pmap.c revision 227309
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 227309 2011-11-07 15:43:11Z ed $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/uma.h>
140
141#include <machine/cpu.h>
142#include <machine/cputypes.h>
143#include <machine/md_var.h>
144#include <machine/pcb.h>
145#include <machine/specialreg.h>
146#ifdef SMP
147#include <machine/smp.h>
148#endif
149
150#ifdef XBOX
151#include <machine/xbox.h>
152#endif
153
154#include <xen/interface/xen.h>
155#include <xen/hypervisor.h>
156#include <machine/xen/hypercall.h>
157#include <machine/xen/xenvar.h>
158#include <machine/xen/xenfunc.h>
159
160#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
161#define CPU_ENABLE_SSE
162#endif
163
164#ifndef PMAP_SHPGPERPROC
165#define PMAP_SHPGPERPROC 200
166#endif
167
168#define DIAGNOSTIC
169
170#if !defined(DIAGNOSTIC)
171#ifdef __GNUC_GNU_INLINE__
172#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
173#else
174#define PMAP_INLINE	extern inline
175#endif
176#else
177#define PMAP_INLINE
178#endif
179
180#define PV_STATS
181#ifdef PV_STATS
182#define PV_STAT(x)	do { x ; } while (0)
183#else
184#define PV_STAT(x)	do { } while (0)
185#endif
186
187#define	pa_index(pa)	((pa) >> PDRSHIFT)
188#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
189
190/*
191 * Get PDEs and PTEs for user/kernel address space
192 */
193#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
194#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
195
196#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
197#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
198#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
199#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
200#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
201
202#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
203
204#define HAMFISTED_LOCKING
205#ifdef HAMFISTED_LOCKING
206static struct mtx createdelete_lock;
207#endif
208
209struct pmap kernel_pmap_store;
210LIST_HEAD(pmaplist, pmap);
211static struct pmaplist allpmaps;
212static struct mtx allpmaps_lock;
213
214vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
215vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
216int pgeflag = 0;		/* PG_G or-in */
217int pseflag = 0;		/* PG_PS or-in */
218
219int nkpt;
220vm_offset_t kernel_vm_end;
221extern u_int32_t KERNend;
222
223#ifdef PAE
224pt_entry_t pg_nx;
225#endif
226
227static int pat_works;			/* Is page attribute table sane? */
228
229/*
230 * Data for the pv entry allocation mechanism
231 */
232static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
233static struct md_page *pv_table;
234static int shpgperproc = PMAP_SHPGPERPROC;
235
236struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
237int pv_maxchunks;			/* How many chunks we have KVA for */
238vm_offset_t pv_vafree;			/* freelist stored in the PTE */
239
240/*
241 * All those kernel PT submaps that BSD is so fond of
242 */
243struct sysmaps {
244	struct	mtx lock;
245	pt_entry_t *CMAP1;
246	pt_entry_t *CMAP2;
247	caddr_t	CADDR1;
248	caddr_t	CADDR2;
249};
250static struct sysmaps sysmaps_pcpu[MAXCPU];
251static pt_entry_t *CMAP3;
252caddr_t ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
281static int pg_ps_enabled;
282SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
283    "Are large page mappings enabled?");
284
285SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
286	"Max number of PV entries");
287SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
288	"Page share factor per proc");
289static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
290    "2/4MB page mapping counters");
291
292static u_long pmap_pde_mappings;
293SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
294    &pmap_pde_mappings, 0, "2/4MB page mappings");
295
296static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
297static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
298static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
299static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
300		    vm_offset_t va);
301
302static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
303    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
304static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
305    vm_page_t *free);
306static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
307    vm_page_t *free);
308static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
309					vm_offset_t va);
310static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
311    vm_page_t m);
312
313static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
314
315static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
316static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
317static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
318static void pmap_pte_release(pt_entry_t *pte);
319static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
320static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
321static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
322static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
323
324static __inline void pagezero(void *page);
325
326CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
327CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
328
329/*
330 * If you get an error here, then you set KVA_PAGES wrong! See the
331 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
332 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
333 */
334CTASSERT(KERNBASE % (1 << 24) == 0);
335
336
337
338void
339pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
340{
341	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
342
343	switch (type) {
344	case SH_PD_SET_VA:
345#if 0
346		xen_queue_pt_update(shadow_pdir_ma,
347				    xpmap_ptom(val & ~(PG_RW)));
348#endif
349		xen_queue_pt_update(pdir_ma,
350				    xpmap_ptom(val));
351		break;
352	case SH_PD_SET_VA_MA:
353#if 0
354		xen_queue_pt_update(shadow_pdir_ma,
355				    val & ~(PG_RW));
356#endif
357		xen_queue_pt_update(pdir_ma, val);
358		break;
359	case SH_PD_SET_VA_CLEAR:
360#if 0
361		xen_queue_pt_update(shadow_pdir_ma, 0);
362#endif
363		xen_queue_pt_update(pdir_ma, 0);
364		break;
365	}
366}
367
368/*
369 * Move the kernel virtual free pointer to the next
370 * 4MB.  This is used to help improve performance
371 * by using a large (4MB) page for much of the kernel
372 * (.text, .data, .bss)
373 */
374static vm_offset_t
375pmap_kmem_choose(vm_offset_t addr)
376{
377	vm_offset_t newaddr = addr;
378
379#ifndef DISABLE_PSE
380	if (cpu_feature & CPUID_PSE)
381		newaddr = (addr + PDRMASK) & ~PDRMASK;
382#endif
383	return newaddr;
384}
385
386/*
387 *	Bootstrap the system enough to run with virtual memory.
388 *
389 *	On the i386 this is called after mapping has already been enabled
390 *	and just syncs the pmap module with what has already been done.
391 *	[We can't call it easily with mapping off since the kernel is not
392 *	mapped with PA == VA, hence we would have to relocate every address
393 *	from the linked base (virtual) address "KERNBASE" to the actual
394 *	(physical) address starting relative to 0]
395 */
396void
397pmap_bootstrap(vm_paddr_t firstaddr)
398{
399	vm_offset_t va;
400	pt_entry_t *pte, *unused;
401	struct sysmaps *sysmaps;
402	int i;
403
404	/*
405	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
406	 * large. It should instead be correctly calculated in locore.s and
407	 * not based on 'first' (which is a physical address, not a virtual
408	 * address, for the start of unused physical memory). The kernel
409	 * page tables are NOT double mapped and thus should not be included
410	 * in this calculation.
411	 */
412	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
413	virtual_avail = pmap_kmem_choose(virtual_avail);
414
415	virtual_end = VM_MAX_KERNEL_ADDRESS;
416
417	/*
418	 * Initialize the kernel pmap (which is statically allocated).
419	 */
420	PMAP_LOCK_INIT(kernel_pmap);
421	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
422#ifdef PAE
423	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
424#endif
425	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
426	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
427	LIST_INIT(&allpmaps);
428	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
429	mtx_lock_spin(&allpmaps_lock);
430	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
431	mtx_unlock_spin(&allpmaps_lock);
432	if (nkpt == 0)
433		nkpt = NKPT;
434
435	/*
436	 * Reserve some special page table entries/VA space for temporary
437	 * mapping of pages.
438	 */
439#define	SYSMAP(c, p, v, n)	\
440	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
441
442	va = virtual_avail;
443	pte = vtopte(va);
444
445	/*
446	 * CMAP1/CMAP2 are used for zeroing and copying pages.
447	 * CMAP3 is used for the idle process page zeroing.
448	 */
449	for (i = 0; i < MAXCPU; i++) {
450		sysmaps = &sysmaps_pcpu[i];
451		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
452		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
453		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
454		PT_SET_MA(sysmaps->CADDR1, 0);
455		PT_SET_MA(sysmaps->CADDR2, 0);
456	}
457	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
458	PT_SET_MA(CADDR3, 0);
459
460	/*
461	 * Crashdump maps.
462	 */
463	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
464
465	/*
466	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
467	 */
468	SYSMAP(caddr_t, unused, ptvmmap, 1)
469
470	/*
471	 * msgbufp is used to map the system message buffer.
472	 */
473	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
474
475	/*
476	 * ptemap is used for pmap_pte_quick
477	 */
478	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
479	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
480
481	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
482
483	virtual_avail = va;
484
485	/*
486	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
487	 * physical memory region that is used by the ACPI wakeup code.  This
488	 * mapping must not have PG_G set.
489	 */
490#ifndef XEN
491	/*
492	 * leave here deliberately to show that this is not supported
493	 */
494#ifdef XBOX
495	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
496	 * an early stadium, we cannot yet neatly map video memory ... :-(
497	 * Better fixes are very welcome! */
498	if (!arch_i386_is_xbox)
499#endif
500	for (i = 1; i < NKPT; i++)
501		PTD[i] = 0;
502
503	/* Initialize the PAT MSR if present. */
504	pmap_init_pat();
505
506	/* Turn on PG_G on kernel page(s) */
507	pmap_set_pg();
508#endif
509
510#ifdef HAMFISTED_LOCKING
511	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
512#endif
513}
514
515/*
516 * Setup the PAT MSR.
517 */
518void
519pmap_init_pat(void)
520{
521	uint64_t pat_msr;
522
523	/* Bail if this CPU doesn't implement PAT. */
524	if (!(cpu_feature & CPUID_PAT))
525		return;
526
527	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
528	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
529		/*
530		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
531		 * Program 4 and 5 as WP and WC.
532		 * Leave 6 and 7 as UC and UC-.
533		 */
534		pat_msr = rdmsr(MSR_PAT);
535		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
536		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
537		    PAT_VALUE(5, PAT_WRITE_COMBINING);
538		pat_works = 1;
539	} else {
540		/*
541		 * Due to some Intel errata, we can only safely use the lower 4
542		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
543		 * of UC-.
544		 *
545		 *   Intel Pentium III Processor Specification Update
546		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
547		 * or Mode C Paging)
548		 *
549		 *   Intel Pentium IV  Processor Specification Update
550		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
551		 */
552		pat_msr = rdmsr(MSR_PAT);
553		pat_msr &= ~PAT_MASK(2);
554		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
555		pat_works = 0;
556	}
557	wrmsr(MSR_PAT, pat_msr);
558}
559
560/*
561 * Initialize a vm_page's machine-dependent fields.
562 */
563void
564pmap_page_init(vm_page_t m)
565{
566
567	TAILQ_INIT(&m->md.pv_list);
568	m->md.pat_mode = PAT_WRITE_BACK;
569}
570
571/*
572 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
573 * Requirements:
574 *  - Must deal with pages in order to ensure that none of the PG_* bits
575 *    are ever set, PG_V in particular.
576 *  - Assumes we can write to ptes without pte_store() atomic ops, even
577 *    on PAE systems.  This should be ok.
578 *  - Assumes nothing will ever test these addresses for 0 to indicate
579 *    no mapping instead of correctly checking PG_V.
580 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
581 * Because PG_V is never set, there can be no mappings to invalidate.
582 */
583static int ptelist_count = 0;
584static vm_offset_t
585pmap_ptelist_alloc(vm_offset_t *head)
586{
587	vm_offset_t va;
588	vm_offset_t *phead = (vm_offset_t *)*head;
589
590	if (ptelist_count == 0) {
591		printf("out of memory!!!!!!\n");
592		return (0);	/* Out of memory */
593	}
594	ptelist_count--;
595	va = phead[ptelist_count];
596	return (va);
597}
598
599static void
600pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
601{
602	vm_offset_t *phead = (vm_offset_t *)*head;
603
604	phead[ptelist_count++] = va;
605}
606
607static void
608pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
609{
610	int i, nstackpages;
611	vm_offset_t va;
612	vm_page_t m;
613
614	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
615	for (i = 0; i < nstackpages; i++) {
616		va = (vm_offset_t)base + i * PAGE_SIZE;
617		m = vm_page_alloc(NULL, i,
618		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
619		    VM_ALLOC_ZERO);
620		pmap_qenter(va, &m, 1);
621	}
622
623	*head = (vm_offset_t)base;
624	for (i = npages - 1; i >= nstackpages; i--) {
625		va = (vm_offset_t)base + i * PAGE_SIZE;
626		pmap_ptelist_free(head, va);
627	}
628}
629
630
631/*
632 *	Initialize the pmap module.
633 *	Called by vm_init, to initialize any structures that the pmap
634 *	system needs to map virtual memory.
635 */
636void
637pmap_init(void)
638{
639	vm_page_t mpte;
640	vm_size_t s;
641	int i, pv_npg;
642
643	/*
644	 * Initialize the vm page array entries for the kernel pmap's
645	 * page table pages.
646	 */
647	for (i = 0; i < nkpt; i++) {
648		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
649		KASSERT(mpte >= vm_page_array &&
650		    mpte < &vm_page_array[vm_page_array_size],
651		    ("pmap_init: page table page is out of range"));
652		mpte->pindex = i + KPTDI;
653		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
654	}
655
656        /*
657	 * Initialize the address space (zone) for the pv entries.  Set a
658	 * high water mark so that the system can recover from excessive
659	 * numbers of pv entries.
660	 */
661	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
662	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
663	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
664	pv_entry_max = roundup(pv_entry_max, _NPCPV);
665	pv_entry_high_water = 9 * (pv_entry_max / 10);
666
667	/*
668	 * Are large page mappings enabled?
669	 */
670	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
671
672	/*
673	 * Calculate the size of the pv head table for superpages.
674	 */
675	for (i = 0; phys_avail[i + 1]; i += 2);
676	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
677
678	/*
679	 * Allocate memory for the pv head table for superpages.
680	 */
681	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
682	s = round_page(s);
683	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
684	for (i = 0; i < pv_npg; i++)
685		TAILQ_INIT(&pv_table[i].pv_list);
686
687	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
688	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
689	    PAGE_SIZE * pv_maxchunks);
690	if (pv_chunkbase == NULL)
691		panic("pmap_init: not enough kvm for pv chunks");
692	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
693}
694
695
696/***************************************************
697 * Low level helper routines.....
698 ***************************************************/
699
700/*
701 * Determine the appropriate bits to set in a PTE or PDE for a specified
702 * caching mode.
703 */
704int
705pmap_cache_bits(int mode, boolean_t is_pde)
706{
707	int pat_flag, pat_index, cache_bits;
708
709	/* The PAT bit is different for PTE's and PDE's. */
710	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
711
712	/* If we don't support PAT, map extended modes to older ones. */
713	if (!(cpu_feature & CPUID_PAT)) {
714		switch (mode) {
715		case PAT_UNCACHEABLE:
716		case PAT_WRITE_THROUGH:
717		case PAT_WRITE_BACK:
718			break;
719		case PAT_UNCACHED:
720		case PAT_WRITE_COMBINING:
721		case PAT_WRITE_PROTECTED:
722			mode = PAT_UNCACHEABLE;
723			break;
724		}
725	}
726
727	/* Map the caching mode to a PAT index. */
728	if (pat_works) {
729		switch (mode) {
730			case PAT_UNCACHEABLE:
731				pat_index = 3;
732				break;
733			case PAT_WRITE_THROUGH:
734				pat_index = 1;
735				break;
736			case PAT_WRITE_BACK:
737				pat_index = 0;
738				break;
739			case PAT_UNCACHED:
740				pat_index = 2;
741				break;
742			case PAT_WRITE_COMBINING:
743				pat_index = 5;
744				break;
745			case PAT_WRITE_PROTECTED:
746				pat_index = 4;
747				break;
748			default:
749				panic("Unknown caching mode %d\n", mode);
750		}
751	} else {
752		switch (mode) {
753			case PAT_UNCACHED:
754			case PAT_UNCACHEABLE:
755			case PAT_WRITE_PROTECTED:
756				pat_index = 3;
757				break;
758			case PAT_WRITE_THROUGH:
759				pat_index = 1;
760				break;
761			case PAT_WRITE_BACK:
762				pat_index = 0;
763				break;
764			case PAT_WRITE_COMBINING:
765				pat_index = 2;
766				break;
767			default:
768				panic("Unknown caching mode %d\n", mode);
769		}
770	}
771
772	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
773	cache_bits = 0;
774	if (pat_index & 0x4)
775		cache_bits |= pat_flag;
776	if (pat_index & 0x2)
777		cache_bits |= PG_NC_PCD;
778	if (pat_index & 0x1)
779		cache_bits |= PG_NC_PWT;
780	return (cache_bits);
781}
782#ifdef SMP
783/*
784 * For SMP, these functions have to use the IPI mechanism for coherence.
785 *
786 * N.B.: Before calling any of the following TLB invalidation functions,
787 * the calling processor must ensure that all stores updating a non-
788 * kernel page table are globally performed.  Otherwise, another
789 * processor could cache an old, pre-update entry without being
790 * invalidated.  This can happen one of two ways: (1) The pmap becomes
791 * active on another processor after its pm_active field is checked by
792 * one of the following functions but before a store updating the page
793 * table is globally performed. (2) The pmap becomes active on another
794 * processor before its pm_active field is checked but due to
795 * speculative loads one of the following functions stills reads the
796 * pmap as inactive on the other processor.
797 *
798 * The kernel page table is exempt because its pm_active field is
799 * immutable.  The kernel page table is always active on every
800 * processor.
801 */
802void
803pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
804{
805	cpuset_t other_cpus;
806	u_int cpuid;
807
808	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
809	    pmap, va);
810
811	sched_pin();
812	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
813		invlpg(va);
814		smp_invlpg(va);
815	} else {
816		cpuid = PCPU_GET(cpuid);
817		other_cpus = all_cpus;
818		CPU_CLR(cpuid, &other_cpus);
819		if (CPU_ISSET(cpuid, &pmap->pm_active))
820			invlpg(va);
821		CPU_AND(&other_cpus, &pmap->pm_active);
822		if (!CPU_EMPTY(&other_cpus))
823			smp_masked_invlpg(other_cpus, va);
824	}
825	sched_unpin();
826	PT_UPDATES_FLUSH();
827}
828
829void
830pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
831{
832	cpuset_t other_cpus;
833	vm_offset_t addr;
834	u_int cpuid;
835
836	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
837	    pmap, sva, eva);
838
839	sched_pin();
840	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
841		for (addr = sva; addr < eva; addr += PAGE_SIZE)
842			invlpg(addr);
843		smp_invlpg_range(sva, eva);
844	} else {
845		cpuid = PCPU_GET(cpuid);
846		other_cpus = all_cpus;
847		CPU_CLR(cpuid, &other_cpus);
848		if (CPU_ISSET(cpuid, &pmap->pm_active))
849			for (addr = sva; addr < eva; addr += PAGE_SIZE)
850				invlpg(addr);
851		CPU_AND(&other_cpus, &pmap->pm_active);
852		if (!CPU_EMPTY(&other_cpus))
853			smp_masked_invlpg_range(other_cpus, sva, eva);
854	}
855	sched_unpin();
856	PT_UPDATES_FLUSH();
857}
858
859void
860pmap_invalidate_all(pmap_t pmap)
861{
862	cpuset_t other_cpus;
863	u_int cpuid;
864
865	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
866
867	sched_pin();
868	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
869		invltlb();
870		smp_invltlb();
871	} else {
872		cpuid = PCPU_GET(cpuid);
873		other_cpus = all_cpus;
874		CPU_CLR(cpuid, &other_cpus);
875		if (CPU_ISSET(cpuid, &pmap->pm_active))
876			invltlb();
877		CPU_AND(&other_cpus, &pmap->pm_active);
878		if (!CPU_EMPTY(&other_cpus))
879			smp_masked_invltlb(other_cpus);
880	}
881	sched_unpin();
882}
883
884void
885pmap_invalidate_cache(void)
886{
887
888	sched_pin();
889	wbinvd();
890	smp_cache_flush();
891	sched_unpin();
892}
893#else /* !SMP */
894/*
895 * Normal, non-SMP, 486+ invalidation functions.
896 * We inline these within pmap.c for speed.
897 */
898PMAP_INLINE void
899pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
900{
901	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
902	    pmap, va);
903
904	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
905		invlpg(va);
906	PT_UPDATES_FLUSH();
907}
908
909PMAP_INLINE void
910pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
911{
912	vm_offset_t addr;
913
914	if (eva - sva > PAGE_SIZE)
915		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
916		    pmap, sva, eva);
917
918	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
919		for (addr = sva; addr < eva; addr += PAGE_SIZE)
920			invlpg(addr);
921	PT_UPDATES_FLUSH();
922}
923
924PMAP_INLINE void
925pmap_invalidate_all(pmap_t pmap)
926{
927
928	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
929
930	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
931		invltlb();
932}
933
934PMAP_INLINE void
935pmap_invalidate_cache(void)
936{
937
938	wbinvd();
939}
940#endif /* !SMP */
941
942void
943pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
944{
945
946	KASSERT((sva & PAGE_MASK) == 0,
947	    ("pmap_invalidate_cache_range: sva not page-aligned"));
948	KASSERT((eva & PAGE_MASK) == 0,
949	    ("pmap_invalidate_cache_range: eva not page-aligned"));
950
951	if (cpu_feature & CPUID_SS)
952		; /* If "Self Snoop" is supported, do nothing. */
953	else if (cpu_feature & CPUID_CLFSH) {
954
955		/*
956		 * Otherwise, do per-cache line flush.  Use the mfence
957		 * instruction to insure that previous stores are
958		 * included in the write-back.  The processor
959		 * propagates flush to other processors in the cache
960		 * coherence domain.
961		 */
962		mfence();
963		for (; sva < eva; sva += cpu_clflush_line_size)
964			clflush(sva);
965		mfence();
966	} else {
967
968		/*
969		 * No targeted cache flush methods are supported by CPU,
970		 * globally invalidate cache as a last resort.
971		 */
972		pmap_invalidate_cache();
973	}
974}
975
976/*
977 * Are we current address space or kernel?  N.B. We return FALSE when
978 * a pmap's page table is in use because a kernel thread is borrowing
979 * it.  The borrowed page table can change spontaneously, making any
980 * dependence on its continued use subject to a race condition.
981 */
982static __inline int
983pmap_is_current(pmap_t pmap)
984{
985
986	return (pmap == kernel_pmap ||
987	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
988		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
989}
990
991/*
992 * If the given pmap is not the current or kernel pmap, the returned pte must
993 * be released by passing it to pmap_pte_release().
994 */
995pt_entry_t *
996pmap_pte(pmap_t pmap, vm_offset_t va)
997{
998	pd_entry_t newpf;
999	pd_entry_t *pde;
1000
1001	pde = pmap_pde(pmap, va);
1002	if (*pde & PG_PS)
1003		return (pde);
1004	if (*pde != 0) {
1005		/* are we current address space or kernel? */
1006		if (pmap_is_current(pmap))
1007			return (vtopte(va));
1008		mtx_lock(&PMAP2mutex);
1009		newpf = *pde & PG_FRAME;
1010		if ((*PMAP2 & PG_FRAME) != newpf) {
1011			vm_page_lock_queues();
1012			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1013			vm_page_unlock_queues();
1014			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1015			    pmap, va, (*PMAP2 & 0xffffffff));
1016		}
1017
1018		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1019	}
1020	return (0);
1021}
1022
1023/*
1024 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1025 * being NULL.
1026 */
1027static __inline void
1028pmap_pte_release(pt_entry_t *pte)
1029{
1030
1031	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1032		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1033		    *PMAP2);
1034		vm_page_lock_queues();
1035		PT_SET_VA(PMAP2, 0, TRUE);
1036		vm_page_unlock_queues();
1037		mtx_unlock(&PMAP2mutex);
1038	}
1039}
1040
1041static __inline void
1042invlcaddr(void *caddr)
1043{
1044
1045	invlpg((u_int)caddr);
1046	PT_UPDATES_FLUSH();
1047}
1048
1049/*
1050 * Super fast pmap_pte routine best used when scanning
1051 * the pv lists.  This eliminates many coarse-grained
1052 * invltlb calls.  Note that many of the pv list
1053 * scans are across different pmaps.  It is very wasteful
1054 * to do an entire invltlb for checking a single mapping.
1055 *
1056 * If the given pmap is not the current pmap, vm_page_queue_mtx
1057 * must be held and curthread pinned to a CPU.
1058 */
1059static pt_entry_t *
1060pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1061{
1062	pd_entry_t newpf;
1063	pd_entry_t *pde;
1064
1065	pde = pmap_pde(pmap, va);
1066	if (*pde & PG_PS)
1067		return (pde);
1068	if (*pde != 0) {
1069		/* are we current address space or kernel? */
1070		if (pmap_is_current(pmap))
1071			return (vtopte(va));
1072		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1073		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1074		newpf = *pde & PG_FRAME;
1075		if ((*PMAP1 & PG_FRAME) != newpf) {
1076			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1077			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1078			    pmap, va, (u_long)*PMAP1);
1079
1080#ifdef SMP
1081			PMAP1cpu = PCPU_GET(cpuid);
1082#endif
1083			PMAP1changed++;
1084		} else
1085#ifdef SMP
1086		if (PMAP1cpu != PCPU_GET(cpuid)) {
1087			PMAP1cpu = PCPU_GET(cpuid);
1088			invlcaddr(PADDR1);
1089			PMAP1changedcpu++;
1090		} else
1091#endif
1092			PMAP1unchanged++;
1093		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1094	}
1095	return (0);
1096}
1097
1098/*
1099 *	Routine:	pmap_extract
1100 *	Function:
1101 *		Extract the physical page address associated
1102 *		with the given map/virtual_address pair.
1103 */
1104vm_paddr_t
1105pmap_extract(pmap_t pmap, vm_offset_t va)
1106{
1107	vm_paddr_t rtval;
1108	pt_entry_t *pte;
1109	pd_entry_t pde;
1110	pt_entry_t pteval;
1111
1112	rtval = 0;
1113	PMAP_LOCK(pmap);
1114	pde = pmap->pm_pdir[va >> PDRSHIFT];
1115	if (pde != 0) {
1116		if ((pde & PG_PS) != 0) {
1117			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1118			PMAP_UNLOCK(pmap);
1119			return rtval;
1120		}
1121		pte = pmap_pte(pmap, va);
1122		pteval = *pte ? xpmap_mtop(*pte) : 0;
1123		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1124		pmap_pte_release(pte);
1125	}
1126	PMAP_UNLOCK(pmap);
1127	return (rtval);
1128}
1129
1130/*
1131 *	Routine:	pmap_extract_ma
1132 *	Function:
1133 *		Like pmap_extract, but returns machine address
1134 */
1135vm_paddr_t
1136pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1137{
1138	vm_paddr_t rtval;
1139	pt_entry_t *pte;
1140	pd_entry_t pde;
1141
1142	rtval = 0;
1143	PMAP_LOCK(pmap);
1144	pde = pmap->pm_pdir[va >> PDRSHIFT];
1145	if (pde != 0) {
1146		if ((pde & PG_PS) != 0) {
1147			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1148			PMAP_UNLOCK(pmap);
1149			return rtval;
1150		}
1151		pte = pmap_pte(pmap, va);
1152		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1153		pmap_pte_release(pte);
1154	}
1155	PMAP_UNLOCK(pmap);
1156	return (rtval);
1157}
1158
1159/*
1160 *	Routine:	pmap_extract_and_hold
1161 *	Function:
1162 *		Atomically extract and hold the physical page
1163 *		with the given pmap and virtual address pair
1164 *		if that mapping permits the given protection.
1165 */
1166vm_page_t
1167pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1168{
1169	pd_entry_t pde;
1170	pt_entry_t pte;
1171	vm_page_t m;
1172	vm_paddr_t pa;
1173
1174	pa = 0;
1175	m = NULL;
1176	PMAP_LOCK(pmap);
1177retry:
1178	pde = PT_GET(pmap_pde(pmap, va));
1179	if (pde != 0) {
1180		if (pde & PG_PS) {
1181			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1182				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1183				       (va & PDRMASK), &pa))
1184					goto retry;
1185				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1186				    (va & PDRMASK));
1187				vm_page_hold(m);
1188			}
1189		} else {
1190			sched_pin();
1191			pte = PT_GET(pmap_pte_quick(pmap, va));
1192			if (*PMAP1)
1193				PT_SET_MA(PADDR1, 0);
1194			if ((pte & PG_V) &&
1195			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1196				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1197					goto retry;
1198				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1199				vm_page_hold(m);
1200			}
1201			sched_unpin();
1202		}
1203	}
1204	PA_UNLOCK_COND(pa);
1205	PMAP_UNLOCK(pmap);
1206	return (m);
1207}
1208
1209/***************************************************
1210 * Low level mapping routines.....
1211 ***************************************************/
1212
1213/*
1214 * Add a wired page to the kva.
1215 * Note: not SMP coherent.
1216 */
1217void
1218pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1219{
1220	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1221}
1222
1223void
1224pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1225{
1226	pt_entry_t *pte;
1227
1228	pte = vtopte(va);
1229	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1230}
1231
1232
1233static __inline void
1234pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1235{
1236	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1237}
1238
1239/*
1240 * Remove a page from the kernel pagetables.
1241 * Note: not SMP coherent.
1242 */
1243PMAP_INLINE void
1244pmap_kremove(vm_offset_t va)
1245{
1246	pt_entry_t *pte;
1247
1248	pte = vtopte(va);
1249	PT_CLEAR_VA(pte, FALSE);
1250}
1251
1252/*
1253 *	Used to map a range of physical addresses into kernel
1254 *	virtual address space.
1255 *
1256 *	The value passed in '*virt' is a suggested virtual address for
1257 *	the mapping. Architectures which can support a direct-mapped
1258 *	physical to virtual region can return the appropriate address
1259 *	within that region, leaving '*virt' unchanged. Other
1260 *	architectures should map the pages starting at '*virt' and
1261 *	update '*virt' with the first usable address after the mapped
1262 *	region.
1263 */
1264vm_offset_t
1265pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1266{
1267	vm_offset_t va, sva;
1268
1269	va = sva = *virt;
1270	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1271	    va, start, end, prot);
1272	while (start < end) {
1273		pmap_kenter(va, start);
1274		va += PAGE_SIZE;
1275		start += PAGE_SIZE;
1276	}
1277	pmap_invalidate_range(kernel_pmap, sva, va);
1278	*virt = va;
1279	return (sva);
1280}
1281
1282
1283/*
1284 * Add a list of wired pages to the kva
1285 * this routine is only used for temporary
1286 * kernel mappings that do not need to have
1287 * page modification or references recorded.
1288 * Note that old mappings are simply written
1289 * over.  The page *must* be wired.
1290 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1291 */
1292void
1293pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1294{
1295	pt_entry_t *endpte, *pte;
1296	vm_paddr_t pa;
1297	vm_offset_t va = sva;
1298	int mclcount = 0;
1299	multicall_entry_t mcl[16];
1300	multicall_entry_t *mclp = mcl;
1301	int error;
1302
1303	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1304	pte = vtopte(sva);
1305	endpte = pte + count;
1306	while (pte < endpte) {
1307		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1308
1309		mclp->op = __HYPERVISOR_update_va_mapping;
1310		mclp->args[0] = va;
1311		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1312		mclp->args[2] = (uint32_t)(pa >> 32);
1313		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1314
1315		va += PAGE_SIZE;
1316		pte++;
1317		ma++;
1318		mclp++;
1319		mclcount++;
1320		if (mclcount == 16) {
1321			error = HYPERVISOR_multicall(mcl, mclcount);
1322			mclp = mcl;
1323			mclcount = 0;
1324			KASSERT(error == 0, ("bad multicall %d", error));
1325		}
1326	}
1327	if (mclcount) {
1328		error = HYPERVISOR_multicall(mcl, mclcount);
1329		KASSERT(error == 0, ("bad multicall %d", error));
1330	}
1331
1332#ifdef INVARIANTS
1333	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1334		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1335#endif
1336}
1337
1338
1339/*
1340 * This routine tears out page mappings from the
1341 * kernel -- it is meant only for temporary mappings.
1342 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1343 */
1344void
1345pmap_qremove(vm_offset_t sva, int count)
1346{
1347	vm_offset_t va;
1348
1349	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1350	va = sva;
1351	vm_page_lock_queues();
1352	critical_enter();
1353	while (count-- > 0) {
1354		pmap_kremove(va);
1355		va += PAGE_SIZE;
1356	}
1357	PT_UPDATES_FLUSH();
1358	pmap_invalidate_range(kernel_pmap, sva, va);
1359	critical_exit();
1360	vm_page_unlock_queues();
1361}
1362
1363/***************************************************
1364 * Page table page management routines.....
1365 ***************************************************/
1366static __inline void
1367pmap_free_zero_pages(vm_page_t free)
1368{
1369	vm_page_t m;
1370
1371	while (free != NULL) {
1372		m = free;
1373		free = m->right;
1374		vm_page_free_zero(m);
1375	}
1376}
1377
1378/*
1379 * This routine unholds page table pages, and if the hold count
1380 * drops to zero, then it decrements the wire count.
1381 */
1382static __inline int
1383pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1384{
1385
1386	--m->wire_count;
1387	if (m->wire_count == 0)
1388		return _pmap_unwire_pte_hold(pmap, m, free);
1389	else
1390		return 0;
1391}
1392
1393static int
1394_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1395{
1396	vm_offset_t pteva;
1397
1398	PT_UPDATES_FLUSH();
1399	/*
1400	 * unmap the page table page
1401	 */
1402	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1403	/*
1404	 * page *might* contain residual mapping :-/
1405	 */
1406	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1407	pmap_zero_page(m);
1408	--pmap->pm_stats.resident_count;
1409
1410	/*
1411	 * This is a release store so that the ordinary store unmapping
1412	 * the page table page is globally performed before TLB shoot-
1413	 * down is begun.
1414	 */
1415	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1416
1417	/*
1418	 * Do an invltlb to make the invalidated mapping
1419	 * take effect immediately.
1420	 */
1421	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1422	pmap_invalidate_page(pmap, pteva);
1423
1424	/*
1425	 * Put page on a list so that it is released after
1426	 * *ALL* TLB shootdown is done
1427	 */
1428	m->right = *free;
1429	*free = m;
1430
1431	return 1;
1432}
1433
1434/*
1435 * After removing a page table entry, this routine is used to
1436 * conditionally free the page, and manage the hold/wire counts.
1437 */
1438static int
1439pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1440{
1441	pd_entry_t ptepde;
1442	vm_page_t mpte;
1443
1444	if (va >= VM_MAXUSER_ADDRESS)
1445		return 0;
1446	ptepde = PT_GET(pmap_pde(pmap, va));
1447	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1448	return pmap_unwire_pte_hold(pmap, mpte, free);
1449}
1450
1451void
1452pmap_pinit0(pmap_t pmap)
1453{
1454
1455	PMAP_LOCK_INIT(pmap);
1456	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1457#ifdef PAE
1458	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1459#endif
1460	CPU_ZERO(&pmap->pm_active);
1461	PCPU_SET(curpmap, pmap);
1462	TAILQ_INIT(&pmap->pm_pvchunk);
1463	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1464	mtx_lock_spin(&allpmaps_lock);
1465	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1466	mtx_unlock_spin(&allpmaps_lock);
1467}
1468
1469/*
1470 * Initialize a preallocated and zeroed pmap structure,
1471 * such as one in a vmspace structure.
1472 */
1473int
1474pmap_pinit(pmap_t pmap)
1475{
1476	vm_page_t m, ptdpg[NPGPTD + 1];
1477	int npgptd = NPGPTD + 1;
1478	int i;
1479
1480#ifdef HAMFISTED_LOCKING
1481	mtx_lock(&createdelete_lock);
1482#endif
1483
1484	PMAP_LOCK_INIT(pmap);
1485
1486	/*
1487	 * No need to allocate page table space yet but we do need a valid
1488	 * page directory table.
1489	 */
1490	if (pmap->pm_pdir == NULL) {
1491		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1492		    NBPTD);
1493		if (pmap->pm_pdir == NULL) {
1494			PMAP_LOCK_DESTROY(pmap);
1495#ifdef HAMFISTED_LOCKING
1496			mtx_unlock(&createdelete_lock);
1497#endif
1498			return (0);
1499		}
1500#ifdef PAE
1501		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1502#endif
1503	}
1504
1505	/*
1506	 * allocate the page directory page(s)
1507	 */
1508	for (i = 0; i < npgptd;) {
1509		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1510		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1511		if (m == NULL)
1512			VM_WAIT;
1513		else {
1514			ptdpg[i++] = m;
1515		}
1516	}
1517	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1518	for (i = 0; i < NPGPTD; i++) {
1519		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1520			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1521	}
1522
1523	mtx_lock_spin(&allpmaps_lock);
1524	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1525	mtx_unlock_spin(&allpmaps_lock);
1526	/* Wire in kernel global address entries. */
1527
1528	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1529#ifdef PAE
1530	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1531	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1532		bzero(pmap->pm_pdpt, PAGE_SIZE);
1533	for (i = 0; i < NPGPTD; i++) {
1534		vm_paddr_t ma;
1535
1536		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1537		pmap->pm_pdpt[i] = ma | PG_V;
1538
1539	}
1540#endif
1541	for (i = 0; i < NPGPTD; i++) {
1542		pt_entry_t *pd;
1543		vm_paddr_t ma;
1544
1545		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1546		pd = pmap->pm_pdir + (i * NPDEPG);
1547		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1548#if 0
1549		xen_pgd_pin(ma);
1550#endif
1551	}
1552
1553#ifdef PAE
1554	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1555#endif
1556	vm_page_lock_queues();
1557	xen_flush_queue();
1558	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1559	for (i = 0; i < NPGPTD; i++) {
1560		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1561		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1562	}
1563	xen_flush_queue();
1564	vm_page_unlock_queues();
1565	CPU_ZERO(&pmap->pm_active);
1566	TAILQ_INIT(&pmap->pm_pvchunk);
1567	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1568
1569#ifdef HAMFISTED_LOCKING
1570	mtx_unlock(&createdelete_lock);
1571#endif
1572	return (1);
1573}
1574
1575/*
1576 * this routine is called if the page table page is not
1577 * mapped correctly.
1578 */
1579static vm_page_t
1580_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1581{
1582	vm_paddr_t ptema;
1583	vm_page_t m;
1584
1585	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1586	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1587	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1588
1589	/*
1590	 * Allocate a page table page.
1591	 */
1592	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1593	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1594		if (flags & M_WAITOK) {
1595			PMAP_UNLOCK(pmap);
1596			vm_page_unlock_queues();
1597			VM_WAIT;
1598			vm_page_lock_queues();
1599			PMAP_LOCK(pmap);
1600		}
1601
1602		/*
1603		 * Indicate the need to retry.  While waiting, the page table
1604		 * page may have been allocated.
1605		 */
1606		return (NULL);
1607	}
1608	if ((m->flags & PG_ZERO) == 0)
1609		pmap_zero_page(m);
1610
1611	/*
1612	 * Map the pagetable page into the process address space, if
1613	 * it isn't already there.
1614	 */
1615	pmap->pm_stats.resident_count++;
1616
1617	ptema = VM_PAGE_TO_MACH(m);
1618	xen_pt_pin(ptema);
1619	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1620		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1621
1622	KASSERT(pmap->pm_pdir[ptepindex],
1623	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1624	return (m);
1625}
1626
1627static vm_page_t
1628pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1629{
1630	unsigned ptepindex;
1631	pd_entry_t ptema;
1632	vm_page_t m;
1633
1634	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1635	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1636	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1637
1638	/*
1639	 * Calculate pagetable page index
1640	 */
1641	ptepindex = va >> PDRSHIFT;
1642retry:
1643	/*
1644	 * Get the page directory entry
1645	 */
1646	ptema = pmap->pm_pdir[ptepindex];
1647
1648	/*
1649	 * This supports switching from a 4MB page to a
1650	 * normal 4K page.
1651	 */
1652	if (ptema & PG_PS) {
1653		/*
1654		 * XXX
1655		 */
1656		pmap->pm_pdir[ptepindex] = 0;
1657		ptema = 0;
1658		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1659		pmap_invalidate_all(kernel_pmap);
1660	}
1661
1662	/*
1663	 * If the page table page is mapped, we just increment the
1664	 * hold count, and activate it.
1665	 */
1666	if (ptema & PG_V) {
1667		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1668		m->wire_count++;
1669	} else {
1670		/*
1671		 * Here if the pte page isn't mapped, or if it has
1672		 * been deallocated.
1673		 */
1674		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1675		    pmap, va, flags);
1676		m = _pmap_allocpte(pmap, ptepindex, flags);
1677		if (m == NULL && (flags & M_WAITOK))
1678			goto retry;
1679
1680		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1681	}
1682	return (m);
1683}
1684
1685
1686/***************************************************
1687* Pmap allocation/deallocation routines.
1688 ***************************************************/
1689
1690#ifdef SMP
1691/*
1692 * Deal with a SMP shootdown of other users of the pmap that we are
1693 * trying to dispose of.  This can be a bit hairy.
1694 */
1695static cpuset_t *lazymask;
1696static u_int lazyptd;
1697static volatile u_int lazywait;
1698
1699void pmap_lazyfix_action(void);
1700
1701void
1702pmap_lazyfix_action(void)
1703{
1704
1705#ifdef COUNT_IPIS
1706	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1707#endif
1708	if (rcr3() == lazyptd)
1709		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1710	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1711	atomic_store_rel_int(&lazywait, 1);
1712}
1713
1714static void
1715pmap_lazyfix_self(u_int cpuid)
1716{
1717
1718	if (rcr3() == lazyptd)
1719		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1720	CPU_CLR_ATOMIC(cpuid, lazymask);
1721}
1722
1723
1724static void
1725pmap_lazyfix(pmap_t pmap)
1726{
1727	cpuset_t mymask, mask;
1728	u_int cpuid, spins;
1729	int lsb;
1730
1731	mask = pmap->pm_active;
1732	while (!CPU_EMPTY(&mask)) {
1733		spins = 50000000;
1734
1735		/* Find least significant set bit. */
1736		lsb = cpusetobj_ffs(&mask);
1737		MPASS(lsb != 0);
1738		lsb--;
1739		CPU_SETOF(lsb, &mask);
1740		mtx_lock_spin(&smp_ipi_mtx);
1741#ifdef PAE
1742		lazyptd = vtophys(pmap->pm_pdpt);
1743#else
1744		lazyptd = vtophys(pmap->pm_pdir);
1745#endif
1746		cpuid = PCPU_GET(cpuid);
1747
1748		/* Use a cpuset just for having an easy check. */
1749		CPU_SETOF(cpuid, &mymask);
1750		if (!CPU_CMP(&mask, &mymask)) {
1751			lazymask = &pmap->pm_active;
1752			pmap_lazyfix_self(cpuid);
1753		} else {
1754			atomic_store_rel_int((u_int *)&lazymask,
1755			    (u_int)&pmap->pm_active);
1756			atomic_store_rel_int(&lazywait, 0);
1757			ipi_selected(mask, IPI_LAZYPMAP);
1758			while (lazywait == 0) {
1759				ia32_pause();
1760				if (--spins == 0)
1761					break;
1762			}
1763		}
1764		mtx_unlock_spin(&smp_ipi_mtx);
1765		if (spins == 0)
1766			printf("pmap_lazyfix: spun for 50000000\n");
1767		mask = pmap->pm_active;
1768	}
1769}
1770
1771#else	/* SMP */
1772
1773/*
1774 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1775 * unlikely to have to even execute this code, including the fact
1776 * that the cleanup is deferred until the parent does a wait(2), which
1777 * means that another userland process has run.
1778 */
1779static void
1780pmap_lazyfix(pmap_t pmap)
1781{
1782	u_int cr3;
1783
1784	cr3 = vtophys(pmap->pm_pdir);
1785	if (cr3 == rcr3()) {
1786		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1787		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1788	}
1789}
1790#endif	/* SMP */
1791
1792/*
1793 * Release any resources held by the given physical map.
1794 * Called when a pmap initialized by pmap_pinit is being released.
1795 * Should only be called if the map contains no valid mappings.
1796 */
1797void
1798pmap_release(pmap_t pmap)
1799{
1800	vm_page_t m, ptdpg[2*NPGPTD+1];
1801	vm_paddr_t ma;
1802	int i;
1803#ifdef PAE
1804	int npgptd = NPGPTD + 1;
1805#else
1806	int npgptd = NPGPTD;
1807#endif
1808	KASSERT(pmap->pm_stats.resident_count == 0,
1809	    ("pmap_release: pmap resident count %ld != 0",
1810	    pmap->pm_stats.resident_count));
1811	PT_UPDATES_FLUSH();
1812
1813#ifdef HAMFISTED_LOCKING
1814	mtx_lock(&createdelete_lock);
1815#endif
1816
1817	pmap_lazyfix(pmap);
1818	mtx_lock_spin(&allpmaps_lock);
1819	LIST_REMOVE(pmap, pm_list);
1820	mtx_unlock_spin(&allpmaps_lock);
1821
1822	for (i = 0; i < NPGPTD; i++)
1823		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1824	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1825#ifdef PAE
1826	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1827#endif
1828
1829	for (i = 0; i < npgptd; i++) {
1830		m = ptdpg[i];
1831		ma = VM_PAGE_TO_MACH(m);
1832		/* unpinning L1 and L2 treated the same */
1833#if 0
1834                xen_pgd_unpin(ma);
1835#else
1836		if (i == NPGPTD)
1837	                xen_pgd_unpin(ma);
1838#endif
1839#ifdef PAE
1840		if (i < NPGPTD)
1841			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1842			    ("pmap_release: got wrong ptd page"));
1843#endif
1844		m->wire_count--;
1845		atomic_subtract_int(&cnt.v_wire_count, 1);
1846		vm_page_free(m);
1847	}
1848#ifdef PAE
1849	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1850#endif
1851	PMAP_LOCK_DESTROY(pmap);
1852
1853#ifdef HAMFISTED_LOCKING
1854	mtx_unlock(&createdelete_lock);
1855#endif
1856}
1857
1858static int
1859kvm_size(SYSCTL_HANDLER_ARGS)
1860{
1861	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1862
1863	return sysctl_handle_long(oidp, &ksize, 0, req);
1864}
1865SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1866    0, 0, kvm_size, "IU", "Size of KVM");
1867
1868static int
1869kvm_free(SYSCTL_HANDLER_ARGS)
1870{
1871	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1872
1873	return sysctl_handle_long(oidp, &kfree, 0, req);
1874}
1875SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1876    0, 0, kvm_free, "IU", "Amount of KVM free");
1877
1878/*
1879 * grow the number of kernel page table entries, if needed
1880 */
1881void
1882pmap_growkernel(vm_offset_t addr)
1883{
1884	struct pmap *pmap;
1885	vm_paddr_t ptppaddr;
1886	vm_page_t nkpg;
1887	pd_entry_t newpdir;
1888
1889	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1890	if (kernel_vm_end == 0) {
1891		kernel_vm_end = KERNBASE;
1892		nkpt = 0;
1893		while (pdir_pde(PTD, kernel_vm_end)) {
1894			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1895			nkpt++;
1896			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1897				kernel_vm_end = kernel_map->max_offset;
1898				break;
1899			}
1900		}
1901	}
1902	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1903	if (addr - 1 >= kernel_map->max_offset)
1904		addr = kernel_map->max_offset;
1905	while (kernel_vm_end < addr) {
1906		if (pdir_pde(PTD, kernel_vm_end)) {
1907			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1908			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1909				kernel_vm_end = kernel_map->max_offset;
1910				break;
1911			}
1912			continue;
1913		}
1914
1915		/*
1916		 * This index is bogus, but out of the way
1917		 */
1918		nkpg = vm_page_alloc(NULL, nkpt,
1919		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1920		if (!nkpg)
1921			panic("pmap_growkernel: no memory to grow kernel");
1922
1923		nkpt++;
1924
1925		pmap_zero_page(nkpg);
1926		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1927		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1928		vm_page_lock_queues();
1929		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1930		mtx_lock_spin(&allpmaps_lock);
1931		LIST_FOREACH(pmap, &allpmaps, pm_list)
1932			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1933
1934		mtx_unlock_spin(&allpmaps_lock);
1935		vm_page_unlock_queues();
1936
1937		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1938		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1939			kernel_vm_end = kernel_map->max_offset;
1940			break;
1941		}
1942	}
1943}
1944
1945
1946/***************************************************
1947 * page management routines.
1948 ***************************************************/
1949
1950CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1951CTASSERT(_NPCM == 11);
1952
1953static __inline struct pv_chunk *
1954pv_to_chunk(pv_entry_t pv)
1955{
1956
1957	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1958}
1959
1960#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1961
1962#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1963#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1964
1965static uint32_t pc_freemask[11] = {
1966	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1967	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1968	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1969	PC_FREE0_9, PC_FREE10
1970};
1971
1972SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1973	"Current number of pv entries");
1974
1975#ifdef PV_STATS
1976static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1977
1978SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1979	"Current number of pv entry chunks");
1980SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1981	"Current number of pv entry chunks allocated");
1982SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1983	"Current number of pv entry chunks frees");
1984SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1985	"Number of times tried to get a chunk page but failed.");
1986
1987static long pv_entry_frees, pv_entry_allocs;
1988static int pv_entry_spare;
1989
1990SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1991	"Current number of pv entry frees");
1992SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1993	"Current number of pv entry allocs");
1994SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1995	"Current number of spare pv entries");
1996
1997static int pmap_collect_inactive, pmap_collect_active;
1998
1999SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2000	"Current number times pmap_collect called on inactive queue");
2001SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2002	"Current number times pmap_collect called on active queue");
2003#endif
2004
2005/*
2006 * We are in a serious low memory condition.  Resort to
2007 * drastic measures to free some pages so we can allocate
2008 * another pv entry chunk.  This is normally called to
2009 * unmap inactive pages, and if necessary, active pages.
2010 */
2011static void
2012pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2013{
2014	pmap_t pmap;
2015	pt_entry_t *pte, tpte;
2016	pv_entry_t next_pv, pv;
2017	vm_offset_t va;
2018	vm_page_t m, free;
2019
2020	sched_pin();
2021	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2022		if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
2023			continue;
2024		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2025			va = pv->pv_va;
2026			pmap = PV_PMAP(pv);
2027			/* Avoid deadlock and lock recursion. */
2028			if (pmap > locked_pmap)
2029				PMAP_LOCK(pmap);
2030			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2031				continue;
2032			pmap->pm_stats.resident_count--;
2033			pte = pmap_pte_quick(pmap, va);
2034			tpte = pte_load_clear(pte);
2035			KASSERT((tpte & PG_W) == 0,
2036			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2037			if (tpte & PG_A)
2038				vm_page_aflag_set(m, PGA_REFERENCED);
2039			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2040				vm_page_dirty(m);
2041			free = NULL;
2042			pmap_unuse_pt(pmap, va, &free);
2043			pmap_invalidate_page(pmap, va);
2044			pmap_free_zero_pages(free);
2045			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2046			free_pv_entry(pmap, pv);
2047			if (pmap != locked_pmap)
2048				PMAP_UNLOCK(pmap);
2049		}
2050		if (TAILQ_EMPTY(&m->md.pv_list))
2051			vm_page_aflag_clear(m, PGA_WRITEABLE);
2052	}
2053	sched_unpin();
2054}
2055
2056
2057/*
2058 * free the pv_entry back to the free list
2059 */
2060static void
2061free_pv_entry(pmap_t pmap, pv_entry_t pv)
2062{
2063	vm_page_t m;
2064	struct pv_chunk *pc;
2065	int idx, field, bit;
2066
2067	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2068	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2069	PV_STAT(pv_entry_frees++);
2070	PV_STAT(pv_entry_spare++);
2071	pv_entry_count--;
2072	pc = pv_to_chunk(pv);
2073	idx = pv - &pc->pc_pventry[0];
2074	field = idx / 32;
2075	bit = idx % 32;
2076	pc->pc_map[field] |= 1ul << bit;
2077	/* move to head of list */
2078	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2079	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2080	for (idx = 0; idx < _NPCM; idx++)
2081		if (pc->pc_map[idx] != pc_freemask[idx])
2082			return;
2083	PV_STAT(pv_entry_spare -= _NPCPV);
2084	PV_STAT(pc_chunk_count--);
2085	PV_STAT(pc_chunk_frees++);
2086	/* entire chunk is free, return it */
2087	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2088	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2089	pmap_qremove((vm_offset_t)pc, 1);
2090	vm_page_unwire(m, 0);
2091	vm_page_free(m);
2092	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2093}
2094
2095/*
2096 * get a new pv_entry, allocating a block from the system
2097 * when needed.
2098 */
2099static pv_entry_t
2100get_pv_entry(pmap_t pmap, int try)
2101{
2102	static const struct timeval printinterval = { 60, 0 };
2103	static struct timeval lastprint;
2104	struct vpgqueues *pq;
2105	int bit, field;
2106	pv_entry_t pv;
2107	struct pv_chunk *pc;
2108	vm_page_t m;
2109
2110	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2111	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2112	PV_STAT(pv_entry_allocs++);
2113	pv_entry_count++;
2114	if (pv_entry_count > pv_entry_high_water)
2115		if (ratecheck(&lastprint, &printinterval))
2116			printf("Approaching the limit on PV entries, consider "
2117			    "increasing either the vm.pmap.shpgperproc or the "
2118			    "vm.pmap.pv_entry_max tunable.\n");
2119	pq = NULL;
2120retry:
2121	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2122	if (pc != NULL) {
2123		for (field = 0; field < _NPCM; field++) {
2124			if (pc->pc_map[field]) {
2125				bit = bsfl(pc->pc_map[field]);
2126				break;
2127			}
2128		}
2129		if (field < _NPCM) {
2130			pv = &pc->pc_pventry[field * 32 + bit];
2131			pc->pc_map[field] &= ~(1ul << bit);
2132			/* If this was the last item, move it to tail */
2133			for (field = 0; field < _NPCM; field++)
2134				if (pc->pc_map[field] != 0) {
2135					PV_STAT(pv_entry_spare--);
2136					return (pv);	/* not full, return */
2137				}
2138			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2139			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2140			PV_STAT(pv_entry_spare--);
2141			return (pv);
2142		}
2143	}
2144	/*
2145	 * Access to the ptelist "pv_vafree" is synchronized by the page
2146	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2147	 * remain non-empty until pmap_ptelist_alloc() completes.
2148	 */
2149	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, (pq ==
2150	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2151	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2152		if (try) {
2153			pv_entry_count--;
2154			PV_STAT(pc_chunk_tryfail++);
2155			return (NULL);
2156		}
2157		/*
2158		 * Reclaim pv entries: At first, destroy mappings to
2159		 * inactive pages.  After that, if a pv chunk entry
2160		 * is still needed, destroy mappings to active pages.
2161		 */
2162		if (pq == NULL) {
2163			PV_STAT(pmap_collect_inactive++);
2164			pq = &vm_page_queues[PQ_INACTIVE];
2165		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2166			PV_STAT(pmap_collect_active++);
2167			pq = &vm_page_queues[PQ_ACTIVE];
2168		} else
2169			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2170		pmap_collect(pmap, pq);
2171		goto retry;
2172	}
2173	PV_STAT(pc_chunk_count++);
2174	PV_STAT(pc_chunk_allocs++);
2175	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2176	pmap_qenter((vm_offset_t)pc, &m, 1);
2177	if ((m->flags & PG_ZERO) == 0)
2178		pagezero(pc);
2179	pc->pc_pmap = pmap;
2180	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2181	for (field = 1; field < _NPCM; field++)
2182		pc->pc_map[field] = pc_freemask[field];
2183	pv = &pc->pc_pventry[0];
2184	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2185	PV_STAT(pv_entry_spare += _NPCPV - 1);
2186	return (pv);
2187}
2188
2189static __inline pv_entry_t
2190pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2191{
2192	pv_entry_t pv;
2193
2194	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2195	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2196		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2197			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2198			break;
2199		}
2200	}
2201	return (pv);
2202}
2203
2204static void
2205pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2206{
2207	pv_entry_t pv;
2208
2209	pv = pmap_pvh_remove(pvh, pmap, va);
2210	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2211	free_pv_entry(pmap, pv);
2212}
2213
2214static void
2215pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2216{
2217
2218	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2219	pmap_pvh_free(&m->md, pmap, va);
2220	if (TAILQ_EMPTY(&m->md.pv_list))
2221		vm_page_aflag_clear(m, PGA_WRITEABLE);
2222}
2223
2224/*
2225 * Conditionally create a pv entry.
2226 */
2227static boolean_t
2228pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2229{
2230	pv_entry_t pv;
2231
2232	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2233	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2234	if (pv_entry_count < pv_entry_high_water &&
2235	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2236		pv->pv_va = va;
2237		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2238		return (TRUE);
2239	} else
2240		return (FALSE);
2241}
2242
2243/*
2244 * pmap_remove_pte: do the things to unmap a page in a process
2245 */
2246static int
2247pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2248{
2249	pt_entry_t oldpte;
2250	vm_page_t m;
2251
2252	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2253	    pmap, (u_long)*ptq, va);
2254
2255	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2256	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2257	oldpte = *ptq;
2258	PT_SET_VA_MA(ptq, 0, TRUE);
2259	if (oldpte & PG_W)
2260		pmap->pm_stats.wired_count -= 1;
2261	/*
2262	 * Machines that don't support invlpg, also don't support
2263	 * PG_G.
2264	 */
2265	if (oldpte & PG_G)
2266		pmap_invalidate_page(kernel_pmap, va);
2267	pmap->pm_stats.resident_count -= 1;
2268	if (oldpte & PG_MANAGED) {
2269		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2270		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2271			vm_page_dirty(m);
2272		if (oldpte & PG_A)
2273			vm_page_aflag_set(m, PGA_REFERENCED);
2274		pmap_remove_entry(pmap, m, va);
2275	}
2276	return (pmap_unuse_pt(pmap, va, free));
2277}
2278
2279/*
2280 * Remove a single page from a process address space
2281 */
2282static void
2283pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2284{
2285	pt_entry_t *pte;
2286
2287	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2288	    pmap, va);
2289
2290	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2291	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2292	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2293	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2294		return;
2295	pmap_remove_pte(pmap, pte, va, free);
2296	pmap_invalidate_page(pmap, va);
2297	if (*PMAP1)
2298		PT_SET_MA(PADDR1, 0);
2299
2300}
2301
2302/*
2303 *	Remove the given range of addresses from the specified map.
2304 *
2305 *	It is assumed that the start and end are properly
2306 *	rounded to the page size.
2307 */
2308void
2309pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2310{
2311	vm_offset_t pdnxt;
2312	pd_entry_t ptpaddr;
2313	pt_entry_t *pte;
2314	vm_page_t free = NULL;
2315	int anyvalid;
2316
2317	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2318	    pmap, sva, eva);
2319
2320	/*
2321	 * Perform an unsynchronized read.  This is, however, safe.
2322	 */
2323	if (pmap->pm_stats.resident_count == 0)
2324		return;
2325
2326	anyvalid = 0;
2327
2328	vm_page_lock_queues();
2329	sched_pin();
2330	PMAP_LOCK(pmap);
2331
2332	/*
2333	 * special handling of removing one page.  a very
2334	 * common operation and easy to short circuit some
2335	 * code.
2336	 */
2337	if ((sva + PAGE_SIZE == eva) &&
2338	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2339		pmap_remove_page(pmap, sva, &free);
2340		goto out;
2341	}
2342
2343	for (; sva < eva; sva = pdnxt) {
2344		unsigned pdirindex;
2345
2346		/*
2347		 * Calculate index for next page table.
2348		 */
2349		pdnxt = (sva + NBPDR) & ~PDRMASK;
2350		if (pmap->pm_stats.resident_count == 0)
2351			break;
2352
2353		pdirindex = sva >> PDRSHIFT;
2354		ptpaddr = pmap->pm_pdir[pdirindex];
2355
2356		/*
2357		 * Weed out invalid mappings. Note: we assume that the page
2358		 * directory table is always allocated, and in kernel virtual.
2359		 */
2360		if (ptpaddr == 0)
2361			continue;
2362
2363		/*
2364		 * Check for large page.
2365		 */
2366		if ((ptpaddr & PG_PS) != 0) {
2367			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2368			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2369			anyvalid = 1;
2370			continue;
2371		}
2372
2373		/*
2374		 * Limit our scan to either the end of the va represented
2375		 * by the current page table page, or to the end of the
2376		 * range being removed.
2377		 */
2378		if (pdnxt > eva)
2379			pdnxt = eva;
2380
2381		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2382		    sva += PAGE_SIZE) {
2383			if ((*pte & PG_V) == 0)
2384				continue;
2385
2386			/*
2387			 * The TLB entry for a PG_G mapping is invalidated
2388			 * by pmap_remove_pte().
2389			 */
2390			if ((*pte & PG_G) == 0)
2391				anyvalid = 1;
2392			if (pmap_remove_pte(pmap, pte, sva, &free))
2393				break;
2394		}
2395	}
2396	PT_UPDATES_FLUSH();
2397	if (*PMAP1)
2398		PT_SET_VA_MA(PMAP1, 0, TRUE);
2399out:
2400	if (anyvalid)
2401		pmap_invalidate_all(pmap);
2402	sched_unpin();
2403	vm_page_unlock_queues();
2404	PMAP_UNLOCK(pmap);
2405	pmap_free_zero_pages(free);
2406}
2407
2408/*
2409 *	Routine:	pmap_remove_all
2410 *	Function:
2411 *		Removes this physical page from
2412 *		all physical maps in which it resides.
2413 *		Reflects back modify bits to the pager.
2414 *
2415 *	Notes:
2416 *		Original versions of this routine were very
2417 *		inefficient because they iteratively called
2418 *		pmap_remove (slow...)
2419 */
2420
2421void
2422pmap_remove_all(vm_page_t m)
2423{
2424	pv_entry_t pv;
2425	pmap_t pmap;
2426	pt_entry_t *pte, tpte;
2427	vm_page_t free;
2428
2429	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2430	    ("pmap_remove_all: page %p is not managed", m));
2431	free = NULL;
2432	vm_page_lock_queues();
2433	sched_pin();
2434	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2435		pmap = PV_PMAP(pv);
2436		PMAP_LOCK(pmap);
2437		pmap->pm_stats.resident_count--;
2438		pte = pmap_pte_quick(pmap, pv->pv_va);
2439
2440		tpte = *pte;
2441		PT_SET_VA_MA(pte, 0, TRUE);
2442		if (tpte & PG_W)
2443			pmap->pm_stats.wired_count--;
2444		if (tpte & PG_A)
2445			vm_page_aflag_set(m, PGA_REFERENCED);
2446
2447		/*
2448		 * Update the vm_page_t clean and reference bits.
2449		 */
2450		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2451			vm_page_dirty(m);
2452		pmap_unuse_pt(pmap, pv->pv_va, &free);
2453		pmap_invalidate_page(pmap, pv->pv_va);
2454		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2455		free_pv_entry(pmap, pv);
2456		PMAP_UNLOCK(pmap);
2457	}
2458	vm_page_aflag_clear(m, PGA_WRITEABLE);
2459	PT_UPDATES_FLUSH();
2460	if (*PMAP1)
2461		PT_SET_MA(PADDR1, 0);
2462	sched_unpin();
2463	vm_page_unlock_queues();
2464	pmap_free_zero_pages(free);
2465}
2466
2467/*
2468 *	Set the physical protection on the
2469 *	specified range of this map as requested.
2470 */
2471void
2472pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2473{
2474	vm_offset_t pdnxt;
2475	pd_entry_t ptpaddr;
2476	pt_entry_t *pte;
2477	int anychanged;
2478
2479	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2480	    pmap, sva, eva, prot);
2481
2482	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2483		pmap_remove(pmap, sva, eva);
2484		return;
2485	}
2486
2487#ifdef PAE
2488	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2489	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2490		return;
2491#else
2492	if (prot & VM_PROT_WRITE)
2493		return;
2494#endif
2495
2496	anychanged = 0;
2497
2498	vm_page_lock_queues();
2499	sched_pin();
2500	PMAP_LOCK(pmap);
2501	for (; sva < eva; sva = pdnxt) {
2502		pt_entry_t obits, pbits;
2503		unsigned pdirindex;
2504
2505		pdnxt = (sva + NBPDR) & ~PDRMASK;
2506
2507		pdirindex = sva >> PDRSHIFT;
2508		ptpaddr = pmap->pm_pdir[pdirindex];
2509
2510		/*
2511		 * Weed out invalid mappings. Note: we assume that the page
2512		 * directory table is always allocated, and in kernel virtual.
2513		 */
2514		if (ptpaddr == 0)
2515			continue;
2516
2517		/*
2518		 * Check for large page.
2519		 */
2520		if ((ptpaddr & PG_PS) != 0) {
2521			if ((prot & VM_PROT_WRITE) == 0)
2522				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2523#ifdef PAE
2524			if ((prot & VM_PROT_EXECUTE) == 0)
2525				pmap->pm_pdir[pdirindex] |= pg_nx;
2526#endif
2527			anychanged = 1;
2528			continue;
2529		}
2530
2531		if (pdnxt > eva)
2532			pdnxt = eva;
2533
2534		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2535		    sva += PAGE_SIZE) {
2536			vm_page_t m;
2537
2538retry:
2539			/*
2540			 * Regardless of whether a pte is 32 or 64 bits in
2541			 * size, PG_RW, PG_A, and PG_M are among the least
2542			 * significant 32 bits.
2543			 */
2544			obits = pbits = *pte;
2545			if ((pbits & PG_V) == 0)
2546				continue;
2547
2548			if ((prot & VM_PROT_WRITE) == 0) {
2549				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2550				    (PG_MANAGED | PG_M | PG_RW)) {
2551					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2552					    PG_FRAME);
2553					vm_page_dirty(m);
2554				}
2555				pbits &= ~(PG_RW | PG_M);
2556			}
2557#ifdef PAE
2558			if ((prot & VM_PROT_EXECUTE) == 0)
2559				pbits |= pg_nx;
2560#endif
2561
2562			if (pbits != obits) {
2563				obits = *pte;
2564				PT_SET_VA_MA(pte, pbits, TRUE);
2565				if (*pte != pbits)
2566					goto retry;
2567				if (obits & PG_G)
2568					pmap_invalidate_page(pmap, sva);
2569				else
2570					anychanged = 1;
2571			}
2572		}
2573	}
2574	PT_UPDATES_FLUSH();
2575	if (*PMAP1)
2576		PT_SET_VA_MA(PMAP1, 0, TRUE);
2577	if (anychanged)
2578		pmap_invalidate_all(pmap);
2579	sched_unpin();
2580	vm_page_unlock_queues();
2581	PMAP_UNLOCK(pmap);
2582}
2583
2584/*
2585 *	Insert the given physical page (p) at
2586 *	the specified virtual address (v) in the
2587 *	target physical map with the protection requested.
2588 *
2589 *	If specified, the page will be wired down, meaning
2590 *	that the related pte can not be reclaimed.
2591 *
2592 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2593 *	or lose information.  That is, this routine must actually
2594 *	insert this page into the given map NOW.
2595 */
2596void
2597pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2598    vm_prot_t prot, boolean_t wired)
2599{
2600	pd_entry_t *pde;
2601	pt_entry_t *pte;
2602	pt_entry_t newpte, origpte;
2603	pv_entry_t pv;
2604	vm_paddr_t opa, pa;
2605	vm_page_t mpte, om;
2606	boolean_t invlva;
2607
2608	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2609	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2610	va = trunc_page(va);
2611	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2612	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2613	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2614	    va));
2615	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
2616	    ("pmap_enter: page %p is not busy", m));
2617
2618	mpte = NULL;
2619
2620	vm_page_lock_queues();
2621	PMAP_LOCK(pmap);
2622	sched_pin();
2623
2624	/*
2625	 * In the case that a page table page is not
2626	 * resident, we are creating it here.
2627	 */
2628	if (va < VM_MAXUSER_ADDRESS) {
2629		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2630	}
2631
2632	pde = pmap_pde(pmap, va);
2633	if ((*pde & PG_PS) != 0)
2634		panic("pmap_enter: attempted pmap_enter on 4MB page");
2635	pte = pmap_pte_quick(pmap, va);
2636
2637	/*
2638	 * Page Directory table entry not valid, we need a new PT page
2639	 */
2640	if (pte == NULL) {
2641		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2642			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2643	}
2644
2645	pa = VM_PAGE_TO_PHYS(m);
2646	om = NULL;
2647	opa = origpte = 0;
2648
2649#if 0
2650	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2651		pte, *pte));
2652#endif
2653	origpte = *pte;
2654	if (origpte)
2655		origpte = xpmap_mtop(origpte);
2656	opa = origpte & PG_FRAME;
2657
2658	/*
2659	 * Mapping has not changed, must be protection or wiring change.
2660	 */
2661	if (origpte && (opa == pa)) {
2662		/*
2663		 * Wiring change, just update stats. We don't worry about
2664		 * wiring PT pages as they remain resident as long as there
2665		 * are valid mappings in them. Hence, if a user page is wired,
2666		 * the PT page will be also.
2667		 */
2668		if (wired && ((origpte & PG_W) == 0))
2669			pmap->pm_stats.wired_count++;
2670		else if (!wired && (origpte & PG_W))
2671			pmap->pm_stats.wired_count--;
2672
2673		/*
2674		 * Remove extra pte reference
2675		 */
2676		if (mpte)
2677			mpte->wire_count--;
2678
2679		if (origpte & PG_MANAGED) {
2680			om = m;
2681			pa |= PG_MANAGED;
2682		}
2683		goto validate;
2684	}
2685
2686	pv = NULL;
2687
2688	/*
2689	 * Mapping has changed, invalidate old range and fall through to
2690	 * handle validating new mapping.
2691	 */
2692	if (opa) {
2693		if (origpte & PG_W)
2694			pmap->pm_stats.wired_count--;
2695		if (origpte & PG_MANAGED) {
2696			om = PHYS_TO_VM_PAGE(opa);
2697			pv = pmap_pvh_remove(&om->md, pmap, va);
2698		} else if (va < VM_MAXUSER_ADDRESS)
2699			printf("va=0x%x is unmanaged :-( \n", va);
2700
2701		if (mpte != NULL) {
2702			mpte->wire_count--;
2703			KASSERT(mpte->wire_count > 0,
2704			    ("pmap_enter: missing reference to page table page,"
2705			     " va: 0x%x", va));
2706		}
2707	} else
2708		pmap->pm_stats.resident_count++;
2709
2710	/*
2711	 * Enter on the PV list if part of our managed memory.
2712	 */
2713	if ((m->oflags & VPO_UNMANAGED) == 0) {
2714		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2715		    ("pmap_enter: managed mapping within the clean submap"));
2716		if (pv == NULL)
2717			pv = get_pv_entry(pmap, FALSE);
2718		pv->pv_va = va;
2719		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2720		pa |= PG_MANAGED;
2721	} else if (pv != NULL)
2722		free_pv_entry(pmap, pv);
2723
2724	/*
2725	 * Increment counters
2726	 */
2727	if (wired)
2728		pmap->pm_stats.wired_count++;
2729
2730validate:
2731	/*
2732	 * Now validate mapping with desired protection/wiring.
2733	 */
2734	newpte = (pt_entry_t)(pa | PG_V);
2735	if ((prot & VM_PROT_WRITE) != 0) {
2736		newpte |= PG_RW;
2737		if ((newpte & PG_MANAGED) != 0)
2738			vm_page_aflag_set(m, PGA_WRITEABLE);
2739	}
2740#ifdef PAE
2741	if ((prot & VM_PROT_EXECUTE) == 0)
2742		newpte |= pg_nx;
2743#endif
2744	if (wired)
2745		newpte |= PG_W;
2746	if (va < VM_MAXUSER_ADDRESS)
2747		newpte |= PG_U;
2748	if (pmap == kernel_pmap)
2749		newpte |= pgeflag;
2750
2751	critical_enter();
2752	/*
2753	 * if the mapping or permission bits are different, we need
2754	 * to update the pte.
2755	 */
2756	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2757		if (origpte) {
2758			invlva = FALSE;
2759			origpte = *pte;
2760			PT_SET_VA(pte, newpte | PG_A, FALSE);
2761			if (origpte & PG_A) {
2762				if (origpte & PG_MANAGED)
2763					vm_page_aflag_set(om, PGA_REFERENCED);
2764				if (opa != VM_PAGE_TO_PHYS(m))
2765					invlva = TRUE;
2766#ifdef PAE
2767				if ((origpte & PG_NX) == 0 &&
2768				    (newpte & PG_NX) != 0)
2769					invlva = TRUE;
2770#endif
2771			}
2772			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2773				if ((origpte & PG_MANAGED) != 0)
2774					vm_page_dirty(om);
2775				if ((prot & VM_PROT_WRITE) == 0)
2776					invlva = TRUE;
2777			}
2778			if ((origpte & PG_MANAGED) != 0 &&
2779			    TAILQ_EMPTY(&om->md.pv_list))
2780				vm_page_aflag_clear(om, PGA_WRITEABLE);
2781			if (invlva)
2782				pmap_invalidate_page(pmap, va);
2783		} else{
2784			PT_SET_VA(pte, newpte | PG_A, FALSE);
2785		}
2786
2787	}
2788	PT_UPDATES_FLUSH();
2789	critical_exit();
2790	if (*PMAP1)
2791		PT_SET_VA_MA(PMAP1, 0, TRUE);
2792	sched_unpin();
2793	vm_page_unlock_queues();
2794	PMAP_UNLOCK(pmap);
2795}
2796
2797/*
2798 * Maps a sequence of resident pages belonging to the same object.
2799 * The sequence begins with the given page m_start.  This page is
2800 * mapped at the given virtual address start.  Each subsequent page is
2801 * mapped at a virtual address that is offset from start by the same
2802 * amount as the page is offset from m_start within the object.  The
2803 * last page in the sequence is the page with the largest offset from
2804 * m_start that can be mapped at a virtual address less than the given
2805 * virtual address end.  Not every virtual page between start and end
2806 * is mapped; only those for which a resident page exists with the
2807 * corresponding offset from m_start are mapped.
2808 */
2809void
2810pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2811    vm_page_t m_start, vm_prot_t prot)
2812{
2813	vm_page_t m, mpte;
2814	vm_pindex_t diff, psize;
2815	multicall_entry_t mcl[16];
2816	multicall_entry_t *mclp = mcl;
2817	int error, count = 0;
2818
2819	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2820	psize = atop(end - start);
2821
2822	mpte = NULL;
2823	m = m_start;
2824	vm_page_lock_queues();
2825	PMAP_LOCK(pmap);
2826	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2827		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2828		    prot, mpte);
2829		m = TAILQ_NEXT(m, listq);
2830		if (count == 16) {
2831			error = HYPERVISOR_multicall(mcl, count);
2832			KASSERT(error == 0, ("bad multicall %d", error));
2833			mclp = mcl;
2834			count = 0;
2835		}
2836	}
2837	if (count) {
2838		error = HYPERVISOR_multicall(mcl, count);
2839		KASSERT(error == 0, ("bad multicall %d", error));
2840	}
2841	vm_page_unlock_queues();
2842	PMAP_UNLOCK(pmap);
2843}
2844
2845/*
2846 * this code makes some *MAJOR* assumptions:
2847 * 1. Current pmap & pmap exists.
2848 * 2. Not wired.
2849 * 3. Read access.
2850 * 4. No page table pages.
2851 * but is *MUCH* faster than pmap_enter...
2852 */
2853
2854void
2855pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2856{
2857	multicall_entry_t mcl, *mclp;
2858	int count = 0;
2859	mclp = &mcl;
2860
2861	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2862	    pmap, va, m, prot);
2863
2864	vm_page_lock_queues();
2865	PMAP_LOCK(pmap);
2866	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2867	if (count)
2868		HYPERVISOR_multicall(&mcl, count);
2869	vm_page_unlock_queues();
2870	PMAP_UNLOCK(pmap);
2871}
2872
2873#ifdef notyet
2874void
2875pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2876{
2877	int i, error, index = 0;
2878	multicall_entry_t mcl[16];
2879	multicall_entry_t *mclp = mcl;
2880
2881	PMAP_LOCK(pmap);
2882	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2883		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2884			continue;
2885
2886		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2887		if (index == 16) {
2888			error = HYPERVISOR_multicall(mcl, index);
2889			mclp = mcl;
2890			index = 0;
2891			KASSERT(error == 0, ("bad multicall %d", error));
2892		}
2893	}
2894	if (index) {
2895		error = HYPERVISOR_multicall(mcl, index);
2896		KASSERT(error == 0, ("bad multicall %d", error));
2897	}
2898
2899	PMAP_UNLOCK(pmap);
2900}
2901#endif
2902
2903static vm_page_t
2904pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2905    vm_prot_t prot, vm_page_t mpte)
2906{
2907	pt_entry_t *pte;
2908	vm_paddr_t pa;
2909	vm_page_t free;
2910	multicall_entry_t *mcl = *mclpp;
2911
2912	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2913	    (m->oflags & VPO_UNMANAGED) != 0,
2914	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2915	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2916	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2917
2918	/*
2919	 * In the case that a page table page is not
2920	 * resident, we are creating it here.
2921	 */
2922	if (va < VM_MAXUSER_ADDRESS) {
2923		unsigned ptepindex;
2924		pd_entry_t ptema;
2925
2926		/*
2927		 * Calculate pagetable page index
2928		 */
2929		ptepindex = va >> PDRSHIFT;
2930		if (mpte && (mpte->pindex == ptepindex)) {
2931			mpte->wire_count++;
2932		} else {
2933			/*
2934			 * Get the page directory entry
2935			 */
2936			ptema = pmap->pm_pdir[ptepindex];
2937
2938			/*
2939			 * If the page table page is mapped, we just increment
2940			 * the hold count, and activate it.
2941			 */
2942			if (ptema & PG_V) {
2943				if (ptema & PG_PS)
2944					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2945				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2946				mpte->wire_count++;
2947			} else {
2948				mpte = _pmap_allocpte(pmap, ptepindex,
2949				    M_NOWAIT);
2950				if (mpte == NULL)
2951					return (mpte);
2952			}
2953		}
2954	} else {
2955		mpte = NULL;
2956	}
2957
2958	/*
2959	 * This call to vtopte makes the assumption that we are
2960	 * entering the page into the current pmap.  In order to support
2961	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2962	 * But that isn't as quick as vtopte.
2963	 */
2964	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2965	pte = vtopte(va);
2966	if (*pte & PG_V) {
2967		if (mpte != NULL) {
2968			mpte->wire_count--;
2969			mpte = NULL;
2970		}
2971		return (mpte);
2972	}
2973
2974	/*
2975	 * Enter on the PV list if part of our managed memory.
2976	 */
2977	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2978	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2979		if (mpte != NULL) {
2980			free = NULL;
2981			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2982				pmap_invalidate_page(pmap, va);
2983				pmap_free_zero_pages(free);
2984			}
2985
2986			mpte = NULL;
2987		}
2988		return (mpte);
2989	}
2990
2991	/*
2992	 * Increment counters
2993	 */
2994	pmap->pm_stats.resident_count++;
2995
2996	pa = VM_PAGE_TO_PHYS(m);
2997#ifdef PAE
2998	if ((prot & VM_PROT_EXECUTE) == 0)
2999		pa |= pg_nx;
3000#endif
3001
3002#if 0
3003	/*
3004	 * Now validate mapping with RO protection
3005	 */
3006	if ((m->oflags & VPO_UNMANAGED) != 0)
3007		pte_store(pte, pa | PG_V | PG_U);
3008	else
3009		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3010#else
3011	/*
3012	 * Now validate mapping with RO protection
3013	 */
3014	if ((m->oflags & VPO_UNMANAGED) != 0)
3015		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3016	else
3017		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3018
3019	mcl->op = __HYPERVISOR_update_va_mapping;
3020	mcl->args[0] = va;
3021	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3022	mcl->args[2] = (uint32_t)(pa >> 32);
3023	mcl->args[3] = 0;
3024	*mclpp = mcl + 1;
3025	*count = *count + 1;
3026#endif
3027	return mpte;
3028}
3029
3030/*
3031 * Make a temporary mapping for a physical address.  This is only intended
3032 * to be used for panic dumps.
3033 */
3034void *
3035pmap_kenter_temporary(vm_paddr_t pa, int i)
3036{
3037	vm_offset_t va;
3038	vm_paddr_t ma = xpmap_ptom(pa);
3039
3040	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3041	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3042	invlpg(va);
3043	return ((void *)crashdumpmap);
3044}
3045
3046/*
3047 * This code maps large physical mmap regions into the
3048 * processor address space.  Note that some shortcuts
3049 * are taken, but the code works.
3050 */
3051void
3052pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3053		    vm_object_t object, vm_pindex_t pindex,
3054		    vm_size_t size)
3055{
3056	pd_entry_t *pde;
3057	vm_paddr_t pa, ptepa;
3058	vm_page_t p;
3059	int pat_mode;
3060
3061	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3062	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3063	    ("pmap_object_init_pt: non-device object"));
3064	if (pseflag &&
3065	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3066		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3067			return;
3068		p = vm_page_lookup(object, pindex);
3069		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3070		    ("pmap_object_init_pt: invalid page %p", p));
3071		pat_mode = p->md.pat_mode;
3072		/*
3073		 * Abort the mapping if the first page is not physically
3074		 * aligned to a 2/4MB page boundary.
3075		 */
3076		ptepa = VM_PAGE_TO_PHYS(p);
3077		if (ptepa & (NBPDR - 1))
3078			return;
3079		/*
3080		 * Skip the first page.  Abort the mapping if the rest of
3081		 * the pages are not physically contiguous or have differing
3082		 * memory attributes.
3083		 */
3084		p = TAILQ_NEXT(p, listq);
3085		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3086		    pa += PAGE_SIZE) {
3087			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3088			    ("pmap_object_init_pt: invalid page %p", p));
3089			if (pa != VM_PAGE_TO_PHYS(p) ||
3090			    pat_mode != p->md.pat_mode)
3091				return;
3092			p = TAILQ_NEXT(p, listq);
3093		}
3094		/* Map using 2/4MB pages. */
3095		PMAP_LOCK(pmap);
3096		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3097		    size; pa += NBPDR) {
3098			pde = pmap_pde(pmap, addr);
3099			if (*pde == 0) {
3100				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3101				    PG_U | PG_RW | PG_V);
3102				pmap->pm_stats.resident_count += NBPDR /
3103				    PAGE_SIZE;
3104				pmap_pde_mappings++;
3105			}
3106			/* Else continue on if the PDE is already valid. */
3107			addr += NBPDR;
3108		}
3109		PMAP_UNLOCK(pmap);
3110	}
3111}
3112
3113/*
3114 *	Routine:	pmap_change_wiring
3115 *	Function:	Change the wiring attribute for a map/virtual-address
3116 *			pair.
3117 *	In/out conditions:
3118 *			The mapping must already exist in the pmap.
3119 */
3120void
3121pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3122{
3123	pt_entry_t *pte;
3124
3125	vm_page_lock_queues();
3126	PMAP_LOCK(pmap);
3127	pte = pmap_pte(pmap, va);
3128
3129	if (wired && !pmap_pte_w(pte)) {
3130		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3131		pmap->pm_stats.wired_count++;
3132	} else if (!wired && pmap_pte_w(pte)) {
3133		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3134		pmap->pm_stats.wired_count--;
3135	}
3136
3137	/*
3138	 * Wiring is not a hardware characteristic so there is no need to
3139	 * invalidate TLB.
3140	 */
3141	pmap_pte_release(pte);
3142	PMAP_UNLOCK(pmap);
3143	vm_page_unlock_queues();
3144}
3145
3146
3147
3148/*
3149 *	Copy the range specified by src_addr/len
3150 *	from the source map to the range dst_addr/len
3151 *	in the destination map.
3152 *
3153 *	This routine is only advisory and need not do anything.
3154 */
3155
3156void
3157pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3158	  vm_offset_t src_addr)
3159{
3160	vm_page_t   free;
3161	vm_offset_t addr;
3162	vm_offset_t end_addr = src_addr + len;
3163	vm_offset_t pdnxt;
3164
3165	if (dst_addr != src_addr)
3166		return;
3167
3168	if (!pmap_is_current(src_pmap)) {
3169		CTR2(KTR_PMAP,
3170		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3171		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3172
3173		return;
3174	}
3175	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3176	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3177
3178#ifdef HAMFISTED_LOCKING
3179	mtx_lock(&createdelete_lock);
3180#endif
3181
3182	vm_page_lock_queues();
3183	if (dst_pmap < src_pmap) {
3184		PMAP_LOCK(dst_pmap);
3185		PMAP_LOCK(src_pmap);
3186	} else {
3187		PMAP_LOCK(src_pmap);
3188		PMAP_LOCK(dst_pmap);
3189	}
3190	sched_pin();
3191	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3192		pt_entry_t *src_pte, *dst_pte;
3193		vm_page_t dstmpte, srcmpte;
3194		pd_entry_t srcptepaddr;
3195		unsigned ptepindex;
3196
3197		KASSERT(addr < UPT_MIN_ADDRESS,
3198		    ("pmap_copy: invalid to pmap_copy page tables"));
3199
3200		pdnxt = (addr + NBPDR) & ~PDRMASK;
3201		ptepindex = addr >> PDRSHIFT;
3202
3203		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3204		if (srcptepaddr == 0)
3205			continue;
3206
3207		if (srcptepaddr & PG_PS) {
3208			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3209				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3210				dst_pmap->pm_stats.resident_count +=
3211				    NBPDR / PAGE_SIZE;
3212			}
3213			continue;
3214		}
3215
3216		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3217		KASSERT(srcmpte->wire_count > 0,
3218		    ("pmap_copy: source page table page is unused"));
3219
3220		if (pdnxt > end_addr)
3221			pdnxt = end_addr;
3222
3223		src_pte = vtopte(addr);
3224		while (addr < pdnxt) {
3225			pt_entry_t ptetemp;
3226			ptetemp = *src_pte;
3227			/*
3228			 * we only virtual copy managed pages
3229			 */
3230			if ((ptetemp & PG_MANAGED) != 0) {
3231				dstmpte = pmap_allocpte(dst_pmap, addr,
3232				    M_NOWAIT);
3233				if (dstmpte == NULL)
3234					break;
3235				dst_pte = pmap_pte_quick(dst_pmap, addr);
3236				if (*dst_pte == 0 &&
3237				    pmap_try_insert_pv_entry(dst_pmap, addr,
3238				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3239					/*
3240					 * Clear the wired, modified, and
3241					 * accessed (referenced) bits
3242					 * during the copy.
3243					 */
3244					KASSERT(ptetemp != 0, ("src_pte not set"));
3245					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3246					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3247					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3248						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3249					dst_pmap->pm_stats.resident_count++;
3250	 			} else {
3251					free = NULL;
3252					if (pmap_unwire_pte_hold(dst_pmap,
3253					    dstmpte, &free)) {
3254						pmap_invalidate_page(dst_pmap,
3255						    addr);
3256						pmap_free_zero_pages(free);
3257					}
3258				}
3259				if (dstmpte->wire_count >= srcmpte->wire_count)
3260					break;
3261			}
3262			addr += PAGE_SIZE;
3263			src_pte++;
3264		}
3265	}
3266	PT_UPDATES_FLUSH();
3267	sched_unpin();
3268	vm_page_unlock_queues();
3269	PMAP_UNLOCK(src_pmap);
3270	PMAP_UNLOCK(dst_pmap);
3271
3272#ifdef HAMFISTED_LOCKING
3273	mtx_unlock(&createdelete_lock);
3274#endif
3275}
3276
3277static __inline void
3278pagezero(void *page)
3279{
3280#if defined(I686_CPU)
3281	if (cpu_class == CPUCLASS_686) {
3282#if defined(CPU_ENABLE_SSE)
3283		if (cpu_feature & CPUID_SSE2)
3284			sse2_pagezero(page);
3285		else
3286#endif
3287			i686_pagezero(page);
3288	} else
3289#endif
3290		bzero(page, PAGE_SIZE);
3291}
3292
3293/*
3294 *	pmap_zero_page zeros the specified hardware page by mapping
3295 *	the page into KVM and using bzero to clear its contents.
3296 */
3297void
3298pmap_zero_page(vm_page_t m)
3299{
3300	struct sysmaps *sysmaps;
3301
3302	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3303	mtx_lock(&sysmaps->lock);
3304	if (*sysmaps->CMAP2)
3305		panic("pmap_zero_page: CMAP2 busy");
3306	sched_pin();
3307	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3308	pagezero(sysmaps->CADDR2);
3309	PT_SET_MA(sysmaps->CADDR2, 0);
3310	sched_unpin();
3311	mtx_unlock(&sysmaps->lock);
3312}
3313
3314/*
3315 *	pmap_zero_page_area zeros the specified hardware page by mapping
3316 *	the page into KVM and using bzero to clear its contents.
3317 *
3318 *	off and size may not cover an area beyond a single hardware page.
3319 */
3320void
3321pmap_zero_page_area(vm_page_t m, int off, int size)
3322{
3323	struct sysmaps *sysmaps;
3324
3325	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3326	mtx_lock(&sysmaps->lock);
3327	if (*sysmaps->CMAP2)
3328		panic("pmap_zero_page: CMAP2 busy");
3329	sched_pin();
3330	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3331
3332	if (off == 0 && size == PAGE_SIZE)
3333		pagezero(sysmaps->CADDR2);
3334	else
3335		bzero((char *)sysmaps->CADDR2 + off, size);
3336	PT_SET_MA(sysmaps->CADDR2, 0);
3337	sched_unpin();
3338	mtx_unlock(&sysmaps->lock);
3339}
3340
3341/*
3342 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3343 *	the page into KVM and using bzero to clear its contents.  This
3344 *	is intended to be called from the vm_pagezero process only and
3345 *	outside of Giant.
3346 */
3347void
3348pmap_zero_page_idle(vm_page_t m)
3349{
3350
3351	if (*CMAP3)
3352		panic("pmap_zero_page: CMAP3 busy");
3353	sched_pin();
3354	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3355	pagezero(CADDR3);
3356	PT_SET_MA(CADDR3, 0);
3357	sched_unpin();
3358}
3359
3360/*
3361 *	pmap_copy_page copies the specified (machine independent)
3362 *	page by mapping the page into virtual memory and using
3363 *	bcopy to copy the page, one machine dependent page at a
3364 *	time.
3365 */
3366void
3367pmap_copy_page(vm_page_t src, vm_page_t dst)
3368{
3369	struct sysmaps *sysmaps;
3370
3371	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3372	mtx_lock(&sysmaps->lock);
3373	if (*sysmaps->CMAP1)
3374		panic("pmap_copy_page: CMAP1 busy");
3375	if (*sysmaps->CMAP2)
3376		panic("pmap_copy_page: CMAP2 busy");
3377	sched_pin();
3378	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3379	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3380	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3381	PT_SET_MA(sysmaps->CADDR1, 0);
3382	PT_SET_MA(sysmaps->CADDR2, 0);
3383	sched_unpin();
3384	mtx_unlock(&sysmaps->lock);
3385}
3386
3387/*
3388 * Returns true if the pmap's pv is one of the first
3389 * 16 pvs linked to from this page.  This count may
3390 * be changed upwards or downwards in the future; it
3391 * is only necessary that true be returned for a small
3392 * subset of pmaps for proper page aging.
3393 */
3394boolean_t
3395pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3396{
3397	pv_entry_t pv;
3398	int loops = 0;
3399	boolean_t rv;
3400
3401	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3402	    ("pmap_page_exists_quick: page %p is not managed", m));
3403	rv = FALSE;
3404	vm_page_lock_queues();
3405	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3406		if (PV_PMAP(pv) == pmap) {
3407			rv = TRUE;
3408			break;
3409		}
3410		loops++;
3411		if (loops >= 16)
3412			break;
3413	}
3414	vm_page_unlock_queues();
3415	return (rv);
3416}
3417
3418/*
3419 *	pmap_page_wired_mappings:
3420 *
3421 *	Return the number of managed mappings to the given physical page
3422 *	that are wired.
3423 */
3424int
3425pmap_page_wired_mappings(vm_page_t m)
3426{
3427	pv_entry_t pv;
3428	pt_entry_t *pte;
3429	pmap_t pmap;
3430	int count;
3431
3432	count = 0;
3433	if ((m->oflags & VPO_UNMANAGED) != 0)
3434		return (count);
3435	vm_page_lock_queues();
3436	sched_pin();
3437	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3438		pmap = PV_PMAP(pv);
3439		PMAP_LOCK(pmap);
3440		pte = pmap_pte_quick(pmap, pv->pv_va);
3441		if ((*pte & PG_W) != 0)
3442			count++;
3443		PMAP_UNLOCK(pmap);
3444	}
3445	sched_unpin();
3446	vm_page_unlock_queues();
3447	return (count);
3448}
3449
3450/*
3451 * Returns TRUE if the given page is mapped individually or as part of
3452 * a 4mpage.  Otherwise, returns FALSE.
3453 */
3454boolean_t
3455pmap_page_is_mapped(vm_page_t m)
3456{
3457	boolean_t rv;
3458
3459	if ((m->oflags & VPO_UNMANAGED) != 0)
3460		return (FALSE);
3461	vm_page_lock_queues();
3462	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3463	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3464	vm_page_unlock_queues();
3465	return (rv);
3466}
3467
3468/*
3469 * Remove all pages from specified address space
3470 * this aids process exit speeds.  Also, this code
3471 * is special cased for current process only, but
3472 * can have the more generic (and slightly slower)
3473 * mode enabled.  This is much faster than pmap_remove
3474 * in the case of running down an entire address space.
3475 */
3476void
3477pmap_remove_pages(pmap_t pmap)
3478{
3479	pt_entry_t *pte, tpte;
3480	vm_page_t m, free = NULL;
3481	pv_entry_t pv;
3482	struct pv_chunk *pc, *npc;
3483	int field, idx;
3484	int32_t bit;
3485	uint32_t inuse, bitmask;
3486	int allfree;
3487
3488	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3489
3490	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3491		printf("warning: pmap_remove_pages called with non-current pmap\n");
3492		return;
3493	}
3494	vm_page_lock_queues();
3495	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3496	PMAP_LOCK(pmap);
3497	sched_pin();
3498	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3499		allfree = 1;
3500		for (field = 0; field < _NPCM; field++) {
3501			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3502			while (inuse != 0) {
3503				bit = bsfl(inuse);
3504				bitmask = 1UL << bit;
3505				idx = field * 32 + bit;
3506				pv = &pc->pc_pventry[idx];
3507				inuse &= ~bitmask;
3508
3509				pte = vtopte(pv->pv_va);
3510				tpte = *pte ? xpmap_mtop(*pte) : 0;
3511
3512				if (tpte == 0) {
3513					printf(
3514					    "TPTE at %p  IS ZERO @ VA %08x\n",
3515					    pte, pv->pv_va);
3516					panic("bad pte");
3517				}
3518
3519/*
3520 * We cannot remove wired pages from a process' mapping at this time
3521 */
3522				if (tpte & PG_W) {
3523					allfree = 0;
3524					continue;
3525				}
3526
3527				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3528				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3529				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3530				    m, (uintmax_t)m->phys_addr,
3531				    (uintmax_t)tpte));
3532
3533				KASSERT(m < &vm_page_array[vm_page_array_size],
3534					("pmap_remove_pages: bad tpte %#jx",
3535					(uintmax_t)tpte));
3536
3537
3538				PT_CLEAR_VA(pte, FALSE);
3539
3540				/*
3541				 * Update the vm_page_t clean/reference bits.
3542				 */
3543				if (tpte & PG_M)
3544					vm_page_dirty(m);
3545
3546				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3547				if (TAILQ_EMPTY(&m->md.pv_list))
3548					vm_page_aflag_clear(m, PGA_WRITEABLE);
3549
3550				pmap_unuse_pt(pmap, pv->pv_va, &free);
3551
3552				/* Mark free */
3553				PV_STAT(pv_entry_frees++);
3554				PV_STAT(pv_entry_spare++);
3555				pv_entry_count--;
3556				pc->pc_map[field] |= bitmask;
3557				pmap->pm_stats.resident_count--;
3558			}
3559		}
3560		PT_UPDATES_FLUSH();
3561		if (allfree) {
3562			PV_STAT(pv_entry_spare -= _NPCPV);
3563			PV_STAT(pc_chunk_count--);
3564			PV_STAT(pc_chunk_frees++);
3565			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3566			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3567			pmap_qremove((vm_offset_t)pc, 1);
3568			vm_page_unwire(m, 0);
3569			vm_page_free(m);
3570			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3571		}
3572	}
3573	PT_UPDATES_FLUSH();
3574	if (*PMAP1)
3575		PT_SET_MA(PADDR1, 0);
3576
3577	sched_unpin();
3578	pmap_invalidate_all(pmap);
3579	vm_page_unlock_queues();
3580	PMAP_UNLOCK(pmap);
3581	pmap_free_zero_pages(free);
3582}
3583
3584/*
3585 *	pmap_is_modified:
3586 *
3587 *	Return whether or not the specified physical page was modified
3588 *	in any physical maps.
3589 */
3590boolean_t
3591pmap_is_modified(vm_page_t m)
3592{
3593	pv_entry_t pv;
3594	pt_entry_t *pte;
3595	pmap_t pmap;
3596	boolean_t rv;
3597
3598	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3599	    ("pmap_is_modified: page %p is not managed", m));
3600	rv = FALSE;
3601
3602	/*
3603	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
3604	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3605	 * is clear, no PTEs can have PG_M set.
3606	 */
3607	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3608	if ((m->oflags & VPO_BUSY) == 0 &&
3609	    (m->aflags & PGA_WRITEABLE) == 0)
3610		return (rv);
3611	vm_page_lock_queues();
3612	sched_pin();
3613	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3614		pmap = PV_PMAP(pv);
3615		PMAP_LOCK(pmap);
3616		pte = pmap_pte_quick(pmap, pv->pv_va);
3617		rv = (*pte & PG_M) != 0;
3618		PMAP_UNLOCK(pmap);
3619		if (rv)
3620			break;
3621	}
3622	if (*PMAP1)
3623		PT_SET_MA(PADDR1, 0);
3624	sched_unpin();
3625	vm_page_unlock_queues();
3626	return (rv);
3627}
3628
3629/*
3630 *	pmap_is_prefaultable:
3631 *
3632 *	Return whether or not the specified virtual address is elgible
3633 *	for prefault.
3634 */
3635static boolean_t
3636pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3637{
3638	pt_entry_t *pte;
3639	boolean_t rv = FALSE;
3640
3641	return (rv);
3642
3643	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3644		pte = vtopte(addr);
3645		rv = (*pte == 0);
3646	}
3647	return (rv);
3648}
3649
3650boolean_t
3651pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3652{
3653	boolean_t rv;
3654
3655	PMAP_LOCK(pmap);
3656	rv = pmap_is_prefaultable_locked(pmap, addr);
3657	PMAP_UNLOCK(pmap);
3658	return (rv);
3659}
3660
3661boolean_t
3662pmap_is_referenced(vm_page_t m)
3663{
3664	pv_entry_t pv;
3665	pt_entry_t *pte;
3666	pmap_t pmap;
3667	boolean_t rv;
3668
3669	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3670	    ("pmap_is_referenced: page %p is not managed", m));
3671	rv = FALSE;
3672	vm_page_lock_queues();
3673	sched_pin();
3674	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3675		pmap = PV_PMAP(pv);
3676		PMAP_LOCK(pmap);
3677		pte = pmap_pte_quick(pmap, pv->pv_va);
3678		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3679		PMAP_UNLOCK(pmap);
3680		if (rv)
3681			break;
3682	}
3683	if (*PMAP1)
3684		PT_SET_MA(PADDR1, 0);
3685	sched_unpin();
3686	vm_page_unlock_queues();
3687	return (rv);
3688}
3689
3690void
3691pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3692{
3693	int i, npages = round_page(len) >> PAGE_SHIFT;
3694	for (i = 0; i < npages; i++) {
3695		pt_entry_t *pte;
3696		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3697		vm_page_lock_queues();
3698		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3699		vm_page_unlock_queues();
3700		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3701		pmap_pte_release(pte);
3702	}
3703}
3704
3705void
3706pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3707{
3708	int i, npages = round_page(len) >> PAGE_SHIFT;
3709	for (i = 0; i < npages; i++) {
3710		pt_entry_t *pte;
3711		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3712		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3713		vm_page_lock_queues();
3714		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3715		vm_page_unlock_queues();
3716		pmap_pte_release(pte);
3717	}
3718}
3719
3720/*
3721 * Clear the write and modified bits in each of the given page's mappings.
3722 */
3723void
3724pmap_remove_write(vm_page_t m)
3725{
3726	pv_entry_t pv;
3727	pmap_t pmap;
3728	pt_entry_t oldpte, *pte;
3729
3730	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3731	    ("pmap_remove_write: page %p is not managed", m));
3732
3733	/*
3734	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
3735	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
3736	 * is clear, no page table entries need updating.
3737	 */
3738	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3739	if ((m->oflags & VPO_BUSY) == 0 &&
3740	    (m->aflags & PGA_WRITEABLE) == 0)
3741		return;
3742	vm_page_lock_queues();
3743	sched_pin();
3744	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3745		pmap = PV_PMAP(pv);
3746		PMAP_LOCK(pmap);
3747		pte = pmap_pte_quick(pmap, pv->pv_va);
3748retry:
3749		oldpte = *pte;
3750		if ((oldpte & PG_RW) != 0) {
3751			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3752
3753			/*
3754			 * Regardless of whether a pte is 32 or 64 bits
3755			 * in size, PG_RW and PG_M are among the least
3756			 * significant 32 bits.
3757			 */
3758			PT_SET_VA_MA(pte, newpte, TRUE);
3759			if (*pte != newpte)
3760				goto retry;
3761
3762			if ((oldpte & PG_M) != 0)
3763				vm_page_dirty(m);
3764			pmap_invalidate_page(pmap, pv->pv_va);
3765		}
3766		PMAP_UNLOCK(pmap);
3767	}
3768	vm_page_aflag_clear(m, PGA_WRITEABLE);
3769	PT_UPDATES_FLUSH();
3770	if (*PMAP1)
3771		PT_SET_MA(PADDR1, 0);
3772	sched_unpin();
3773	vm_page_unlock_queues();
3774}
3775
3776/*
3777 *	pmap_ts_referenced:
3778 *
3779 *	Return a count of reference bits for a page, clearing those bits.
3780 *	It is not necessary for every reference bit to be cleared, but it
3781 *	is necessary that 0 only be returned when there are truly no
3782 *	reference bits set.
3783 *
3784 *	XXX: The exact number of bits to check and clear is a matter that
3785 *	should be tested and standardized at some point in the future for
3786 *	optimal aging of shared pages.
3787 */
3788int
3789pmap_ts_referenced(vm_page_t m)
3790{
3791	pv_entry_t pv, pvf, pvn;
3792	pmap_t pmap;
3793	pt_entry_t *pte;
3794	int rtval = 0;
3795
3796	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3797	    ("pmap_ts_referenced: page %p is not managed", m));
3798	vm_page_lock_queues();
3799	sched_pin();
3800	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3801		pvf = pv;
3802		do {
3803			pvn = TAILQ_NEXT(pv, pv_list);
3804			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3805			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3806			pmap = PV_PMAP(pv);
3807			PMAP_LOCK(pmap);
3808			pte = pmap_pte_quick(pmap, pv->pv_va);
3809			if ((*pte & PG_A) != 0) {
3810				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3811				pmap_invalidate_page(pmap, pv->pv_va);
3812				rtval++;
3813				if (rtval > 4)
3814					pvn = NULL;
3815			}
3816			PMAP_UNLOCK(pmap);
3817		} while ((pv = pvn) != NULL && pv != pvf);
3818	}
3819	PT_UPDATES_FLUSH();
3820	if (*PMAP1)
3821		PT_SET_MA(PADDR1, 0);
3822
3823	sched_unpin();
3824	vm_page_unlock_queues();
3825	return (rtval);
3826}
3827
3828/*
3829 *	Clear the modify bits on the specified physical page.
3830 */
3831void
3832pmap_clear_modify(vm_page_t m)
3833{
3834	pv_entry_t pv;
3835	pmap_t pmap;
3836	pt_entry_t *pte;
3837
3838	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3839	    ("pmap_clear_modify: page %p is not managed", m));
3840	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3841	KASSERT((m->oflags & VPO_BUSY) == 0,
3842	    ("pmap_clear_modify: page %p is busy", m));
3843
3844	/*
3845	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
3846	 * If the object containing the page is locked and the page is not
3847	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
3848	 */
3849	if ((m->aflags & PGA_WRITEABLE) == 0)
3850		return;
3851	vm_page_lock_queues();
3852	sched_pin();
3853	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3854		pmap = PV_PMAP(pv);
3855		PMAP_LOCK(pmap);
3856		pte = pmap_pte_quick(pmap, pv->pv_va);
3857		if ((*pte & PG_M) != 0) {
3858			/*
3859			 * Regardless of whether a pte is 32 or 64 bits
3860			 * in size, PG_M is among the least significant
3861			 * 32 bits.
3862			 */
3863			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3864			pmap_invalidate_page(pmap, pv->pv_va);
3865		}
3866		PMAP_UNLOCK(pmap);
3867	}
3868	sched_unpin();
3869	vm_page_unlock_queues();
3870}
3871
3872/*
3873 *	pmap_clear_reference:
3874 *
3875 *	Clear the reference bit on the specified physical page.
3876 */
3877void
3878pmap_clear_reference(vm_page_t m)
3879{
3880	pv_entry_t pv;
3881	pmap_t pmap;
3882	pt_entry_t *pte;
3883
3884	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3885	    ("pmap_clear_reference: page %p is not managed", m));
3886	vm_page_lock_queues();
3887	sched_pin();
3888	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3889		pmap = PV_PMAP(pv);
3890		PMAP_LOCK(pmap);
3891		pte = pmap_pte_quick(pmap, pv->pv_va);
3892		if ((*pte & PG_A) != 0) {
3893			/*
3894			 * Regardless of whether a pte is 32 or 64 bits
3895			 * in size, PG_A is among the least significant
3896			 * 32 bits.
3897			 */
3898			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3899			pmap_invalidate_page(pmap, pv->pv_va);
3900		}
3901		PMAP_UNLOCK(pmap);
3902	}
3903	sched_unpin();
3904	vm_page_unlock_queues();
3905}
3906
3907/*
3908 * Miscellaneous support routines follow
3909 */
3910
3911/*
3912 * Map a set of physical memory pages into the kernel virtual
3913 * address space. Return a pointer to where it is mapped. This
3914 * routine is intended to be used for mapping device memory,
3915 * NOT real memory.
3916 */
3917void *
3918pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3919{
3920	vm_offset_t va, offset;
3921	vm_size_t tmpsize;
3922
3923	offset = pa & PAGE_MASK;
3924	size = roundup(offset + size, PAGE_SIZE);
3925	pa = pa & PG_FRAME;
3926
3927	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3928		va = KERNBASE + pa;
3929	else
3930		va = kmem_alloc_nofault(kernel_map, size);
3931	if (!va)
3932		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3933
3934	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3935		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3936	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3937	pmap_invalidate_cache_range(va, va + size);
3938	return ((void *)(va + offset));
3939}
3940
3941void *
3942pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3943{
3944
3945	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3946}
3947
3948void *
3949pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3950{
3951
3952	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3953}
3954
3955void
3956pmap_unmapdev(vm_offset_t va, vm_size_t size)
3957{
3958	vm_offset_t base, offset, tmpva;
3959
3960	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3961		return;
3962	base = trunc_page(va);
3963	offset = va & PAGE_MASK;
3964	size = roundup(offset + size, PAGE_SIZE);
3965	critical_enter();
3966	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3967		pmap_kremove(tmpva);
3968	pmap_invalidate_range(kernel_pmap, va, tmpva);
3969	critical_exit();
3970	kmem_free(kernel_map, base, size);
3971}
3972
3973/*
3974 * Sets the memory attribute for the specified page.
3975 */
3976void
3977pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3978{
3979	struct sysmaps *sysmaps;
3980	vm_offset_t sva, eva;
3981
3982	m->md.pat_mode = ma;
3983	if ((m->flags & PG_FICTITIOUS) != 0)
3984		return;
3985
3986	/*
3987	 * If "m" is a normal page, flush it from the cache.
3988	 * See pmap_invalidate_cache_range().
3989	 *
3990	 * First, try to find an existing mapping of the page by sf
3991	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3992	 * flushes the cache.
3993	 */
3994	if (sf_buf_invalidate_cache(m))
3995		return;
3996
3997	/*
3998	 * If page is not mapped by sf buffer, but CPU does not
3999	 * support self snoop, map the page transient and do
4000	 * invalidation. In the worst case, whole cache is flushed by
4001	 * pmap_invalidate_cache_range().
4002	 */
4003	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4004		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4005		mtx_lock(&sysmaps->lock);
4006		if (*sysmaps->CMAP2)
4007			panic("pmap_page_set_memattr: CMAP2 busy");
4008		sched_pin();
4009		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4010		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4011		    pmap_cache_bits(m->md.pat_mode, 0));
4012		invlcaddr(sysmaps->CADDR2);
4013		sva = (vm_offset_t)sysmaps->CADDR2;
4014		eva = sva + PAGE_SIZE;
4015	} else
4016		sva = eva = 0; /* gcc */
4017	pmap_invalidate_cache_range(sva, eva);
4018	if (sva != 0) {
4019		PT_SET_MA(sysmaps->CADDR2, 0);
4020		sched_unpin();
4021		mtx_unlock(&sysmaps->lock);
4022	}
4023}
4024
4025int
4026pmap_change_attr(va, size, mode)
4027	vm_offset_t va;
4028	vm_size_t size;
4029	int mode;
4030{
4031	vm_offset_t base, offset, tmpva;
4032	pt_entry_t *pte;
4033	u_int opte, npte;
4034	pd_entry_t *pde;
4035	boolean_t changed;
4036
4037	base = trunc_page(va);
4038	offset = va & PAGE_MASK;
4039	size = roundup(offset + size, PAGE_SIZE);
4040
4041	/* Only supported on kernel virtual addresses. */
4042	if (base <= VM_MAXUSER_ADDRESS)
4043		return (EINVAL);
4044
4045	/* 4MB pages and pages that aren't mapped aren't supported. */
4046	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4047		pde = pmap_pde(kernel_pmap, tmpva);
4048		if (*pde & PG_PS)
4049			return (EINVAL);
4050		if ((*pde & PG_V) == 0)
4051			return (EINVAL);
4052		pte = vtopte(va);
4053		if ((*pte & PG_V) == 0)
4054			return (EINVAL);
4055	}
4056
4057	changed = FALSE;
4058
4059	/*
4060	 * Ok, all the pages exist and are 4k, so run through them updating
4061	 * their cache mode.
4062	 */
4063	for (tmpva = base; size > 0; ) {
4064		pte = vtopte(tmpva);
4065
4066		/*
4067		 * The cache mode bits are all in the low 32-bits of the
4068		 * PTE, so we can just spin on updating the low 32-bits.
4069		 */
4070		do {
4071			opte = *(u_int *)pte;
4072			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4073			npte |= pmap_cache_bits(mode, 0);
4074			PT_SET_VA_MA(pte, npte, TRUE);
4075		} while (npte != opte && (*pte != npte));
4076		if (npte != opte)
4077			changed = TRUE;
4078		tmpva += PAGE_SIZE;
4079		size -= PAGE_SIZE;
4080	}
4081
4082	/*
4083	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4084	 * be, etc.
4085	 */
4086	if (changed) {
4087		pmap_invalidate_range(kernel_pmap, base, tmpva);
4088		pmap_invalidate_cache_range(base, tmpva);
4089	}
4090	return (0);
4091}
4092
4093/*
4094 * perform the pmap work for mincore
4095 */
4096int
4097pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4098{
4099	pt_entry_t *ptep, pte;
4100	vm_paddr_t pa;
4101	int val;
4102
4103	PMAP_LOCK(pmap);
4104retry:
4105	ptep = pmap_pte(pmap, addr);
4106	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4107	pmap_pte_release(ptep);
4108	val = 0;
4109	if ((pte & PG_V) != 0) {
4110		val |= MINCORE_INCORE;
4111		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4112			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4113		if ((pte & PG_A) != 0)
4114			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4115	}
4116	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4117	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4118	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4119		pa = pte & PG_FRAME;
4120		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4121		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4122			goto retry;
4123	} else
4124		PA_UNLOCK_COND(*locked_pa);
4125	PMAP_UNLOCK(pmap);
4126	return (val);
4127}
4128
4129void
4130pmap_activate(struct thread *td)
4131{
4132	pmap_t	pmap, oldpmap;
4133	u_int	cpuid;
4134	u_int32_t  cr3;
4135
4136	critical_enter();
4137	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4138	oldpmap = PCPU_GET(curpmap);
4139	cpuid = PCPU_GET(cpuid);
4140#if defined(SMP)
4141	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4142	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4143#else
4144	CPU_CLR(cpuid, &oldpmap->pm_active);
4145	CPU_SET(cpuid, &pmap->pm_active);
4146#endif
4147#ifdef PAE
4148	cr3 = vtophys(pmap->pm_pdpt);
4149#else
4150	cr3 = vtophys(pmap->pm_pdir);
4151#endif
4152	/*
4153	 * pmap_activate is for the current thread on the current cpu
4154	 */
4155	td->td_pcb->pcb_cr3 = cr3;
4156	PT_UPDATES_FLUSH();
4157	load_cr3(cr3);
4158	PCPU_SET(curpmap, pmap);
4159	critical_exit();
4160}
4161
4162void
4163pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4164{
4165}
4166
4167/*
4168 *	Increase the starting virtual address of the given mapping if a
4169 *	different alignment might result in more superpage mappings.
4170 */
4171void
4172pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4173    vm_offset_t *addr, vm_size_t size)
4174{
4175	vm_offset_t superpage_offset;
4176
4177	if (size < NBPDR)
4178		return;
4179	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4180		offset += ptoa(object->pg_color);
4181	superpage_offset = offset & PDRMASK;
4182	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4183	    (*addr & PDRMASK) == superpage_offset)
4184		return;
4185	if ((*addr & PDRMASK) < superpage_offset)
4186		*addr = (*addr & ~PDRMASK) + superpage_offset;
4187	else
4188		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4189}
4190
4191void
4192pmap_suspend()
4193{
4194	pmap_t pmap;
4195	int i, pdir, offset;
4196	vm_paddr_t pdirma;
4197	mmu_update_t mu[4];
4198
4199	/*
4200	 * We need to remove the recursive mapping structure from all
4201	 * our pmaps so that Xen doesn't get confused when it restores
4202	 * the page tables. The recursive map lives at page directory
4203	 * index PTDPTDI. We assume that the suspend code has stopped
4204	 * the other vcpus (if any).
4205	 */
4206	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4207		for (i = 0; i < 4; i++) {
4208			/*
4209			 * Figure out which page directory (L2) page
4210			 * contains this bit of the recursive map and
4211			 * the offset within that page of the map
4212			 * entry
4213			 */
4214			pdir = (PTDPTDI + i) / NPDEPG;
4215			offset = (PTDPTDI + i) % NPDEPG;
4216			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4217			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4218			mu[i].val = 0;
4219		}
4220		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4221	}
4222}
4223
4224void
4225pmap_resume()
4226{
4227	pmap_t pmap;
4228	int i, pdir, offset;
4229	vm_paddr_t pdirma;
4230	mmu_update_t mu[4];
4231
4232	/*
4233	 * Restore the recursive map that we removed on suspend.
4234	 */
4235	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4236		for (i = 0; i < 4; i++) {
4237			/*
4238			 * Figure out which page directory (L2) page
4239			 * contains this bit of the recursive map and
4240			 * the offset within that page of the map
4241			 * entry
4242			 */
4243			pdir = (PTDPTDI + i) / NPDEPG;
4244			offset = (PTDPTDI + i) % NPDEPG;
4245			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4246			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4247			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4248		}
4249		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4250	}
4251}
4252
4253#if defined(PMAP_DEBUG)
4254pmap_pid_dump(int pid)
4255{
4256	pmap_t pmap;
4257	struct proc *p;
4258	int npte = 0;
4259	int index;
4260
4261	sx_slock(&allproc_lock);
4262	FOREACH_PROC_IN_SYSTEM(p) {
4263		if (p->p_pid != pid)
4264			continue;
4265
4266		if (p->p_vmspace) {
4267			int i,j;
4268			index = 0;
4269			pmap = vmspace_pmap(p->p_vmspace);
4270			for (i = 0; i < NPDEPTD; i++) {
4271				pd_entry_t *pde;
4272				pt_entry_t *pte;
4273				vm_offset_t base = i << PDRSHIFT;
4274
4275				pde = &pmap->pm_pdir[i];
4276				if (pde && pmap_pde_v(pde)) {
4277					for (j = 0; j < NPTEPG; j++) {
4278						vm_offset_t va = base + (j << PAGE_SHIFT);
4279						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4280							if (index) {
4281								index = 0;
4282								printf("\n");
4283							}
4284							sx_sunlock(&allproc_lock);
4285							return npte;
4286						}
4287						pte = pmap_pte(pmap, va);
4288						if (pte && pmap_pte_v(pte)) {
4289							pt_entry_t pa;
4290							vm_page_t m;
4291							pa = PT_GET(pte);
4292							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4293							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4294								va, pa, m->hold_count, m->wire_count, m->flags);
4295							npte++;
4296							index++;
4297							if (index >= 2) {
4298								index = 0;
4299								printf("\n");
4300							} else {
4301								printf(" ");
4302							}
4303						}
4304					}
4305				}
4306			}
4307		}
4308	}
4309	sx_sunlock(&allproc_lock);
4310	return npte;
4311}
4312#endif
4313
4314#if defined(DEBUG)
4315
4316static void	pads(pmap_t pm);
4317void		pmap_pvdump(vm_paddr_t pa);
4318
4319/* print address space of pmap*/
4320static void
4321pads(pmap_t pm)
4322{
4323	int i, j;
4324	vm_paddr_t va;
4325	pt_entry_t *ptep;
4326
4327	if (pm == kernel_pmap)
4328		return;
4329	for (i = 0; i < NPDEPTD; i++)
4330		if (pm->pm_pdir[i])
4331			for (j = 0; j < NPTEPG; j++) {
4332				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4333				if (pm == kernel_pmap && va < KERNBASE)
4334					continue;
4335				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4336					continue;
4337				ptep = pmap_pte(pm, va);
4338				if (pmap_pte_v(ptep))
4339					printf("%x:%x ", va, *ptep);
4340			};
4341
4342}
4343
4344void
4345pmap_pvdump(vm_paddr_t pa)
4346{
4347	pv_entry_t pv;
4348	pmap_t pmap;
4349	vm_page_t m;
4350
4351	printf("pa %x", pa);
4352	m = PHYS_TO_VM_PAGE(pa);
4353	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4354		pmap = PV_PMAP(pv);
4355		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4356		pads(pmap);
4357	}
4358	printf(" ");
4359}
4360#endif
4361