pmap.c revision 223758
1194140Simp/*-
2194140Simp * Copyright (c) 1991 Regents of the University of California.
3194140Simp * All rights reserved.
4194140Simp * Copyright (c) 1994 John S. Dyson
5194140Simp * All rights reserved.
6194140Simp * Copyright (c) 1994 David Greenman
7194140Simp * All rights reserved.
8194140Simp * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9194140Simp * All rights reserved.
10194140Simp *
11194140Simp * This code is derived from software contributed to Berkeley by
12194140Simp * the Systems Programming Group of the University of Utah Computer
13194140Simp * Science Department and William Jolitz of UUNET Technologies Inc.
14194140Simp *
15194140Simp * Redistribution and use in source and binary forms, with or without
16194140Simp * modification, are permitted provided that the following conditions
17194140Simp * are met:
18194140Simp * 1. Redistributions of source code must retain the above copyright
19194140Simp *    notice, this list of conditions and the following disclaimer.
20194140Simp * 2. Redistributions in binary form must reproduce the above copyright
21194140Simp *    notice, this list of conditions and the following disclaimer in the
22194140Simp *    documentation and/or other materials provided with the distribution.
23194140Simp * 3. All advertising materials mentioning features or use of this software
24194140Simp *    must display the following acknowledgement:
25194140Simp *	This product includes software developed by the University of
26194140Simp *	California, Berkeley and its contributors.
27194140Simp * 4. Neither the name of the University nor the names of its contributors
28194140Simp *    may be used to endorse or promote products derived from this software
29194140Simp *    without specific prior written permission.
30194140Simp *
31194140Simp * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32196262Simp * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33196262Simp * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34194140Simp * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35196262Simp * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36196262Simp * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37196262Simp * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38196262Simp * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39196262Simp * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40196262Simp * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41196262Simp * SUCH DAMAGE.
42196262Simp *
43196262Simp *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44196262Simp */
45196262Simp/*-
46196262Simp * Copyright (c) 2003 Networks Associates Technology, Inc.
47196262Simp * All rights reserved.
48196262Simp *
49196262Simp * This software was developed for the FreeBSD Project by Jake Burkholder,
50210311Sjmallett * Safeport Network Services, and Network Associates Laboratories, the
51210311Sjmallett * Security Research Division of Network Associates, Inc. under
52196262Simp * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53196262Simp * CHATS research program.
54196262Simp *
55196262Simp * Redistribution and use in source and binary forms, with or without
56196262Simp * modification, are permitted provided that the following conditions
57196262Simp * are met:
58196262Simp * 1. Redistributions of source code must retain the above copyright
59196262Simp *    notice, this list of conditions and the following disclaimer.
60196262Simp * 2. Redistributions in binary form must reproduce the above copyright
61196262Simp *    notice, this list of conditions and the following disclaimer in the
62196262Simp *    documentation and/or other materials provided with the distribution.
63194140Simp *
64194140Simp * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65202063Simp * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66196262Simp * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67196262Simp * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68196262Simp * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69196262Simp * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70194140Simp * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71196262Simp * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72196262Simp * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73196262Simp * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74194140Simp * SUCH DAMAGE.
75210311Sjmallett */
76210311Sjmallett
77210311Sjmallett#include <sys/cdefs.h>
78210311Sjmallett__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 223758 2011-07-04 12:04:52Z attilio $");
79210311Sjmallett
80194140Simp/*
81196262Simp *	Manages physical address maps.
82194140Simp *
83196262Simp *	In addition to hardware address maps, this
84194140Simp *	module is called upon to provide software-use-only
85194140Simp *	maps which may or may not be stored in the same
86210311Sjmallett *	form as hardware maps.  These pseudo-maps are
87210311Sjmallett *	used to store intermediate results from copy
88210311Sjmallett *	operations to and from address spaces.
89210311Sjmallett *
90210311Sjmallett *	Since the information managed by this module is
91210311Sjmallett *	also stored by the logical address mapping module,
92210311Sjmallett *	this module may throw away valid virtual-to-physical
93196262Simp *	mappings at almost any time.  However, invalidations
94196262Simp *	of virtual-to-physical mappings must be done as
95217518Simp *	requested.
96217518Simp *
97194140Simp *	In order to cope with hardware architectures which
98210311Sjmallett *	make virtual-to-physical map invalidates expensive,
99210311Sjmallett *	this module may delay invalidate or reduced protection
100210311Sjmallett *	operations until such time as they are actually
101210311Sjmallett *	necessary.  This module is given full information as
102216069Sjmallett *	to which processors are currently using which maps,
103210311Sjmallett *	and to when physical maps must be made correct.
104216069Sjmallett */
105210311Sjmallett
106210311Sjmallett#include "opt_cpu.h"
107210311Sjmallett#include "opt_pmap.h"
108210311Sjmallett#include "opt_smp.h"
109210311Sjmallett#include "opt_xbox.h"
110210311Sjmallett
111210311Sjmallett#include <sys/param.h>
112210311Sjmallett#include <sys/systm.h>
113210311Sjmallett#include <sys/kernel.h>
114216069Sjmallett#include <sys/ktr.h>
115210311Sjmallett#include <sys/lock.h>
116210311Sjmallett#include <sys/malloc.h>
117210311Sjmallett#include <sys/mman.h>
118201530Simp#include <sys/msgbuf.h>
119201530Simp#include <sys/mutex.h>
120201530Simp#include <sys/proc.h>
121210311Sjmallett#include <sys/sf_buf.h>
122210311Sjmallett#include <sys/sx.h>
123210311Sjmallett#include <sys/vmmeter.h>
124200344Simp#include <sys/sched.h>
125200344Simp#include <sys/sysctl.h>
126210311Sjmallett#ifdef SMP
127210311Sjmallett#include <sys/smp.h>
128210311Sjmallett#endif
129210311Sjmallett
130210311Sjmallett#include <vm/vm.h>
131210311Sjmallett#include <vm/vm_param.h>
132210311Sjmallett#include <vm/vm_kern.h>
133210311Sjmallett#include <vm/vm_page.h>
134210311Sjmallett#include <vm/vm_map.h>
135198669Srrs#include <vm/vm_object.h>
136198669Srrs#include <vm/vm_extern.h>
137198669Srrs#include <vm/vm_pageout.h>
138198669Srrs#include <vm/vm_pager.h>
139198669Srrs#include <vm/uma.h>
140196262Simp
141194140Simp#include <machine/cpu.h>
142194140Simp#include <machine/cputypes.h>
143194140Simp#include <machine/md_var.h>
144196314Simp#include <machine/pcb.h>
145196314Simp#include <machine/specialreg.h>
146194140Simp#ifdef SMP
147210311Sjmallett#include <machine/smp.h>
148194140Simp#endif
149194140Simp
150201530Simp#ifdef XBOX
151201530Simp#include <machine/xbox.h>
152194140Simp#endif
153201530Simp
154194140Simp#include <xen/interface/xen.h>
155210311Sjmallett#include <xen/hypervisor.h>
156201530Simp#include <machine/xen/hypercall.h>
157194140Simp#include <machine/xen/xenvar.h>
158201530Simp#include <machine/xen/xenfunc.h>
159201530Simp
160201530Simp#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
161194140Simp#define CPU_ENABLE_SSE
162194140Simp#endif
163201530Simp
164201530Simp#ifndef PMAP_SHPGPERPROC
165194140Simp#define PMAP_SHPGPERPROC 200
166201530Simp#endif
167194140Simp
168210311Sjmallett#define DIAGNOSTIC
169201530Simp
170201530Simp#if !defined(DIAGNOSTIC)
171194140Simp#ifdef __GNUC_GNU_INLINE__
172194140Simp#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
173201530Simp#else
174201530Simp#define PMAP_INLINE	extern inline
175194140Simp#endif
176201530Simp#else
177201530Simp#define PMAP_INLINE
178194140Simp#endif
179210311Sjmallett
180201530Simp#define PV_STATS
181194140Simp#ifdef PV_STATS
182201530Simp#define PV_STAT(x)	do { x ; } while (0)
183201530Simp#else
184201530Simp#define PV_STAT(x)	do { } while (0)
185201530Simp#endif
186201530Simp
187201530Simp#define	pa_index(pa)	((pa) >> PDRSHIFT)
188201530Simp#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
189201530Simp
190201530Simp/*
191194140Simp * Get PDEs and PTEs for user/kernel address space
192194140Simp */
193201530Simp#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
194201530Simp#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
195194140Simp
196201530Simp#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
197201530Simp#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
198194140Simp#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
199210311Sjmallett#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
200201530Simp#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
201194140Simp
202201530Simp#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
203201530Simp
204201530Simp#define HAMFISTED_LOCKING
205201530Simp#ifdef HAMFISTED_LOCKING
206201530Simpstatic struct mtx createdelete_lock;
207210311Sjmallett#endif
208201530Simp
209194140Simpstruct pmap kernel_pmap_store;
210194140SimpLIST_HEAD(pmaplist, pmap);
211194140Simpstatic struct pmaplist allpmaps;
212194140Simpstatic struct mtx allpmaps_lock;
213201530Simp
214201530Simpvm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
215194140Simpvm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
216210311Sjmallettint pgeflag = 0;		/* PG_G or-in */
217201530Simpint pseflag = 0;		/* PG_PS or-in */
218201530Simp
219201530Simpint nkpt;
220201530Simpvm_offset_t kernel_vm_end;
221194140Simpextern u_int32_t KERNend;
222194140Simp
223201530Simp#ifdef PAE
224201530Simppt_entry_t pg_nx;
225194140Simp#endif
226201530Simp
227194140Simpstatic int pat_works;			/* Is page attribute table sane? */
228201530Simp
229201530Simp/*
230194140Simp * Data for the pv entry allocation mechanism
231194140Simp */
232194140Simpstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
233194140Simpstatic struct md_page *pv_table;
234194140Simpstatic int shpgperproc = PMAP_SHPGPERPROC;
235194140Simp
236194140Simpstruct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
237194140Simpint pv_maxchunks;			/* How many chunks we have KVA for */
238201530Simpvm_offset_t pv_vafree;			/* freelist stored in the PTE */
239201530Simp
240194140Simp/*
241194140Simp * All those kernel PT submaps that BSD is so fond of
242194140Simp */
243194140Simpstruct sysmaps {
244194140Simp	struct	mtx lock;
245194140Simp	pt_entry_t *CMAP1;
246194140Simp	pt_entry_t *CMAP2;
247194140Simp	caddr_t	CADDR1;
248201530Simp	caddr_t	CADDR2;
249201530Simp};
250194140Simpstatic struct sysmaps sysmaps_pcpu[MAXCPU];
251210311Sjmallettstatic pt_entry_t *CMAP3;
252210311Sjmallettcaddr_t ptvmmap = 0;
253210311Sjmallettstatic caddr_t CADDR3;
254210311Sjmallettstruct msgbuf *msgbufp = 0;
255210311Sjmallett
256194140Simp/*
257210311Sjmallett * Crashdump maps.
258210311Sjmallett */
259210311Sjmallettstatic caddr_t crashdumpmap;
260210311Sjmallett
261210311Sjmallettstatic pt_entry_t *PMAP1 = 0, *PMAP2;
262210311Sjmallettstatic pt_entry_t *PADDR1 = 0, *PADDR2;
263194140Simp#ifdef SMP
264194140Simpstatic int PMAP1cpu;
265210311Sjmallettstatic int PMAP1changedcpu;
266210311SjmallettSYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267194140Simp	   &PMAP1changedcpu, 0,
268210311Sjmallett	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269210311Sjmallett#endif
270216318Sgonzostatic int PMAP1changed;
271194140SimpSYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272210311Sjmallett	   &PMAP1changed, 0,
273194140Simp	   "Number of times pmap_pte_quick changed PMAP1");
274210311Sjmallettstatic int PMAP1unchanged;
275210311SjmallettSYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276210311Sjmallett	   &PMAP1unchanged, 0,
277210311Sjmallett	   "Number of times pmap_pte_quick didn't change PMAP1");
278194140Simpstatic struct mtx PMAP2mutex;
279216318Sgonzo
280216320SgonzoSYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
281216318Sgonzostatic int pg_ps_enabled;
282210311SjmallettSYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
283210311Sjmallett    "Are large page mappings enabled?");
284201530Simp
285194140SimpSYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
286210311Sjmallett	"Max number of PV entries");
287210311SjmallettSYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
288210311Sjmallett	"Page share factor per proc");
289210311SjmallettSYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
290210311Sjmallett    "2/4MB page mapping counters");
291210311Sjmallett
292216773Sjmallettstatic u_long pmap_pde_mappings;
293216773SjmallettSYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
294216773Sjmallett    &pmap_pde_mappings, 0, "2/4MB page mappings");
295216773Sjmallett
296216773Sjmallettstatic void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
297216773Sjmallettstatic pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
298216773Sjmallettstatic void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
299216773Sjmallettstatic pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
300210311Sjmallett		    vm_offset_t va);
301210311Sjmallett
302210311Sjmallettstatic vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
303210311Sjmallett    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
304194140Simpstatic int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
305212842Sjmallett    vm_page_t *free);
306212842Sjmallettstatic void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
307212842Sjmallett    vm_page_t *free);
308212842Sjmallettstatic void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
309212842Sjmallett					vm_offset_t va);
310212842Sjmallettstatic boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
311212842Sjmallett    vm_page_t m);
312212842Sjmallett
313212842Sjmallettstatic vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
314212842Sjmallett
315212842Sjmallettstatic vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
316212842Sjmallettstatic int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
317210311Sjmallettstatic pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
318194140Simpstatic void pmap_pte_release(pt_entry_t *pte);
319210311Sjmallettstatic int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
320210311Sjmallettstatic vm_offset_t pmap_kmem_choose(vm_offset_t addr);
321210311Sjmallettstatic boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
322210311Sjmallettstatic void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
323194140Simp
324210311Sjmallettstatic __inline void pagezero(void *page);
325210311Sjmallett
326194140SimpCTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
327210311SjmallettCTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
328201530Simp
329194140Simp/*
330216320Sgonzo * If you get an error here, then you set KVA_PAGES wrong! See the
331216318Sgonzo * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
332216318Sgonzo * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
333202831Simp */
334202831SimpCTASSERT(KERNBASE % (1 << 24) == 0);
335202831Simp
336196262Simp
337201530Simp
338201530Simpvoid
339196262Simppd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
340210311Sjmallett{
341196262Simp	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
342194140Simp
343210311Sjmallett	switch (type) {
344210311Sjmallett	case SH_PD_SET_VA:
345210311Sjmallett#if 0
346210311Sjmallett		xen_queue_pt_update(shadow_pdir_ma,
347210311Sjmallett				    xpmap_ptom(val & ~(PG_RW)));
348210311Sjmallett#endif
349210311Sjmallett		xen_queue_pt_update(pdir_ma,
350210311Sjmallett				    xpmap_ptom(val));
351210311Sjmallett		break;
352210311Sjmallett	case SH_PD_SET_VA_MA:
353210311Sjmallett#if 0
354201845Simp		xen_queue_pt_update(shadow_pdir_ma,
355201881Simp				    val & ~(PG_RW));
356202831Simp#endif
357202831Simp		xen_queue_pt_update(pdir_ma, val);
358201845Simp		break;
359202831Simp	case SH_PD_SET_VA_CLEAR:
360200344Simp#if 0
361210311Sjmallett		xen_queue_pt_update(shadow_pdir_ma, 0);
362210311Sjmallett#endif
363210311Sjmallett		xen_queue_pt_update(pdir_ma, 0);
364210311Sjmallett		break;
365210311Sjmallett	}
366210311Sjmallett}
367196262Simp
368194140Simp/*
369202831Simp * Move the kernel virtual free pointer to the next
370202831Simp * 4MB.  This is used to help improve performance
371202831Simp * by using a large (4MB) page for much of the kernel
372202831Simp * (.text, .data, .bss)
373202831Simp */
374202831Simpstatic vm_offset_t
375202831Simppmap_kmem_choose(vm_offset_t addr)
376196262Simp{
377202831Simp	vm_offset_t newaddr = addr;
378196262Simp
379196262Simp#ifndef DISABLE_PSE
380196262Simp	if (cpu_feature & CPUID_PSE)
381202831Simp		newaddr = (addr + PDRMASK) & ~PDRMASK;
382202831Simp#endif
383196262Simp	return newaddr;
384196262Simp}
385202850Simp
386202850Simp/*
387202850Simp *	Bootstrap the system enough to run with virtual memory.
388196262Simp *
389217518Simp *	On the i386 this is called after mapping has already been enabled
390217518Simp *	and just syncs the pmap module with what has already been done.
391217518Simp *	[We can't call it easily with mapping off since the kernel is not
392210311Sjmallett *	mapped with PA == VA, hence we would have to relocate every address
393206721Sjmallett *	from the linked base (virtual) address "KERNBASE" to the actual
394217518Simp *	(physical) address starting relative to 0]
395206721Sjmallett */
396206721Sjmallettvoid
397206721Sjmallettpmap_bootstrap(vm_paddr_t firstaddr)
398210311Sjmallett{
399206721Sjmallett	vm_offset_t va;
400210311Sjmallett	pt_entry_t *pte, *unused;
401206721Sjmallett	struct sysmaps *sysmaps;
402210311Sjmallett	int i;
403210311Sjmallett
404210311Sjmallett	/*
405210311Sjmallett	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
406210311Sjmallett	 * large. It should instead be correctly calculated in locore.s and
407210311Sjmallett	 * not based on 'first' (which is a physical address, not a virtual
408210311Sjmallett	 * address, for the start of unused physical memory). The kernel
409196262Simp	 * page tables are NOT double mapped and thus should not be included
410196262Simp	 * in this calculation.
411210311Sjmallett	 */
412210311Sjmallett	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
413210311Sjmallett	virtual_avail = pmap_kmem_choose(virtual_avail);
414210311Sjmallett
415210311Sjmallett	virtual_end = VM_MAX_KERNEL_ADDRESS;
416210311Sjmallett
417210311Sjmallett	/*
418210311Sjmallett	 * Initialize the kernel pmap (which is statically allocated).
419210311Sjmallett	 */
420210311Sjmallett	PMAP_LOCK_INIT(kernel_pmap);
421210311Sjmallett	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
422210311Sjmallett#ifdef PAE
423210311Sjmallett	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
424210311Sjmallett#endif
425210311Sjmallett	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
426215990Sjmallett	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
427215990Sjmallett	LIST_INIT(&allpmaps);
428215990Sjmallett	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
429215990Sjmallett	mtx_lock_spin(&allpmaps_lock);
430215990Sjmallett	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
431215990Sjmallett	mtx_unlock_spin(&allpmaps_lock);
432215990Sjmallett	if (nkpt == 0)
433215990Sjmallett		nkpt = NKPT;
434215990Sjmallett
435215990Sjmallett	/*
436215990Sjmallett	 * Reserve some special page table entries/VA space for temporary
437215990Sjmallett	 * mapping of pages.
438215990Sjmallett	 */
439215990Sjmallett#define	SYSMAP(c, p, v, n)	\
440215990Sjmallett	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
441215990Sjmallett
442215990Sjmallett	va = virtual_avail;
443215990Sjmallett	pte = vtopte(va);
444215990Sjmallett
445215990Sjmallett	/*
446215990Sjmallett	 * CMAP1/CMAP2 are used for zeroing and copying pages.
447215990Sjmallett	 * CMAP3 is used for the idle process page zeroing.
448215990Sjmallett	 */
449215990Sjmallett	for (i = 0; i < MAXCPU; i++) {
450215990Sjmallett		sysmaps = &sysmaps_pcpu[i];
451215990Sjmallett		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
452215990Sjmallett		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
453215990Sjmallett		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
454215990Sjmallett		PT_SET_MA(sysmaps->CADDR1, 0);
455215990Sjmallett		PT_SET_MA(sysmaps->CADDR2, 0);
456215990Sjmallett	}
457215990Sjmallett	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
458215990Sjmallett	PT_SET_MA(CADDR3, 0);
459215990Sjmallett
460215990Sjmallett	/*
461215990Sjmallett	 * Crashdump maps.
462215990Sjmallett	 */
463215990Sjmallett	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
464215990Sjmallett
465215990Sjmallett	/*
466215990Sjmallett	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
467215990Sjmallett	 */
468215990Sjmallett	SYSMAP(caddr_t, unused, ptvmmap, 1)
469202831Simp
470194140Simp	/*
471194140Simp	 * msgbufp is used to map the system message buffer.
472194140Simp	 */
473194140Simp	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
474194140Simp
475194140Simp	/*
476194140Simp	 * ptemap is used for pmap_pte_quick
477194140Simp	 */
478194140Simp	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
479194140Simp	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
480194140Simp
481194140Simp	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
482194140Simp
483194140Simp	virtual_avail = va;
484194140Simp
485194140Simp	/*
486194140Simp	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
487194140Simp	 * physical memory region that is used by the ACPI wakeup code.  This
488194140Simp	 * mapping must not have PG_G set.
489194140Simp	 */
490194140Simp#ifndef XEN
491194140Simp	/*
492194140Simp	 * leave here deliberately to show that this is not supported
493194140Simp	 */
494194140Simp#ifdef XBOX
495194140Simp	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
496194140Simp	 * an early stadium, we cannot yet neatly map video memory ... :-(
497194140Simp	 * Better fixes are very welcome! */
498194140Simp	if (!arch_i386_is_xbox)
499200344Simp#endif
500200344Simp	for (i = 1; i < NKPT; i++)
501200344Simp		PTD[i] = 0;
502194140Simp
503200344Simp	/* Initialize the PAT MSR if present. */
504200344Simp	pmap_init_pat();
505200344Simp
506200344Simp	/* Turn on PG_G on kernel page(s) */
507200344Simp	pmap_set_pg();
508200344Simp#endif
509194140Simp
510200344Simp#ifdef HAMFISTED_LOCKING
511200344Simp	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
512200344Simp#endif
513200344Simp}
514200344Simp
515200344Simp/*
516200344Simp * Setup the PAT MSR.
517200344Simp */
518200344Simpvoid
519200344Simppmap_init_pat(void)
520200344Simp{
521200344Simp	uint64_t pat_msr;
522200344Simp
523200344Simp	/* Bail if this CPU doesn't implement PAT. */
524200344Simp	if (!(cpu_feature & CPUID_PAT))
525200344Simp		return;
526200344Simp
527200344Simp	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
528200344Simp	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
529200344Simp		/*
530200344Simp		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
531200344Simp		 * Program 4 and 5 as WP and WC.
532200344Simp		 * Leave 6 and 7 as UC and UC-.
533194140Simp		 */
534194140Simp		pat_msr = rdmsr(MSR_PAT);
535210311Sjmallett		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
536194140Simp		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
537194140Simp		    PAT_VALUE(5, PAT_WRITE_COMBINING);
538194140Simp		pat_works = 1;
539200344Simp	} else {
540210311Sjmallett		/*
541194140Simp		 * Due to some Intel errata, we can only safely use the lower 4
542210311Sjmallett		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
543210311Sjmallett		 * of UC-.
544204777Sjmallett		 *
545204777Sjmallett		 *   Intel Pentium III Processor Specification Update
546210311Sjmallett		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
547204777Sjmallett		 * or Mode C Paging)
548194140Simp		 *
549194140Simp		 *   Intel Pentium IV  Processor Specification Update
550200344Simp		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
551210311Sjmallett		 */
552194140Simp		pat_msr = rdmsr(MSR_PAT);
553200344Simp		pat_msr &= ~PAT_MASK(2);
554200344Simp		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
555210311Sjmallett		pat_works = 0;
556210311Sjmallett	}
557210311Sjmallett	wrmsr(MSR_PAT, pat_msr);
558210311Sjmallett}
559200344Simp
560210311Sjmallett/*
561210311Sjmallett * Initialize a vm_page's machine-dependent fields.
562210311Sjmallett */
563210311Sjmallettvoid
564210311Sjmallettpmap_page_init(vm_page_t m)
565210311Sjmallett{
566194140Simp
567215990Sjmallett	TAILQ_INIT(&m->md.pv_list);
568210311Sjmallett	m->md.pat_mode = PAT_WRITE_BACK;
569210311Sjmallett}
570210311Sjmallett
571210311Sjmallett/*
572228088Sgonzo * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
573228088Sgonzo * Requirements:
574228853Sgonzo *  - Must deal with pages in order to ensure that none of the PG_* bits
575228853Sgonzo *    are ever set, PG_V in particular.
576228872Sgonzo *  - Assumes we can write to ptes without pte_store() atomic ops, even
577228872Sgonzo *    on PAE systems.  This should be ok.
578232402Sjmallett *  - Assumes nothing will ever test these addresses for 0 to indicate
579194140Simp *    no mapping instead of correctly checking PG_V.
580194140Simp *  - Assumes a vm_offset_t will fit in a pte (true for i386).
581200344Simp * Because PG_V is never set, there can be no mappings to invalidate.
582200344Simp */
583194140Simpstatic int ptelist_count = 0;
584210311Sjmallettstatic vm_offset_t
585210311Sjmallettpmap_ptelist_alloc(vm_offset_t *head)
586210311Sjmallett{
587194140Simp	vm_offset_t va;
588210311Sjmallett	vm_offset_t *phead = (vm_offset_t *)*head;
589210311Sjmallett
590210311Sjmallett	if (ptelist_count == 0) {
591210311Sjmallett		printf("out of memory!!!!!!\n");
592210311Sjmallett		return (0);	/* Out of memory */
593210311Sjmallett	}
594210311Sjmallett	ptelist_count--;
595215990Sjmallett	va = phead[ptelist_count];
596210311Sjmallett	return (va);
597215990Sjmallett}
598210311Sjmallett
599194140Simpstatic void
600210311Sjmallettpmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
601210311Sjmallett{
602210311Sjmallett	vm_offset_t *phead = (vm_offset_t *)*head;
603210311Sjmallett
604210311Sjmallett	phead[ptelist_count++] = va;
605194140Simp}
606210311Sjmallett
607210311Sjmallettstatic void
608210311Sjmallettpmap_ptelist_init(vm_offset_t *head, void *base, int npages)
609194140Simp{
610202831Simp	int i, nstackpages;
611210311Sjmallett	vm_offset_t va;
612210311Sjmallett	vm_page_t m;
613210311Sjmallett
614210311Sjmallett	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
615210311Sjmallett	for (i = 0; i < nstackpages; i++) {
616210311Sjmallett		va = (vm_offset_t)base + i * PAGE_SIZE;
617210311Sjmallett		m = vm_page_alloc(NULL, i,
618210311Sjmallett		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
619210311Sjmallett		    VM_ALLOC_ZERO);
620217518Simp		pmap_qenter(va, &m, 1);
621217518Simp	}
622210311Sjmallett
623210311Sjmallett	*head = (vm_offset_t)base;
624217518Simp	for (i = npages - 1; i >= nstackpages; i--) {
625217518Simp		va = (vm_offset_t)base + i * PAGE_SIZE;
626217518Simp		pmap_ptelist_free(head, va);
627217518Simp	}
628210311Sjmallett}
629217518Simp
630210311Sjmallett
631217518Simp/*
632210311Sjmallett *	Initialize the pmap module.
633217518Simp *	Called by vm_init, to initialize any structures that the pmap
634217518Simp *	system needs to map virtual memory.
635194140Simp */
636202831Simpvoid
637pmap_init(void)
638{
639	vm_page_t mpte;
640	vm_size_t s;
641	int i, pv_npg;
642
643	/*
644	 * Initialize the vm page array entries for the kernel pmap's
645	 * page table pages.
646	 */
647	for (i = 0; i < nkpt; i++) {
648		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
649		KASSERT(mpte >= vm_page_array &&
650		    mpte < &vm_page_array[vm_page_array_size],
651		    ("pmap_init: page table page is out of range"));
652		mpte->pindex = i + KPTDI;
653		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
654	}
655
656        /*
657	 * Initialize the address space (zone) for the pv entries.  Set a
658	 * high water mark so that the system can recover from excessive
659	 * numbers of pv entries.
660	 */
661	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
662	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
663	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
664	pv_entry_max = roundup(pv_entry_max, _NPCPV);
665	pv_entry_high_water = 9 * (pv_entry_max / 10);
666
667	/*
668	 * Are large page mappings enabled?
669	 */
670	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
671
672	/*
673	 * Calculate the size of the pv head table for superpages.
674	 */
675	for (i = 0; phys_avail[i + 1]; i += 2);
676	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
677
678	/*
679	 * Allocate memory for the pv head table for superpages.
680	 */
681	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
682	s = round_page(s);
683	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
684	for (i = 0; i < pv_npg; i++)
685		TAILQ_INIT(&pv_table[i].pv_list);
686
687	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
688	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
689	    PAGE_SIZE * pv_maxchunks);
690	if (pv_chunkbase == NULL)
691		panic("pmap_init: not enough kvm for pv chunks");
692	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
693}
694
695
696/***************************************************
697 * Low level helper routines.....
698 ***************************************************/
699
700/*
701 * Determine the appropriate bits to set in a PTE or PDE for a specified
702 * caching mode.
703 */
704int
705pmap_cache_bits(int mode, boolean_t is_pde)
706{
707	int pat_flag, pat_index, cache_bits;
708
709	/* The PAT bit is different for PTE's and PDE's. */
710	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
711
712	/* If we don't support PAT, map extended modes to older ones. */
713	if (!(cpu_feature & CPUID_PAT)) {
714		switch (mode) {
715		case PAT_UNCACHEABLE:
716		case PAT_WRITE_THROUGH:
717		case PAT_WRITE_BACK:
718			break;
719		case PAT_UNCACHED:
720		case PAT_WRITE_COMBINING:
721		case PAT_WRITE_PROTECTED:
722			mode = PAT_UNCACHEABLE;
723			break;
724		}
725	}
726
727	/* Map the caching mode to a PAT index. */
728	if (pat_works) {
729		switch (mode) {
730			case PAT_UNCACHEABLE:
731				pat_index = 3;
732				break;
733			case PAT_WRITE_THROUGH:
734				pat_index = 1;
735				break;
736			case PAT_WRITE_BACK:
737				pat_index = 0;
738				break;
739			case PAT_UNCACHED:
740				pat_index = 2;
741				break;
742			case PAT_WRITE_COMBINING:
743				pat_index = 5;
744				break;
745			case PAT_WRITE_PROTECTED:
746				pat_index = 4;
747				break;
748			default:
749				panic("Unknown caching mode %d\n", mode);
750		}
751	} else {
752		switch (mode) {
753			case PAT_UNCACHED:
754			case PAT_UNCACHEABLE:
755			case PAT_WRITE_PROTECTED:
756				pat_index = 3;
757				break;
758			case PAT_WRITE_THROUGH:
759				pat_index = 1;
760				break;
761			case PAT_WRITE_BACK:
762				pat_index = 0;
763				break;
764			case PAT_WRITE_COMBINING:
765				pat_index = 2;
766				break;
767			default:
768				panic("Unknown caching mode %d\n", mode);
769		}
770	}
771
772	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
773	cache_bits = 0;
774	if (pat_index & 0x4)
775		cache_bits |= pat_flag;
776	if (pat_index & 0x2)
777		cache_bits |= PG_NC_PCD;
778	if (pat_index & 0x1)
779		cache_bits |= PG_NC_PWT;
780	return (cache_bits);
781}
782#ifdef SMP
783/*
784 * For SMP, these functions have to use the IPI mechanism for coherence.
785 *
786 * N.B.: Before calling any of the following TLB invalidation functions,
787 * the calling processor must ensure that all stores updating a non-
788 * kernel page table are globally performed.  Otherwise, another
789 * processor could cache an old, pre-update entry without being
790 * invalidated.  This can happen one of two ways: (1) The pmap becomes
791 * active on another processor after its pm_active field is checked by
792 * one of the following functions but before a store updating the page
793 * table is globally performed. (2) The pmap becomes active on another
794 * processor before its pm_active field is checked but due to
795 * speculative loads one of the following functions stills reads the
796 * pmap as inactive on the other processor.
797 *
798 * The kernel page table is exempt because its pm_active field is
799 * immutable.  The kernel page table is always active on every
800 * processor.
801 */
802void
803pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
804{
805	cpuset_t other_cpus;
806	u_int cpuid;
807
808	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
809	    pmap, va);
810
811	sched_pin();
812	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
813		invlpg(va);
814		smp_invlpg(va);
815	} else {
816		cpuid = PCPU_GET(cpuid);
817		other_cpus = all_cpus;
818		CPU_CLR(cpuid, &other_cpus);
819		if (CPU_ISSET(cpuid, &pmap->pm_active))
820			invlpg(va);
821		CPU_AND(&other_cpus, &pmap->pm_active);
822		if (!CPU_EMPTY(&other_cpus))
823			smp_masked_invlpg(other_cpus, va);
824	}
825	sched_unpin();
826	PT_UPDATES_FLUSH();
827}
828
829void
830pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
831{
832	cpuset_t other_cpus;
833	vm_offset_t addr;
834	u_int cpuid;
835
836	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
837	    pmap, sva, eva);
838
839	sched_pin();
840	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
841		for (addr = sva; addr < eva; addr += PAGE_SIZE)
842			invlpg(addr);
843		smp_invlpg_range(sva, eva);
844	} else {
845		cpuid = PCPU_GET(cpuid);
846		other_cpus = all_cpus;
847		CPU_CLR(cpuid, &other_cpus);
848		if (CPU_ISSET(cpuid, &pmap->pm_active))
849			for (addr = sva; addr < eva; addr += PAGE_SIZE)
850				invlpg(addr);
851		CPU_AND(&other_cpus, &pmap->pm_active);
852		if (!CPU_EMPTY(&other_cpus))
853			smp_masked_invlpg_range(other_cpus, sva, eva);
854	}
855	sched_unpin();
856	PT_UPDATES_FLUSH();
857}
858
859void
860pmap_invalidate_all(pmap_t pmap)
861{
862	cpuset_t other_cpus;
863	u_int cpuid;
864
865	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
866
867	sched_pin();
868	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
869		invltlb();
870		smp_invltlb();
871	} else {
872		cpuid = PCPU_GET(cpuid);
873		other_cpus = all_cpus;
874		CPU_CLR(cpuid, &other_cpus);
875		if (CPU_ISSET(cpuid, &pmap->pm_active))
876			invltlb();
877		CPU_AND(&other_cpus, &pmap->pm_active);
878		if (!CPU_EMPTY(&other_cpus))
879			smp_masked_invltlb(other_cpus);
880	}
881	sched_unpin();
882}
883
884void
885pmap_invalidate_cache(void)
886{
887
888	sched_pin();
889	wbinvd();
890	smp_cache_flush();
891	sched_unpin();
892}
893#else /* !SMP */
894/*
895 * Normal, non-SMP, 486+ invalidation functions.
896 * We inline these within pmap.c for speed.
897 */
898PMAP_INLINE void
899pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
900{
901	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
902	    pmap, va);
903
904	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
905		invlpg(va);
906	PT_UPDATES_FLUSH();
907}
908
909PMAP_INLINE void
910pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
911{
912	vm_offset_t addr;
913
914	if (eva - sva > PAGE_SIZE)
915		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
916		    pmap, sva, eva);
917
918	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
919		for (addr = sva; addr < eva; addr += PAGE_SIZE)
920			invlpg(addr);
921	PT_UPDATES_FLUSH();
922}
923
924PMAP_INLINE void
925pmap_invalidate_all(pmap_t pmap)
926{
927
928	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
929
930	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
931		invltlb();
932}
933
934PMAP_INLINE void
935pmap_invalidate_cache(void)
936{
937
938	wbinvd();
939}
940#endif /* !SMP */
941
942void
943pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
944{
945
946	KASSERT((sva & PAGE_MASK) == 0,
947	    ("pmap_invalidate_cache_range: sva not page-aligned"));
948	KASSERT((eva & PAGE_MASK) == 0,
949	    ("pmap_invalidate_cache_range: eva not page-aligned"));
950
951	if (cpu_feature & CPUID_SS)
952		; /* If "Self Snoop" is supported, do nothing. */
953	else if (cpu_feature & CPUID_CLFSH) {
954
955		/*
956		 * Otherwise, do per-cache line flush.  Use the mfence
957		 * instruction to insure that previous stores are
958		 * included in the write-back.  The processor
959		 * propagates flush to other processors in the cache
960		 * coherence domain.
961		 */
962		mfence();
963		for (; sva < eva; sva += cpu_clflush_line_size)
964			clflush(sva);
965		mfence();
966	} else {
967
968		/*
969		 * No targeted cache flush methods are supported by CPU,
970		 * globally invalidate cache as a last resort.
971		 */
972		pmap_invalidate_cache();
973	}
974}
975
976/*
977 * Are we current address space or kernel?  N.B. We return FALSE when
978 * a pmap's page table is in use because a kernel thread is borrowing
979 * it.  The borrowed page table can change spontaneously, making any
980 * dependence on its continued use subject to a race condition.
981 */
982static __inline int
983pmap_is_current(pmap_t pmap)
984{
985
986	return (pmap == kernel_pmap ||
987	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
988		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
989}
990
991/*
992 * If the given pmap is not the current or kernel pmap, the returned pte must
993 * be released by passing it to pmap_pte_release().
994 */
995pt_entry_t *
996pmap_pte(pmap_t pmap, vm_offset_t va)
997{
998	pd_entry_t newpf;
999	pd_entry_t *pde;
1000
1001	pde = pmap_pde(pmap, va);
1002	if (*pde & PG_PS)
1003		return (pde);
1004	if (*pde != 0) {
1005		/* are we current address space or kernel? */
1006		if (pmap_is_current(pmap))
1007			return (vtopte(va));
1008		mtx_lock(&PMAP2mutex);
1009		newpf = *pde & PG_FRAME;
1010		if ((*PMAP2 & PG_FRAME) != newpf) {
1011			vm_page_lock_queues();
1012			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1013			vm_page_unlock_queues();
1014			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1015			    pmap, va, (*PMAP2 & 0xffffffff));
1016		}
1017
1018		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1019	}
1020	return (0);
1021}
1022
1023/*
1024 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1025 * being NULL.
1026 */
1027static __inline void
1028pmap_pte_release(pt_entry_t *pte)
1029{
1030
1031	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1032		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1033		    *PMAP2);
1034		vm_page_lock_queues();
1035		PT_SET_VA(PMAP2, 0, TRUE);
1036		vm_page_unlock_queues();
1037		mtx_unlock(&PMAP2mutex);
1038	}
1039}
1040
1041static __inline void
1042invlcaddr(void *caddr)
1043{
1044
1045	invlpg((u_int)caddr);
1046	PT_UPDATES_FLUSH();
1047}
1048
1049/*
1050 * Super fast pmap_pte routine best used when scanning
1051 * the pv lists.  This eliminates many coarse-grained
1052 * invltlb calls.  Note that many of the pv list
1053 * scans are across different pmaps.  It is very wasteful
1054 * to do an entire invltlb for checking a single mapping.
1055 *
1056 * If the given pmap is not the current pmap, vm_page_queue_mtx
1057 * must be held and curthread pinned to a CPU.
1058 */
1059static pt_entry_t *
1060pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1061{
1062	pd_entry_t newpf;
1063	pd_entry_t *pde;
1064
1065	pde = pmap_pde(pmap, va);
1066	if (*pde & PG_PS)
1067		return (pde);
1068	if (*pde != 0) {
1069		/* are we current address space or kernel? */
1070		if (pmap_is_current(pmap))
1071			return (vtopte(va));
1072		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1073		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1074		newpf = *pde & PG_FRAME;
1075		if ((*PMAP1 & PG_FRAME) != newpf) {
1076			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1077			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1078			    pmap, va, (u_long)*PMAP1);
1079
1080#ifdef SMP
1081			PMAP1cpu = PCPU_GET(cpuid);
1082#endif
1083			PMAP1changed++;
1084		} else
1085#ifdef SMP
1086		if (PMAP1cpu != PCPU_GET(cpuid)) {
1087			PMAP1cpu = PCPU_GET(cpuid);
1088			invlcaddr(PADDR1);
1089			PMAP1changedcpu++;
1090		} else
1091#endif
1092			PMAP1unchanged++;
1093		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1094	}
1095	return (0);
1096}
1097
1098/*
1099 *	Routine:	pmap_extract
1100 *	Function:
1101 *		Extract the physical page address associated
1102 *		with the given map/virtual_address pair.
1103 */
1104vm_paddr_t
1105pmap_extract(pmap_t pmap, vm_offset_t va)
1106{
1107	vm_paddr_t rtval;
1108	pt_entry_t *pte;
1109	pd_entry_t pde;
1110	pt_entry_t pteval;
1111
1112	rtval = 0;
1113	PMAP_LOCK(pmap);
1114	pde = pmap->pm_pdir[va >> PDRSHIFT];
1115	if (pde != 0) {
1116		if ((pde & PG_PS) != 0) {
1117			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1118			PMAP_UNLOCK(pmap);
1119			return rtval;
1120		}
1121		pte = pmap_pte(pmap, va);
1122		pteval = *pte ? xpmap_mtop(*pte) : 0;
1123		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1124		pmap_pte_release(pte);
1125	}
1126	PMAP_UNLOCK(pmap);
1127	return (rtval);
1128}
1129
1130/*
1131 *	Routine:	pmap_extract_ma
1132 *	Function:
1133 *		Like pmap_extract, but returns machine address
1134 */
1135vm_paddr_t
1136pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1137{
1138	vm_paddr_t rtval;
1139	pt_entry_t *pte;
1140	pd_entry_t pde;
1141
1142	rtval = 0;
1143	PMAP_LOCK(pmap);
1144	pde = pmap->pm_pdir[va >> PDRSHIFT];
1145	if (pde != 0) {
1146		if ((pde & PG_PS) != 0) {
1147			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1148			PMAP_UNLOCK(pmap);
1149			return rtval;
1150		}
1151		pte = pmap_pte(pmap, va);
1152		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1153		pmap_pte_release(pte);
1154	}
1155	PMAP_UNLOCK(pmap);
1156	return (rtval);
1157}
1158
1159/*
1160 *	Routine:	pmap_extract_and_hold
1161 *	Function:
1162 *		Atomically extract and hold the physical page
1163 *		with the given pmap and virtual address pair
1164 *		if that mapping permits the given protection.
1165 */
1166vm_page_t
1167pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1168{
1169	pd_entry_t pde;
1170	pt_entry_t pte;
1171	vm_page_t m;
1172	vm_paddr_t pa;
1173
1174	pa = 0;
1175	m = NULL;
1176	PMAP_LOCK(pmap);
1177retry:
1178	pde = PT_GET(pmap_pde(pmap, va));
1179	if (pde != 0) {
1180		if (pde & PG_PS) {
1181			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1182				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1183				       (va & PDRMASK), &pa))
1184					goto retry;
1185				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1186				    (va & PDRMASK));
1187				vm_page_hold(m);
1188			}
1189		} else {
1190			sched_pin();
1191			pte = PT_GET(pmap_pte_quick(pmap, va));
1192			if (*PMAP1)
1193				PT_SET_MA(PADDR1, 0);
1194			if ((pte & PG_V) &&
1195			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1196				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1197					goto retry;
1198				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1199				vm_page_hold(m);
1200			}
1201			sched_unpin();
1202		}
1203	}
1204	PA_UNLOCK_COND(pa);
1205	PMAP_UNLOCK(pmap);
1206	return (m);
1207}
1208
1209/***************************************************
1210 * Low level mapping routines.....
1211 ***************************************************/
1212
1213/*
1214 * Add a wired page to the kva.
1215 * Note: not SMP coherent.
1216 */
1217void
1218pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1219{
1220	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1221}
1222
1223void
1224pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1225{
1226	pt_entry_t *pte;
1227
1228	pte = vtopte(va);
1229	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1230}
1231
1232
1233static __inline void
1234pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1235{
1236	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1237}
1238
1239/*
1240 * Remove a page from the kernel pagetables.
1241 * Note: not SMP coherent.
1242 */
1243PMAP_INLINE void
1244pmap_kremove(vm_offset_t va)
1245{
1246	pt_entry_t *pte;
1247
1248	pte = vtopte(va);
1249	PT_CLEAR_VA(pte, FALSE);
1250}
1251
1252/*
1253 *	Used to map a range of physical addresses into kernel
1254 *	virtual address space.
1255 *
1256 *	The value passed in '*virt' is a suggested virtual address for
1257 *	the mapping. Architectures which can support a direct-mapped
1258 *	physical to virtual region can return the appropriate address
1259 *	within that region, leaving '*virt' unchanged. Other
1260 *	architectures should map the pages starting at '*virt' and
1261 *	update '*virt' with the first usable address after the mapped
1262 *	region.
1263 */
1264vm_offset_t
1265pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1266{
1267	vm_offset_t va, sva;
1268
1269	va = sva = *virt;
1270	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1271	    va, start, end, prot);
1272	while (start < end) {
1273		pmap_kenter(va, start);
1274		va += PAGE_SIZE;
1275		start += PAGE_SIZE;
1276	}
1277	pmap_invalidate_range(kernel_pmap, sva, va);
1278	*virt = va;
1279	return (sva);
1280}
1281
1282
1283/*
1284 * Add a list of wired pages to the kva
1285 * this routine is only used for temporary
1286 * kernel mappings that do not need to have
1287 * page modification or references recorded.
1288 * Note that old mappings are simply written
1289 * over.  The page *must* be wired.
1290 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1291 */
1292void
1293pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1294{
1295	pt_entry_t *endpte, *pte;
1296	vm_paddr_t pa;
1297	vm_offset_t va = sva;
1298	int mclcount = 0;
1299	multicall_entry_t mcl[16];
1300	multicall_entry_t *mclp = mcl;
1301	int error;
1302
1303	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1304	pte = vtopte(sva);
1305	endpte = pte + count;
1306	while (pte < endpte) {
1307		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1308
1309		mclp->op = __HYPERVISOR_update_va_mapping;
1310		mclp->args[0] = va;
1311		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1312		mclp->args[2] = (uint32_t)(pa >> 32);
1313		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1314
1315		va += PAGE_SIZE;
1316		pte++;
1317		ma++;
1318		mclp++;
1319		mclcount++;
1320		if (mclcount == 16) {
1321			error = HYPERVISOR_multicall(mcl, mclcount);
1322			mclp = mcl;
1323			mclcount = 0;
1324			KASSERT(error == 0, ("bad multicall %d", error));
1325		}
1326	}
1327	if (mclcount) {
1328		error = HYPERVISOR_multicall(mcl, mclcount);
1329		KASSERT(error == 0, ("bad multicall %d", error));
1330	}
1331
1332#ifdef INVARIANTS
1333	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1334		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1335#endif
1336}
1337
1338
1339/*
1340 * This routine tears out page mappings from the
1341 * kernel -- it is meant only for temporary mappings.
1342 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1343 */
1344void
1345pmap_qremove(vm_offset_t sva, int count)
1346{
1347	vm_offset_t va;
1348
1349	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1350	va = sva;
1351	vm_page_lock_queues();
1352	critical_enter();
1353	while (count-- > 0) {
1354		pmap_kremove(va);
1355		va += PAGE_SIZE;
1356	}
1357	PT_UPDATES_FLUSH();
1358	pmap_invalidate_range(kernel_pmap, sva, va);
1359	critical_exit();
1360	vm_page_unlock_queues();
1361}
1362
1363/***************************************************
1364 * Page table page management routines.....
1365 ***************************************************/
1366static __inline void
1367pmap_free_zero_pages(vm_page_t free)
1368{
1369	vm_page_t m;
1370
1371	while (free != NULL) {
1372		m = free;
1373		free = m->right;
1374		vm_page_free_zero(m);
1375	}
1376}
1377
1378/*
1379 * This routine unholds page table pages, and if the hold count
1380 * drops to zero, then it decrements the wire count.
1381 */
1382static __inline int
1383pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1384{
1385
1386	--m->wire_count;
1387	if (m->wire_count == 0)
1388		return _pmap_unwire_pte_hold(pmap, m, free);
1389	else
1390		return 0;
1391}
1392
1393static int
1394_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1395{
1396	vm_offset_t pteva;
1397
1398	PT_UPDATES_FLUSH();
1399	/*
1400	 * unmap the page table page
1401	 */
1402	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1403	/*
1404	 * page *might* contain residual mapping :-/
1405	 */
1406	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1407	pmap_zero_page(m);
1408	--pmap->pm_stats.resident_count;
1409
1410	/*
1411	 * This is a release store so that the ordinary store unmapping
1412	 * the page table page is globally performed before TLB shoot-
1413	 * down is begun.
1414	 */
1415	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1416
1417	/*
1418	 * Do an invltlb to make the invalidated mapping
1419	 * take effect immediately.
1420	 */
1421	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1422	pmap_invalidate_page(pmap, pteva);
1423
1424	/*
1425	 * Put page on a list so that it is released after
1426	 * *ALL* TLB shootdown is done
1427	 */
1428	m->right = *free;
1429	*free = m;
1430
1431	return 1;
1432}
1433
1434/*
1435 * After removing a page table entry, this routine is used to
1436 * conditionally free the page, and manage the hold/wire counts.
1437 */
1438static int
1439pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1440{
1441	pd_entry_t ptepde;
1442	vm_page_t mpte;
1443
1444	if (va >= VM_MAXUSER_ADDRESS)
1445		return 0;
1446	ptepde = PT_GET(pmap_pde(pmap, va));
1447	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1448	return pmap_unwire_pte_hold(pmap, mpte, free);
1449}
1450
1451void
1452pmap_pinit0(pmap_t pmap)
1453{
1454
1455	PMAP_LOCK_INIT(pmap);
1456	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1457#ifdef PAE
1458	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1459#endif
1460	CPU_ZERO(&pmap->pm_active);
1461	PCPU_SET(curpmap, pmap);
1462	TAILQ_INIT(&pmap->pm_pvchunk);
1463	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1464	mtx_lock_spin(&allpmaps_lock);
1465	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1466	mtx_unlock_spin(&allpmaps_lock);
1467}
1468
1469/*
1470 * Initialize a preallocated and zeroed pmap structure,
1471 * such as one in a vmspace structure.
1472 */
1473int
1474pmap_pinit(pmap_t pmap)
1475{
1476	vm_page_t m, ptdpg[NPGPTD + 1];
1477	int npgptd = NPGPTD + 1;
1478	static int color;
1479	int i;
1480
1481#ifdef HAMFISTED_LOCKING
1482	mtx_lock(&createdelete_lock);
1483#endif
1484
1485	PMAP_LOCK_INIT(pmap);
1486
1487	/*
1488	 * No need to allocate page table space yet but we do need a valid
1489	 * page directory table.
1490	 */
1491	if (pmap->pm_pdir == NULL) {
1492		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1493		    NBPTD);
1494		if (pmap->pm_pdir == NULL) {
1495			PMAP_LOCK_DESTROY(pmap);
1496#ifdef HAMFISTED_LOCKING
1497			mtx_unlock(&createdelete_lock);
1498#endif
1499			return (0);
1500		}
1501#ifdef PAE
1502		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1503#endif
1504	}
1505
1506	/*
1507	 * allocate the page directory page(s)
1508	 */
1509	for (i = 0; i < npgptd;) {
1510		m = vm_page_alloc(NULL, color++,
1511		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1512		    VM_ALLOC_ZERO);
1513		if (m == NULL)
1514			VM_WAIT;
1515		else {
1516			ptdpg[i++] = m;
1517		}
1518	}
1519	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1520	for (i = 0; i < NPGPTD; i++) {
1521		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1522			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1523	}
1524
1525	mtx_lock_spin(&allpmaps_lock);
1526	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1527	mtx_unlock_spin(&allpmaps_lock);
1528	/* Wire in kernel global address entries. */
1529
1530	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1531#ifdef PAE
1532	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1533	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1534		bzero(pmap->pm_pdpt, PAGE_SIZE);
1535	for (i = 0; i < NPGPTD; i++) {
1536		vm_paddr_t ma;
1537
1538		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1539		pmap->pm_pdpt[i] = ma | PG_V;
1540
1541	}
1542#endif
1543	for (i = 0; i < NPGPTD; i++) {
1544		pt_entry_t *pd;
1545		vm_paddr_t ma;
1546
1547		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1548		pd = pmap->pm_pdir + (i * NPDEPG);
1549		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1550#if 0
1551		xen_pgd_pin(ma);
1552#endif
1553	}
1554
1555#ifdef PAE
1556	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1557#endif
1558	vm_page_lock_queues();
1559	xen_flush_queue();
1560	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1561	for (i = 0; i < NPGPTD; i++) {
1562		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1563		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1564	}
1565	xen_flush_queue();
1566	vm_page_unlock_queues();
1567	CPU_ZERO(&pmap->pm_active);
1568	TAILQ_INIT(&pmap->pm_pvchunk);
1569	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1570
1571#ifdef HAMFISTED_LOCKING
1572	mtx_unlock(&createdelete_lock);
1573#endif
1574	return (1);
1575}
1576
1577/*
1578 * this routine is called if the page table page is not
1579 * mapped correctly.
1580 */
1581static vm_page_t
1582_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1583{
1584	vm_paddr_t ptema;
1585	vm_page_t m;
1586
1587	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1588	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1589	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1590
1591	/*
1592	 * Allocate a page table page.
1593	 */
1594	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1595	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1596		if (flags & M_WAITOK) {
1597			PMAP_UNLOCK(pmap);
1598			vm_page_unlock_queues();
1599			VM_WAIT;
1600			vm_page_lock_queues();
1601			PMAP_LOCK(pmap);
1602		}
1603
1604		/*
1605		 * Indicate the need to retry.  While waiting, the page table
1606		 * page may have been allocated.
1607		 */
1608		return (NULL);
1609	}
1610	if ((m->flags & PG_ZERO) == 0)
1611		pmap_zero_page(m);
1612
1613	/*
1614	 * Map the pagetable page into the process address space, if
1615	 * it isn't already there.
1616	 */
1617	pmap->pm_stats.resident_count++;
1618
1619	ptema = VM_PAGE_TO_MACH(m);
1620	xen_pt_pin(ptema);
1621	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1622		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1623
1624	KASSERT(pmap->pm_pdir[ptepindex],
1625	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1626	return (m);
1627}
1628
1629static vm_page_t
1630pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1631{
1632	unsigned ptepindex;
1633	pd_entry_t ptema;
1634	vm_page_t m;
1635
1636	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1637	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1638	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1639
1640	/*
1641	 * Calculate pagetable page index
1642	 */
1643	ptepindex = va >> PDRSHIFT;
1644retry:
1645	/*
1646	 * Get the page directory entry
1647	 */
1648	ptema = pmap->pm_pdir[ptepindex];
1649
1650	/*
1651	 * This supports switching from a 4MB page to a
1652	 * normal 4K page.
1653	 */
1654	if (ptema & PG_PS) {
1655		/*
1656		 * XXX
1657		 */
1658		pmap->pm_pdir[ptepindex] = 0;
1659		ptema = 0;
1660		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1661		pmap_invalidate_all(kernel_pmap);
1662	}
1663
1664	/*
1665	 * If the page table page is mapped, we just increment the
1666	 * hold count, and activate it.
1667	 */
1668	if (ptema & PG_V) {
1669		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1670		m->wire_count++;
1671	} else {
1672		/*
1673		 * Here if the pte page isn't mapped, or if it has
1674		 * been deallocated.
1675		 */
1676		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1677		    pmap, va, flags);
1678		m = _pmap_allocpte(pmap, ptepindex, flags);
1679		if (m == NULL && (flags & M_WAITOK))
1680			goto retry;
1681
1682		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1683	}
1684	return (m);
1685}
1686
1687
1688/***************************************************
1689* Pmap allocation/deallocation routines.
1690 ***************************************************/
1691
1692#ifdef SMP
1693/*
1694 * Deal with a SMP shootdown of other users of the pmap that we are
1695 * trying to dispose of.  This can be a bit hairy.
1696 */
1697static cpuset_t *lazymask;
1698static u_int lazyptd;
1699static volatile u_int lazywait;
1700
1701void pmap_lazyfix_action(void);
1702
1703void
1704pmap_lazyfix_action(void)
1705{
1706
1707#ifdef COUNT_IPIS
1708	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1709#endif
1710	if (rcr3() == lazyptd)
1711		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1712	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1713	atomic_store_rel_int(&lazywait, 1);
1714}
1715
1716static void
1717pmap_lazyfix_self(u_int cpuid)
1718{
1719
1720	if (rcr3() == lazyptd)
1721		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1722	CPU_CLR_ATOMIC(cpuid, lazymask);
1723}
1724
1725
1726static void
1727pmap_lazyfix(pmap_t pmap)
1728{
1729	cpuset_t mymask, mask;
1730	u_int cpuid, spins;
1731	int lsb;
1732
1733	mask = pmap->pm_active;
1734	while (!CPU_EMPTY(&mask)) {
1735		spins = 50000000;
1736
1737		/* Find least significant set bit. */
1738		lsb = cpusetobj_ffs(&mask);
1739		MPASS(lsb != 0);
1740		lsb--;
1741		CPU_SETOF(lsb, &mask);
1742		mtx_lock_spin(&smp_ipi_mtx);
1743#ifdef PAE
1744		lazyptd = vtophys(pmap->pm_pdpt);
1745#else
1746		lazyptd = vtophys(pmap->pm_pdir);
1747#endif
1748		cpuid = PCPU_GET(cpuid);
1749
1750		/* Use a cpuset just for having an easy check. */
1751		CPU_SETOF(cpuid, &mymask);
1752		if (!CPU_CMP(&mask, &mymask)) {
1753			lazymask = &pmap->pm_active;
1754			pmap_lazyfix_self(cpuid);
1755		} else {
1756			atomic_store_rel_int((u_int *)&lazymask,
1757			    (u_int)&pmap->pm_active);
1758			atomic_store_rel_int(&lazywait, 0);
1759			ipi_selected(mask, IPI_LAZYPMAP);
1760			while (lazywait == 0) {
1761				ia32_pause();
1762				if (--spins == 0)
1763					break;
1764			}
1765		}
1766		mtx_unlock_spin(&smp_ipi_mtx);
1767		if (spins == 0)
1768			printf("pmap_lazyfix: spun for 50000000\n");
1769		mask = pmap->pm_active;
1770	}
1771}
1772
1773#else	/* SMP */
1774
1775/*
1776 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1777 * unlikely to have to even execute this code, including the fact
1778 * that the cleanup is deferred until the parent does a wait(2), which
1779 * means that another userland process has run.
1780 */
1781static void
1782pmap_lazyfix(pmap_t pmap)
1783{
1784	u_int cr3;
1785
1786	cr3 = vtophys(pmap->pm_pdir);
1787	if (cr3 == rcr3()) {
1788		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1789		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1790	}
1791}
1792#endif	/* SMP */
1793
1794/*
1795 * Release any resources held by the given physical map.
1796 * Called when a pmap initialized by pmap_pinit is being released.
1797 * Should only be called if the map contains no valid mappings.
1798 */
1799void
1800pmap_release(pmap_t pmap)
1801{
1802	vm_page_t m, ptdpg[2*NPGPTD+1];
1803	vm_paddr_t ma;
1804	int i;
1805#ifdef PAE
1806	int npgptd = NPGPTD + 1;
1807#else
1808	int npgptd = NPGPTD;
1809#endif
1810	KASSERT(pmap->pm_stats.resident_count == 0,
1811	    ("pmap_release: pmap resident count %ld != 0",
1812	    pmap->pm_stats.resident_count));
1813	PT_UPDATES_FLUSH();
1814
1815#ifdef HAMFISTED_LOCKING
1816	mtx_lock(&createdelete_lock);
1817#endif
1818
1819	pmap_lazyfix(pmap);
1820	mtx_lock_spin(&allpmaps_lock);
1821	LIST_REMOVE(pmap, pm_list);
1822	mtx_unlock_spin(&allpmaps_lock);
1823
1824	for (i = 0; i < NPGPTD; i++)
1825		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1826	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1827#ifdef PAE
1828	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1829#endif
1830
1831	for (i = 0; i < npgptd; i++) {
1832		m = ptdpg[i];
1833		ma = VM_PAGE_TO_MACH(m);
1834		/* unpinning L1 and L2 treated the same */
1835#if 0
1836                xen_pgd_unpin(ma);
1837#else
1838		if (i == NPGPTD)
1839	                xen_pgd_unpin(ma);
1840#endif
1841#ifdef PAE
1842		if (i < NPGPTD)
1843			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1844			    ("pmap_release: got wrong ptd page"));
1845#endif
1846		m->wire_count--;
1847		atomic_subtract_int(&cnt.v_wire_count, 1);
1848		vm_page_free(m);
1849	}
1850#ifdef PAE
1851	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1852#endif
1853	PMAP_LOCK_DESTROY(pmap);
1854
1855#ifdef HAMFISTED_LOCKING
1856	mtx_unlock(&createdelete_lock);
1857#endif
1858}
1859
1860static int
1861kvm_size(SYSCTL_HANDLER_ARGS)
1862{
1863	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1864
1865	return sysctl_handle_long(oidp, &ksize, 0, req);
1866}
1867SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1868    0, 0, kvm_size, "IU", "Size of KVM");
1869
1870static int
1871kvm_free(SYSCTL_HANDLER_ARGS)
1872{
1873	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1874
1875	return sysctl_handle_long(oidp, &kfree, 0, req);
1876}
1877SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1878    0, 0, kvm_free, "IU", "Amount of KVM free");
1879
1880/*
1881 * grow the number of kernel page table entries, if needed
1882 */
1883void
1884pmap_growkernel(vm_offset_t addr)
1885{
1886	struct pmap *pmap;
1887	vm_paddr_t ptppaddr;
1888	vm_page_t nkpg;
1889	pd_entry_t newpdir;
1890
1891	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1892	if (kernel_vm_end == 0) {
1893		kernel_vm_end = KERNBASE;
1894		nkpt = 0;
1895		while (pdir_pde(PTD, kernel_vm_end)) {
1896			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1897			nkpt++;
1898			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1899				kernel_vm_end = kernel_map->max_offset;
1900				break;
1901			}
1902		}
1903	}
1904	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1905	if (addr - 1 >= kernel_map->max_offset)
1906		addr = kernel_map->max_offset;
1907	while (kernel_vm_end < addr) {
1908		if (pdir_pde(PTD, kernel_vm_end)) {
1909			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1910			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1911				kernel_vm_end = kernel_map->max_offset;
1912				break;
1913			}
1914			continue;
1915		}
1916
1917		/*
1918		 * This index is bogus, but out of the way
1919		 */
1920		nkpg = vm_page_alloc(NULL, nkpt,
1921		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1922		if (!nkpg)
1923			panic("pmap_growkernel: no memory to grow kernel");
1924
1925		nkpt++;
1926
1927		pmap_zero_page(nkpg);
1928		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1929		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1930		vm_page_lock_queues();
1931		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1932		mtx_lock_spin(&allpmaps_lock);
1933		LIST_FOREACH(pmap, &allpmaps, pm_list)
1934			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1935
1936		mtx_unlock_spin(&allpmaps_lock);
1937		vm_page_unlock_queues();
1938
1939		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1940		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1941			kernel_vm_end = kernel_map->max_offset;
1942			break;
1943		}
1944	}
1945}
1946
1947
1948/***************************************************
1949 * page management routines.
1950 ***************************************************/
1951
1952CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1953CTASSERT(_NPCM == 11);
1954
1955static __inline struct pv_chunk *
1956pv_to_chunk(pv_entry_t pv)
1957{
1958
1959	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1960}
1961
1962#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1963
1964#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1965#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1966
1967static uint32_t pc_freemask[11] = {
1968	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1969	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1970	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1971	PC_FREE0_9, PC_FREE10
1972};
1973
1974SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1975	"Current number of pv entries");
1976
1977#ifdef PV_STATS
1978static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1979
1980SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1981	"Current number of pv entry chunks");
1982SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1983	"Current number of pv entry chunks allocated");
1984SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1985	"Current number of pv entry chunks frees");
1986SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1987	"Number of times tried to get a chunk page but failed.");
1988
1989static long pv_entry_frees, pv_entry_allocs;
1990static int pv_entry_spare;
1991
1992SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1993	"Current number of pv entry frees");
1994SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1995	"Current number of pv entry allocs");
1996SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1997	"Current number of spare pv entries");
1998
1999static int pmap_collect_inactive, pmap_collect_active;
2000
2001SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2002	"Current number times pmap_collect called on inactive queue");
2003SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2004	"Current number times pmap_collect called on active queue");
2005#endif
2006
2007/*
2008 * We are in a serious low memory condition.  Resort to
2009 * drastic measures to free some pages so we can allocate
2010 * another pv entry chunk.  This is normally called to
2011 * unmap inactive pages, and if necessary, active pages.
2012 */
2013static void
2014pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2015{
2016	pmap_t pmap;
2017	pt_entry_t *pte, tpte;
2018	pv_entry_t next_pv, pv;
2019	vm_offset_t va;
2020	vm_page_t m, free;
2021
2022	sched_pin();
2023	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2024		if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
2025			continue;
2026		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2027			va = pv->pv_va;
2028			pmap = PV_PMAP(pv);
2029			/* Avoid deadlock and lock recursion. */
2030			if (pmap > locked_pmap)
2031				PMAP_LOCK(pmap);
2032			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2033				continue;
2034			pmap->pm_stats.resident_count--;
2035			pte = pmap_pte_quick(pmap, va);
2036			tpte = pte_load_clear(pte);
2037			KASSERT((tpte & PG_W) == 0,
2038			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2039			if (tpte & PG_A)
2040				vm_page_flag_set(m, PG_REFERENCED);
2041			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2042				vm_page_dirty(m);
2043			free = NULL;
2044			pmap_unuse_pt(pmap, va, &free);
2045			pmap_invalidate_page(pmap, va);
2046			pmap_free_zero_pages(free);
2047			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2048			free_pv_entry(pmap, pv);
2049			if (pmap != locked_pmap)
2050				PMAP_UNLOCK(pmap);
2051		}
2052		if (TAILQ_EMPTY(&m->md.pv_list))
2053			vm_page_flag_clear(m, PG_WRITEABLE);
2054	}
2055	sched_unpin();
2056}
2057
2058
2059/*
2060 * free the pv_entry back to the free list
2061 */
2062static void
2063free_pv_entry(pmap_t pmap, pv_entry_t pv)
2064{
2065	vm_page_t m;
2066	struct pv_chunk *pc;
2067	int idx, field, bit;
2068
2069	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2070	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2071	PV_STAT(pv_entry_frees++);
2072	PV_STAT(pv_entry_spare++);
2073	pv_entry_count--;
2074	pc = pv_to_chunk(pv);
2075	idx = pv - &pc->pc_pventry[0];
2076	field = idx / 32;
2077	bit = idx % 32;
2078	pc->pc_map[field] |= 1ul << bit;
2079	/* move to head of list */
2080	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2081	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2082	for (idx = 0; idx < _NPCM; idx++)
2083		if (pc->pc_map[idx] != pc_freemask[idx])
2084			return;
2085	PV_STAT(pv_entry_spare -= _NPCPV);
2086	PV_STAT(pc_chunk_count--);
2087	PV_STAT(pc_chunk_frees++);
2088	/* entire chunk is free, return it */
2089	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2090	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2091	pmap_qremove((vm_offset_t)pc, 1);
2092	vm_page_unwire(m, 0);
2093	vm_page_free(m);
2094	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2095}
2096
2097/*
2098 * get a new pv_entry, allocating a block from the system
2099 * when needed.
2100 */
2101static pv_entry_t
2102get_pv_entry(pmap_t pmap, int try)
2103{
2104	static const struct timeval printinterval = { 60, 0 };
2105	static struct timeval lastprint;
2106	static vm_pindex_t colour;
2107	struct vpgqueues *pq;
2108	int bit, field;
2109	pv_entry_t pv;
2110	struct pv_chunk *pc;
2111	vm_page_t m;
2112
2113	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2114	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2115	PV_STAT(pv_entry_allocs++);
2116	pv_entry_count++;
2117	if (pv_entry_count > pv_entry_high_water)
2118		if (ratecheck(&lastprint, &printinterval))
2119			printf("Approaching the limit on PV entries, consider "
2120			    "increasing either the vm.pmap.shpgperproc or the "
2121			    "vm.pmap.pv_entry_max tunable.\n");
2122	pq = NULL;
2123retry:
2124	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2125	if (pc != NULL) {
2126		for (field = 0; field < _NPCM; field++) {
2127			if (pc->pc_map[field]) {
2128				bit = bsfl(pc->pc_map[field]);
2129				break;
2130			}
2131		}
2132		if (field < _NPCM) {
2133			pv = &pc->pc_pventry[field * 32 + bit];
2134			pc->pc_map[field] &= ~(1ul << bit);
2135			/* If this was the last item, move it to tail */
2136			for (field = 0; field < _NPCM; field++)
2137				if (pc->pc_map[field] != 0) {
2138					PV_STAT(pv_entry_spare--);
2139					return (pv);	/* not full, return */
2140				}
2141			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2142			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2143			PV_STAT(pv_entry_spare--);
2144			return (pv);
2145		}
2146	}
2147	/*
2148	 * Access to the ptelist "pv_vafree" is synchronized by the page
2149	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2150	 * remain non-empty until pmap_ptelist_alloc() completes.
2151	 */
2152	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2153	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2154	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2155		if (try) {
2156			pv_entry_count--;
2157			PV_STAT(pc_chunk_tryfail++);
2158			return (NULL);
2159		}
2160		/*
2161		 * Reclaim pv entries: At first, destroy mappings to
2162		 * inactive pages.  After that, if a pv chunk entry
2163		 * is still needed, destroy mappings to active pages.
2164		 */
2165		if (pq == NULL) {
2166			PV_STAT(pmap_collect_inactive++);
2167			pq = &vm_page_queues[PQ_INACTIVE];
2168		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2169			PV_STAT(pmap_collect_active++);
2170			pq = &vm_page_queues[PQ_ACTIVE];
2171		} else
2172			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2173		pmap_collect(pmap, pq);
2174		goto retry;
2175	}
2176	PV_STAT(pc_chunk_count++);
2177	PV_STAT(pc_chunk_allocs++);
2178	colour++;
2179	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2180	pmap_qenter((vm_offset_t)pc, &m, 1);
2181	if ((m->flags & PG_ZERO) == 0)
2182		pagezero(pc);
2183	pc->pc_pmap = pmap;
2184	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2185	for (field = 1; field < _NPCM; field++)
2186		pc->pc_map[field] = pc_freemask[field];
2187	pv = &pc->pc_pventry[0];
2188	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2189	PV_STAT(pv_entry_spare += _NPCPV - 1);
2190	return (pv);
2191}
2192
2193static __inline pv_entry_t
2194pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2195{
2196	pv_entry_t pv;
2197
2198	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2199	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2200		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2201			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2202			break;
2203		}
2204	}
2205	return (pv);
2206}
2207
2208static void
2209pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2210{
2211	pv_entry_t pv;
2212
2213	pv = pmap_pvh_remove(pvh, pmap, va);
2214	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2215	free_pv_entry(pmap, pv);
2216}
2217
2218static void
2219pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2220{
2221
2222	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2223	pmap_pvh_free(&m->md, pmap, va);
2224	if (TAILQ_EMPTY(&m->md.pv_list))
2225		vm_page_flag_clear(m, PG_WRITEABLE);
2226}
2227
2228/*
2229 * Conditionally create a pv entry.
2230 */
2231static boolean_t
2232pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2233{
2234	pv_entry_t pv;
2235
2236	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2237	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2238	if (pv_entry_count < pv_entry_high_water &&
2239	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2240		pv->pv_va = va;
2241		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2242		return (TRUE);
2243	} else
2244		return (FALSE);
2245}
2246
2247/*
2248 * pmap_remove_pte: do the things to unmap a page in a process
2249 */
2250static int
2251pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2252{
2253	pt_entry_t oldpte;
2254	vm_page_t m;
2255
2256	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2257	    pmap, (u_long)*ptq, va);
2258
2259	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2260	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2261	oldpte = *ptq;
2262	PT_SET_VA_MA(ptq, 0, TRUE);
2263	if (oldpte & PG_W)
2264		pmap->pm_stats.wired_count -= 1;
2265	/*
2266	 * Machines that don't support invlpg, also don't support
2267	 * PG_G.
2268	 */
2269	if (oldpte & PG_G)
2270		pmap_invalidate_page(kernel_pmap, va);
2271	pmap->pm_stats.resident_count -= 1;
2272	if (oldpte & PG_MANAGED) {
2273		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2274		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2275			vm_page_dirty(m);
2276		if (oldpte & PG_A)
2277			vm_page_flag_set(m, PG_REFERENCED);
2278		pmap_remove_entry(pmap, m, va);
2279	}
2280	return (pmap_unuse_pt(pmap, va, free));
2281}
2282
2283/*
2284 * Remove a single page from a process address space
2285 */
2286static void
2287pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2288{
2289	pt_entry_t *pte;
2290
2291	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2292	    pmap, va);
2293
2294	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2295	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2296	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2297	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2298		return;
2299	pmap_remove_pte(pmap, pte, va, free);
2300	pmap_invalidate_page(pmap, va);
2301	if (*PMAP1)
2302		PT_SET_MA(PADDR1, 0);
2303
2304}
2305
2306/*
2307 *	Remove the given range of addresses from the specified map.
2308 *
2309 *	It is assumed that the start and end are properly
2310 *	rounded to the page size.
2311 */
2312void
2313pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2314{
2315	vm_offset_t pdnxt;
2316	pd_entry_t ptpaddr;
2317	pt_entry_t *pte;
2318	vm_page_t free = NULL;
2319	int anyvalid;
2320
2321	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2322	    pmap, sva, eva);
2323
2324	/*
2325	 * Perform an unsynchronized read.  This is, however, safe.
2326	 */
2327	if (pmap->pm_stats.resident_count == 0)
2328		return;
2329
2330	anyvalid = 0;
2331
2332	vm_page_lock_queues();
2333	sched_pin();
2334	PMAP_LOCK(pmap);
2335
2336	/*
2337	 * special handling of removing one page.  a very
2338	 * common operation and easy to short circuit some
2339	 * code.
2340	 */
2341	if ((sva + PAGE_SIZE == eva) &&
2342	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2343		pmap_remove_page(pmap, sva, &free);
2344		goto out;
2345	}
2346
2347	for (; sva < eva; sva = pdnxt) {
2348		unsigned pdirindex;
2349
2350		/*
2351		 * Calculate index for next page table.
2352		 */
2353		pdnxt = (sva + NBPDR) & ~PDRMASK;
2354		if (pmap->pm_stats.resident_count == 0)
2355			break;
2356
2357		pdirindex = sva >> PDRSHIFT;
2358		ptpaddr = pmap->pm_pdir[pdirindex];
2359
2360		/*
2361		 * Weed out invalid mappings. Note: we assume that the page
2362		 * directory table is always allocated, and in kernel virtual.
2363		 */
2364		if (ptpaddr == 0)
2365			continue;
2366
2367		/*
2368		 * Check for large page.
2369		 */
2370		if ((ptpaddr & PG_PS) != 0) {
2371			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2372			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2373			anyvalid = 1;
2374			continue;
2375		}
2376
2377		/*
2378		 * Limit our scan to either the end of the va represented
2379		 * by the current page table page, or to the end of the
2380		 * range being removed.
2381		 */
2382		if (pdnxt > eva)
2383			pdnxt = eva;
2384
2385		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2386		    sva += PAGE_SIZE) {
2387			if ((*pte & PG_V) == 0)
2388				continue;
2389
2390			/*
2391			 * The TLB entry for a PG_G mapping is invalidated
2392			 * by pmap_remove_pte().
2393			 */
2394			if ((*pte & PG_G) == 0)
2395				anyvalid = 1;
2396			if (pmap_remove_pte(pmap, pte, sva, &free))
2397				break;
2398		}
2399	}
2400	PT_UPDATES_FLUSH();
2401	if (*PMAP1)
2402		PT_SET_VA_MA(PMAP1, 0, TRUE);
2403out:
2404	if (anyvalid)
2405		pmap_invalidate_all(pmap);
2406	sched_unpin();
2407	vm_page_unlock_queues();
2408	PMAP_UNLOCK(pmap);
2409	pmap_free_zero_pages(free);
2410}
2411
2412/*
2413 *	Routine:	pmap_remove_all
2414 *	Function:
2415 *		Removes this physical page from
2416 *		all physical maps in which it resides.
2417 *		Reflects back modify bits to the pager.
2418 *
2419 *	Notes:
2420 *		Original versions of this routine were very
2421 *		inefficient because they iteratively called
2422 *		pmap_remove (slow...)
2423 */
2424
2425void
2426pmap_remove_all(vm_page_t m)
2427{
2428	pv_entry_t pv;
2429	pmap_t pmap;
2430	pt_entry_t *pte, tpte;
2431	vm_page_t free;
2432
2433	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2434	    ("pmap_remove_all: page %p is not managed", m));
2435	free = NULL;
2436	vm_page_lock_queues();
2437	sched_pin();
2438	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2439		pmap = PV_PMAP(pv);
2440		PMAP_LOCK(pmap);
2441		pmap->pm_stats.resident_count--;
2442		pte = pmap_pte_quick(pmap, pv->pv_va);
2443
2444		tpte = *pte;
2445		PT_SET_VA_MA(pte, 0, TRUE);
2446		if (tpte & PG_W)
2447			pmap->pm_stats.wired_count--;
2448		if (tpte & PG_A)
2449			vm_page_flag_set(m, PG_REFERENCED);
2450
2451		/*
2452		 * Update the vm_page_t clean and reference bits.
2453		 */
2454		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2455			vm_page_dirty(m);
2456		pmap_unuse_pt(pmap, pv->pv_va, &free);
2457		pmap_invalidate_page(pmap, pv->pv_va);
2458		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2459		free_pv_entry(pmap, pv);
2460		PMAP_UNLOCK(pmap);
2461	}
2462	vm_page_flag_clear(m, PG_WRITEABLE);
2463	PT_UPDATES_FLUSH();
2464	if (*PMAP1)
2465		PT_SET_MA(PADDR1, 0);
2466	sched_unpin();
2467	vm_page_unlock_queues();
2468	pmap_free_zero_pages(free);
2469}
2470
2471/*
2472 *	Set the physical protection on the
2473 *	specified range of this map as requested.
2474 */
2475void
2476pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2477{
2478	vm_offset_t pdnxt;
2479	pd_entry_t ptpaddr;
2480	pt_entry_t *pte;
2481	int anychanged;
2482
2483	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2484	    pmap, sva, eva, prot);
2485
2486	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2487		pmap_remove(pmap, sva, eva);
2488		return;
2489	}
2490
2491#ifdef PAE
2492	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2493	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2494		return;
2495#else
2496	if (prot & VM_PROT_WRITE)
2497		return;
2498#endif
2499
2500	anychanged = 0;
2501
2502	vm_page_lock_queues();
2503	sched_pin();
2504	PMAP_LOCK(pmap);
2505	for (; sva < eva; sva = pdnxt) {
2506		pt_entry_t obits, pbits;
2507		unsigned pdirindex;
2508
2509		pdnxt = (sva + NBPDR) & ~PDRMASK;
2510
2511		pdirindex = sva >> PDRSHIFT;
2512		ptpaddr = pmap->pm_pdir[pdirindex];
2513
2514		/*
2515		 * Weed out invalid mappings. Note: we assume that the page
2516		 * directory table is always allocated, and in kernel virtual.
2517		 */
2518		if (ptpaddr == 0)
2519			continue;
2520
2521		/*
2522		 * Check for large page.
2523		 */
2524		if ((ptpaddr & PG_PS) != 0) {
2525			if ((prot & VM_PROT_WRITE) == 0)
2526				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2527#ifdef PAE
2528			if ((prot & VM_PROT_EXECUTE) == 0)
2529				pmap->pm_pdir[pdirindex] |= pg_nx;
2530#endif
2531			anychanged = 1;
2532			continue;
2533		}
2534
2535		if (pdnxt > eva)
2536			pdnxt = eva;
2537
2538		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2539		    sva += PAGE_SIZE) {
2540			vm_page_t m;
2541
2542retry:
2543			/*
2544			 * Regardless of whether a pte is 32 or 64 bits in
2545			 * size, PG_RW, PG_A, and PG_M are among the least
2546			 * significant 32 bits.
2547			 */
2548			obits = pbits = *pte;
2549			if ((pbits & PG_V) == 0)
2550				continue;
2551
2552			if ((prot & VM_PROT_WRITE) == 0) {
2553				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2554				    (PG_MANAGED | PG_M | PG_RW)) {
2555					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2556					    PG_FRAME);
2557					vm_page_dirty(m);
2558				}
2559				pbits &= ~(PG_RW | PG_M);
2560			}
2561#ifdef PAE
2562			if ((prot & VM_PROT_EXECUTE) == 0)
2563				pbits |= pg_nx;
2564#endif
2565
2566			if (pbits != obits) {
2567				obits = *pte;
2568				PT_SET_VA_MA(pte, pbits, TRUE);
2569				if (*pte != pbits)
2570					goto retry;
2571				if (obits & PG_G)
2572					pmap_invalidate_page(pmap, sva);
2573				else
2574					anychanged = 1;
2575			}
2576		}
2577	}
2578	PT_UPDATES_FLUSH();
2579	if (*PMAP1)
2580		PT_SET_VA_MA(PMAP1, 0, TRUE);
2581	if (anychanged)
2582		pmap_invalidate_all(pmap);
2583	sched_unpin();
2584	vm_page_unlock_queues();
2585	PMAP_UNLOCK(pmap);
2586}
2587
2588/*
2589 *	Insert the given physical page (p) at
2590 *	the specified virtual address (v) in the
2591 *	target physical map with the protection requested.
2592 *
2593 *	If specified, the page will be wired down, meaning
2594 *	that the related pte can not be reclaimed.
2595 *
2596 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2597 *	or lose information.  That is, this routine must actually
2598 *	insert this page into the given map NOW.
2599 */
2600void
2601pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2602    vm_prot_t prot, boolean_t wired)
2603{
2604	pd_entry_t *pde;
2605	pt_entry_t *pte;
2606	pt_entry_t newpte, origpte;
2607	pv_entry_t pv;
2608	vm_paddr_t opa, pa;
2609	vm_page_t mpte, om;
2610	boolean_t invlva;
2611
2612	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2613	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2614	va = trunc_page(va);
2615	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2616	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2617	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2618	    va));
2619	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2620	    (m->oflags & VPO_BUSY) != 0,
2621	    ("pmap_enter: page %p is not busy", m));
2622
2623	mpte = NULL;
2624
2625	vm_page_lock_queues();
2626	PMAP_LOCK(pmap);
2627	sched_pin();
2628
2629	/*
2630	 * In the case that a page table page is not
2631	 * resident, we are creating it here.
2632	 */
2633	if (va < VM_MAXUSER_ADDRESS) {
2634		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2635	}
2636
2637	pde = pmap_pde(pmap, va);
2638	if ((*pde & PG_PS) != 0)
2639		panic("pmap_enter: attempted pmap_enter on 4MB page");
2640	pte = pmap_pte_quick(pmap, va);
2641
2642	/*
2643	 * Page Directory table entry not valid, we need a new PT page
2644	 */
2645	if (pte == NULL) {
2646		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2647			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2648	}
2649
2650	pa = VM_PAGE_TO_PHYS(m);
2651	om = NULL;
2652	opa = origpte = 0;
2653
2654#if 0
2655	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2656		pte, *pte));
2657#endif
2658	origpte = *pte;
2659	if (origpte)
2660		origpte = xpmap_mtop(origpte);
2661	opa = origpte & PG_FRAME;
2662
2663	/*
2664	 * Mapping has not changed, must be protection or wiring change.
2665	 */
2666	if (origpte && (opa == pa)) {
2667		/*
2668		 * Wiring change, just update stats. We don't worry about
2669		 * wiring PT pages as they remain resident as long as there
2670		 * are valid mappings in them. Hence, if a user page is wired,
2671		 * the PT page will be also.
2672		 */
2673		if (wired && ((origpte & PG_W) == 0))
2674			pmap->pm_stats.wired_count++;
2675		else if (!wired && (origpte & PG_W))
2676			pmap->pm_stats.wired_count--;
2677
2678		/*
2679		 * Remove extra pte reference
2680		 */
2681		if (mpte)
2682			mpte->wire_count--;
2683
2684		if (origpte & PG_MANAGED) {
2685			om = m;
2686			pa |= PG_MANAGED;
2687		}
2688		goto validate;
2689	}
2690
2691	pv = NULL;
2692
2693	/*
2694	 * Mapping has changed, invalidate old range and fall through to
2695	 * handle validating new mapping.
2696	 */
2697	if (opa) {
2698		if (origpte & PG_W)
2699			pmap->pm_stats.wired_count--;
2700		if (origpte & PG_MANAGED) {
2701			om = PHYS_TO_VM_PAGE(opa);
2702			pv = pmap_pvh_remove(&om->md, pmap, va);
2703		} else if (va < VM_MAXUSER_ADDRESS)
2704			printf("va=0x%x is unmanaged :-( \n", va);
2705
2706		if (mpte != NULL) {
2707			mpte->wire_count--;
2708			KASSERT(mpte->wire_count > 0,
2709			    ("pmap_enter: missing reference to page table page,"
2710			     " va: 0x%x", va));
2711		}
2712	} else
2713		pmap->pm_stats.resident_count++;
2714
2715	/*
2716	 * Enter on the PV list if part of our managed memory.
2717	 */
2718	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2719		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2720		    ("pmap_enter: managed mapping within the clean submap"));
2721		if (pv == NULL)
2722			pv = get_pv_entry(pmap, FALSE);
2723		pv->pv_va = va;
2724		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2725		pa |= PG_MANAGED;
2726	} else if (pv != NULL)
2727		free_pv_entry(pmap, pv);
2728
2729	/*
2730	 * Increment counters
2731	 */
2732	if (wired)
2733		pmap->pm_stats.wired_count++;
2734
2735validate:
2736	/*
2737	 * Now validate mapping with desired protection/wiring.
2738	 */
2739	newpte = (pt_entry_t)(pa | PG_V);
2740	if ((prot & VM_PROT_WRITE) != 0) {
2741		newpte |= PG_RW;
2742		if ((newpte & PG_MANAGED) != 0)
2743			vm_page_flag_set(m, PG_WRITEABLE);
2744	}
2745#ifdef PAE
2746	if ((prot & VM_PROT_EXECUTE) == 0)
2747		newpte |= pg_nx;
2748#endif
2749	if (wired)
2750		newpte |= PG_W;
2751	if (va < VM_MAXUSER_ADDRESS)
2752		newpte |= PG_U;
2753	if (pmap == kernel_pmap)
2754		newpte |= pgeflag;
2755
2756	critical_enter();
2757	/*
2758	 * if the mapping or permission bits are different, we need
2759	 * to update the pte.
2760	 */
2761	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2762		if (origpte) {
2763			invlva = FALSE;
2764			origpte = *pte;
2765			PT_SET_VA(pte, newpte | PG_A, FALSE);
2766			if (origpte & PG_A) {
2767				if (origpte & PG_MANAGED)
2768					vm_page_flag_set(om, PG_REFERENCED);
2769				if (opa != VM_PAGE_TO_PHYS(m))
2770					invlva = TRUE;
2771#ifdef PAE
2772				if ((origpte & PG_NX) == 0 &&
2773				    (newpte & PG_NX) != 0)
2774					invlva = TRUE;
2775#endif
2776			}
2777			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2778				if ((origpte & PG_MANAGED) != 0)
2779					vm_page_dirty(om);
2780				if ((prot & VM_PROT_WRITE) == 0)
2781					invlva = TRUE;
2782			}
2783			if ((origpte & PG_MANAGED) != 0 &&
2784			    TAILQ_EMPTY(&om->md.pv_list))
2785				vm_page_flag_clear(om, PG_WRITEABLE);
2786			if (invlva)
2787				pmap_invalidate_page(pmap, va);
2788		} else{
2789			PT_SET_VA(pte, newpte | PG_A, FALSE);
2790		}
2791
2792	}
2793	PT_UPDATES_FLUSH();
2794	critical_exit();
2795	if (*PMAP1)
2796		PT_SET_VA_MA(PMAP1, 0, TRUE);
2797	sched_unpin();
2798	vm_page_unlock_queues();
2799	PMAP_UNLOCK(pmap);
2800}
2801
2802/*
2803 * Maps a sequence of resident pages belonging to the same object.
2804 * The sequence begins with the given page m_start.  This page is
2805 * mapped at the given virtual address start.  Each subsequent page is
2806 * mapped at a virtual address that is offset from start by the same
2807 * amount as the page is offset from m_start within the object.  The
2808 * last page in the sequence is the page with the largest offset from
2809 * m_start that can be mapped at a virtual address less than the given
2810 * virtual address end.  Not every virtual page between start and end
2811 * is mapped; only those for which a resident page exists with the
2812 * corresponding offset from m_start are mapped.
2813 */
2814void
2815pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2816    vm_page_t m_start, vm_prot_t prot)
2817{
2818	vm_page_t m, mpte;
2819	vm_pindex_t diff, psize;
2820	multicall_entry_t mcl[16];
2821	multicall_entry_t *mclp = mcl;
2822	int error, count = 0;
2823
2824	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2825	psize = atop(end - start);
2826
2827	mpte = NULL;
2828	m = m_start;
2829	vm_page_lock_queues();
2830	PMAP_LOCK(pmap);
2831	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2832		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2833		    prot, mpte);
2834		m = TAILQ_NEXT(m, listq);
2835		if (count == 16) {
2836			error = HYPERVISOR_multicall(mcl, count);
2837			KASSERT(error == 0, ("bad multicall %d", error));
2838			mclp = mcl;
2839			count = 0;
2840		}
2841	}
2842	if (count) {
2843		error = HYPERVISOR_multicall(mcl, count);
2844		KASSERT(error == 0, ("bad multicall %d", error));
2845	}
2846	vm_page_unlock_queues();
2847	PMAP_UNLOCK(pmap);
2848}
2849
2850/*
2851 * this code makes some *MAJOR* assumptions:
2852 * 1. Current pmap & pmap exists.
2853 * 2. Not wired.
2854 * 3. Read access.
2855 * 4. No page table pages.
2856 * but is *MUCH* faster than pmap_enter...
2857 */
2858
2859void
2860pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2861{
2862	multicall_entry_t mcl, *mclp;
2863	int count = 0;
2864	mclp = &mcl;
2865
2866	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2867	    pmap, va, m, prot);
2868
2869	vm_page_lock_queues();
2870	PMAP_LOCK(pmap);
2871	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2872	if (count)
2873		HYPERVISOR_multicall(&mcl, count);
2874	vm_page_unlock_queues();
2875	PMAP_UNLOCK(pmap);
2876}
2877
2878#ifdef notyet
2879void
2880pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2881{
2882	int i, error, index = 0;
2883	multicall_entry_t mcl[16];
2884	multicall_entry_t *mclp = mcl;
2885
2886	PMAP_LOCK(pmap);
2887	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2888		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2889			continue;
2890
2891		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2892		if (index == 16) {
2893			error = HYPERVISOR_multicall(mcl, index);
2894			mclp = mcl;
2895			index = 0;
2896			KASSERT(error == 0, ("bad multicall %d", error));
2897		}
2898	}
2899	if (index) {
2900		error = HYPERVISOR_multicall(mcl, index);
2901		KASSERT(error == 0, ("bad multicall %d", error));
2902	}
2903
2904	PMAP_UNLOCK(pmap);
2905}
2906#endif
2907
2908static vm_page_t
2909pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2910    vm_prot_t prot, vm_page_t mpte)
2911{
2912	pt_entry_t *pte;
2913	vm_paddr_t pa;
2914	vm_page_t free;
2915	multicall_entry_t *mcl = *mclpp;
2916
2917	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2918	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2919	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2920	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2921	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2922
2923	/*
2924	 * In the case that a page table page is not
2925	 * resident, we are creating it here.
2926	 */
2927	if (va < VM_MAXUSER_ADDRESS) {
2928		unsigned ptepindex;
2929		pd_entry_t ptema;
2930
2931		/*
2932		 * Calculate pagetable page index
2933		 */
2934		ptepindex = va >> PDRSHIFT;
2935		if (mpte && (mpte->pindex == ptepindex)) {
2936			mpte->wire_count++;
2937		} else {
2938			/*
2939			 * Get the page directory entry
2940			 */
2941			ptema = pmap->pm_pdir[ptepindex];
2942
2943			/*
2944			 * If the page table page is mapped, we just increment
2945			 * the hold count, and activate it.
2946			 */
2947			if (ptema & PG_V) {
2948				if (ptema & PG_PS)
2949					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2950				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2951				mpte->wire_count++;
2952			} else {
2953				mpte = _pmap_allocpte(pmap, ptepindex,
2954				    M_NOWAIT);
2955				if (mpte == NULL)
2956					return (mpte);
2957			}
2958		}
2959	} else {
2960		mpte = NULL;
2961	}
2962
2963	/*
2964	 * This call to vtopte makes the assumption that we are
2965	 * entering the page into the current pmap.  In order to support
2966	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2967	 * But that isn't as quick as vtopte.
2968	 */
2969	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2970	pte = vtopte(va);
2971	if (*pte & PG_V) {
2972		if (mpte != NULL) {
2973			mpte->wire_count--;
2974			mpte = NULL;
2975		}
2976		return (mpte);
2977	}
2978
2979	/*
2980	 * Enter on the PV list if part of our managed memory.
2981	 */
2982	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2983	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2984		if (mpte != NULL) {
2985			free = NULL;
2986			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2987				pmap_invalidate_page(pmap, va);
2988				pmap_free_zero_pages(free);
2989			}
2990
2991			mpte = NULL;
2992		}
2993		return (mpte);
2994	}
2995
2996	/*
2997	 * Increment counters
2998	 */
2999	pmap->pm_stats.resident_count++;
3000
3001	pa = VM_PAGE_TO_PHYS(m);
3002#ifdef PAE
3003	if ((prot & VM_PROT_EXECUTE) == 0)
3004		pa |= pg_nx;
3005#endif
3006
3007#if 0
3008	/*
3009	 * Now validate mapping with RO protection
3010	 */
3011	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3012		pte_store(pte, pa | PG_V | PG_U);
3013	else
3014		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3015#else
3016	/*
3017	 * Now validate mapping with RO protection
3018	 */
3019	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3020		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3021	else
3022		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3023
3024	mcl->op = __HYPERVISOR_update_va_mapping;
3025	mcl->args[0] = va;
3026	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3027	mcl->args[2] = (uint32_t)(pa >> 32);
3028	mcl->args[3] = 0;
3029	*mclpp = mcl + 1;
3030	*count = *count + 1;
3031#endif
3032	return mpte;
3033}
3034
3035/*
3036 * Make a temporary mapping for a physical address.  This is only intended
3037 * to be used for panic dumps.
3038 */
3039void *
3040pmap_kenter_temporary(vm_paddr_t pa, int i)
3041{
3042	vm_offset_t va;
3043	vm_paddr_t ma = xpmap_ptom(pa);
3044
3045	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3046	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3047	invlpg(va);
3048	return ((void *)crashdumpmap);
3049}
3050
3051/*
3052 * This code maps large physical mmap regions into the
3053 * processor address space.  Note that some shortcuts
3054 * are taken, but the code works.
3055 */
3056void
3057pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3058		    vm_object_t object, vm_pindex_t pindex,
3059		    vm_size_t size)
3060{
3061	pd_entry_t *pde;
3062	vm_paddr_t pa, ptepa;
3063	vm_page_t p;
3064	int pat_mode;
3065
3066	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3067	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3068	    ("pmap_object_init_pt: non-device object"));
3069	if (pseflag &&
3070	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3071		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3072			return;
3073		p = vm_page_lookup(object, pindex);
3074		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3075		    ("pmap_object_init_pt: invalid page %p", p));
3076		pat_mode = p->md.pat_mode;
3077		/*
3078		 * Abort the mapping if the first page is not physically
3079		 * aligned to a 2/4MB page boundary.
3080		 */
3081		ptepa = VM_PAGE_TO_PHYS(p);
3082		if (ptepa & (NBPDR - 1))
3083			return;
3084		/*
3085		 * Skip the first page.  Abort the mapping if the rest of
3086		 * the pages are not physically contiguous or have differing
3087		 * memory attributes.
3088		 */
3089		p = TAILQ_NEXT(p, listq);
3090		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3091		    pa += PAGE_SIZE) {
3092			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3093			    ("pmap_object_init_pt: invalid page %p", p));
3094			if (pa != VM_PAGE_TO_PHYS(p) ||
3095			    pat_mode != p->md.pat_mode)
3096				return;
3097			p = TAILQ_NEXT(p, listq);
3098		}
3099		/* Map using 2/4MB pages. */
3100		PMAP_LOCK(pmap);
3101		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3102		    size; pa += NBPDR) {
3103			pde = pmap_pde(pmap, addr);
3104			if (*pde == 0) {
3105				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3106				    PG_U | PG_RW | PG_V);
3107				pmap->pm_stats.resident_count += NBPDR /
3108				    PAGE_SIZE;
3109				pmap_pde_mappings++;
3110			}
3111			/* Else continue on if the PDE is already valid. */
3112			addr += NBPDR;
3113		}
3114		PMAP_UNLOCK(pmap);
3115	}
3116}
3117
3118/*
3119 *	Routine:	pmap_change_wiring
3120 *	Function:	Change the wiring attribute for a map/virtual-address
3121 *			pair.
3122 *	In/out conditions:
3123 *			The mapping must already exist in the pmap.
3124 */
3125void
3126pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3127{
3128	pt_entry_t *pte;
3129
3130	vm_page_lock_queues();
3131	PMAP_LOCK(pmap);
3132	pte = pmap_pte(pmap, va);
3133
3134	if (wired && !pmap_pte_w(pte)) {
3135		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3136		pmap->pm_stats.wired_count++;
3137	} else if (!wired && pmap_pte_w(pte)) {
3138		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3139		pmap->pm_stats.wired_count--;
3140	}
3141
3142	/*
3143	 * Wiring is not a hardware characteristic so there is no need to
3144	 * invalidate TLB.
3145	 */
3146	pmap_pte_release(pte);
3147	PMAP_UNLOCK(pmap);
3148	vm_page_unlock_queues();
3149}
3150
3151
3152
3153/*
3154 *	Copy the range specified by src_addr/len
3155 *	from the source map to the range dst_addr/len
3156 *	in the destination map.
3157 *
3158 *	This routine is only advisory and need not do anything.
3159 */
3160
3161void
3162pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3163	  vm_offset_t src_addr)
3164{
3165	vm_page_t   free;
3166	vm_offset_t addr;
3167	vm_offset_t end_addr = src_addr + len;
3168	vm_offset_t pdnxt;
3169
3170	if (dst_addr != src_addr)
3171		return;
3172
3173	if (!pmap_is_current(src_pmap)) {
3174		CTR2(KTR_PMAP,
3175		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3176		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3177
3178		return;
3179	}
3180	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3181	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3182
3183#ifdef HAMFISTED_LOCKING
3184	mtx_lock(&createdelete_lock);
3185#endif
3186
3187	vm_page_lock_queues();
3188	if (dst_pmap < src_pmap) {
3189		PMAP_LOCK(dst_pmap);
3190		PMAP_LOCK(src_pmap);
3191	} else {
3192		PMAP_LOCK(src_pmap);
3193		PMAP_LOCK(dst_pmap);
3194	}
3195	sched_pin();
3196	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3197		pt_entry_t *src_pte, *dst_pte;
3198		vm_page_t dstmpte, srcmpte;
3199		pd_entry_t srcptepaddr;
3200		unsigned ptepindex;
3201
3202		KASSERT(addr < UPT_MIN_ADDRESS,
3203		    ("pmap_copy: invalid to pmap_copy page tables"));
3204
3205		pdnxt = (addr + NBPDR) & ~PDRMASK;
3206		ptepindex = addr >> PDRSHIFT;
3207
3208		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3209		if (srcptepaddr == 0)
3210			continue;
3211
3212		if (srcptepaddr & PG_PS) {
3213			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3214				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3215				dst_pmap->pm_stats.resident_count +=
3216				    NBPDR / PAGE_SIZE;
3217			}
3218			continue;
3219		}
3220
3221		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3222		KASSERT(srcmpte->wire_count > 0,
3223		    ("pmap_copy: source page table page is unused"));
3224
3225		if (pdnxt > end_addr)
3226			pdnxt = end_addr;
3227
3228		src_pte = vtopte(addr);
3229		while (addr < pdnxt) {
3230			pt_entry_t ptetemp;
3231			ptetemp = *src_pte;
3232			/*
3233			 * we only virtual copy managed pages
3234			 */
3235			if ((ptetemp & PG_MANAGED) != 0) {
3236				dstmpte = pmap_allocpte(dst_pmap, addr,
3237				    M_NOWAIT);
3238				if (dstmpte == NULL)
3239					break;
3240				dst_pte = pmap_pte_quick(dst_pmap, addr);
3241				if (*dst_pte == 0 &&
3242				    pmap_try_insert_pv_entry(dst_pmap, addr,
3243				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3244					/*
3245					 * Clear the wired, modified, and
3246					 * accessed (referenced) bits
3247					 * during the copy.
3248					 */
3249					KASSERT(ptetemp != 0, ("src_pte not set"));
3250					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3251					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3252					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3253						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3254					dst_pmap->pm_stats.resident_count++;
3255	 			} else {
3256					free = NULL;
3257					if (pmap_unwire_pte_hold(dst_pmap,
3258					    dstmpte, &free)) {
3259						pmap_invalidate_page(dst_pmap,
3260						    addr);
3261						pmap_free_zero_pages(free);
3262					}
3263				}
3264				if (dstmpte->wire_count >= srcmpte->wire_count)
3265					break;
3266			}
3267			addr += PAGE_SIZE;
3268			src_pte++;
3269		}
3270	}
3271	PT_UPDATES_FLUSH();
3272	sched_unpin();
3273	vm_page_unlock_queues();
3274	PMAP_UNLOCK(src_pmap);
3275	PMAP_UNLOCK(dst_pmap);
3276
3277#ifdef HAMFISTED_LOCKING
3278	mtx_unlock(&createdelete_lock);
3279#endif
3280}
3281
3282static __inline void
3283pagezero(void *page)
3284{
3285#if defined(I686_CPU)
3286	if (cpu_class == CPUCLASS_686) {
3287#if defined(CPU_ENABLE_SSE)
3288		if (cpu_feature & CPUID_SSE2)
3289			sse2_pagezero(page);
3290		else
3291#endif
3292			i686_pagezero(page);
3293	} else
3294#endif
3295		bzero(page, PAGE_SIZE);
3296}
3297
3298/*
3299 *	pmap_zero_page zeros the specified hardware page by mapping
3300 *	the page into KVM and using bzero to clear its contents.
3301 */
3302void
3303pmap_zero_page(vm_page_t m)
3304{
3305	struct sysmaps *sysmaps;
3306
3307	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3308	mtx_lock(&sysmaps->lock);
3309	if (*sysmaps->CMAP2)
3310		panic("pmap_zero_page: CMAP2 busy");
3311	sched_pin();
3312	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3313	pagezero(sysmaps->CADDR2);
3314	PT_SET_MA(sysmaps->CADDR2, 0);
3315	sched_unpin();
3316	mtx_unlock(&sysmaps->lock);
3317}
3318
3319/*
3320 *	pmap_zero_page_area zeros the specified hardware page by mapping
3321 *	the page into KVM and using bzero to clear its contents.
3322 *
3323 *	off and size may not cover an area beyond a single hardware page.
3324 */
3325void
3326pmap_zero_page_area(vm_page_t m, int off, int size)
3327{
3328	struct sysmaps *sysmaps;
3329
3330	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3331	mtx_lock(&sysmaps->lock);
3332	if (*sysmaps->CMAP2)
3333		panic("pmap_zero_page: CMAP2 busy");
3334	sched_pin();
3335	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3336
3337	if (off == 0 && size == PAGE_SIZE)
3338		pagezero(sysmaps->CADDR2);
3339	else
3340		bzero((char *)sysmaps->CADDR2 + off, size);
3341	PT_SET_MA(sysmaps->CADDR2, 0);
3342	sched_unpin();
3343	mtx_unlock(&sysmaps->lock);
3344}
3345
3346/*
3347 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3348 *	the page into KVM and using bzero to clear its contents.  This
3349 *	is intended to be called from the vm_pagezero process only and
3350 *	outside of Giant.
3351 */
3352void
3353pmap_zero_page_idle(vm_page_t m)
3354{
3355
3356	if (*CMAP3)
3357		panic("pmap_zero_page: CMAP3 busy");
3358	sched_pin();
3359	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3360	pagezero(CADDR3);
3361	PT_SET_MA(CADDR3, 0);
3362	sched_unpin();
3363}
3364
3365/*
3366 *	pmap_copy_page copies the specified (machine independent)
3367 *	page by mapping the page into virtual memory and using
3368 *	bcopy to copy the page, one machine dependent page at a
3369 *	time.
3370 */
3371void
3372pmap_copy_page(vm_page_t src, vm_page_t dst)
3373{
3374	struct sysmaps *sysmaps;
3375
3376	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3377	mtx_lock(&sysmaps->lock);
3378	if (*sysmaps->CMAP1)
3379		panic("pmap_copy_page: CMAP1 busy");
3380	if (*sysmaps->CMAP2)
3381		panic("pmap_copy_page: CMAP2 busy");
3382	sched_pin();
3383	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3384	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3385	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3386	PT_SET_MA(sysmaps->CADDR1, 0);
3387	PT_SET_MA(sysmaps->CADDR2, 0);
3388	sched_unpin();
3389	mtx_unlock(&sysmaps->lock);
3390}
3391
3392/*
3393 * Returns true if the pmap's pv is one of the first
3394 * 16 pvs linked to from this page.  This count may
3395 * be changed upwards or downwards in the future; it
3396 * is only necessary that true be returned for a small
3397 * subset of pmaps for proper page aging.
3398 */
3399boolean_t
3400pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3401{
3402	pv_entry_t pv;
3403	int loops = 0;
3404	boolean_t rv;
3405
3406	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3407	    ("pmap_page_exists_quick: page %p is not managed", m));
3408	rv = FALSE;
3409	vm_page_lock_queues();
3410	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3411		if (PV_PMAP(pv) == pmap) {
3412			rv = TRUE;
3413			break;
3414		}
3415		loops++;
3416		if (loops >= 16)
3417			break;
3418	}
3419	vm_page_unlock_queues();
3420	return (rv);
3421}
3422
3423/*
3424 *	pmap_page_wired_mappings:
3425 *
3426 *	Return the number of managed mappings to the given physical page
3427 *	that are wired.
3428 */
3429int
3430pmap_page_wired_mappings(vm_page_t m)
3431{
3432	pv_entry_t pv;
3433	pt_entry_t *pte;
3434	pmap_t pmap;
3435	int count;
3436
3437	count = 0;
3438	if ((m->flags & PG_FICTITIOUS) != 0)
3439		return (count);
3440	vm_page_lock_queues();
3441	sched_pin();
3442	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3443		pmap = PV_PMAP(pv);
3444		PMAP_LOCK(pmap);
3445		pte = pmap_pte_quick(pmap, pv->pv_va);
3446		if ((*pte & PG_W) != 0)
3447			count++;
3448		PMAP_UNLOCK(pmap);
3449	}
3450	sched_unpin();
3451	vm_page_unlock_queues();
3452	return (count);
3453}
3454
3455/*
3456 * Returns TRUE if the given page is mapped individually or as part of
3457 * a 4mpage.  Otherwise, returns FALSE.
3458 */
3459boolean_t
3460pmap_page_is_mapped(vm_page_t m)
3461{
3462	boolean_t rv;
3463
3464	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3465		return (FALSE);
3466	vm_page_lock_queues();
3467	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3468	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3469	vm_page_unlock_queues();
3470	return (rv);
3471}
3472
3473/*
3474 * Remove all pages from specified address space
3475 * this aids process exit speeds.  Also, this code
3476 * is special cased for current process only, but
3477 * can have the more generic (and slightly slower)
3478 * mode enabled.  This is much faster than pmap_remove
3479 * in the case of running down an entire address space.
3480 */
3481void
3482pmap_remove_pages(pmap_t pmap)
3483{
3484	pt_entry_t *pte, tpte;
3485	vm_page_t m, free = NULL;
3486	pv_entry_t pv;
3487	struct pv_chunk *pc, *npc;
3488	int field, idx;
3489	int32_t bit;
3490	uint32_t inuse, bitmask;
3491	int allfree;
3492
3493	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3494
3495	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3496		printf("warning: pmap_remove_pages called with non-current pmap\n");
3497		return;
3498	}
3499	vm_page_lock_queues();
3500	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3501	PMAP_LOCK(pmap);
3502	sched_pin();
3503	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3504		allfree = 1;
3505		for (field = 0; field < _NPCM; field++) {
3506			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3507			while (inuse != 0) {
3508				bit = bsfl(inuse);
3509				bitmask = 1UL << bit;
3510				idx = field * 32 + bit;
3511				pv = &pc->pc_pventry[idx];
3512				inuse &= ~bitmask;
3513
3514				pte = vtopte(pv->pv_va);
3515				tpte = *pte ? xpmap_mtop(*pte) : 0;
3516
3517				if (tpte == 0) {
3518					printf(
3519					    "TPTE at %p  IS ZERO @ VA %08x\n",
3520					    pte, pv->pv_va);
3521					panic("bad pte");
3522				}
3523
3524/*
3525 * We cannot remove wired pages from a process' mapping at this time
3526 */
3527				if (tpte & PG_W) {
3528					allfree = 0;
3529					continue;
3530				}
3531
3532				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3533				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3534				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3535				    m, (uintmax_t)m->phys_addr,
3536				    (uintmax_t)tpte));
3537
3538				KASSERT(m < &vm_page_array[vm_page_array_size],
3539					("pmap_remove_pages: bad tpte %#jx",
3540					(uintmax_t)tpte));
3541
3542
3543				PT_CLEAR_VA(pte, FALSE);
3544
3545				/*
3546				 * Update the vm_page_t clean/reference bits.
3547				 */
3548				if (tpte & PG_M)
3549					vm_page_dirty(m);
3550
3551				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3552				if (TAILQ_EMPTY(&m->md.pv_list))
3553					vm_page_flag_clear(m, PG_WRITEABLE);
3554
3555				pmap_unuse_pt(pmap, pv->pv_va, &free);
3556
3557				/* Mark free */
3558				PV_STAT(pv_entry_frees++);
3559				PV_STAT(pv_entry_spare++);
3560				pv_entry_count--;
3561				pc->pc_map[field] |= bitmask;
3562				pmap->pm_stats.resident_count--;
3563			}
3564		}
3565		PT_UPDATES_FLUSH();
3566		if (allfree) {
3567			PV_STAT(pv_entry_spare -= _NPCPV);
3568			PV_STAT(pc_chunk_count--);
3569			PV_STAT(pc_chunk_frees++);
3570			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3571			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3572			pmap_qremove((vm_offset_t)pc, 1);
3573			vm_page_unwire(m, 0);
3574			vm_page_free(m);
3575			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3576		}
3577	}
3578	PT_UPDATES_FLUSH();
3579	if (*PMAP1)
3580		PT_SET_MA(PADDR1, 0);
3581
3582	sched_unpin();
3583	pmap_invalidate_all(pmap);
3584	vm_page_unlock_queues();
3585	PMAP_UNLOCK(pmap);
3586	pmap_free_zero_pages(free);
3587}
3588
3589/*
3590 *	pmap_is_modified:
3591 *
3592 *	Return whether or not the specified physical page was modified
3593 *	in any physical maps.
3594 */
3595boolean_t
3596pmap_is_modified(vm_page_t m)
3597{
3598	pv_entry_t pv;
3599	pt_entry_t *pte;
3600	pmap_t pmap;
3601	boolean_t rv;
3602
3603	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3604	    ("pmap_is_modified: page %p is not managed", m));
3605	rv = FALSE;
3606
3607	/*
3608	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
3609	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
3610	 * is clear, no PTEs can have PG_M set.
3611	 */
3612	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3613	if ((m->oflags & VPO_BUSY) == 0 &&
3614	    (m->flags & PG_WRITEABLE) == 0)
3615		return (rv);
3616	vm_page_lock_queues();
3617	sched_pin();
3618	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3619		pmap = PV_PMAP(pv);
3620		PMAP_LOCK(pmap);
3621		pte = pmap_pte_quick(pmap, pv->pv_va);
3622		rv = (*pte & PG_M) != 0;
3623		PMAP_UNLOCK(pmap);
3624		if (rv)
3625			break;
3626	}
3627	if (*PMAP1)
3628		PT_SET_MA(PADDR1, 0);
3629	sched_unpin();
3630	vm_page_unlock_queues();
3631	return (rv);
3632}
3633
3634/*
3635 *	pmap_is_prefaultable:
3636 *
3637 *	Return whether or not the specified virtual address is elgible
3638 *	for prefault.
3639 */
3640static boolean_t
3641pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3642{
3643	pt_entry_t *pte;
3644	boolean_t rv = FALSE;
3645
3646	return (rv);
3647
3648	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3649		pte = vtopte(addr);
3650		rv = (*pte == 0);
3651	}
3652	return (rv);
3653}
3654
3655boolean_t
3656pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3657{
3658	boolean_t rv;
3659
3660	PMAP_LOCK(pmap);
3661	rv = pmap_is_prefaultable_locked(pmap, addr);
3662	PMAP_UNLOCK(pmap);
3663	return (rv);
3664}
3665
3666boolean_t
3667pmap_is_referenced(vm_page_t m)
3668{
3669	pv_entry_t pv;
3670	pt_entry_t *pte;
3671	pmap_t pmap;
3672	boolean_t rv;
3673
3674	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3675	    ("pmap_is_referenced: page %p is not managed", m));
3676	rv = FALSE;
3677	vm_page_lock_queues();
3678	sched_pin();
3679	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3680		pmap = PV_PMAP(pv);
3681		PMAP_LOCK(pmap);
3682		pte = pmap_pte_quick(pmap, pv->pv_va);
3683		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3684		PMAP_UNLOCK(pmap);
3685		if (rv)
3686			break;
3687	}
3688	if (*PMAP1)
3689		PT_SET_MA(PADDR1, 0);
3690	sched_unpin();
3691	vm_page_unlock_queues();
3692	return (rv);
3693}
3694
3695void
3696pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3697{
3698	int i, npages = round_page(len) >> PAGE_SHIFT;
3699	for (i = 0; i < npages; i++) {
3700		pt_entry_t *pte;
3701		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3702		vm_page_lock_queues();
3703		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3704		vm_page_unlock_queues();
3705		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3706		pmap_pte_release(pte);
3707	}
3708}
3709
3710void
3711pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3712{
3713	int i, npages = round_page(len) >> PAGE_SHIFT;
3714	for (i = 0; i < npages; i++) {
3715		pt_entry_t *pte;
3716		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3717		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3718		vm_page_lock_queues();
3719		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3720		vm_page_unlock_queues();
3721		pmap_pte_release(pte);
3722	}
3723}
3724
3725/*
3726 * Clear the write and modified bits in each of the given page's mappings.
3727 */
3728void
3729pmap_remove_write(vm_page_t m)
3730{
3731	pv_entry_t pv;
3732	pmap_t pmap;
3733	pt_entry_t oldpte, *pte;
3734
3735	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3736	    ("pmap_remove_write: page %p is not managed", m));
3737
3738	/*
3739	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
3740	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
3741	 * is clear, no page table entries need updating.
3742	 */
3743	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3744	if ((m->oflags & VPO_BUSY) == 0 &&
3745	    (m->flags & PG_WRITEABLE) == 0)
3746		return;
3747	vm_page_lock_queues();
3748	sched_pin();
3749	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3750		pmap = PV_PMAP(pv);
3751		PMAP_LOCK(pmap);
3752		pte = pmap_pte_quick(pmap, pv->pv_va);
3753retry:
3754		oldpte = *pte;
3755		if ((oldpte & PG_RW) != 0) {
3756			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3757
3758			/*
3759			 * Regardless of whether a pte is 32 or 64 bits
3760			 * in size, PG_RW and PG_M are among the least
3761			 * significant 32 bits.
3762			 */
3763			PT_SET_VA_MA(pte, newpte, TRUE);
3764			if (*pte != newpte)
3765				goto retry;
3766
3767			if ((oldpte & PG_M) != 0)
3768				vm_page_dirty(m);
3769			pmap_invalidate_page(pmap, pv->pv_va);
3770		}
3771		PMAP_UNLOCK(pmap);
3772	}
3773	vm_page_flag_clear(m, PG_WRITEABLE);
3774	PT_UPDATES_FLUSH();
3775	if (*PMAP1)
3776		PT_SET_MA(PADDR1, 0);
3777	sched_unpin();
3778	vm_page_unlock_queues();
3779}
3780
3781/*
3782 *	pmap_ts_referenced:
3783 *
3784 *	Return a count of reference bits for a page, clearing those bits.
3785 *	It is not necessary for every reference bit to be cleared, but it
3786 *	is necessary that 0 only be returned when there are truly no
3787 *	reference bits set.
3788 *
3789 *	XXX: The exact number of bits to check and clear is a matter that
3790 *	should be tested and standardized at some point in the future for
3791 *	optimal aging of shared pages.
3792 */
3793int
3794pmap_ts_referenced(vm_page_t m)
3795{
3796	pv_entry_t pv, pvf, pvn;
3797	pmap_t pmap;
3798	pt_entry_t *pte;
3799	int rtval = 0;
3800
3801	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3802	    ("pmap_ts_referenced: page %p is not managed", m));
3803	vm_page_lock_queues();
3804	sched_pin();
3805	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3806		pvf = pv;
3807		do {
3808			pvn = TAILQ_NEXT(pv, pv_list);
3809			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3810			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3811			pmap = PV_PMAP(pv);
3812			PMAP_LOCK(pmap);
3813			pte = pmap_pte_quick(pmap, pv->pv_va);
3814			if ((*pte & PG_A) != 0) {
3815				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3816				pmap_invalidate_page(pmap, pv->pv_va);
3817				rtval++;
3818				if (rtval > 4)
3819					pvn = NULL;
3820			}
3821			PMAP_UNLOCK(pmap);
3822		} while ((pv = pvn) != NULL && pv != pvf);
3823	}
3824	PT_UPDATES_FLUSH();
3825	if (*PMAP1)
3826		PT_SET_MA(PADDR1, 0);
3827
3828	sched_unpin();
3829	vm_page_unlock_queues();
3830	return (rtval);
3831}
3832
3833/*
3834 *	Clear the modify bits on the specified physical page.
3835 */
3836void
3837pmap_clear_modify(vm_page_t m)
3838{
3839	pv_entry_t pv;
3840	pmap_t pmap;
3841	pt_entry_t *pte;
3842
3843	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3844	    ("pmap_clear_modify: page %p is not managed", m));
3845	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3846	KASSERT((m->oflags & VPO_BUSY) == 0,
3847	    ("pmap_clear_modify: page %p is busy", m));
3848
3849	/*
3850	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
3851	 * If the object containing the page is locked and the page is not
3852	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
3853	 */
3854	if ((m->flags & PG_WRITEABLE) == 0)
3855		return;
3856	vm_page_lock_queues();
3857	sched_pin();
3858	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3859		pmap = PV_PMAP(pv);
3860		PMAP_LOCK(pmap);
3861		pte = pmap_pte_quick(pmap, pv->pv_va);
3862		if ((*pte & PG_M) != 0) {
3863			/*
3864			 * Regardless of whether a pte is 32 or 64 bits
3865			 * in size, PG_M is among the least significant
3866			 * 32 bits.
3867			 */
3868			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3869			pmap_invalidate_page(pmap, pv->pv_va);
3870		}
3871		PMAP_UNLOCK(pmap);
3872	}
3873	sched_unpin();
3874	vm_page_unlock_queues();
3875}
3876
3877/*
3878 *	pmap_clear_reference:
3879 *
3880 *	Clear the reference bit on the specified physical page.
3881 */
3882void
3883pmap_clear_reference(vm_page_t m)
3884{
3885	pv_entry_t pv;
3886	pmap_t pmap;
3887	pt_entry_t *pte;
3888
3889	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3890	    ("pmap_clear_reference: page %p is not managed", m));
3891	vm_page_lock_queues();
3892	sched_pin();
3893	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3894		pmap = PV_PMAP(pv);
3895		PMAP_LOCK(pmap);
3896		pte = pmap_pte_quick(pmap, pv->pv_va);
3897		if ((*pte & PG_A) != 0) {
3898			/*
3899			 * Regardless of whether a pte is 32 or 64 bits
3900			 * in size, PG_A is among the least significant
3901			 * 32 bits.
3902			 */
3903			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3904			pmap_invalidate_page(pmap, pv->pv_va);
3905		}
3906		PMAP_UNLOCK(pmap);
3907	}
3908	sched_unpin();
3909	vm_page_unlock_queues();
3910}
3911
3912/*
3913 * Miscellaneous support routines follow
3914 */
3915
3916/*
3917 * Map a set of physical memory pages into the kernel virtual
3918 * address space. Return a pointer to where it is mapped. This
3919 * routine is intended to be used for mapping device memory,
3920 * NOT real memory.
3921 */
3922void *
3923pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3924{
3925	vm_offset_t va, offset;
3926	vm_size_t tmpsize;
3927
3928	offset = pa & PAGE_MASK;
3929	size = roundup(offset + size, PAGE_SIZE);
3930	pa = pa & PG_FRAME;
3931
3932	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3933		va = KERNBASE + pa;
3934	else
3935		va = kmem_alloc_nofault(kernel_map, size);
3936	if (!va)
3937		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3938
3939	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3940		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3941	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3942	pmap_invalidate_cache_range(va, va + size);
3943	return ((void *)(va + offset));
3944}
3945
3946void *
3947pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3948{
3949
3950	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3951}
3952
3953void *
3954pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3955{
3956
3957	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3958}
3959
3960void
3961pmap_unmapdev(vm_offset_t va, vm_size_t size)
3962{
3963	vm_offset_t base, offset, tmpva;
3964
3965	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3966		return;
3967	base = trunc_page(va);
3968	offset = va & PAGE_MASK;
3969	size = roundup(offset + size, PAGE_SIZE);
3970	critical_enter();
3971	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3972		pmap_kremove(tmpva);
3973	pmap_invalidate_range(kernel_pmap, va, tmpva);
3974	critical_exit();
3975	kmem_free(kernel_map, base, size);
3976}
3977
3978/*
3979 * Sets the memory attribute for the specified page.
3980 */
3981void
3982pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3983{
3984	struct sysmaps *sysmaps;
3985	vm_offset_t sva, eva;
3986
3987	m->md.pat_mode = ma;
3988	if ((m->flags & PG_FICTITIOUS) != 0)
3989		return;
3990
3991	/*
3992	 * If "m" is a normal page, flush it from the cache.
3993	 * See pmap_invalidate_cache_range().
3994	 *
3995	 * First, try to find an existing mapping of the page by sf
3996	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3997	 * flushes the cache.
3998	 */
3999	if (sf_buf_invalidate_cache(m))
4000		return;
4001
4002	/*
4003	 * If page is not mapped by sf buffer, but CPU does not
4004	 * support self snoop, map the page transient and do
4005	 * invalidation. In the worst case, whole cache is flushed by
4006	 * pmap_invalidate_cache_range().
4007	 */
4008	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4009		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4010		mtx_lock(&sysmaps->lock);
4011		if (*sysmaps->CMAP2)
4012			panic("pmap_page_set_memattr: CMAP2 busy");
4013		sched_pin();
4014		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4015		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4016		    pmap_cache_bits(m->md.pat_mode, 0));
4017		invlcaddr(sysmaps->CADDR2);
4018		sva = (vm_offset_t)sysmaps->CADDR2;
4019		eva = sva + PAGE_SIZE;
4020	} else
4021		sva = eva = 0; /* gcc */
4022	pmap_invalidate_cache_range(sva, eva);
4023	if (sva != 0) {
4024		PT_SET_MA(sysmaps->CADDR2, 0);
4025		sched_unpin();
4026		mtx_unlock(&sysmaps->lock);
4027	}
4028}
4029
4030int
4031pmap_change_attr(va, size, mode)
4032	vm_offset_t va;
4033	vm_size_t size;
4034	int mode;
4035{
4036	vm_offset_t base, offset, tmpva;
4037	pt_entry_t *pte;
4038	u_int opte, npte;
4039	pd_entry_t *pde;
4040	boolean_t changed;
4041
4042	base = trunc_page(va);
4043	offset = va & PAGE_MASK;
4044	size = roundup(offset + size, PAGE_SIZE);
4045
4046	/* Only supported on kernel virtual addresses. */
4047	if (base <= VM_MAXUSER_ADDRESS)
4048		return (EINVAL);
4049
4050	/* 4MB pages and pages that aren't mapped aren't supported. */
4051	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4052		pde = pmap_pde(kernel_pmap, tmpva);
4053		if (*pde & PG_PS)
4054			return (EINVAL);
4055		if ((*pde & PG_V) == 0)
4056			return (EINVAL);
4057		pte = vtopte(va);
4058		if ((*pte & PG_V) == 0)
4059			return (EINVAL);
4060	}
4061
4062	changed = FALSE;
4063
4064	/*
4065	 * Ok, all the pages exist and are 4k, so run through them updating
4066	 * their cache mode.
4067	 */
4068	for (tmpva = base; size > 0; ) {
4069		pte = vtopte(tmpva);
4070
4071		/*
4072		 * The cache mode bits are all in the low 32-bits of the
4073		 * PTE, so we can just spin on updating the low 32-bits.
4074		 */
4075		do {
4076			opte = *(u_int *)pte;
4077			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4078			npte |= pmap_cache_bits(mode, 0);
4079			PT_SET_VA_MA(pte, npte, TRUE);
4080		} while (npte != opte && (*pte != npte));
4081		if (npte != opte)
4082			changed = TRUE;
4083		tmpva += PAGE_SIZE;
4084		size -= PAGE_SIZE;
4085	}
4086
4087	/*
4088	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4089	 * be, etc.
4090	 */
4091	if (changed) {
4092		pmap_invalidate_range(kernel_pmap, base, tmpva);
4093		pmap_invalidate_cache_range(base, tmpva);
4094	}
4095	return (0);
4096}
4097
4098/*
4099 * perform the pmap work for mincore
4100 */
4101int
4102pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4103{
4104	pt_entry_t *ptep, pte;
4105	vm_paddr_t pa;
4106	int val;
4107
4108	PMAP_LOCK(pmap);
4109retry:
4110	ptep = pmap_pte(pmap, addr);
4111	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4112	pmap_pte_release(ptep);
4113	val = 0;
4114	if ((pte & PG_V) != 0) {
4115		val |= MINCORE_INCORE;
4116		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4117			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4118		if ((pte & PG_A) != 0)
4119			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4120	}
4121	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4122	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4123	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4124		pa = pte & PG_FRAME;
4125		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4126		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4127			goto retry;
4128	} else
4129		PA_UNLOCK_COND(*locked_pa);
4130	PMAP_UNLOCK(pmap);
4131	return (val);
4132}
4133
4134void
4135pmap_activate(struct thread *td)
4136{
4137	pmap_t	pmap, oldpmap;
4138	u_int	cpuid;
4139	u_int32_t  cr3;
4140
4141	critical_enter();
4142	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4143	oldpmap = PCPU_GET(curpmap);
4144	cpuid = PCPU_GET(cpuid);
4145#if defined(SMP)
4146	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4147	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4148#else
4149	CPU_CLR(cpuid, &oldpmap->pm_active);
4150	CPU_SET(cpuid, &pmap->pm_active);
4151#endif
4152#ifdef PAE
4153	cr3 = vtophys(pmap->pm_pdpt);
4154#else
4155	cr3 = vtophys(pmap->pm_pdir);
4156#endif
4157	/*
4158	 * pmap_activate is for the current thread on the current cpu
4159	 */
4160	td->td_pcb->pcb_cr3 = cr3;
4161	PT_UPDATES_FLUSH();
4162	load_cr3(cr3);
4163	PCPU_SET(curpmap, pmap);
4164	critical_exit();
4165}
4166
4167void
4168pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4169{
4170}
4171
4172/*
4173 *	Increase the starting virtual address of the given mapping if a
4174 *	different alignment might result in more superpage mappings.
4175 */
4176void
4177pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4178    vm_offset_t *addr, vm_size_t size)
4179{
4180	vm_offset_t superpage_offset;
4181
4182	if (size < NBPDR)
4183		return;
4184	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4185		offset += ptoa(object->pg_color);
4186	superpage_offset = offset & PDRMASK;
4187	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4188	    (*addr & PDRMASK) == superpage_offset)
4189		return;
4190	if ((*addr & PDRMASK) < superpage_offset)
4191		*addr = (*addr & ~PDRMASK) + superpage_offset;
4192	else
4193		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4194}
4195
4196void
4197pmap_suspend()
4198{
4199	pmap_t pmap;
4200	int i, pdir, offset;
4201	vm_paddr_t pdirma;
4202	mmu_update_t mu[4];
4203
4204	/*
4205	 * We need to remove the recursive mapping structure from all
4206	 * our pmaps so that Xen doesn't get confused when it restores
4207	 * the page tables. The recursive map lives at page directory
4208	 * index PTDPTDI. We assume that the suspend code has stopped
4209	 * the other vcpus (if any).
4210	 */
4211	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4212		for (i = 0; i < 4; i++) {
4213			/*
4214			 * Figure out which page directory (L2) page
4215			 * contains this bit of the recursive map and
4216			 * the offset within that page of the map
4217			 * entry
4218			 */
4219			pdir = (PTDPTDI + i) / NPDEPG;
4220			offset = (PTDPTDI + i) % NPDEPG;
4221			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4222			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4223			mu[i].val = 0;
4224		}
4225		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4226	}
4227}
4228
4229void
4230pmap_resume()
4231{
4232	pmap_t pmap;
4233	int i, pdir, offset;
4234	vm_paddr_t pdirma;
4235	mmu_update_t mu[4];
4236
4237	/*
4238	 * Restore the recursive map that we removed on suspend.
4239	 */
4240	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4241		for (i = 0; i < 4; i++) {
4242			/*
4243			 * Figure out which page directory (L2) page
4244			 * contains this bit of the recursive map and
4245			 * the offset within that page of the map
4246			 * entry
4247			 */
4248			pdir = (PTDPTDI + i) / NPDEPG;
4249			offset = (PTDPTDI + i) % NPDEPG;
4250			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4251			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4252			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4253		}
4254		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4255	}
4256}
4257
4258#if defined(PMAP_DEBUG)
4259pmap_pid_dump(int pid)
4260{
4261	pmap_t pmap;
4262	struct proc *p;
4263	int npte = 0;
4264	int index;
4265
4266	sx_slock(&allproc_lock);
4267	FOREACH_PROC_IN_SYSTEM(p) {
4268		if (p->p_pid != pid)
4269			continue;
4270
4271		if (p->p_vmspace) {
4272			int i,j;
4273			index = 0;
4274			pmap = vmspace_pmap(p->p_vmspace);
4275			for (i = 0; i < NPDEPTD; i++) {
4276				pd_entry_t *pde;
4277				pt_entry_t *pte;
4278				vm_offset_t base = i << PDRSHIFT;
4279
4280				pde = &pmap->pm_pdir[i];
4281				if (pde && pmap_pde_v(pde)) {
4282					for (j = 0; j < NPTEPG; j++) {
4283						vm_offset_t va = base + (j << PAGE_SHIFT);
4284						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4285							if (index) {
4286								index = 0;
4287								printf("\n");
4288							}
4289							sx_sunlock(&allproc_lock);
4290							return npte;
4291						}
4292						pte = pmap_pte(pmap, va);
4293						if (pte && pmap_pte_v(pte)) {
4294							pt_entry_t pa;
4295							vm_page_t m;
4296							pa = PT_GET(pte);
4297							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4298							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4299								va, pa, m->hold_count, m->wire_count, m->flags);
4300							npte++;
4301							index++;
4302							if (index >= 2) {
4303								index = 0;
4304								printf("\n");
4305							} else {
4306								printf(" ");
4307							}
4308						}
4309					}
4310				}
4311			}
4312		}
4313	}
4314	sx_sunlock(&allproc_lock);
4315	return npte;
4316}
4317#endif
4318
4319#if defined(DEBUG)
4320
4321static void	pads(pmap_t pm);
4322void		pmap_pvdump(vm_paddr_t pa);
4323
4324/* print address space of pmap*/
4325static void
4326pads(pmap_t pm)
4327{
4328	int i, j;
4329	vm_paddr_t va;
4330	pt_entry_t *ptep;
4331
4332	if (pm == kernel_pmap)
4333		return;
4334	for (i = 0; i < NPDEPTD; i++)
4335		if (pm->pm_pdir[i])
4336			for (j = 0; j < NPTEPG; j++) {
4337				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4338				if (pm == kernel_pmap && va < KERNBASE)
4339					continue;
4340				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4341					continue;
4342				ptep = pmap_pte(pm, va);
4343				if (pmap_pte_v(ptep))
4344					printf("%x:%x ", va, *ptep);
4345			};
4346
4347}
4348
4349void
4350pmap_pvdump(vm_paddr_t pa)
4351{
4352	pv_entry_t pv;
4353	pmap_t pmap;
4354	vm_page_t m;
4355
4356	printf("pa %x", pa);
4357	m = PHYS_TO_VM_PAGE(pa);
4358	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4359		pmap = PV_PMAP(pv);
4360		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4361		pads(pmap);
4362	}
4363	printf(" ");
4364}
4365#endif
4366