may have been allocated.
1570		 */
1571		return (NULL);
1572	}
1573	if ((m->flags & PG_ZERO) == 0)
1574		pmap_zero_page(m);
1575
1576	/*
1577	 * Map the pagetable page into the process address space, if
1578	 * it isn't already there.
1579	 */
1580
1581	pmap->pm_stats.resident_count++;
1582
1583	ptema = VM_PAGE_TO_MACH(m);
1584	xen_pt_pin(ptema);
1585	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1586		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1587
1588	KASSERT(pmap->pm_pdir[ptepindex],
1589	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1590	return (m);
1591}
1592
1593static vm_page_t
1594pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1595{
1596	u_int ptepindex;
1597	pd_entry_t ptema;
1598	vm_page_t m;
1599
1600	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1601	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1602	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1603
1604	/*
1605	 * Calculate pagetable page index
1606	 */
1607	ptepindex = va >> PDRSHIFT;
1608retry:
1609	/*
1610	 * Get the page directory entry
1611	 */
1612	ptema = pmap->pm_pdir[ptepindex];
1613
1614	/*
1615	 * This supports switching from a 4MB page to a
1616	 * normal 4K page.
1617	 */
1618	if (ptema & PG_PS) {
1619		/*
1620		 * XXX
1621		 */
1622		pmap->pm_pdir[ptepindex] = 0;
1623		ptema = 0;
1624		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1625		pmap_invalidate_all(kernel_pmap);
1626	}
1627
1628	/*
1629	 * If the page table page is mapped, we just increment the
1630	 * hold count, and activate it.
1631	 */
1632	if (ptema & PG_V) {
1633		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1634		m->wire_count++;
1635	} else {
1636		/*
1637		 * Here if the pte page isn't mapped, or if it has
1638		 * been deallocated.
1639		 */
1640		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1641		    pmap, va, flags);
1642		m = _pmap_allocpte(pmap, ptepindex, flags);
1643		if (m == NULL && (flags & M_WAITOK))
1644			goto retry;
1645
1646		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1647	}
1648	return (m);
1649}
1650
1651
1652/***************************************************
1653* Pmap allocation/deallocation routines.
1654 ***************************************************/
1655
1656#ifdef SMP
1657/*
1658 * Deal with a SMP shootdown of other users of the pmap that we are
1659 * trying to dispose of.  This can be a bit hairy.
1660 */
1661static cpuset_t *lazymask;
1662static u_int lazyptd;
1663static volatile u_int lazywait;
1664
1665void pmap_lazyfix_action(void);
1666
1667void
1668pmap_lazyfix_action(void)
1669{
1670
1671#ifdef COUNT_IPIS
1672	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1673#endif
1674	if (rcr3() == lazyptd)
1675		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1676	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1677	atomic_store_rel_int(&lazywait, 1);
1678}
1679
1680static void
1681pmap_lazyfix_self(u_int cpuid)
1682{
1683
1684	if (rcr3() == lazyptd)
1685		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1686	CPU_CLR_ATOMIC(cpuid, lazymask);
1687}
1688
1689
1690static void
1691pmap_lazyfix(pmap_t pmap)
1692{
1693	cpuset_t mymask, mask;
1694	u_int cpuid, spins;
1695	int lsb;
1696
1697	mask = pmap->pm_active;
1698	while (!CPU_EMPTY(&mask)) {
1699		spins = 50000000;
1700
1701		/* Find least significant set bit. */
1702		lsb = cpusetobj_ffs(&mask);
1703		MPASS(lsb != 0);
1704		lsb--;
1705		CPU_SETOF(lsb, &mask);
1706		mtx_lock_spin(&smp_ipi_mtx);
1707#ifdef PAE
1708		lazyptd = vtophys(pmap->pm_pdpt);
1709#else
1710		lazyptd = vtophys(pmap->pm_pdir);
1711#endif
1712		cpuid = PCPU_GET(cpuid);
1713
1714		/* Use a cpuset just for having an easy check. */
1715		CPU_SETOF(cpuid, &mymask);
1716		if (!CPU_CMP(&mask, &mymask)) {
1717			lazymask = &pmap->pm_active;
1718			pmap_lazyfix_self(cpuid);
1719		} else {
1720			atomic_store_rel_int((u_int *)&lazymask,
1721			    (u_int)&pmap->pm_active);
1722			atomic_store_rel_int(&lazywait, 0);
1723			ipi_selected(mask, IPI_LAZYPMAP);
1724			while (lazywait == 0) {
1725				ia32_pause();
1726				if (--spins == 0)
1727					break;
1728			}
1729		}
1730		mtx_unlock_spin(&smp_ipi_mtx);
1731		if (spins == 0)
1732			printf("pmap_lazyfix: spun for 50000000\n");
1733		mask = pmap->pm_active;
1734	}
1735}
1736
1737#else	/* SMP */
1738
1739/*
1740 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1741 * unlikely to have to even execute this code, including the fact
1742 * that the cleanup is deferred until the parent does a wait(2), which
1743 * means that another userland process has run.
1744 */
1745static void
1746pmap_lazyfix(pmap_t pmap)
1747{
1748	u_int cr3;
1749
1750	cr3 = vtophys(pmap->pm_pdir);
1751	if (cr3 == rcr3()) {
1752		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1753		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1754	}
1755}
1756#endif	/* SMP */
1757
1758/*
1759 * Release any resources held by the given physical map.
1760 * Called when a pmap initialized by pmap_pinit is being released.
1761 * Should only be called if the map contains no valid mappings.
1762 */
1763void
1764pmap_release(pmap_t pmap)
1765{
1766	vm_page_t m, ptdpg[2*NPGPTD+1];
1767	vm_paddr_t ma;
1768	int i;
1769#ifdef PAE
1770	int npgptd = NPGPTD + 1;
1771#else
1772	int npgptd = NPGPTD;
1773#endif
1774
1775	KASSERT(pmap->pm_stats.resident_count == 0,
1776	    ("pmap_release: pmap resident count %ld != 0",
1777	    pmap->pm_stats.resident_count));
1778	PT_UPDATES_FLUSH();
1779
1780#ifdef HAMFISTED_LOCKING
1781	mtx_lock(&createdelete_lock);
1782#endif
1783
1784	pmap_lazyfix(pmap);
1785	mtx_lock_spin(&allpmaps_lock);
1786	LIST_REMOVE(pmap, pm_list);
1787	mtx_unlock_spin(&allpmaps_lock);
1788
1789	for (i = 0; i < NPGPTD; i++)
1790		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1791	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1792#ifdef PAE
1793	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1794#endif
1795
1796	for (i = 0; i < npgptd; i++) {
1797		m = ptdpg[i];
1798		ma = VM_PAGE_TO_MACH(m);
1799		/* unpinning L1 and L2 treated the same */
1800#if 0
1801                xen_pgd_unpin(ma);
1802#else
1803		if (i == NPGPTD)
1804	                xen_pgd_unpin(ma);
1805#endif
1806#ifdef PAE
1807		if (i < NPGPTD)
1808			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1809			    ("pmap_release: got wrong ptd page"));
1810#endif
1811		m->wire_count--;
1812		atomic_subtract_int(&cnt.v_wire_count, 1);
1813		vm_page_free(m);
1814	}
1815#ifdef PAE
1816	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1817#endif
1818	PMAP_LOCK_DESTROY(pmap);
1819
1820#ifdef HAMFISTED_LOCKING
1821	mtx_unlock(&createdelete_lock);
1822#endif
1823}
1824
1825static int
1826kvm_size(SYSCTL_HANDLER_ARGS)
1827{
1828	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1829
1830	return (sysctl_handle_long(oidp, &ksize, 0, req));
1831}
1832SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1833    0, 0, kvm_size, "IU", "Size of KVM");
1834
1835static int
1836kvm_free(SYSCTL_HANDLER_ARGS)
1837{
1838	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1839
1840	return (sysctl_handle_long(oidp, &kfree, 0, req));
1841}
1842SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1843    0, 0, kvm_free, "IU", "Amount of KVM free");
1844
1845/*
1846 * grow the number of kernel page table entries, if needed
1847 */
1848void
1849pmap_growkernel(vm_offset_t addr)
1850{
1851	struct pmap *pmap;
1852	vm_paddr_t ptppaddr;
1853	vm_page_t nkpg;
1854	pd_entry_t newpdir;
1855
1856	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1857	if (kernel_vm_end == 0) {
1858		kernel_vm_end = KERNBASE;
1859		nkpt = 0;
1860		while (pdir_pde(PTD, kernel_vm_end)) {
1861			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1862			nkpt++;
1863			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1864				kernel_vm_end = kernel_map->max_offset;
1865				break;
1866			}
1867		}
1868	}
1869	addr = roundup2(addr, NBPDR);
1870	if (addr - 1 >= kernel_map->max_offset)
1871		addr = kernel_map->max_offset;
1872	while (kernel_vm_end < addr) {
1873		if (pdir_pde(PTD, kernel_vm_end)) {
1874			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1875			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1876				kernel_vm_end = kernel_map->max_offset;
1877				break;
1878			}
1879			continue;
1880		}
1881
1882		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1883		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1884		    VM_ALLOC_ZERO);
1885		if (nkpg == NULL)
1886			panic("pmap_growkernel: no memory to grow kernel");
1887
1888		nkpt++;
1889
1890		if ((nkpg->flags & PG_ZERO) == 0)
1891			pmap_zero_page(nkpg);
1892		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1893		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1894		vm_page_lock_queues();
1895		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1896		mtx_lock_spin(&allpmaps_lock);
1897		LIST_FOREACH(pmap, &allpmaps, pm_list)
1898			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1899
1900		mtx_unlock_spin(&allpmaps_lock);
1901		vm_page_unlock_queues();
1902
1903		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1904		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1905			kernel_vm_end = kernel_map->max_offset;
1906			break;
1907		}
1908	}
1909}
1910
1911
1912/***************************************************
1913 * page management routines.
1914 ***************************************************/
1915
1916CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1917CTASSERT(_NPCM == 11);
1918
1919static __inline struct pv_chunk *
1920pv_to_chunk(pv_entry_t pv)
1921{
1922
1923	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1924}
1925
1926#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1927
1928#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1929#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1930
1931static uint32_t pc_freemask[11] = {
1932	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1933	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1934	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1935	PC_FREE0_9, PC_FREE10
1936};
1937
1938SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1939	"Current number of pv entries");
1940
1941#ifdef PV_STATS
1942static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1943
1944SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1945	"Current number of pv entry chunks");
1946SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1947	"Current number of pv entry chunks allocated");
1948SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1949	"Current number of pv entry chunks frees");
1950SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1951	"Number of times tried to get a chunk page but failed.");
1952
1953static long pv_entry_frees, pv_entry_allocs;
1954static int pv_entry_spare;
1955
1956SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1957	"Current number of pv entry frees");
1958SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1959	"Current number of pv entry allocs");
1960SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1961	"Current number of spare pv entries");
1962
1963static int pmap_collect_inactive, pmap_collect_active;
1964
1965SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1966	"Current number times pmap_collect called on inactive queue");
1967SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1968	"Current number times pmap_collect called on active queue");
1969#endif
1970
1971/*
1972 * We are in a serious low memory condition.  Resort to
1973 * drastic measures to free some pages so we can allocate
1974 * another pv entry chunk.  This is normally called to
1975 * unmap inactive pages, and if necessary, active pages.
1976 */
1977static void
1978pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1979{
1980	pmap_t pmap;
1981	pt_entry_t *pte, tpte;
1982	pv_entry_t next_pv, pv;
1983	vm_offset_t va;
1984	vm_page_t m, free;
1985
1986	sched_pin();
1987	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1988		if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
1989			continue;
1990		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1991			va = pv->pv_va;
1992			pmap = PV_PMAP(pv);
1993			/* Avoid deadlock and lock recursion. */
1994			if (pmap > locked_pmap)
1995				PMAP_LOCK(pmap);
1996			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1997				continue;
1998			pmap->pm_stats.resident_count--;
1999			pte = pmap_pte_quick(pmap, va);
2000			tpte = pte_load_clear(pte);
2001			KASSERT((tpte & PG_W) == 0,
2002			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2003			if (tpte & PG_A)
2004				vm_page_aflag_set(m, PGA_REFERENCED);
2005			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2006				vm_page_dirty(m);
2007			free = NULL;
2008			pmap_unuse_pt(pmap, va, &free);
2009			pmap_invalidate_page(pmap, va);
2010			pmap_free_zero_pages(free);
2011			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2012			free_pv_entry(pmap, pv);
2013			if (pmap != locked_pmap)
2014				PMAP_UNLOCK(pmap);
2015		}
2016		if (TAILQ_EMPTY(&m->md.pv_list))
2017			vm_page_aflag_clear(m, PGA_WRITEABLE);
2018	}
2019	sched_unpin();
2020}
2021
2022
2023/*
2024 * free the pv_entry back to the free list
2025 */
2026static void
2027free_pv_entry(pmap_t pmap, pv_entry_t pv)
2028{
2029	vm_page_t m;
2030	struct pv_chunk *pc;
2031	int idx, field, bit;
2032
2033	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2034	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2035	PV_STAT(pv_entry_frees++);
2036	PV_STAT(pv_entry_spare++);
2037	pv_entry_count--;
2038	pc = pv_to_chunk(pv);
2039	idx = pv - &pc->pc_pventry[0];
2040	field = idx / 32;
2041	bit = idx % 32;
2042	pc->pc_map[field] |= 1ul << bit;
2043	/* move to head of list */
2044	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2045	for (idx = 0; idx < _NPCM; idx++)
2046		if (pc->pc_map[idx] != pc_freemask[idx]) {
2047			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2048			return;
2049		}
2050	PV_STAT(pv_entry_spare -= _NPCPV);
2051	PV_STAT(pc_chunk_count--);
2052	PV_STAT(pc_chunk_frees++);
2053	/* entire chunk is free, return it */
2054	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2055	pmap_qremove((vm_offset_t)pc, 1);
2056	vm_page_unwire(m, 0);
2057	vm_page_free(m);
2058	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2059}
2060
2061/*
2062 * get a new pv_entry, allocating a block from the system
2063 * when needed.
2064 */
2065static pv_entry_t
2066get_pv_entry(pmap_t pmap, int try)
2067{
2068	static const struct timeval printinterval = { 60, 0 };
2069	static struct timeval lastprint;
2070	struct vpgqueues *pq;
2071	int bit, field;
2072	pv_entry_t pv;
2073	struct pv_chunk *pc;
2074	vm_page_t m;
2075
2076	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2077	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2078	PV_STAT(pv_entry_allocs++);
2079	pv_entry_count++;
2080	if (pv_entry_count > pv_entry_high_water)
2081		if (ratecheck(&lastprint, &printinterval))
2082			printf("Approaching the limit on PV entries, consider "
2083			    "increasing either the vm.pmap.shpgperproc or the "
2084			    "vm.pmap.pv_entry_max tunable.\n");
2085	pq = NULL;
2086retry:
2087	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2088	if (pc != NULL) {
2089		for (field = 0; field < _NPCM; field++) {
2090			if (pc->pc_map[field]) {
2091				bit = bsfl(pc->pc_map[field]);
2092				break;
2093			}
2094		}
2095		if (field < _NPCM) {
2096			pv = &pc->pc_pventry[field * 32 + bit];
2097			pc->pc_map[field] &= ~(1ul << bit);
2098			/* If this was the last item, move it to tail */
2099			for (field = 0; field < _NPCM; field++)
2100				if (pc->pc_map[field] != 0) {
2101					PV_STAT(pv_entry_spare--);
2102					return (pv);	/* not full, return */
2103				}
2104			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2105			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2106			PV_STAT(pv_entry_spare--);
2107			return (pv);
2108		}
2109	}
2110	/*
2111	 * Access to the ptelist "pv_vafree" is synchronized by the page
2112	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2113	 * remain non-empty until pmap_ptelist_alloc() completes.
2114	 */
2115	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, (pq ==
2116	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2117	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2118		if (try) {
2119			pv_entry_count--;
2120			PV_STAT(pc_chunk_tryfail++);
2121			return (NULL);
2122		}
2123		/*
2124		 * Reclaim pv entries: At first, destroy mappings to
2125		 * inactive pages.  After that, if a pv chunk entry
2126		 * is still needed, destroy mappings to active pages.
2127		 */
2128		if (pq == NULL) {
2129			PV_STAT(pmap_collect_inactive++);
2130			pq = &vm_page_queues[PQ_INACTIVE];
2131		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2132			PV_STAT(pmap_collect_active++);
2133			pq = &vm_page_queues[PQ_ACTIVE];
2134		} else
2135			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2136		pmap_collect(pmap, pq);
2137		goto retry;
2138	}
2139	PV_STAT(pc_chunk_count++);
2140	PV_STAT(pc_chunk_allocs++);
2141	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2142	pmap_qenter((vm_offset_t)pc, &m, 1);
2143	if ((m->flags & PG_ZERO) == 0)
2144		pagezero(pc);
2145	pc->pc_pmap = pmap;
2146	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2147	for (field = 1; field < _NPCM; field++)
2148		pc->pc_map[field] = pc_freemask[field];
2149	pv = &pc->pc_pventry[0];
2150	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2151	PV_STAT(pv_entry_spare += _NPCPV - 1);
2152	return (pv);
2153}
2154
2155static __inline pv_entry_t
2156pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2157{
2158	pv_entry_t pv;
2159
2160	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2161	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2162		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2163			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2164			break;
2165		}
2166	}
2167	return (pv);
2168}
2169
2170static void
2171pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2172{
2173	pv_entry_t pv;
2174
2175	pv = pmap_pvh_remove(pvh, pmap, va);
2176	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2177	free_pv_entry(pmap, pv);
2178}
2179
2180static void
2181pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2182{
2183
2184	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2185	pmap_pvh_free(&m->md, pmap, va);
2186	if (TAILQ_EMPTY(&m->md.pv_list))
2187		vm_page_aflag_clear(m, PGA_WRITEABLE);
2188}
2189
2190/*
2191 * Conditionally create a pv entry.
2192 */
2193static boolean_t
2194pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2195{
2196	pv_entry_t pv;
2197
2198	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2199	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2200	if (pv_entry_count < pv_entry_high_water &&
2201	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2202		pv->pv_va = va;
2203		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2204		return (TRUE);
2205	} else
2206		return (FALSE);
2207}
2208
2209/*
2210 * pmap_remove_pte: do the things to unmap a page in a process
2211 */
2212static int
2213pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2214{
2215	pt_entry_t oldpte;
2216	vm_page_t m;
2217
2218	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2219	    pmap, (u_long)*ptq, va);
2220
2221	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2222	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2223	oldpte = *ptq;
2224	PT_SET_VA_MA(ptq, 0, TRUE);
2225	if (oldpte & PG_W)
2226		pmap->pm_stats.wired_count -= 1;
2227	/*
2228	 * Machines that don't support invlpg, also don't support
2229	 * PG_G.
2230	 */
2231	if (oldpte & PG_G)
2232		pmap_invalidate_page(kernel_pmap, va);
2233	pmap->pm_stats.resident_count -= 1;
2234	if (oldpte & PG_MANAGED) {
2235		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2236		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2237			vm_page_dirty(m);
2238		if (oldpte & PG_A)
2239			vm_page_aflag_set(m, PGA_REFERENCED);
2240		pmap_remove_entry(pmap, m, va);
2241	}
2242	return (pmap_unuse_pt(pmap, va, free));
2243}
2244
2245/*
2246 * Remove a single page from a process address space
2247 */
2248static void
2249pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2250{
2251	pt_entry_t *pte;
2252
2253	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2254	    pmap, va);
2255
2256	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2257	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2258	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2259	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2260		return;
2261	pmap_remove_pte(pmap, pte, va, free);
2262	pmap_invalidate_page(pmap, va);
2263	if (*PMAP1)
2264		PT_SET_MA(PADDR1, 0);
2265
2266}
2267
2268/*
2269 *	Remove the given range of addresses from the specified map.
2270 *
2271 *	It is assumed that the start and end are properly
2272 *	rounded to the page size.
2273 */
2274void
2275pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2276{
2277	vm_offset_t pdnxt;
2278	pd_entry_t ptpaddr;
2279	pt_entry_t *pte;
2280	vm_page_t free = NULL;
2281	int anyvalid;
2282
2283	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2284	    pmap, sva, eva);
2285
2286	/*
2287	 * Perform an unsynchronized read.  This is, however, safe.
2288	 */
2289	if (pmap->pm_stats.resident_count == 0)
2290		return;
2291
2292	anyvalid = 0;
2293
2294	vm_page_lock_queues();
2295	sched_pin();
2296	PMAP_LOCK(pmap);
2297
2298	/*
2299	 * special handling of removing one page.  a very
2300	 * common operation and easy to short circuit some
2301	 * code.
2302	 */
2303	if ((sva + PAGE_SIZE == eva) &&
2304	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2305		pmap_remove_page(pmap, sva, &free);
2306		goto out;
2307	}
2308
2309	for (; sva < eva; sva = pdnxt) {
2310		u_int pdirindex;
2311
2312		/*
2313		 * Calculate index for next page table.
2314		 */
2315		pdnxt = (sva + NBPDR) & ~PDRMASK;
2316		if (pmap->pm_stats.resident_count == 0)
2317			break;
2318
2319		pdirindex = sva >> PDRSHIFT;
2320		ptpaddr = pmap->pm_pdir[pdirindex];
2321
2322		/*
2323		 * Weed out invalid mappings. Note: we assume that the page
2324		 * directory table is always allocated, and in kernel virtual.
2325		 */
2326		if (ptpaddr == 0)
2327			continue;
2328
2329		/*
2330		 * Check for large page.
2331		 */
2332		if ((ptpaddr & PG_PS) != 0) {
2333			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2334			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2335			anyvalid = 1;
2336			continue;
2337		}
2338
2339		/*
2340		 * Limit our scan to either the end of the va represented
2341		 * by the current page table page, or to the end of the
2342		 * range being removed.
2343		 */
2344		if (pdnxt > eva)
2345			pdnxt = eva;
2346
2347		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2348		    sva += PAGE_SIZE) {
2349			if ((*pte & PG_V) == 0)
2350				continue;
2351
2352			/*
2353			 * The TLB entry for a PG_G mapping is invalidated
2354			 * by pmap_remove_pte().
2355			 */
2356			if ((*pte & PG_G) == 0)
2357				anyvalid = 1;
2358			if (pmap_remove_pte(pmap, pte, sva, &free))
2359				break;
2360		}
2361	}
2362	PT_UPDATES_FLUSH();
2363	if (*PMAP1)
2364		PT_SET_VA_MA(PMAP1, 0, TRUE);
2365out:
2366	if (anyvalid)
2367		pmap_invalidate_all(pmap);
2368	sched_unpin();
2369	vm_page_unlock_queues();
2370	PMAP_UNLOCK(pmap);
2371	pmap_free_zero_pages(free);
2372}
2373
2374/*
2375 *	Routine:	pmap_remove_all
2376 *	Function:
2377 *		Removes this physical page from
2378 *		all physical maps in which it resides.
2379 *		Reflects back modify bits to the pager.
2380 *
2381 *	Notes:
2382 *		Original versions of this routine were very
2383 *		inefficient because they iteratively called
2384 *		pmap_remove (slow...)
2385 */
2386
2387void
2388pmap_remove_all(vm_page_t m)
2389{
2390	pv_entry_t pv;
2391	pmap_t pmap;
2392	pt_entry_t *pte, tpte;
2393	vm_page_t free;
2394
2395	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2396	    ("pmap_remove_all: page %p is not managed", m));
2397	free = NULL;
2398	vm_page_lock_queues();
2399	sched_pin();
2400	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2401		pmap = PV_PMAP(pv);
2402		PMAP_LOCK(pmap);
2403		pmap->pm_stats.resident_count--;
2404		pte = pmap_pte_quick(pmap, pv->pv_va);
2405		tpte = *pte;
2406		PT_SET_VA_MA(pte, 0, TRUE);
2407		if (tpte & PG_W)
2408			pmap->pm_stats.wired_count--;
2409		if (tpte & PG_A)
2410			vm_page_aflag_set(m, PGA_REFERENCED);
2411
2412		/*
2413		 * Update the vm_page_t clean and reference bits.
2414		 */
2415		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2416			vm_page_dirty(m);
2417		pmap_unuse_pt(pmap, pv->pv_va, &free);
2418		pmap_invalidate_page(pmap, pv->pv_va);
2419		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2420		free_pv_entry(pmap, pv);
2421		PMAP_UNLOCK(pmap);
2422	}
2423	vm_page_aflag_clear(m, PGA_WRITEABLE);
2424	PT_UPDATES_FLUSH();
2425	if (*PMAP1)
2426		PT_SET_MA(PADDR1, 0);
2427	sched_unpin();
2428	vm_page_unlock_queues();
2429	pmap_free_zero_pages(free);
2430}
2431
2432/*
2433 *	Set the physical protection on the
2434 *	specified range of this map as requested.
2435 */
2436void
2437pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2438{
2439	vm_offset_t pdnxt;
2440	pd_entry_t ptpaddr;
2441	pt_entry_t *pte;
2442	int anychanged;
2443
2444	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2445	    pmap, sva, eva, prot);
2446
2447	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2448		pmap_remove(pmap, sva, eva);
2449		return;
2450	}
2451
2452#ifdef PAE
2453	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2454	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2455		return;
2456#else
2457	if (prot & VM_PROT_WRITE)
2458		return;
2459#endif
2460
2461	anychanged = 0;
2462
2463	vm_page_lock_queues();
2464	sched_pin();
2465	PMAP_LOCK(pmap);
2466	for (; sva < eva; sva = pdnxt) {
2467		pt_entry_t obits, pbits;
2468		u_int pdirindex;
2469
2470		pdnxt = (sva + NBPDR) & ~PDRMASK;
2471
2472		pdirindex = sva >> PDRSHIFT;
2473		ptpaddr = pmap->pm_pdir[pdirindex];
2474
2475		/*
2476		 * Weed out invalid mappings. Note: we assume that the page
2477		 * directory table is always allocated, and in kernel virtual.
2478		 */
2479		if (ptpaddr == 0)
2480			continue;
2481
2482		/*
2483		 * Check for large page.
2484		 */
2485		if ((ptpaddr & PG_PS) != 0) {
2486			if ((prot & VM_PROT_WRITE) == 0)
2487				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2488#ifdef PAE
2489			if ((prot & VM_PROT_EXECUTE) == 0)
2490				pmap->pm_pdir[pdirindex] |= pg_nx;
2491#endif
2492			anychanged = 1;
2493			continue;
2494		}
2495
2496		if (pdnxt > eva)
2497			pdnxt = eva;
2498
2499		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2500		    sva += PAGE_SIZE) {
2501			vm_page_t m;
2502
2503retry:
2504			/*
2505			 * Regardless of whether a pte is 32 or 64 bits in
2506			 * size, PG_RW, PG_A, and PG_M are among the least
2507			 * significant 32 bits.
2508			 */
2509			obits = pbits = *pte;
2510			if ((pbits & PG_V) == 0)
2511				continue;
2512
2513			if ((prot & VM_PROT_WRITE) == 0) {
2514				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2515				    (PG_MANAGED | PG_M | PG_RW)) {
2516					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2517					    PG_FRAME);
2518					vm_page_dirty(m);
2519				}
2520				pbits &= ~(PG_RW | PG_M);
2521			}
2522#ifdef PAE
2523			if ((prot & VM_PROT_EXECUTE) == 0)
2524				pbits |= pg_nx;
2525#endif
2526
2527			if (pbits != obits) {
2528				obits = *pte;
2529				PT_SET_VA_MA(pte, pbits, TRUE);
2530				if (*pte != pbits)
2531					goto retry;
2532				if (obits & PG_G)
2533					pmap_invalidate_page(pmap, sva);
2534				else
2535					anychanged = 1;
2536			}
2537		}
2538	}
2539	PT_UPDATES_FLUSH();
2540	if (*PMAP1)
2541		PT_SET_VA_MA(PMAP1, 0, TRUE);
2542	if (anychanged)
2543		pmap_invalidate_all(pmap);
2544	sched_unpin();
2545	vm_page_unlock_queues();
2546	PMAP_UNLOCK(pmap);
2547}
2548
2549/*
2550 *	Insert the given physical page (p) at
2551 *	the specified virtual address (v) in the
2552 *	target physical map with the protection requested.
2553 *
2554 *	If specified, the page will be wired down, meaning
2555 *	that the related pte can not be reclaimed.
2556 *
2557 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2558 *	or lose information.  That is, this routine must actually
2559 *	insert this page into the given map NOW.
2560 */
2561void
2562pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2563    vm_prot_t prot, boolean_t wired)
2564{
2565	pd_entry_t *pde;
2566	pt_entry_t *pte;
2567	pt_entry_t newpte, origpte;
2568	pv_entry_t pv;
2569	vm_paddr_t opa, pa;
2570	vm_page_t mpte, om;
2571	boolean_t invlva;
2572
2573	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2574	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2575	va = trunc_page(va);
2576	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2577	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2578	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2579	    va));
2580	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
2581	    VM_OBJECT_LOCKED(m->object),
2582	    ("pmap_enter: page %p is not busy", m));
2583
2584	mpte = NULL;
2585
2586	vm_page_lock_queues();
2587	PMAP_LOCK(pmap);
2588	sched_pin();
2589
2590	/*
2591	 * In the case that a page table page is not
2592	 * resident, we are creating it here.
2593	 */
2594	if (va < VM_MAXUSER_ADDRESS) {
2595		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2596	}
2597
2598	pde = pmap_pde(pmap, va);
2599	if ((*pde & PG_PS) != 0)
2600		panic("pmap_enter: attempted pmap_enter on 4MB page");
2601	pte = pmap_pte_quick(pmap, va);
2602
2603	/*
2604	 * Page Directory table entry not valid, we need a new PT page
2605	 */
2606	if (pte == NULL) {
2607		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2608			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2609	}
2610
2611	pa = VM_PAGE_TO_PHYS(m);
2612	om = NULL;
2613	opa = origpte = 0;
2614
2615#if 0
2616	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2617		pte, *pte));
2618#endif
2619	origpte = *pte;
2620	if (origpte)
2621		origpte = xpmap_mtop(origpte);
2622	opa = origpte & PG_FRAME;
2623
2624	/*
2625	 * Mapping has not changed, must be protection or wiring change.
2626	 */
2627	if (origpte && (opa == pa)) {
2628		/*
2629		 * Wiring change, just update stats. We don't worry about
2630		 * wiring PT pages as they remain resident as long as there
2631		 * are valid mappings in them. Hence, if a user page is wired,
2632		 * the PT page will be also.
2633		 */
2634		if (wired && ((origpte & PG_W) == 0))
2635			pmap->pm_stats.wired_count++;
2636		else if (!wired && (origpte & PG_W))
2637			pmap->pm_stats.wired_count--;
2638
2639		/*
2640		 * Remove extra pte reference
2641		 */
2642		if (mpte)
2643			mpte->wire_count--;
2644
2645		if (origpte & PG_MANAGED) {
2646			om = m;
2647			pa |= PG_MANAGED;
2648		}
2649		goto validate;
2650	}
2651
2652	pv = NULL;
2653
2654	/*
2655	 * Mapping has changed, invalidate old range and fall through to
2656	 * handle validating new mapping.
2657	 */
2658	if (opa) {
2659		if (origpte & PG_W)
2660			pmap->pm_stats.wired_count--;
2661		if (origpte & PG_MANAGED) {
2662			om = PHYS_TO_VM_PAGE(opa);
2663			pv = pmap_pvh_remove(&om->md, pmap, va);
2664		} else if (va < VM_MAXUSER_ADDRESS)
2665			printf("va=0x%x is unmanaged :-( \n", va);
2666
2667		if (mpte != NULL) {
2668			mpte->wire_count--;
2669			KASSERT(mpte->wire_count > 0,
2670			    ("pmap_enter: missing reference to page table page,"
2671			     " va: 0x%x", va));
2672		}
2673	} else
2674		pmap->pm_stats.resident_count++;
2675
2676	/*
2677	 * Enter on the PV list if part of our managed memory.
2678	 */
2679	if ((m->oflags & VPO_UNMANAGED) == 0) {
2680		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2681		    ("pmap_enter: managed mapping within the clean submap"));
2682		if (pv == NULL)
2683			pv = get_pv_entry(pmap, FALSE);
2684		pv->pv_va = va;
2685		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2686		pa |= PG_MANAGED;
2687	} else if (pv != NULL)
2688		free_pv_entry(pmap, pv);
2689
2690	/*
2691	 * Increment counters
2692	 */
2693	if (wired)
2694		pmap->pm_stats.wired_count++;
2695
2696validate:
2697	/*
2698	 * Now validate mapping with desired protection/wiring.
2699	 */
2700	newpte = (pt_entry_t)(pa | PG_V);
2701	if ((prot & VM_PROT_WRITE) != 0) {
2702		newpte |= PG_RW;
2703		if ((newpte & PG_MANAGED) != 0)
2704			vm_page_aflag_set(m, PGA_WRITEABLE);
2705	}
2706#ifdef PAE
2707	if ((prot & VM_PROT_EXECUTE) == 0)
2708		newpte |= pg_nx;
2709#endif
2710	if (wired)
2711		newpte |= PG_W;
2712	if (va < VM_MAXUSER_ADDRESS)
2713		newpte |= PG_U;
2714	if (pmap == kernel_pmap)
2715		newpte |= pgeflag;
2716
2717	critical_enter();
2718	/*
2719	 * if the mapping or permission bits are different, we need
2720	 * to update the pte.
2721	 */
2722	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2723		if (origpte) {
2724			invlva = FALSE;
2725			origpte = *pte;
2726			PT_SET_VA(pte, newpte | PG_A, FALSE);
2727			if (origpte & PG_A) {
2728				if (origpte & PG_MANAGED)
2729					vm_page_aflag_set(om, PGA_REFERENCED);
2730				if (opa != VM_PAGE_TO_PHYS(m))
2731					invlva = TRUE;
2732#ifdef PAE
2733				if ((origpte & PG_NX) == 0 &&
2734				    (newpte & PG_NX) != 0)
2735					invlva = TRUE;
2736#endif
2737			}
2738			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2739				if ((origpte & PG_MANAGED) != 0)
2740					vm_page_dirty(om);
2741				if ((prot & VM_PROT_WRITE) == 0)
2742					invlva = TRUE;
2743			}
2744			if ((origpte & PG_MANAGED) != 0 &&
2745			    TAILQ_EMPTY(&om->md.pv_list))
2746				vm_page_aflag_clear(om, PGA_WRITEABLE);
2747			if (invlva)
2748				pmap_invalidate_page(pmap, va);
2749		} else{
2750			PT_SET_VA(pte, newpte | PG_A, FALSE);
2751		}
2752
2753	}
2754	PT_UPDATES_FLUSH();
2755	critical_exit();
2756	if (*PMAP1)
2757		PT_SET_VA_MA(PMAP1, 0, TRUE);
2758	sched_unpin();
2759	vm_page_unlock_queues();
2760	PMAP_UNLOCK(pmap);
2761}
2762
2763/*
2764 * Maps a sequence of resident pages belonging to the same object.
2765 * The sequence begins with the given page m_start.  This page is
2766 * mapped at the given virtual address start.  Each subsequent page is
2767 * mapped at a virtual address that is offset from start by the same
2768 * amount as the page is offset from m_start within the object.  The
2769 * last page in the sequence is the page with the largest offset from
2770 * m_start that can be mapped at a virtual address less than the given
2771 * virtual address end.  Not every virtual page between start and end
2772 * is mapped; only those for which a resident page exists with the
2773 * corresponding offset from m_start are mapped.
2774 */
2775void
2776pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2777    vm_page_t m_start, vm_prot_t prot)
2778{
2779	vm_page_t m, mpte;
2780	vm_pindex_t diff, psize;
2781	multicall_entry_t mcl[16];
2782	multicall_entry_t *mclp = mcl;
2783	int error, count = 0;
2784
2785	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2786	psize = atop(end - start);
2787	mpte = NULL;
2788	m = m_start;
2789	vm_page_lock_queues();
2790	PMAP_LOCK(pmap);
2791	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2792		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2793		    prot, mpte);
2794		m = TAILQ_NEXT(m, listq);
2795		if (count == 16) {
2796			error = HYPERVISOR_multicall(mcl, count);
2797			KASSERT(error == 0, ("bad multicall %d", error));
2798			mclp = mcl;
2799			count = 0;
2800		}
2801	}
2802	if (count) {
2803		error = HYPERVISOR_multicall(mcl, count);
2804		KASSERT(error == 0, ("bad multicall %d", error));
2805	}
2806	vm_page_unlock_queues();
2807	PMAP_UNLOCK(pmap);
2808}
2809
2810/*
2811 * this code makes some *MAJOR* assumptions:
2812 * 1. Current pmap & pmap exists.
2813 * 2. Not wired.
2814 * 3. Read access.
2815 * 4. No page table pages.
2816 * but is *MUCH* faster than pmap_enter...
2817 */
2818
2819void
2820pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2821{
2822	multicall_entry_t mcl, *mclp;
2823	int count = 0;
2824	mclp = &mcl;
2825
2826	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2827	    pmap, va, m, prot);
2828
2829	vm_page_lock_queues();
2830	PMAP_LOCK(pmap);
2831	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2832	if (count)
2833		HYPERVISOR_multicall(&mcl, count);
2834	vm_page_unlock_queues();
2835	PMAP_UNLOCK(pmap);
2836}
2837
2838#ifdef notyet
2839void
2840pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2841{
2842	int i, error, index = 0;
2843	multicall_entry_t mcl[16];
2844	multicall_entry_t *mclp = mcl;
2845
2846	PMAP_LOCK(pmap);
2847	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2848		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2849			continue;
2850
2851		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2852		if (index == 16) {
2853			error = HYPERVISOR_multicall(mcl, index);
2854			mclp = mcl;
2855			index = 0;
2856			KASSERT(error == 0, ("bad multicall %d", error));
2857		}
2858	}
2859	if (index) {
2860		error = HYPERVISOR_multicall(mcl, index);
2861		KASSERT(error == 0, ("bad multicall %d", error));
2862	}
2863
2864	PMAP_UNLOCK(pmap);
2865}
2866#endif
2867
2868static vm_page_t
2869pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2870    vm_prot_t prot, vm_page_t mpte)
2871{
2872	pt_entry_t *pte;
2873	vm_paddr_t pa;
2874	vm_page_t free;
2875	multicall_entry_t *mcl = *mclpp;
2876
2877	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2878	    (m->oflags & VPO_UNMANAGED) != 0,
2879	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2880	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2881	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2882
2883	/*
2884	 * In the case that a page table page is not
2885	 * resident, we are creating it here.
2886	 */
2887	if (va < VM_MAXUSER_ADDRESS) {
2888		u_int ptepindex;
2889		pd_entry_t ptema;
2890
2891		/*
2892		 * Calculate pagetable page index
2893		 */
2894		ptepindex = va >> PDRSHIFT;
2895		if (mpte && (mpte->pindex == ptepindex)) {
2896			mpte->wire_count++;
2897		} else {
2898			/*
2899			 * Get the page directory entry
2900			 */
2901			ptema = pmap->pm_pdir[ptepindex];
2902
2903			/*
2904			 * If the page table page is mapped, we just increment
2905			 * the hold count, and activate it.
2906			 */
2907			if (ptema & PG_V) {
2908				if (ptema & PG_PS)
2909					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2910				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2911				mpte->wire_count++;
2912			} else {
2913				mpte = _pmap_allocpte(pmap, ptepindex,
2914				    M_NOWAIT);
2915				if (mpte == NULL)
2916					return (mpte);
2917			}
2918		}
2919	} else {
2920		mpte = NULL;
2921	}
2922
2923	/*
2924	 * This call to vtopte makes the assumption that we are
2925	 * entering the page into the current pmap.  In order to support
2926	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2927	 * But that isn't as quick as vtopte.
2928	 */
2929	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2930	pte = vtopte(va);
2931	if (*pte & PG_V) {
2932		if (mpte != NULL) {
2933			mpte->wire_count--;
2934			mpte = NULL;
2935		}
2936		return (mpte);
2937	}
2938
2939	/*
2940	 * Enter on the PV list if part of our managed memory.
2941	 */
2942	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2943	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2944		if (mpte != NULL) {
2945			free = NULL;
2946			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2947				pmap_invalidate_page(pmap, va);
2948				pmap_free_zero_pages(free);
2949			}
2950
2951			mpte = NULL;
2952		}
2953		return (mpte);
2954	}
2955
2956	/*
2957	 * Increment counters
2958	 */
2959	pmap->pm_stats.resident_count++;
2960
2961	pa = VM_PAGE_TO_PHYS(m);
2962#ifdef PAE
2963	if ((prot & VM_PROT_EXECUTE) == 0)
2964		pa |= pg_nx;
2965#endif
2966
2967#if 0
2968	/*
2969	 * Now validate mapping with RO protection
2970	 */
2971	if ((m->oflags & VPO_UNMANAGED) != 0)
2972		pte_store(pte, pa | PG_V | PG_U);
2973	else
2974		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2975#else
2976	/*
2977	 * Now validate mapping with RO protection
2978	 */
2979	if ((m->oflags & VPO_UNMANAGED) != 0)
2980		pa = 	xpmap_ptom(pa | PG_V | PG_U);
2981	else
2982		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
2983
2984	mcl->op = __HYPERVISOR_update_va_mapping;
2985	mcl->args[0] = va;
2986	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
2987	mcl->args[2] = (uint32_t)(pa >> 32);
2988	mcl->args[3] = 0;
2989	*mclpp = mcl + 1;
2990	*count = *count + 1;
2991#endif
2992	return (mpte);
2993}
2994
2995/*
2996 * Make a temporary mapping for a physical address.  This is only intended
2997 * to be used for panic dumps.
2998 */
2999void *
3000pmap_kenter_temporary(vm_paddr_t pa, int i)
3001{
3002	vm_offset_t va;
3003	vm_paddr_t ma = xpmap_ptom(pa);
3004
3005	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3006	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3007	invlpg(va);
3008	return ((void *)crashdumpmap);
3009}
3010
3011/*
3012 * This code maps large physical mmap regions into the
3013 * processor address space.  Note that some shortcuts
3014 * are taken, but the code works.
3015 */
3016void
3017pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3018    vm_pindex_t pindex, vm_size_t size)
3019{
3020	pd_entry_t *pde;
3021	vm_paddr_t pa, ptepa;
3022	vm_page_t p;
3023	int pat_mode;
3024
3025	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3026	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3027	    ("pmap_object_init_pt: non-device object"));
3028	if (pseflag &&
3029	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3030		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3031			return;
3032		p = vm_page_lookup(object, pindex);
3033		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3034		    ("pmap_object_init_pt: invalid page %p", p));
3035		pat_mode = p->md.pat_mode;
3036
3037		/*
3038		 * Abort the mapping if the first page is not physically
3039		 * aligned to a 2/4MB page boundary.
3040		 */
3041		ptepa = VM_PAGE_TO_PHYS(p);
3042		if (ptepa & (NBPDR - 1))
3043			return;
3044
3045		/*
3046		 * Skip the first page.  Abort the mapping if the rest of
3047		 * the pages are not physically contiguous or have differing
3048		 * memory attributes.
3049		 */
3050		p = TAILQ_NEXT(p, listq);
3051		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3052		    pa += PAGE_SIZE) {
3053			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3054			    ("pmap_object_init_pt: invalid page %p", p));
3055			if (pa != VM_PAGE_TO_PHYS(p) ||
3056			    pat_mode != p->md.pat_mode)
3057				return;
3058			p = TAILQ_NEXT(p, listq);
3059		}
3060
3061		/*
3062		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3063		 * "size" is a multiple of 2/4M, adding the PAT setting to
3064		 * "pa" will not affect the termination of this loop.
3065		 */
3066		PMAP_LOCK(pmap);
3067		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3068		    size; pa += NBPDR) {
3069			pde = pmap_pde(pmap, addr);
3070			if (*pde == 0) {
3071				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3072				    PG_U | PG_RW | PG_V);
3073				pmap->pm_stats.resident_count += NBPDR /
3074				    PAGE_SIZE;
3075				pmap_pde_mappings++;
3076			}
3077			/* Else continue on if the PDE is already valid. */
3078			addr += NBPDR;
3079		}
3080		PMAP_UNLOCK(pmap);
3081	}
3082}
3083
3084/*
3085 *	Routine:	pmap_change_wiring
3086 *	Function:	Change the wiring attribute for a map/virtual-address
3087 *			pair.
3088 *	In/out conditions:
3089 *			The mapping must already exist in the pmap.
3090 */
3091void
3092pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3093{
3094	pt_entry_t *pte;
3095
3096	vm_page_lock_queues();
3097	PMAP_LOCK(pmap);
3098	pte = pmap_pte(pmap, va);
3099
3100	if (wired && !pmap_pte_w(pte)) {
3101		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3102		pmap->pm_stats.wired_count++;
3103	} else if (!wired && pmap_pte_w(pte)) {
3104		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3105		pmap->pm_stats.wired_count--;
3106	}
3107
3108	/*
3109	 * Wiring is not a hardware characteristic so there is no need to
3110	 * invalidate TLB.
3111	 */
3112	pmap_pte_release(pte);
3113	PMAP_UNLOCK(pmap);
3114	vm_page_unlock_queues();
3115}
3116
3117
3118
3119/*
3120 *	Copy the range specified by src_addr/len
3121 *	from the source map to the range dst_addr/len
3122 *	in the destination map.
3123 *
3124 *	This routine is only advisory and need not do anything.
3125 */
3126
3127void
3128pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3129    vm_offset_t src_addr)
3130{
3131	vm_page_t   free;
3132	vm_offset_t addr;
3133	vm_offset_t end_addr = src_addr + len;
3134	vm_offset_t pdnxt;
3135
3136	if (dst_addr != src_addr)
3137		return;
3138
3139	if (!pmap_is_current(src_pmap)) {
3140		CTR2(KTR_PMAP,
3141		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3142		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3143
3144		return;
3145	}
3146	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3147	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3148
3149#ifdef HAMFISTED_LOCKING
3150	mtx_lock(&createdelete_lock);
3151#endif
3152
3153	vm_page_lock_queues();
3154	if (dst_pmap < src_pmap) {
3155		PMAP_LOCK(dst_pmap);
3156		PMAP_LOCK(src_pmap);
3157	} else {
3158		PMAP_LOCK(src_pmap);
3159		PMAP_LOCK(dst_pmap);
3160	}
3161	sched_pin();
3162	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3163		pt_entry_t *src_pte, *dst_pte;
3164		vm_page_t dstmpte, srcmpte;
3165		pd_entry_t srcptepaddr;
3166		u_int ptepindex;
3167
3168		KASSERT(addr < UPT_MIN_ADDRESS,
3169		    ("pmap_copy: invalid to pmap_copy page tables"));
3170
3171		pdnxt = (addr + NBPDR) & ~PDRMASK;
3172		ptepindex = addr >> PDRSHIFT;
3173
3174		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3175		if (srcptepaddr == 0)
3176			continue;
3177
3178		if (srcptepaddr & PG_PS) {
3179			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3180				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3181				dst_pmap->pm_stats.resident_count +=
3182				    NBPDR / PAGE_SIZE;
3183			}
3184			continue;
3185		}
3186
3187		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3188		KASSERT(srcmpte->wire_count > 0,
3189		    ("pmap_copy: source page table page is unused"));
3190
3191		if (pdnxt > end_addr)
3192			pdnxt = end_addr;
3193
3194		src_pte = vtopte(addr);
3195		while (addr < pdnxt) {
3196			pt_entry_t ptetemp;
3197			ptetemp = *src_pte;
3198			/*
3199			 * we only virtual copy managed pages
3200			 */
3201			if ((ptetemp & PG_MANAGED) != 0) {
3202				dstmpte = pmap_allocpte(dst_pmap, addr,
3203				    M_NOWAIT);
3204				if (dstmpte == NULL)
3205					goto out;
3206				dst_pte = pmap_pte_quick(dst_pmap, addr);
3207				if (*dst_pte == 0 &&
3208				    pmap_try_insert_pv_entry(dst_pmap, addr,
3209				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3210					/*
3211					 * Clear the wired, modified, and
3212					 * accessed (referenced) bits
3213					 * during the copy.
3214					 */
3215					KASSERT(ptetemp != 0, ("src_pte not set"));
3216					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3217					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3218					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3219						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3220					dst_pmap->pm_stats.resident_count++;
3221	 			} else {
3222					free = NULL;
3223					if (pmap_unwire_pte_hold(dst_pmap,
3224					    dstmpte, &free)) {
3225						pmap_invalidate_page(dst_pmap,
3226						    addr);
3227						pmap_free_zero_pages(free);
3228					}
3229					goto out;
3230				}
3231				if (dstmpte->wire_count >= srcmpte->wire_count)
3232					break;
3233			}
3234			addr += PAGE_SIZE;
3235			src_pte++;
3236		}
3237	}
3238out:
3239	PT_UPDATES_FLUSH();
3240	sched_unpin();
3241	vm_page_unlock_queues();
3242	PMAP_UNLOCK(src_pmap);
3243	PMAP_UNLOCK(dst_pmap);
3244
3245#ifdef HAMFISTED_LOCKING
3246	mtx_unlock(&createdelete_lock);
3247#endif
3248}
3249
3250static __inline void
3251pagezero(void *page)
3252{
3253#if defined(I686_CPU)
3254	if (cpu_class == CPUCLASS_686) {
3255#if defined(CPU_ENABLE_SSE)
3256		if (cpu_feature & CPUID_SSE2)
3257			sse2_pagezero(page);
3258		else
3259#endif
3260			i686_pagezero(page);
3261	} else
3262#endif
3263		bzero(page, PAGE_SIZE);
3264}
3265
3266/*
3267 *	pmap_zero_page zeros the specified hardware page by mapping
3268 *	the page into KVM and using bzero to clear its contents.
3269 */
3270void
3271pmap_zero_page(vm_page_t m)
3272{
3273	struct sysmaps *sysmaps;
3274
3275	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3276	mtx_lock(&sysmaps->lock);
3277	if (*sysmaps->CMAP2)
3278		panic("pmap_zero_page: CMAP2 busy");
3279	sched_pin();
3280	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3281	pagezero(sysmaps->CADDR2);
3282	PT_SET_MA(sysmaps->CADDR2, 0);
3283	sched_unpin();
3284	mtx_unlock(&sysmaps->lock);
3285}
3286
3287/*
3288 *	pmap_zero_page_area zeros the specified hardware page by mapping
3289 *	the page into KVM and using bzero to clear its contents.
3290 *
3291 *	off and size may not cover an area beyond a single hardware page.
3292 */
3293void
3294pmap_zero_page_area(vm_page_t m, int off, int size)
3295{
3296	struct sysmaps *sysmaps;
3297
3298	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3299	mtx_lock(&sysmaps->lock);
3300	if (*sysmaps->CMAP2)
3301		panic("pmap_zero_page_area: CMAP2 busy");
3302	sched_pin();
3303	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3304
3305	if (off == 0 && size == PAGE_SIZE)
3306		pagezero(sysmaps->CADDR2);
3307	else
3308		bzero((char *)sysmaps->CADDR2 + off, size);
3309	PT_SET_MA(sysmaps->CADDR2, 0);
3310	sched_unpin();
3311	mtx_unlock(&sysmaps->lock);
3312}
3313
3314/*
3315 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3316 *	the page into KVM and using bzero to clear its contents.  This
3317 *	is intended to be called from the vm_pagezero process only and
3318 *	outside of Giant.
3319 */
3320void
3321pmap_zero_page_idle(vm_page_t m)
3322{
3323
3324	if (*CMAP3)
3325		panic("pmap_zero_page_idle: CMAP3 busy");
3326	sched_pin();
3327	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3328	pagezero(CADDR3);
3329	PT_SET_MA(CADDR3, 0);
3330	sched_unpin();
3331}
3332
3333/*
3334 *	pmap_copy_page copies the specified (machine independent)
3335 *	page by mapping the page into virtual memory and using
3336 *	bcopy to copy the page, one machine dependent page at a
3337 *	time.
3338 */
3339void
3340pmap_copy_page(vm_page_t src, vm_page_t dst)
3341{
3342	struct sysmaps *sysmaps;
3343
3344	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3345	mtx_lock(&sysmaps->lock);
3346	if (*sysmaps->CMAP1)
3347		panic("pmap_copy_page: CMAP1 busy");
3348	if (*sysmaps->CMAP2)
3349		panic("pmap_copy_page: CMAP2 busy");
3350	sched_pin();
3351	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3352	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3353	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3354	PT_SET_MA(sysmaps->CADDR1, 0);
3355	PT_SET_MA(sysmaps->CADDR2, 0);
3356	sched_unpin();
3357	mtx_unlock(&sysmaps->lock);
3358}
3359
3360/*
3361 * Returns true if the pmap's pv is one of the first
3362 * 16 pvs linked to from this page.  This count may
3363 * be changed upwards or downwards in the future; it
3364 * is only necessary that true be returned for a small
3365 * subset of pmaps for proper page aging.
3366 */
3367boolean_t
3368pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3369{
3370	pv_entry_t pv;
3371	int loops = 0;
3372	boolean_t rv;
3373
3374	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3375	    ("pmap_page_exists_quick: page %p is not managed", m));
3376	rv = FALSE;
3377	vm_page_lock_queues();
3378	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3379		if (PV_PMAP(pv) == pmap) {
3380			rv = TRUE;
3381			break;
3382		}
3383		loops++;
3384		if (loops >= 16)
3385			break;
3386	}
3387	vm_page_unlock_queues();
3388	return (rv);
3389}
3390
3391/*
3392 *	pmap_page_wired_mappings:
3393 *
3394 *	Return the number of managed mappings to the given physical page
3395 *	that are wired.
3396 */
3397int
3398pmap_page_wired_mappings(vm_page_t m)
3399{
3400	pv_entry_t pv;
3401	pt_entry_t *pte;
3402	pmap_t pmap;
3403	int count;
3404
3405	count = 0;
3406	if ((m->oflags & VPO_UNMANAGED) != 0)
3407		return (count);
3408	vm_page_lock_queues();
3409	sched_pin();
3410	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3411		pmap = PV_PMAP(pv);
3412		PMAP_LOCK(pmap);
3413		pte = pmap_pte_quick(pmap, pv->pv_va);
3414		if ((*pte & PG_W) != 0)
3415			count++;
3416		PMAP_UNLOCK(pmap);
3417	}
3418	sched_unpin();
3419	vm_page_unlock_queues();
3420	return (count);
3421}
3422
3423/*
3424 * Returns TRUE if the given page is mapped.  Otherwise, returns FALSE.
3425 */
3426boolean_t
3427pmap_page_is_mapped(vm_page_t m)
3428{
3429
3430	if ((m->oflags & VPO_UNMANAGED) != 0)
3431		return (FALSE);
3432	return (!TAILQ_EMPTY(&m->md.pv_list));
3433}
3434
3435/*
3436 * Remove all pages from specified address space
3437 * this aids process exit speeds.  Also, this code
3438 * is special cased for current process only, but
3439 * can have the more generic (and slightly slower)
3440 * mode enabled.  This is much faster than pmap_remove
3441 * in the case of running down an entire address space.
3442 */
3443void
3444pmap_remove_pages(pmap_t pmap)
3445{
3446	pt_entry_t *pte, tpte;
3447	vm_page_t m, free = NULL;
3448	pv_entry_t pv;
3449	struct pv_chunk *pc, *npc;
3450	int field, idx;
3451	int32_t bit;
3452	uint32_t inuse, bitmask;
3453	int allfree;
3454
3455	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3456
3457	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3458		printf("warning: pmap_remove_pages called with non-current pmap\n");
3459		return;
3460	}
3461	vm_page_lock_queues();
3462	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3463	PMAP_LOCK(pmap);
3464	sched_pin();
3465	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3466		allfree = 1;
3467		for (field = 0; field < _NPCM; field++) {
3468			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3469			while (inuse != 0) {
3470				bit = bsfl(inuse);
3471				bitmask = 1UL << bit;
3472				idx = field * 32 + bit;
3473				pv = &pc->pc_pventry[idx];
3474				inuse &= ~bitmask;
3475
3476				pte = vtopte(pv->pv_va);
3477				tpte = *pte ? xpmap_mtop(*pte) : 0;
3478
3479				if (tpte == 0) {
3480					printf(
3481					    "TPTE at %p  IS ZERO @ VA %08x\n",
3482					    pte, pv->pv_va);
3483					panic("bad pte");
3484				}
3485
3486/*
3487 * We cannot remove wired pages from a process' mapping at this time
3488 */
3489				if (tpte & PG_W) {
3490					allfree = 0;
3491					continue;
3492				}
3493
3494				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3495				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3496				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3497				    m, (uintmax_t)m->phys_addr,
3498				    (uintmax_t)tpte));
3499
3500				KASSERT(m < &vm_page_array[vm_page_array_size],
3501					("pmap_remove_pages: bad tpte %#jx",
3502					(uintmax_t)tpte));
3503
3504
3505				PT_CLEAR_VA(pte, FALSE);
3506
3507				/*
3508				 * Update the vm_page_t clean/reference bits.
3509				 */
3510				if (tpte & PG_M)
3511					vm_page_dirty(m);
3512
3513				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3514				if (TAILQ_EMPTY(&m->md.pv_list))
3515					vm_page_aflag_clear(m, PGA_WRITEABLE);
3516
3517				pmap_unuse_pt(pmap, pv->pv_va, &free);
3518
3519				/* Mark free */
3520				PV_STAT(pv_entry_frees++);
3521				PV_STAT(pv_entry_spare++);
3522				pv_entry_count--;
3523				pc->pc_map[field] |= bitmask;
3524				pmap->pm_stats.resident_count--;
3525			}
3526		}
3527		PT_UPDATES_FLUSH();
3528		if (allfree) {
3529			PV_STAT(pv_entry_spare -= _NPCPV);
3530			PV_STAT(pc_chunk_count--);
3531			PV_STAT(pc_chunk_frees++);
3532			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3533			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3534			pmap_qremove((vm_offset_t)pc, 1);
3535			vm_page_unwire(m, 0);
3536			vm_page_free(m);
3537			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3538		}
3539	}
3540	PT_UPDATES_FLUSH();
3541	if (*PMAP1)
3542		PT_SET_MA(PADDR1, 0);
3543
3544	sched_unpin();
3545	pmap_invalidate_all(pmap);
3546	vm_page_unlock_queues();
3547	PMAP_UNLOCK(pmap);
3548	pmap_free_zero_pages(free);
3549}
3550
3551/*
3552 *	pmap_is_modified:
3553 *
3554 *	Return whether or not the specified physical page was modified
3555 *	in any physical maps.
3556 */
3557boolean_t
3558pmap_is_modified(vm_page_t m)
3559{
3560	pv_entry_t pv;
3561	pt_entry_t *pte;
3562	pmap_t pmap;
3563	boolean_t rv;
3564
3565	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3566	    ("pmap_is_modified: page %p is not managed", m));
3567	rv = FALSE;
3568
3569	/*
3570	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
3571	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3572	 * is clear, no PTEs can have PG_M set.
3573	 */
3574	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3575	if ((m->oflags & VPO_BUSY) == 0 &&
3576	    (m->aflags & PGA_WRITEABLE) == 0)
3577		return (rv);
3578	vm_page_lock_queues();
3579	sched_pin();
3580	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3581		pmap = PV_PMAP(pv);
3582		PMAP_LOCK(pmap);
3583		pte = pmap_pte_quick(pmap, pv->pv_va);
3584		rv = (*pte & PG_M) != 0;
3585		PMAP_UNLOCK(pmap);
3586		if (rv)
3587			break;
3588	}
3589	if (*PMAP1)
3590		PT_SET_MA(PADDR1, 0);
3591	sched_unpin();
3592	vm_page_unlock_queues();
3593	return (rv);
3594}
3595
3596/*
3597 *	pmap_is_prefaultable:
3598 *
3599 *	Return whether or not the specified virtual address is elgible
3600 *	for prefault.
3601 */
3602static boolean_t
3603pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3604{
3605	pt_entry_t *pte;
3606	boolean_t rv = FALSE;
3607
3608	return (rv);
3609
3610	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3611		pte = vtopte(addr);
3612		rv = (*pte == 0);
3613	}
3614	return (rv);
3615}
3616
3617boolean_t
3618pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3619{
3620	boolean_t rv;
3621
3622	PMAP_LOCK(pmap);
3623	rv = pmap_is_prefaultable_locked(pmap, addr);
3624	PMAP_UNLOCK(pmap);
3625	return (rv);
3626}
3627
3628boolean_t
3629pmap_is_referenced(vm_page_t m)
3630{
3631	pv_entry_t pv;
3632	pt_entry_t *pte;
3633	pmap_t pmap;
3634	boolean_t rv;
3635
3636	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3637	    ("pmap_is_referenced: page %p is not managed", m));
3638	rv = FALSE;
3639	vm_page_lock_queues();
3640	sched_pin();
3641	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3642		pmap = PV_PMAP(pv);
3643		PMAP_LOCK(pmap);
3644		pte = pmap_pte_quick(pmap, pv->pv_va);
3645		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3646		PMAP_UNLOCK(pmap);
3647		if (rv)
3648			break;
3649	}
3650	if (*PMAP1)
3651		PT_SET_MA(PADDR1, 0);
3652	sched_unpin();
3653	vm_page_unlock_queues();
3654	return (rv);
3655}
3656
3657void
3658pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3659{
3660	int i, npages = round_page(len) >> PAGE_SHIFT;
3661	for (i = 0; i < npages; i++) {
3662		pt_entry_t *pte;
3663		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3664		vm_page_lock_queues();
3665		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3666		vm_page_unlock_queues();
3667		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3668		pmap_pte_release(pte);
3669	}
3670}
3671
3672void
3673pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3674{
3675	int i, npages = round_page(len) >> PAGE_SHIFT;
3676	for (i = 0; i < npages; i++) {
3677		pt_entry_t *pte;
3678		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3679		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3680		vm_page_lock_queues();
3681		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3682		vm_page_unlock_queues();
3683		pmap_pte_release(pte);
3684	}
3685}
3686
3687/*
3688 * Clear the write and modified bits in each of the given page's mappings.
3689 */
3690void
3691pmap_remove_write(vm_page_t m)
3692{
3693	pv_entry_t pv;
3694	pmap_t pmap;
3695	pt_entry_t oldpte, *pte;
3696
3697	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3698	    ("pmap_remove_write: page %p is not managed", m));
3699
3700	/*
3701	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
3702	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
3703	 * is clear, no page table entries need updating.
3704	 */
3705	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3706	if ((m->oflags & VPO_BUSY) == 0 &&
3707	    (m->aflags & PGA_WRITEABLE) == 0)
3708		return;
3709	vm_page_lock_queues();
3710	sched_pin();
3711	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3712		pmap = PV_PMAP(pv);
3713		PMAP_LOCK(pmap);
3714		pte = pmap_pte_quick(pmap, pv->pv_va);
3715retry:
3716		oldpte = *pte;
3717		if ((oldpte & PG_RW) != 0) {
3718			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3719
3720			/*
3721			 * Regardless of whether a pte is 32 or 64 bits
3722			 * in size, PG_RW and PG_M are among the least
3723			 * significant 32 bits.
3724			 */
3725			PT_SET_VA_MA(pte, newpte, TRUE);
3726			if (*pte != newpte)
3727				goto retry;
3728
3729			if ((oldpte & PG_M) != 0)
3730				vm_page_dirty(m);
3731			pmap_invalidate_page(pmap, pv->pv_va);
3732		}
3733		PMAP_UNLOCK(pmap);
3734	}
3735	vm_page_aflag_clear(m, PGA_WRITEABLE);
3736	PT_UPDATES_FLUSH();
3737	if (*PMAP1)
3738		PT_SET_MA(PADDR1, 0);
3739	sched_unpin();
3740	vm_page_unlock_queues();
3741}
3742
3743/*
3744 *	pmap_ts_referenced:
3745 *
3746 *	Return a count of reference bits for a page, clearing those bits.
3747 *	It is not necessary for every reference bit to be cleared, but it
3748 *	is necessary that 0 only be returned when there are truly no
3749 *	reference bits set.
3750 *
3751 *	XXX: The exact number of bits to check and clear is a matter that
3752 *	should be tested and standardized at some point in the future for
3753 *	optimal aging of shared pages.
3754 */
3755int
3756pmap_ts_referenced(vm_page_t m)
3757{
3758	pv_entry_t pv, pvf, pvn;
3759	pmap_t pmap;
3760	pt_entry_t *pte;
3761	int rtval = 0;
3762
3763	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3764	    ("pmap_ts_referenced: page %p is not managed", m));
3765	vm_page_lock_queues();
3766	sched_pin();
3767	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3768		pvf = pv;
3769		do {
3770			pvn = TAILQ_NEXT(pv, pv_list);
3771			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3772			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3773			pmap = PV_PMAP(pv);
3774			PMAP_LOCK(pmap);
3775			pte = pmap_pte_quick(pmap, pv->pv_va);
3776			if ((*pte & PG_A) != 0) {
3777				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3778				pmap_invalidate_page(pmap, pv->pv_va);
3779				rtval++;
3780				if (rtval > 4)
3781					pvn = NULL;
3782			}
3783			PMAP_UNLOCK(pmap);
3784		} while ((pv = pvn) != NULL && pv != pvf);
3785	}
3786	PT_UPDATES_FLUSH();
3787	if (*PMAP1)
3788		PT_SET_MA(PADDR1, 0);
3789	sched_unpin();
3790	vm_page_unlock_queues();
3791	return (rtval);
3792}
3793
3794/*
3795 *	Clear the modify bits on the specified physical page.
3796 */
3797void
3798pmap_clear_modify(vm_page_t m)
3799{
3800	pv_entry_t pv;
3801	pmap_t pmap;
3802	pt_entry_t *pte;
3803
3804	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3805	    ("pmap_clear_modify: page %p is not managed", m));
3806	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3807	KASSERT((m->oflags & VPO_BUSY) == 0,
3808	    ("pmap_clear_modify: page %p is busy", m));
3809
3810	/*
3811	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
3812	 * If the object containing the page is locked and the page is not
3813	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
3814	 */
3815	if ((m->aflags & PGA_WRITEABLE) == 0)
3816		return;
3817	vm_page_lock_queues();
3818	sched_pin();
3819	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3820		pmap = PV_PMAP(pv);
3821		PMAP_LOCK(pmap);
3822		pte = pmap_pte_quick(pmap, pv->pv_va);
3823		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3824			/*
3825			 * Regardless of whether a pte is 32 or 64 bits
3826			 * in size, PG_M is among the least significant
3827			 * 32 bits.
3828			 */
3829			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3830			pmap_invalidate_page(pmap, pv->pv_va);
3831		}
3832		PMAP_UNLOCK(pmap);
3833	}
3834	sched_unpin();
3835	vm_page_unlock_queues();
3836}
3837
3838/*
3839 *	pmap_clear_reference:
3840 *
3841 *	Clear the reference bit on the specified physical page.
3842 */
3843void
3844pmap_clear_reference(vm_page_t m)
3845{
3846	pv_entry_t pv;
3847	pmap_t pmap;
3848	pt_entry_t *pte;
3849
3850	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3851	    ("pmap_clear_reference: page %p is not managed", m));
3852	vm_page_lock_queues();
3853	sched_pin();
3854	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3855		pmap = PV_PMAP(pv);
3856		PMAP_LOCK(pmap);
3857		pte = pmap_pte_quick(pmap, pv->pv_va);
3858		if ((*pte & PG_A) != 0) {
3859			/*
3860			 * Regardless of whether a pte is 32 or 64 bits
3861			 * in size, PG_A is among the least significant
3862			 * 32 bits.
3863			 */
3864			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3865			pmap_invalidate_page(pmap, pv->pv_va);
3866		}
3867		PMAP_UNLOCK(pmap);
3868	}
3869	sched_unpin();
3870	vm_page_unlock_queues();
3871}
3872
3873/*
3874 * Miscellaneous support routines follow
3875 */
3876
3877/*
3878 * Map a set of physical memory pages into the kernel virtual
3879 * address space. Return a pointer to where it is mapped. This
3880 * routine is intended to be used for mapping device memory,
3881 * NOT real memory.
3882 */
3883void *
3884pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3885{
3886	vm_offset_t va, offset;
3887	vm_size_t tmpsize;
3888
3889	offset = pa & PAGE_MASK;
3890	size = roundup(offset + size, PAGE_SIZE);
3891	pa = pa & PG_FRAME;
3892
3893	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3894		va = KERNBASE + pa;
3895	else
3896		va = kmem_alloc_nofault(kernel_map, size);
3897	if (!va)
3898		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3899
3900	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3901		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3902	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3903	pmap_invalidate_cache_range(va, va + size);
3904	return ((void *)(va + offset));
3905}
3906
3907void *
3908pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3909{
3910
3911	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3912}
3913
3914void *
3915pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3916{
3917
3918	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3919}
3920
3921void
3922pmap_unmapdev(vm_offset_t va, vm_size_t size)
3923{
3924	vm_offset_t base, offset, tmpva;
3925
3926	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3927		return;
3928	base = trunc_page(va);
3929	offset = va & PAGE_MASK;
3930	size = roundup(offset + size, PAGE_SIZE);
3931	critical_enter();
3932	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3933		pmap_kremove(tmpva);
3934	pmap_invalidate_range(kernel_pmap, va, tmpva);
3935	critical_exit();
3936	kmem_free(kernel_map, base, size);
3937}
3938
3939/*
3940 * Sets the memory attribute for the specified page.
3941 */
3942void
3943pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3944{
3945
3946	m->md.pat_mode = ma;
3947	if ((m->flags & PG_FICTITIOUS) != 0)
3948		return;
3949
3950	/*
3951	 * If "m" is a normal page, flush it from the cache.
3952	 * See pmap_invalidate_cache_range().
3953	 *
3954	 * First, try to find an existing mapping of the page by sf
3955	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3956	 * flushes the cache.
3957	 */
3958	if (sf_buf_invalidate_cache(m))
3959		return;
3960
3961	/*
3962	 * If page is not mapped by sf buffer, but CPU does not
3963	 * support self snoop, map the page transient and do
3964	 * invalidation. In the worst case, whole cache is flushed by
3965	 * pmap_invalidate_cache_range().
3966	 */
3967	if ((cpu_feature & CPUID_SS) == 0)
3968		pmap_flush_page(m);
3969}
3970
3971static void
3972pmap_flush_page(vm_page_t m)
3973{
3974	struct sysmaps *sysmaps;
3975	vm_offset_t sva, eva;
3976
3977	if ((cpu_feature & CPUID_CLFSH) != 0) {
3978		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3979		mtx_lock(&sysmaps->lock);
3980		if (*sysmaps->CMAP2)
3981			panic("pmap_flush_page: CMAP2 busy");
3982		sched_pin();
3983		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3984		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
3985		    pmap_cache_bits(m->md.pat_mode, 0));
3986		invlcaddr(sysmaps->CADDR2);
3987		sva = (vm_offset_t)sysmaps->CADDR2;
3988		eva = sva + PAGE_SIZE;
3989
3990		/*
3991		 * Use mfence despite the ordering implied by
3992		 * mtx_{un,}lock() because clflush is not guaranteed
3993		 * to be ordered by any other instruction.
3994		 */
3995		mfence();
3996		for (; sva < eva; sva += cpu_clflush_line_size)
3997			clflush(sva);
3998		mfence();
3999		PT_SET_MA(sysmaps->CADDR2, 0);
4000		sched_unpin();
4001		mtx_unlock(&sysmaps->lock);
4002	} else
4003		pmap_invalidate_cache();
4004}
4005
4006/*
4007 * Changes the specified virtual address range's memory type to that given by
4008 * the parameter "mode".  The specified virtual address range must be
4009 * completely contained within either the kernel map.
4010 *
4011 * Returns zero if the change completed successfully, and either EINVAL or
4012 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4013 * of the virtual address range was not mapped, and ENOMEM is returned if
4014 * there was insufficient memory available to complete the change.
4015 */
4016int
4017pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4018{
4019	vm_offset_t base, offset, tmpva;
4020	pt_entry_t *pte;
4021	u_int opte, npte;
4022	pd_entry_t *pde;
4023	boolean_t changed;
4024
4025	base = trunc_page(va);
4026	offset = va & PAGE_MASK;
4027	size = roundup(offset + size, PAGE_SIZE);
4028
4029	/* Only supported on kernel virtual addresses. */
4030	if (base <= VM_MAXUSER_ADDRESS)
4031		return (EINVAL);
4032
4033	/* 4MB pages and pages that aren't mapped aren't supported. */
4034	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4035		pde = pmap_pde(kernel_pmap, tmpva);
4036		if (*pde & PG_PS)
4037			return (EINVAL);
4038		if ((*pde & PG_V) == 0)
4039			return (EINVAL);
4040		pte = vtopte(va);
4041		if ((*pte & PG_V) == 0)
4042			return (EINVAL);
4043	}
4044
4045	changed = FALSE;
4046
4047	/*
4048	 * Ok, all the pages exist and are 4k, so run through them updating
4049	 * their cache mode.
4050	 */
4051	for (tmpva = base; size > 0; ) {
4052		pte = vtopte(tmpva);
4053
4054		/*
4055		 * The cache mode bits are all in the low 32-bits of the
4056		 * PTE, so we can just spin on updating the low 32-bits.
4057		 */
4058		do {
4059			opte = *(u_int *)pte;
4060			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4061			npte |= pmap_cache_bits(mode, 0);
4062			PT_SET_VA_MA(pte, npte, TRUE);
4063		} while (npte != opte && (*pte != npte));
4064		if (npte != opte)
4065			changed = TRUE;
4066		tmpva += PAGE_SIZE;
4067		size -= PAGE_SIZE;
4068	}
4069
4070	/*
4071	 * Flush CPU caches to make sure any data isn't cached that
4072	 * shouldn't be, etc.
4073	 */
4074	if (changed) {
4075		pmap_invalidate_range(kernel_pmap, base, tmpva);
4076		pmap_invalidate_cache_range(base, tmpva);
4077	}
4078	return (0);
4079}
4080
4081/*
4082 * perform the pmap work for mincore
4083 */
4084int
4085pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4086{
4087	pt_entry_t *ptep, pte;
4088	vm_paddr_t pa;
4089	int val;
4090
4091	PMAP_LOCK(pmap);
4092retry:
4093	ptep = pmap_pte(pmap, addr);
4094	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4095	pmap_pte_release(ptep);
4096	val = 0;
4097	if ((pte & PG_V) != 0) {
4098		val |= MINCORE_INCORE;
4099		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4100			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4101		if ((pte & PG_A) != 0)
4102			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4103	}
4104	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4105	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4106	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4107		pa = pte & PG_FRAME;
4108		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4109		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4110			goto retry;
4111	} else
4112		PA_UNLOCK_COND(*locked_pa);
4113	PMAP_UNLOCK(pmap);
4114	return (val);
4115}
4116
4117void
4118pmap_activate(struct thread *td)
4119{
4120	pmap_t	pmap, oldpmap;
4121	u_int	cpuid;
4122	u_int32_t  cr3;
4123
4124	critical_enter();
4125	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4126	oldpmap = PCPU_GET(curpmap);
4127	cpuid = PCPU_GET(cpuid);
4128#if defined(SMP)
4129	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4130	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4131#else
4132	CPU_CLR(cpuid, &oldpmap->pm_active);
4133	CPU_SET(cpuid, &pmap->pm_active);
4134#endif
4135#ifdef PAE
4136	cr3 = vtophys(pmap->pm_pdpt);
4137#else
4138	cr3 = vtophys(pmap->pm_pdir);
4139#endif
4140	/*
4141	 * pmap_activate is for the current thread on the current cpu
4142	 */
4143	td->td_pcb->pcb_cr3 = cr3;
4144	PT_UPDATES_FLUSH();
4145	load_cr3(cr3);
4146	PCPU_SET(curpmap, pmap);
4147	critical_exit();
4148}
4149
4150void
4151pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4152{
4153}
4154
4155/*
4156 *	Increase the starting virtual address of the given mapping if a
4157 *	different alignment might result in more superpage mappings.
4158 */
4159void
4160pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4161    vm_offset_t *addr, vm_size_t size)
4162{
4163	vm_offset_t superpage_offset;
4164
4165	if (size < NBPDR)
4166		return;
4167	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4168		offset += ptoa(object->pg_color);
4169	superpage_offset = offset & PDRMASK;
4170	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4171	    (*addr & PDRMASK) == superpage_offset)
4172		return;
4173	if ((*addr & PDRMASK) < superpage_offset)
4174		*addr = (*addr & ~PDRMASK) + superpage_offset;
4175	else
4176		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4177}
4178
4179void
4180pmap_suspend()
4181{
4182	pmap_t pmap;
4183	int i, pdir, offset;
4184	vm_paddr_t pdirma;
4185	mmu_update_t mu[4];
4186
4187	/*
4188	 * We need to remove the recursive mapping structure from all
4189	 * our pmaps so that Xen doesn't get confused when it restores
4190	 * the page tables. The recursive map lives at page directory
4191	 * index PTDPTDI. We assume that the suspend code has stopped
4192	 * the other vcpus (if any).
4193	 */
4194	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4195		for (i = 0; i < 4; i++) {
4196			/*
4197			 * Figure out which page directory (L2) page
4198			 * contains this bit of the recursive map and
4199			 * the offset within that page of the map
4200			 * entry
4201			 */
4202			pdir = (PTDPTDI + i) / NPDEPG;
4203			offset = (PTDPTDI + i) % NPDEPG;
4204			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4205			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4206			mu[i].val = 0;
4207		}
4208		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4209	}
4210}
4211
4212void
4213pmap_resume()
4214{
4215	pmap_t pmap;
4216	int i, pdir, offset;
4217	vm_paddr_t pdirma;
4218	mmu_update_t mu[4];
4219
4220	/*
4221	 * Restore the recursive map that we removed on suspend.
4222	 */
4223	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4224		for (i = 0; i < 4; i++) {
4225			/*
4226			 * Figure out which page directory (L2) page
4227			 * contains this bit of the recursive map and
4228			 * the offset within that page of the map
4229			 * entry
4230			 */
4231			pdir = (PTDPTDI + i) / NPDEPG;
4232			offset = (PTDPTDI + i) % NPDEPG;
4233			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4234			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4235			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4236		}
4237		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4238	}
4239}
4240
4241#if defined(PMAP_DEBUG)
4242pmap_pid_dump(int pid)
4243{
4244	pmap_t pmap;
4245	struct proc *p;
4246	int npte = 0;
4247	int index;
4248
4249	sx_slock(&allproc_lock);
4250	FOREACH_PROC_IN_SYSTEM(p) {
4251		if (p->p_pid != pid)
4252			continue;
4253
4254		if (p->p_vmspace) {
4255			int i,j;
4256			index = 0;
4257			pmap = vmspace_pmap(p->p_vmspace);
4258			for (i = 0; i < NPDEPTD; i++) {
4259				pd_entry_t *pde;
4260				pt_entry_t *pte;
4261				vm_offset_t base = i << PDRSHIFT;
4262
4263				pde = &pmap->pm_pdir[i];
4264				if (pde && pmap_pde_v(pde)) {
4265					for (j = 0; j < NPTEPG; j++) {
4266						vm_offset_t va = base + (j << PAGE_SHIFT);
4267						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4268							if (index) {
4269								index = 0;
4270								printf("\n");
4271							}
4272							sx_sunlock(&allproc_lock);
4273							return (npte);
4274						}
4275						pte = pmap_pte(pmap, va);
4276						if (pte && pmap_pte_v(pte)) {
4277							pt_entry_t pa;
4278							vm_page_t m;
4279							pa = PT_GET(pte);
4280							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4281							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4282								va, pa, m->hold_count, m->wire_count, m->flags);
4283							npte++;
4284							index++;
4285							if (index >= 2) {
4286								index = 0;
4287								printf("\n");
4288							} else {
4289								printf(" ");
4290							}
4291						}
4292					}
4293				}
4294			}
4295		}
4296	}
4297	sx_sunlock(&allproc_lock);
4298	return (npte);
4299}
4300#endif
4301
4302#if defined(DEBUG)
4303
4304static void	pads(pmap_t pm);
4305void		pmap_pvdump(vm_paddr_t pa);
4306
4307/* print address space of pmap*/
4308static void
4309pads(pmap_t pm)
4310{
4311	int i, j;
4312	vm_paddr_t va;
4313	pt_entry_t *ptep;
4314
4315	if (pm == kernel_pmap)
4316		return;
4317	for (i = 0; i < NPDEPTD; i++)
4318		if (pm->pm_pdir[i])
4319			for (j = 0; j < NPTEPG; j++) {
4320				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4321				if (pm == kernel_pmap && va < KERNBASE)
4322					continue;
4323				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4324					continue;
4325				ptep = pmap_pte(pm, va);
4326				if (pmap_pte_v(ptep))
4327					printf("%x:%x ", va, *ptep);
4328			};
4329
4330}
4331
4332void
4333pmap_pvdump(vm_paddr_t pa)
4334{
4335	pv_entry_t pv;
4336	pmap_t pmap;
4337	vm_page_t m;
4338
4339	printf("pa %x", pa);
4340	m = PHYS_TO_VM_PAGE(pa);
4341	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4342		pmap = PV_PMAP(pv);
4343		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4344		pads(pmap);
4345	}
4346	printf(" ");
4347}
4348#endif
4349