pmap.c revision 223677
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 223677 2011-06-29 16:40:41Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/uma.h>
140
141#include <machine/cpu.h>
142#include <machine/cputypes.h>
143#include <machine/md_var.h>
144#include <machine/pcb.h>
145#include <machine/specialreg.h>
146#ifdef SMP
147#include <machine/smp.h>
148#endif
149
150#ifdef XBOX
151#include <machine/xbox.h>
152#endif
153
154#include <xen/interface/xen.h>
155#include <xen/hypervisor.h>
156#include <machine/xen/hypercall.h>
157#include <machine/xen/xenvar.h>
158#include <machine/xen/xenfunc.h>
159
160#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
161#define CPU_ENABLE_SSE
162#endif
163
164#ifndef PMAP_SHPGPERPROC
165#define PMAP_SHPGPERPROC 200
166#endif
167
168#define DIAGNOSTIC
169
170#if !defined(DIAGNOSTIC)
171#ifdef __GNUC_GNU_INLINE__
172#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
173#else
174#define PMAP_INLINE	extern inline
175#endif
176#else
177#define PMAP_INLINE
178#endif
179
180#define PV_STATS
181#ifdef PV_STATS
182#define PV_STAT(x)	do { x ; } while (0)
183#else
184#define PV_STAT(x)	do { } while (0)
185#endif
186
187#define	pa_index(pa)	((pa) >> PDRSHIFT)
188#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
189
190/*
191 * Get PDEs and PTEs for user/kernel address space
192 */
193#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
194#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
195
196#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
197#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
198#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
199#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
200#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
201
202#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
203
204#define HAMFISTED_LOCKING
205#ifdef HAMFISTED_LOCKING
206static struct mtx createdelete_lock;
207#endif
208
209struct pmap kernel_pmap_store;
210LIST_HEAD(pmaplist, pmap);
211static struct pmaplist allpmaps;
212static struct mtx allpmaps_lock;
213
214vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
215vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
216int pgeflag = 0;		/* PG_G or-in */
217int pseflag = 0;		/* PG_PS or-in */
218
219int nkpt;
220vm_offset_t kernel_vm_end;
221extern u_int32_t KERNend;
222
223#ifdef PAE
224pt_entry_t pg_nx;
225#endif
226
227static int pat_works;			/* Is page attribute table sane? */
228
229/*
230 * Data for the pv entry allocation mechanism
231 */
232static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
233static struct md_page *pv_table;
234static int shpgperproc = PMAP_SHPGPERPROC;
235
236struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
237int pv_maxchunks;			/* How many chunks we have KVA for */
238vm_offset_t pv_vafree;			/* freelist stored in the PTE */
239
240/*
241 * All those kernel PT submaps that BSD is so fond of
242 */
243struct sysmaps {
244	struct	mtx lock;
245	pt_entry_t *CMAP1;
246	pt_entry_t *CMAP2;
247	caddr_t	CADDR1;
248	caddr_t	CADDR2;
249};
250static struct sysmaps sysmaps_pcpu[MAXCPU];
251static pt_entry_t *CMAP3;
252caddr_t ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
281static int pg_ps_enabled;
282SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
283    "Are large page mappings enabled?");
284
285SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
286	"Max number of PV entries");
287SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
288	"Page share factor per proc");
289SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
290    "2/4MB page mapping counters");
291
292static u_long pmap_pde_mappings;
293SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
294    &pmap_pde_mappings, 0, "2/4MB page mappings");
295
296static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
297static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
298static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
299static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
300		    vm_offset_t va);
301
302static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
303    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
304static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
305    vm_page_t *free);
306static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
307    vm_page_t *free);
308static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
309					vm_offset_t va);
310static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
311    vm_page_t m);
312
313static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
314
315static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
316static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
317static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
318static void pmap_pte_release(pt_entry_t *pte);
319static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
320static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
321static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
322static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
323
324static __inline void pagezero(void *page);
325
326CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
327CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
328
329/*
330 * If you get an error here, then you set KVA_PAGES wrong! See the
331 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
332 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
333 */
334CTASSERT(KERNBASE % (1 << 24) == 0);
335
336
337
338void
339pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
340{
341	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
342
343	switch (type) {
344	case SH_PD_SET_VA:
345#if 0
346		xen_queue_pt_update(shadow_pdir_ma,
347				    xpmap_ptom(val & ~(PG_RW)));
348#endif
349		xen_queue_pt_update(pdir_ma,
350				    xpmap_ptom(val));
351		break;
352	case SH_PD_SET_VA_MA:
353#if 0
354		xen_queue_pt_update(shadow_pdir_ma,
355				    val & ~(PG_RW));
356#endif
357		xen_queue_pt_update(pdir_ma, val);
358		break;
359	case SH_PD_SET_VA_CLEAR:
360#if 0
361		xen_queue_pt_update(shadow_pdir_ma, 0);
362#endif
363		xen_queue_pt_update(pdir_ma, 0);
364		break;
365	}
366}
367
368/*
369 * Move the kernel virtual free pointer to the next
370 * 4MB.  This is used to help improve performance
371 * by using a large (4MB) page for much of the kernel
372 * (.text, .data, .bss)
373 */
374static vm_offset_t
375pmap_kmem_choose(vm_offset_t addr)
376{
377	vm_offset_t newaddr = addr;
378
379#ifndef DISABLE_PSE
380	if (cpu_feature & CPUID_PSE)
381		newaddr = (addr + PDRMASK) & ~PDRMASK;
382#endif
383	return newaddr;
384}
385
386/*
387 *	Bootstrap the system enough to run with virtual memory.
388 *
389 *	On the i386 this is called after mapping has already been enabled
390 *	and just syncs the pmap module with what has already been done.
391 *	[We can't call it easily with mapping off since the kernel is not
392 *	mapped with PA == VA, hence we would have to relocate every address
393 *	from the linked base (virtual) address "KERNBASE" to the actual
394 *	(physical) address starting relative to 0]
395 */
396void
397pmap_bootstrap(vm_paddr_t firstaddr)
398{
399	vm_offset_t va;
400	pt_entry_t *pte, *unused;
401	struct sysmaps *sysmaps;
402	int i;
403
404	/*
405	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
406	 * large. It should instead be correctly calculated in locore.s and
407	 * not based on 'first' (which is a physical address, not a virtual
408	 * address, for the start of unused physical memory). The kernel
409	 * page tables are NOT double mapped and thus should not be included
410	 * in this calculation.
411	 */
412	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
413	virtual_avail = pmap_kmem_choose(virtual_avail);
414
415	virtual_end = VM_MAX_KERNEL_ADDRESS;
416
417	/*
418	 * Initialize the kernel pmap (which is statically allocated).
419	 */
420	PMAP_LOCK_INIT(kernel_pmap);
421	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
422#ifdef PAE
423	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
424#endif
425	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
426	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
427	LIST_INIT(&allpmaps);
428	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
429	mtx_lock_spin(&allpmaps_lock);
430	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
431	mtx_unlock_spin(&allpmaps_lock);
432	if (nkpt == 0)
433		nkpt = NKPT;
434
435	/*
436	 * Reserve some special page table entries/VA space for temporary
437	 * mapping of pages.
438	 */
439#define	SYSMAP(c, p, v, n)	\
440	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
441
442	va = virtual_avail;
443	pte = vtopte(va);
444
445	/*
446	 * CMAP1/CMAP2 are used for zeroing and copying pages.
447	 * CMAP3 is used for the idle process page zeroing.
448	 */
449	for (i = 0; i < MAXCPU; i++) {
450		sysmaps = &sysmaps_pcpu[i];
451		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
452		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
453		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
454		PT_SET_MA(sysmaps->CADDR1, 0);
455		PT_SET_MA(sysmaps->CADDR2, 0);
456	}
457	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
458	PT_SET_MA(CADDR3, 0);
459
460	/*
461	 * Crashdump maps.
462	 */
463	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
464
465	/*
466	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
467	 */
468	SYSMAP(caddr_t, unused, ptvmmap, 1)
469
470	/*
471	 * msgbufp is used to map the system message buffer.
472	 */
473	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
474
475	/*
476	 * ptemap is used for pmap_pte_quick
477	 */
478	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
479	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
480
481	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
482
483	virtual_avail = va;
484
485	/*
486	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
487	 * physical memory region that is used by the ACPI wakeup code.  This
488	 * mapping must not have PG_G set.
489	 */
490#ifndef XEN
491	/*
492	 * leave here deliberately to show that this is not supported
493	 */
494#ifdef XBOX
495	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
496	 * an early stadium, we cannot yet neatly map video memory ... :-(
497	 * Better fixes are very welcome! */
498	if (!arch_i386_is_xbox)
499#endif
500	for (i = 1; i < NKPT; i++)
501		PTD[i] = 0;
502
503	/* Initialize the PAT MSR if present. */
504	pmap_init_pat();
505
506	/* Turn on PG_G on kernel page(s) */
507	pmap_set_pg();
508#endif
509
510#ifdef HAMFISTED_LOCKING
511	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
512#endif
513}
514
515/*
516 * Setup the PAT MSR.
517 */
518void
519pmap_init_pat(void)
520{
521	uint64_t pat_msr;
522
523	/* Bail if this CPU doesn't implement PAT. */
524	if (!(cpu_feature & CPUID_PAT))
525		return;
526
527	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
528	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
529		/*
530		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
531		 * Program 4 and 5 as WP and WC.
532		 * Leave 6 and 7 as UC and UC-.
533		 */
534		pat_msr = rdmsr(MSR_PAT);
535		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
536		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
537		    PAT_VALUE(5, PAT_WRITE_COMBINING);
538		pat_works = 1;
539	} else {
540		/*
541		 * Due to some Intel errata, we can only safely use the lower 4
542		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
543		 * of UC-.
544		 *
545		 *   Intel Pentium III Processor Specification Update
546		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
547		 * or Mode C Paging)
548		 *
549		 *   Intel Pentium IV  Processor Specification Update
550		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
551		 */
552		pat_msr = rdmsr(MSR_PAT);
553		pat_msr &= ~PAT_MASK(2);
554		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
555		pat_works = 0;
556	}
557	wrmsr(MSR_PAT, pat_msr);
558}
559
560/*
561 * Initialize a vm_page's machine-dependent fields.
562 */
563void
564pmap_page_init(vm_page_t m)
565{
566
567	TAILQ_INIT(&m->md.pv_list);
568	m->md.pat_mode = PAT_WRITE_BACK;
569}
570
571/*
572 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
573 * Requirements:
574 *  - Must deal with pages in order to ensure that none of the PG_* bits
575 *    are ever set, PG_V in particular.
576 *  - Assumes we can write to ptes without pte_store() atomic ops, even
577 *    on PAE systems.  This should be ok.
578 *  - Assumes nothing will ever test these addresses for 0 to indicate
579 *    no mapping instead of correctly checking PG_V.
580 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
581 * Because PG_V is never set, there can be no mappings to invalidate.
582 */
583static int ptelist_count = 0;
584static vm_offset_t
585pmap_ptelist_alloc(vm_offset_t *head)
586{
587	vm_offset_t va;
588	vm_offset_t *phead = (vm_offset_t *)*head;
589
590	if (ptelist_count == 0) {
591		printf("out of memory!!!!!!\n");
592		return (0);	/* Out of memory */
593	}
594	ptelist_count--;
595	va = phead[ptelist_count];
596	return (va);
597}
598
599static void
600pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
601{
602	vm_offset_t *phead = (vm_offset_t *)*head;
603
604	phead[ptelist_count++] = va;
605}
606
607static void
608pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
609{
610	int i, nstackpages;
611	vm_offset_t va;
612	vm_page_t m;
613
614	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
615	for (i = 0; i < nstackpages; i++) {
616		va = (vm_offset_t)base + i * PAGE_SIZE;
617		m = vm_page_alloc(NULL, i,
618		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
619		    VM_ALLOC_ZERO);
620		pmap_qenter(va, &m, 1);
621	}
622
623	*head = (vm_offset_t)base;
624	for (i = npages - 1; i >= nstackpages; i--) {
625		va = (vm_offset_t)base + i * PAGE_SIZE;
626		pmap_ptelist_free(head, va);
627	}
628}
629
630
631/*
632 *	Initialize the pmap module.
633 *	Called by vm_init, to initialize any structures that the pmap
634 *	system needs to map virtual memory.
635 */
636void
637pmap_init(void)
638{
639	vm_page_t mpte;
640	vm_size_t s;
641	int i, pv_npg;
642
643	/*
644	 * Initialize the vm page array entries for the kernel pmap's
645	 * page table pages.
646	 */
647	for (i = 0; i < nkpt; i++) {
648		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
649		KASSERT(mpte >= vm_page_array &&
650		    mpte < &vm_page_array[vm_page_array_size],
651		    ("pmap_init: page table page is out of range"));
652		mpte->pindex = i + KPTDI;
653		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
654	}
655
656        /*
657	 * Initialize the address space (zone) for the pv entries.  Set a
658	 * high water mark so that the system can recover from excessive
659	 * numbers of pv entries.
660	 */
661	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
662	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
663	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
664	pv_entry_max = roundup(pv_entry_max, _NPCPV);
665	pv_entry_high_water = 9 * (pv_entry_max / 10);
666
667	/*
668	 * Are large page mappings enabled?
669	 */
670	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
671
672	/*
673	 * Calculate the size of the pv head table for superpages.
674	 */
675	for (i = 0; phys_avail[i + 1]; i += 2);
676	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
677
678	/*
679	 * Allocate memory for the pv head table for superpages.
680	 */
681	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
682	s = round_page(s);
683	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
684	for (i = 0; i < pv_npg; i++)
685		TAILQ_INIT(&pv_table[i].pv_list);
686
687	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
688	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
689	    PAGE_SIZE * pv_maxchunks);
690	if (pv_chunkbase == NULL)
691		panic("pmap_init: not enough kvm for pv chunks");
692	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
693}
694
695
696/***************************************************
697 * Low level helper routines.....
698 ***************************************************/
699
700/*
701 * Determine the appropriate bits to set in a PTE or PDE for a specified
702 * caching mode.
703 */
704int
705pmap_cache_bits(int mode, boolean_t is_pde)
706{
707	int pat_flag, pat_index, cache_bits;
708
709	/* The PAT bit is different for PTE's and PDE's. */
710	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
711
712	/* If we don't support PAT, map extended modes to older ones. */
713	if (!(cpu_feature & CPUID_PAT)) {
714		switch (mode) {
715		case PAT_UNCACHEABLE:
716		case PAT_WRITE_THROUGH:
717		case PAT_WRITE_BACK:
718			break;
719		case PAT_UNCACHED:
720		case PAT_WRITE_COMBINING:
721		case PAT_WRITE_PROTECTED:
722			mode = PAT_UNCACHEABLE;
723			break;
724		}
725	}
726
727	/* Map the caching mode to a PAT index. */
728	if (pat_works) {
729		switch (mode) {
730			case PAT_UNCACHEABLE:
731				pat_index = 3;
732				break;
733			case PAT_WRITE_THROUGH:
734				pat_index = 1;
735				break;
736			case PAT_WRITE_BACK:
737				pat_index = 0;
738				break;
739			case PAT_UNCACHED:
740				pat_index = 2;
741				break;
742			case PAT_WRITE_COMBINING:
743				pat_index = 5;
744				break;
745			case PAT_WRITE_PROTECTED:
746				pat_index = 4;
747				break;
748			default:
749				panic("Unknown caching mode %d\n", mode);
750		}
751	} else {
752		switch (mode) {
753			case PAT_UNCACHED:
754			case PAT_UNCACHEABLE:
755			case PAT_WRITE_PROTECTED:
756				pat_index = 3;
757				break;
758			case PAT_WRITE_THROUGH:
759				pat_index = 1;
760				break;
761			case PAT_WRITE_BACK:
762				pat_index = 0;
763				break;
764			case PAT_WRITE_COMBINING:
765				pat_index = 2;
766				break;
767			default:
768				panic("Unknown caching mode %d\n", mode);
769		}
770	}
771
772	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
773	cache_bits = 0;
774	if (pat_index & 0x4)
775		cache_bits |= pat_flag;
776	if (pat_index & 0x2)
777		cache_bits |= PG_NC_PCD;
778	if (pat_index & 0x1)
779		cache_bits |= PG_NC_PWT;
780	return (cache_bits);
781}
782#ifdef SMP
783/*
784 * For SMP, these functions have to use the IPI mechanism for coherence.
785 *
786 * N.B.: Before calling any of the following TLB invalidation functions,
787 * the calling processor must ensure that all stores updating a non-
788 * kernel page table are globally performed.  Otherwise, another
789 * processor could cache an old, pre-update entry without being
790 * invalidated.  This can happen one of two ways: (1) The pmap becomes
791 * active on another processor after its pm_active field is checked by
792 * one of the following functions but before a store updating the page
793 * table is globally performed. (2) The pmap becomes active on another
794 * processor before its pm_active field is checked but due to
795 * speculative loads one of the following functions stills reads the
796 * pmap as inactive on the other processor.
797 *
798 * The kernel page table is exempt because its pm_active field is
799 * immutable.  The kernel page table is always active on every
800 * processor.
801 */
802void
803pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
804{
805	cpuset_t cpumask, other_cpus;
806
807	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
808	    pmap, va);
809
810	sched_pin();
811	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
812		invlpg(va);
813		smp_invlpg(va);
814	} else {
815		cpumask = PCPU_GET(cpumask);
816		other_cpus = PCPU_GET(other_cpus);
817		if (CPU_OVERLAP(&pmap->pm_active, &cpumask))
818			invlpg(va);
819		CPU_AND(&other_cpus, &pmap->pm_active);
820		if (!CPU_EMPTY(&other_cpus))
821			smp_masked_invlpg(other_cpus, va);
822	}
823	sched_unpin();
824	PT_UPDATES_FLUSH();
825}
826
827void
828pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
829{
830	cpuset_t cpumask, other_cpus;
831	vm_offset_t addr;
832
833	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
834	    pmap, sva, eva);
835
836	sched_pin();
837	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
838		for (addr = sva; addr < eva; addr += PAGE_SIZE)
839			invlpg(addr);
840		smp_invlpg_range(sva, eva);
841	} else {
842		cpumask = PCPU_GET(cpumask);
843		other_cpus = PCPU_GET(other_cpus);
844		if (CPU_OVERLAP(&pmap->pm_active, &cpumask))
845			for (addr = sva; addr < eva; addr += PAGE_SIZE)
846				invlpg(addr);
847		CPU_AND(&other_cpus, &pmap->pm_active);
848		if (!CPU_EMPTY(&other_cpus))
849			smp_masked_invlpg_range(other_cpus, sva, eva);
850	}
851	sched_unpin();
852	PT_UPDATES_FLUSH();
853}
854
855void
856pmap_invalidate_all(pmap_t pmap)
857{
858	cpuset_t cpumask, other_cpus;
859
860	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
861
862	sched_pin();
863	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
864		invltlb();
865		smp_invltlb();
866	} else {
867		cpumask = PCPU_GET(cpumask);
868		other_cpus = PCPU_GET(other_cpus);
869		if (CPU_OVERLAP(&pmap->pm_active, &cpumask))
870			invltlb();
871		CPU_AND(&other_cpus, &pmap->pm_active);
872		if (!CPU_EMPTY(&other_cpus))
873			smp_masked_invltlb(other_cpus);
874	}
875	sched_unpin();
876}
877
878void
879pmap_invalidate_cache(void)
880{
881
882	sched_pin();
883	wbinvd();
884	smp_cache_flush();
885	sched_unpin();
886}
887#else /* !SMP */
888/*
889 * Normal, non-SMP, 486+ invalidation functions.
890 * We inline these within pmap.c for speed.
891 */
892PMAP_INLINE void
893pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
894{
895	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
896	    pmap, va);
897
898	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
899		invlpg(va);
900	PT_UPDATES_FLUSH();
901}
902
903PMAP_INLINE void
904pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
905{
906	vm_offset_t addr;
907
908	if (eva - sva > PAGE_SIZE)
909		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
910		    pmap, sva, eva);
911
912	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
913		for (addr = sva; addr < eva; addr += PAGE_SIZE)
914			invlpg(addr);
915	PT_UPDATES_FLUSH();
916}
917
918PMAP_INLINE void
919pmap_invalidate_all(pmap_t pmap)
920{
921
922	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
923
924	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
925		invltlb();
926}
927
928PMAP_INLINE void
929pmap_invalidate_cache(void)
930{
931
932	wbinvd();
933}
934#endif /* !SMP */
935
936void
937pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
938{
939
940	KASSERT((sva & PAGE_MASK) == 0,
941	    ("pmap_invalidate_cache_range: sva not page-aligned"));
942	KASSERT((eva & PAGE_MASK) == 0,
943	    ("pmap_invalidate_cache_range: eva not page-aligned"));
944
945	if (cpu_feature & CPUID_SS)
946		; /* If "Self Snoop" is supported, do nothing. */
947	else if (cpu_feature & CPUID_CLFSH) {
948
949		/*
950		 * Otherwise, do per-cache line flush.  Use the mfence
951		 * instruction to insure that previous stores are
952		 * included in the write-back.  The processor
953		 * propagates flush to other processors in the cache
954		 * coherence domain.
955		 */
956		mfence();
957		for (; sva < eva; sva += cpu_clflush_line_size)
958			clflush(sva);
959		mfence();
960	} else {
961
962		/*
963		 * No targeted cache flush methods are supported by CPU,
964		 * globally invalidate cache as a last resort.
965		 */
966		pmap_invalidate_cache();
967	}
968}
969
970/*
971 * Are we current address space or kernel?  N.B. We return FALSE when
972 * a pmap's page table is in use because a kernel thread is borrowing
973 * it.  The borrowed page table can change spontaneously, making any
974 * dependence on its continued use subject to a race condition.
975 */
976static __inline int
977pmap_is_current(pmap_t pmap)
978{
979
980	return (pmap == kernel_pmap ||
981	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
982		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
983}
984
985/*
986 * If the given pmap is not the current or kernel pmap, the returned pte must
987 * be released by passing it to pmap_pte_release().
988 */
989pt_entry_t *
990pmap_pte(pmap_t pmap, vm_offset_t va)
991{
992	pd_entry_t newpf;
993	pd_entry_t *pde;
994
995	pde = pmap_pde(pmap, va);
996	if (*pde & PG_PS)
997		return (pde);
998	if (*pde != 0) {
999		/* are we current address space or kernel? */
1000		if (pmap_is_current(pmap))
1001			return (vtopte(va));
1002		mtx_lock(&PMAP2mutex);
1003		newpf = *pde & PG_FRAME;
1004		if ((*PMAP2 & PG_FRAME) != newpf) {
1005			vm_page_lock_queues();
1006			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1007			vm_page_unlock_queues();
1008			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1009			    pmap, va, (*PMAP2 & 0xffffffff));
1010		}
1011
1012		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1013	}
1014	return (0);
1015}
1016
1017/*
1018 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1019 * being NULL.
1020 */
1021static __inline void
1022pmap_pte_release(pt_entry_t *pte)
1023{
1024
1025	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1026		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1027		    *PMAP2);
1028		vm_page_lock_queues();
1029		PT_SET_VA(PMAP2, 0, TRUE);
1030		vm_page_unlock_queues();
1031		mtx_unlock(&PMAP2mutex);
1032	}
1033}
1034
1035static __inline void
1036invlcaddr(void *caddr)
1037{
1038
1039	invlpg((u_int)caddr);
1040	PT_UPDATES_FLUSH();
1041}
1042
1043/*
1044 * Super fast pmap_pte routine best used when scanning
1045 * the pv lists.  This eliminates many coarse-grained
1046 * invltlb calls.  Note that many of the pv list
1047 * scans are across different pmaps.  It is very wasteful
1048 * to do an entire invltlb for checking a single mapping.
1049 *
1050 * If the given pmap is not the current pmap, vm_page_queue_mtx
1051 * must be held and curthread pinned to a CPU.
1052 */
1053static pt_entry_t *
1054pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1055{
1056	pd_entry_t newpf;
1057	pd_entry_t *pde;
1058
1059	pde = pmap_pde(pmap, va);
1060	if (*pde & PG_PS)
1061		return (pde);
1062	if (*pde != 0) {
1063		/* are we current address space or kernel? */
1064		if (pmap_is_current(pmap))
1065			return (vtopte(va));
1066		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1067		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1068		newpf = *pde & PG_FRAME;
1069		if ((*PMAP1 & PG_FRAME) != newpf) {
1070			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1071			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1072			    pmap, va, (u_long)*PMAP1);
1073
1074#ifdef SMP
1075			PMAP1cpu = PCPU_GET(cpuid);
1076#endif
1077			PMAP1changed++;
1078		} else
1079#ifdef SMP
1080		if (PMAP1cpu != PCPU_GET(cpuid)) {
1081			PMAP1cpu = PCPU_GET(cpuid);
1082			invlcaddr(PADDR1);
1083			PMAP1changedcpu++;
1084		} else
1085#endif
1086			PMAP1unchanged++;
1087		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1088	}
1089	return (0);
1090}
1091
1092/*
1093 *	Routine:	pmap_extract
1094 *	Function:
1095 *		Extract the physical page address associated
1096 *		with the given map/virtual_address pair.
1097 */
1098vm_paddr_t
1099pmap_extract(pmap_t pmap, vm_offset_t va)
1100{
1101	vm_paddr_t rtval;
1102	pt_entry_t *pte;
1103	pd_entry_t pde;
1104	pt_entry_t pteval;
1105
1106	rtval = 0;
1107	PMAP_LOCK(pmap);
1108	pde = pmap->pm_pdir[va >> PDRSHIFT];
1109	if (pde != 0) {
1110		if ((pde & PG_PS) != 0) {
1111			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1112			PMAP_UNLOCK(pmap);
1113			return rtval;
1114		}
1115		pte = pmap_pte(pmap, va);
1116		pteval = *pte ? xpmap_mtop(*pte) : 0;
1117		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1118		pmap_pte_release(pte);
1119	}
1120	PMAP_UNLOCK(pmap);
1121	return (rtval);
1122}
1123
1124/*
1125 *	Routine:	pmap_extract_ma
1126 *	Function:
1127 *		Like pmap_extract, but returns machine address
1128 */
1129vm_paddr_t
1130pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1131{
1132	vm_paddr_t rtval;
1133	pt_entry_t *pte;
1134	pd_entry_t pde;
1135
1136	rtval = 0;
1137	PMAP_LOCK(pmap);
1138	pde = pmap->pm_pdir[va >> PDRSHIFT];
1139	if (pde != 0) {
1140		if ((pde & PG_PS) != 0) {
1141			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1142			PMAP_UNLOCK(pmap);
1143			return rtval;
1144		}
1145		pte = pmap_pte(pmap, va);
1146		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1147		pmap_pte_release(pte);
1148	}
1149	PMAP_UNLOCK(pmap);
1150	return (rtval);
1151}
1152
1153/*
1154 *	Routine:	pmap_extract_and_hold
1155 *	Function:
1156 *		Atomically extract and hold the physical page
1157 *		with the given pmap and virtual address pair
1158 *		if that mapping permits the given protection.
1159 */
1160vm_page_t
1161pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1162{
1163	pd_entry_t pde;
1164	pt_entry_t pte;
1165	vm_page_t m;
1166	vm_paddr_t pa;
1167
1168	pa = 0;
1169	m = NULL;
1170	PMAP_LOCK(pmap);
1171retry:
1172	pde = PT_GET(pmap_pde(pmap, va));
1173	if (pde != 0) {
1174		if (pde & PG_PS) {
1175			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1176				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1177				       (va & PDRMASK), &pa))
1178					goto retry;
1179				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1180				    (va & PDRMASK));
1181				vm_page_hold(m);
1182			}
1183		} else {
1184			sched_pin();
1185			pte = PT_GET(pmap_pte_quick(pmap, va));
1186			if (*PMAP1)
1187				PT_SET_MA(PADDR1, 0);
1188			if ((pte & PG_V) &&
1189			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1190				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1191					goto retry;
1192				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1193				vm_page_hold(m);
1194			}
1195			sched_unpin();
1196		}
1197	}
1198	PA_UNLOCK_COND(pa);
1199	PMAP_UNLOCK(pmap);
1200	return (m);
1201}
1202
1203/***************************************************
1204 * Low level mapping routines.....
1205 ***************************************************/
1206
1207/*
1208 * Add a wired page to the kva.
1209 * Note: not SMP coherent.
1210 */
1211void
1212pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1213{
1214	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1215}
1216
1217void
1218pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1219{
1220	pt_entry_t *pte;
1221
1222	pte = vtopte(va);
1223	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1224}
1225
1226
1227static __inline void
1228pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1229{
1230	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1231}
1232
1233/*
1234 * Remove a page from the kernel pagetables.
1235 * Note: not SMP coherent.
1236 */
1237PMAP_INLINE void
1238pmap_kremove(vm_offset_t va)
1239{
1240	pt_entry_t *pte;
1241
1242	pte = vtopte(va);
1243	PT_CLEAR_VA(pte, FALSE);
1244}
1245
1246/*
1247 *	Used to map a range of physical addresses into kernel
1248 *	virtual address space.
1249 *
1250 *	The value passed in '*virt' is a suggested virtual address for
1251 *	the mapping. Architectures which can support a direct-mapped
1252 *	physical to virtual region can return the appropriate address
1253 *	within that region, leaving '*virt' unchanged. Other
1254 *	architectures should map the pages starting at '*virt' and
1255 *	update '*virt' with the first usable address after the mapped
1256 *	region.
1257 */
1258vm_offset_t
1259pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1260{
1261	vm_offset_t va, sva;
1262
1263	va = sva = *virt;
1264	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1265	    va, start, end, prot);
1266	while (start < end) {
1267		pmap_kenter(va, start);
1268		va += PAGE_SIZE;
1269		start += PAGE_SIZE;
1270	}
1271	pmap_invalidate_range(kernel_pmap, sva, va);
1272	*virt = va;
1273	return (sva);
1274}
1275
1276
1277/*
1278 * Add a list of wired pages to the kva
1279 * this routine is only used for temporary
1280 * kernel mappings that do not need to have
1281 * page modification or references recorded.
1282 * Note that old mappings are simply written
1283 * over.  The page *must* be wired.
1284 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1285 */
1286void
1287pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1288{
1289	pt_entry_t *endpte, *pte;
1290	vm_paddr_t pa;
1291	vm_offset_t va = sva;
1292	int mclcount = 0;
1293	multicall_entry_t mcl[16];
1294	multicall_entry_t *mclp = mcl;
1295	int error;
1296
1297	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1298	pte = vtopte(sva);
1299	endpte = pte + count;
1300	while (pte < endpte) {
1301		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1302
1303		mclp->op = __HYPERVISOR_update_va_mapping;
1304		mclp->args[0] = va;
1305		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1306		mclp->args[2] = (uint32_t)(pa >> 32);
1307		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1308
1309		va += PAGE_SIZE;
1310		pte++;
1311		ma++;
1312		mclp++;
1313		mclcount++;
1314		if (mclcount == 16) {
1315			error = HYPERVISOR_multicall(mcl, mclcount);
1316			mclp = mcl;
1317			mclcount = 0;
1318			KASSERT(error == 0, ("bad multicall %d", error));
1319		}
1320	}
1321	if (mclcount) {
1322		error = HYPERVISOR_multicall(mcl, mclcount);
1323		KASSERT(error == 0, ("bad multicall %d", error));
1324	}
1325
1326#ifdef INVARIANTS
1327	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1328		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1329#endif
1330}
1331
1332
1333/*
1334 * This routine tears out page mappings from the
1335 * kernel -- it is meant only for temporary mappings.
1336 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1337 */
1338void
1339pmap_qremove(vm_offset_t sva, int count)
1340{
1341	vm_offset_t va;
1342
1343	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1344	va = sva;
1345	vm_page_lock_queues();
1346	critical_enter();
1347	while (count-- > 0) {
1348		pmap_kremove(va);
1349		va += PAGE_SIZE;
1350	}
1351	PT_UPDATES_FLUSH();
1352	pmap_invalidate_range(kernel_pmap, sva, va);
1353	critical_exit();
1354	vm_page_unlock_queues();
1355}
1356
1357/***************************************************
1358 * Page table page management routines.....
1359 ***************************************************/
1360static __inline void
1361pmap_free_zero_pages(vm_page_t free)
1362{
1363	vm_page_t m;
1364
1365	while (free != NULL) {
1366		m = free;
1367		free = m->right;
1368		vm_page_free_zero(m);
1369	}
1370}
1371
1372/*
1373 * This routine unholds page table pages, and if the hold count
1374 * drops to zero, then it decrements the wire count.
1375 */
1376static __inline int
1377pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1378{
1379
1380	--m->wire_count;
1381	if (m->wire_count == 0)
1382		return _pmap_unwire_pte_hold(pmap, m, free);
1383	else
1384		return 0;
1385}
1386
1387static int
1388_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1389{
1390	vm_offset_t pteva;
1391
1392	PT_UPDATES_FLUSH();
1393	/*
1394	 * unmap the page table page
1395	 */
1396	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1397	/*
1398	 * page *might* contain residual mapping :-/
1399	 */
1400	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1401	pmap_zero_page(m);
1402	--pmap->pm_stats.resident_count;
1403
1404	/*
1405	 * This is a release store so that the ordinary store unmapping
1406	 * the page table page is globally performed before TLB shoot-
1407	 * down is begun.
1408	 */
1409	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1410
1411	/*
1412	 * Do an invltlb to make the invalidated mapping
1413	 * take effect immediately.
1414	 */
1415	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1416	pmap_invalidate_page(pmap, pteva);
1417
1418	/*
1419	 * Put page on a list so that it is released after
1420	 * *ALL* TLB shootdown is done
1421	 */
1422	m->right = *free;
1423	*free = m;
1424
1425	return 1;
1426}
1427
1428/*
1429 * After removing a page table entry, this routine is used to
1430 * conditionally free the page, and manage the hold/wire counts.
1431 */
1432static int
1433pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1434{
1435	pd_entry_t ptepde;
1436	vm_page_t mpte;
1437
1438	if (va >= VM_MAXUSER_ADDRESS)
1439		return 0;
1440	ptepde = PT_GET(pmap_pde(pmap, va));
1441	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1442	return pmap_unwire_pte_hold(pmap, mpte, free);
1443}
1444
1445void
1446pmap_pinit0(pmap_t pmap)
1447{
1448
1449	PMAP_LOCK_INIT(pmap);
1450	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1451#ifdef PAE
1452	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1453#endif
1454	CPU_ZERO(&pmap->pm_active);
1455	PCPU_SET(curpmap, pmap);
1456	TAILQ_INIT(&pmap->pm_pvchunk);
1457	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1458	mtx_lock_spin(&allpmaps_lock);
1459	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1460	mtx_unlock_spin(&allpmaps_lock);
1461}
1462
1463/*
1464 * Initialize a preallocated and zeroed pmap structure,
1465 * such as one in a vmspace structure.
1466 */
1467int
1468pmap_pinit(pmap_t pmap)
1469{
1470	vm_page_t m, ptdpg[NPGPTD + 1];
1471	int npgptd = NPGPTD + 1;
1472	static int color;
1473	int i;
1474
1475#ifdef HAMFISTED_LOCKING
1476	mtx_lock(&createdelete_lock);
1477#endif
1478
1479	PMAP_LOCK_INIT(pmap);
1480
1481	/*
1482	 * No need to allocate page table space yet but we do need a valid
1483	 * page directory table.
1484	 */
1485	if (pmap->pm_pdir == NULL) {
1486		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1487		    NBPTD);
1488		if (pmap->pm_pdir == NULL) {
1489			PMAP_LOCK_DESTROY(pmap);
1490#ifdef HAMFISTED_LOCKING
1491			mtx_unlock(&createdelete_lock);
1492#endif
1493			return (0);
1494		}
1495#ifdef PAE
1496		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1497#endif
1498	}
1499
1500	/*
1501	 * allocate the page directory page(s)
1502	 */
1503	for (i = 0; i < npgptd;) {
1504		m = vm_page_alloc(NULL, color++,
1505		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1506		    VM_ALLOC_ZERO);
1507		if (m == NULL)
1508			VM_WAIT;
1509		else {
1510			ptdpg[i++] = m;
1511		}
1512	}
1513	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1514	for (i = 0; i < NPGPTD; i++) {
1515		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1516			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1517	}
1518
1519	mtx_lock_spin(&allpmaps_lock);
1520	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1521	mtx_unlock_spin(&allpmaps_lock);
1522	/* Wire in kernel global address entries. */
1523
1524	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1525#ifdef PAE
1526	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1527	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1528		bzero(pmap->pm_pdpt, PAGE_SIZE);
1529	for (i = 0; i < NPGPTD; i++) {
1530		vm_paddr_t ma;
1531
1532		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1533		pmap->pm_pdpt[i] = ma | PG_V;
1534
1535	}
1536#endif
1537	for (i = 0; i < NPGPTD; i++) {
1538		pt_entry_t *pd;
1539		vm_paddr_t ma;
1540
1541		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1542		pd = pmap->pm_pdir + (i * NPDEPG);
1543		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1544#if 0
1545		xen_pgd_pin(ma);
1546#endif
1547	}
1548
1549#ifdef PAE
1550	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1551#endif
1552	vm_page_lock_queues();
1553	xen_flush_queue();
1554	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1555	for (i = 0; i < NPGPTD; i++) {
1556		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1557		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1558	}
1559	xen_flush_queue();
1560	vm_page_unlock_queues();
1561	CPU_ZERO(&pmap->pm_active);
1562	TAILQ_INIT(&pmap->pm_pvchunk);
1563	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1564
1565#ifdef HAMFISTED_LOCKING
1566	mtx_unlock(&createdelete_lock);
1567#endif
1568	return (1);
1569}
1570
1571/*
1572 * this routine is called if the page table page is not
1573 * mapped correctly.
1574 */
1575static vm_page_t
1576_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1577{
1578	vm_paddr_t ptema;
1579	vm_page_t m;
1580
1581	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1582	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1583	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1584
1585	/*
1586	 * Allocate a page table page.
1587	 */
1588	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1589	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1590		if (flags & M_WAITOK) {
1591			PMAP_UNLOCK(pmap);
1592			vm_page_unlock_queues();
1593			VM_WAIT;
1594			vm_page_lock_queues();
1595			PMAP_LOCK(pmap);
1596		}
1597
1598		/*
1599		 * Indicate the need to retry.  While waiting, the page table
1600		 * page may have been allocated.
1601		 */
1602		return (NULL);
1603	}
1604	if ((m->flags & PG_ZERO) == 0)
1605		pmap_zero_page(m);
1606
1607	/*
1608	 * Map the pagetable page into the process address space, if
1609	 * it isn't already there.
1610	 */
1611	pmap->pm_stats.resident_count++;
1612
1613	ptema = VM_PAGE_TO_MACH(m);
1614	xen_pt_pin(ptema);
1615	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1616		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1617
1618	KASSERT(pmap->pm_pdir[ptepindex],
1619	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1620	return (m);
1621}
1622
1623static vm_page_t
1624pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1625{
1626	unsigned ptepindex;
1627	pd_entry_t ptema;
1628	vm_page_t m;
1629
1630	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1631	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1632	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1633
1634	/*
1635	 * Calculate pagetable page index
1636	 */
1637	ptepindex = va >> PDRSHIFT;
1638retry:
1639	/*
1640	 * Get the page directory entry
1641	 */
1642	ptema = pmap->pm_pdir[ptepindex];
1643
1644	/*
1645	 * This supports switching from a 4MB page to a
1646	 * normal 4K page.
1647	 */
1648	if (ptema & PG_PS) {
1649		/*
1650		 * XXX
1651		 */
1652		pmap->pm_pdir[ptepindex] = 0;
1653		ptema = 0;
1654		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1655		pmap_invalidate_all(kernel_pmap);
1656	}
1657
1658	/*
1659	 * If the page table page is mapped, we just increment the
1660	 * hold count, and activate it.
1661	 */
1662	if (ptema & PG_V) {
1663		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1664		m->wire_count++;
1665	} else {
1666		/*
1667		 * Here if the pte page isn't mapped, or if it has
1668		 * been deallocated.
1669		 */
1670		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1671		    pmap, va, flags);
1672		m = _pmap_allocpte(pmap, ptepindex, flags);
1673		if (m == NULL && (flags & M_WAITOK))
1674			goto retry;
1675
1676		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1677	}
1678	return (m);
1679}
1680
1681
1682/***************************************************
1683* Pmap allocation/deallocation routines.
1684 ***************************************************/
1685
1686#ifdef SMP
1687/*
1688 * Deal with a SMP shootdown of other users of the pmap that we are
1689 * trying to dispose of.  This can be a bit hairy.
1690 */
1691static cpuset_t *lazymask;
1692static u_int lazyptd;
1693static volatile u_int lazywait;
1694
1695void pmap_lazyfix_action(void);
1696
1697void
1698pmap_lazyfix_action(void)
1699{
1700
1701#ifdef COUNT_IPIS
1702	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1703#endif
1704	if (rcr3() == lazyptd)
1705		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1706	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1707	atomic_store_rel_int(&lazywait, 1);
1708}
1709
1710static void
1711pmap_lazyfix_self(cpuset_t mymask)
1712{
1713
1714	if (rcr3() == lazyptd)
1715		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1716	CPU_NAND_ATOMIC(lazymask, &mymask);
1717}
1718
1719
1720static void
1721pmap_lazyfix(pmap_t pmap)
1722{
1723	cpuset_t mymask, mask;
1724	u_int spins;
1725	int lsb;
1726
1727	mask = pmap->pm_active;
1728	while (!CPU_EMPTY(&mask)) {
1729		spins = 50000000;
1730
1731		/* Find least significant set bit. */
1732		lsb = cpusetobj_ffs(&mask);
1733		MPASS(lsb != 0);
1734		lsb--;
1735		CPU_SETOF(lsb, &mask);
1736		mtx_lock_spin(&smp_ipi_mtx);
1737#ifdef PAE
1738		lazyptd = vtophys(pmap->pm_pdpt);
1739#else
1740		lazyptd = vtophys(pmap->pm_pdir);
1741#endif
1742		mymask = PCPU_GET(cpumask);
1743		if (!CPU_CMP(&mask, &mymask)) {
1744			lazymask = &pmap->pm_active;
1745			pmap_lazyfix_self(mymask);
1746		} else {
1747			atomic_store_rel_int((u_int *)&lazymask,
1748			    (u_int)&pmap->pm_active);
1749			atomic_store_rel_int(&lazywait, 0);
1750			ipi_selected(mask, IPI_LAZYPMAP);
1751			while (lazywait == 0) {
1752				ia32_pause();
1753				if (--spins == 0)
1754					break;
1755			}
1756		}
1757		mtx_unlock_spin(&smp_ipi_mtx);
1758		if (spins == 0)
1759			printf("pmap_lazyfix: spun for 50000000\n");
1760		mask = pmap->pm_active;
1761	}
1762}
1763
1764#else	/* SMP */
1765
1766/*
1767 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1768 * unlikely to have to even execute this code, including the fact
1769 * that the cleanup is deferred until the parent does a wait(2), which
1770 * means that another userland process has run.
1771 */
1772static void
1773pmap_lazyfix(pmap_t pmap)
1774{
1775	u_int cr3;
1776
1777	cr3 = vtophys(pmap->pm_pdir);
1778	if (cr3 == rcr3()) {
1779		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1780		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1781	}
1782}
1783#endif	/* SMP */
1784
1785/*
1786 * Release any resources held by the given physical map.
1787 * Called when a pmap initialized by pmap_pinit is being released.
1788 * Should only be called if the map contains no valid mappings.
1789 */
1790void
1791pmap_release(pmap_t pmap)
1792{
1793	vm_page_t m, ptdpg[2*NPGPTD+1];
1794	vm_paddr_t ma;
1795	int i;
1796#ifdef PAE
1797	int npgptd = NPGPTD + 1;
1798#else
1799	int npgptd = NPGPTD;
1800#endif
1801	KASSERT(pmap->pm_stats.resident_count == 0,
1802	    ("pmap_release: pmap resident count %ld != 0",
1803	    pmap->pm_stats.resident_count));
1804	PT_UPDATES_FLUSH();
1805
1806#ifdef HAMFISTED_LOCKING
1807	mtx_lock(&createdelete_lock);
1808#endif
1809
1810	pmap_lazyfix(pmap);
1811	mtx_lock_spin(&allpmaps_lock);
1812	LIST_REMOVE(pmap, pm_list);
1813	mtx_unlock_spin(&allpmaps_lock);
1814
1815	for (i = 0; i < NPGPTD; i++)
1816		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1817	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1818#ifdef PAE
1819	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1820#endif
1821
1822	for (i = 0; i < npgptd; i++) {
1823		m = ptdpg[i];
1824		ma = VM_PAGE_TO_MACH(m);
1825		/* unpinning L1 and L2 treated the same */
1826#if 0
1827                xen_pgd_unpin(ma);
1828#else
1829		if (i == NPGPTD)
1830	                xen_pgd_unpin(ma);
1831#endif
1832#ifdef PAE
1833		if (i < NPGPTD)
1834			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1835			    ("pmap_release: got wrong ptd page"));
1836#endif
1837		m->wire_count--;
1838		atomic_subtract_int(&cnt.v_wire_count, 1);
1839		vm_page_free(m);
1840	}
1841#ifdef PAE
1842	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1843#endif
1844	PMAP_LOCK_DESTROY(pmap);
1845
1846#ifdef HAMFISTED_LOCKING
1847	mtx_unlock(&createdelete_lock);
1848#endif
1849}
1850
1851static int
1852kvm_size(SYSCTL_HANDLER_ARGS)
1853{
1854	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1855
1856	return sysctl_handle_long(oidp, &ksize, 0, req);
1857}
1858SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1859    0, 0, kvm_size, "IU", "Size of KVM");
1860
1861static int
1862kvm_free(SYSCTL_HANDLER_ARGS)
1863{
1864	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1865
1866	return sysctl_handle_long(oidp, &kfree, 0, req);
1867}
1868SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1869    0, 0, kvm_free, "IU", "Amount of KVM free");
1870
1871/*
1872 * grow the number of kernel page table entries, if needed
1873 */
1874void
1875pmap_growkernel(vm_offset_t addr)
1876{
1877	struct pmap *pmap;
1878	vm_paddr_t ptppaddr;
1879	vm_page_t nkpg;
1880	pd_entry_t newpdir;
1881
1882	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1883	if (kernel_vm_end == 0) {
1884		kernel_vm_end = KERNBASE;
1885		nkpt = 0;
1886		while (pdir_pde(PTD, kernel_vm_end)) {
1887			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1888			nkpt++;
1889			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1890				kernel_vm_end = kernel_map->max_offset;
1891				break;
1892			}
1893		}
1894	}
1895	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1896	if (addr - 1 >= kernel_map->max_offset)
1897		addr = kernel_map->max_offset;
1898	while (kernel_vm_end < addr) {
1899		if (pdir_pde(PTD, kernel_vm_end)) {
1900			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1901			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1902				kernel_vm_end = kernel_map->max_offset;
1903				break;
1904			}
1905			continue;
1906		}
1907
1908		/*
1909		 * This index is bogus, but out of the way
1910		 */
1911		nkpg = vm_page_alloc(NULL, nkpt,
1912		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1913		if (!nkpg)
1914			panic("pmap_growkernel: no memory to grow kernel");
1915
1916		nkpt++;
1917
1918		pmap_zero_page(nkpg);
1919		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1920		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1921		vm_page_lock_queues();
1922		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1923		mtx_lock_spin(&allpmaps_lock);
1924		LIST_FOREACH(pmap, &allpmaps, pm_list)
1925			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1926
1927		mtx_unlock_spin(&allpmaps_lock);
1928		vm_page_unlock_queues();
1929
1930		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1931		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1932			kernel_vm_end = kernel_map->max_offset;
1933			break;
1934		}
1935	}
1936}
1937
1938
1939/***************************************************
1940 * page management routines.
1941 ***************************************************/
1942
1943CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1944CTASSERT(_NPCM == 11);
1945
1946static __inline struct pv_chunk *
1947pv_to_chunk(pv_entry_t pv)
1948{
1949
1950	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1951}
1952
1953#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1954
1955#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1956#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1957
1958static uint32_t pc_freemask[11] = {
1959	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1960	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1961	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1962	PC_FREE0_9, PC_FREE10
1963};
1964
1965SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1966	"Current number of pv entries");
1967
1968#ifdef PV_STATS
1969static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1970
1971SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1972	"Current number of pv entry chunks");
1973SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1974	"Current number of pv entry chunks allocated");
1975SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1976	"Current number of pv entry chunks frees");
1977SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1978	"Number of times tried to get a chunk page but failed.");
1979
1980static long pv_entry_frees, pv_entry_allocs;
1981static int pv_entry_spare;
1982
1983SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1984	"Current number of pv entry frees");
1985SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1986	"Current number of pv entry allocs");
1987SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1988	"Current number of spare pv entries");
1989
1990static int pmap_collect_inactive, pmap_collect_active;
1991
1992SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1993	"Current number times pmap_collect called on inactive queue");
1994SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1995	"Current number times pmap_collect called on active queue");
1996#endif
1997
1998/*
1999 * We are in a serious low memory condition.  Resort to
2000 * drastic measures to free some pages so we can allocate
2001 * another pv entry chunk.  This is normally called to
2002 * unmap inactive pages, and if necessary, active pages.
2003 */
2004static void
2005pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2006{
2007	pmap_t pmap;
2008	pt_entry_t *pte, tpte;
2009	pv_entry_t next_pv, pv;
2010	vm_offset_t va;
2011	vm_page_t m, free;
2012
2013	sched_pin();
2014	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2015		if (m->hold_count || m->busy)
2016			continue;
2017		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2018			va = pv->pv_va;
2019			pmap = PV_PMAP(pv);
2020			/* Avoid deadlock and lock recursion. */
2021			if (pmap > locked_pmap)
2022				PMAP_LOCK(pmap);
2023			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2024				continue;
2025			pmap->pm_stats.resident_count--;
2026			pte = pmap_pte_quick(pmap, va);
2027			tpte = pte_load_clear(pte);
2028			KASSERT((tpte & PG_W) == 0,
2029			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2030			if (tpte & PG_A)
2031				vm_page_flag_set(m, PG_REFERENCED);
2032			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2033				vm_page_dirty(m);
2034			free = NULL;
2035			pmap_unuse_pt(pmap, va, &free);
2036			pmap_invalidate_page(pmap, va);
2037			pmap_free_zero_pages(free);
2038			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2039			free_pv_entry(pmap, pv);
2040			if (pmap != locked_pmap)
2041				PMAP_UNLOCK(pmap);
2042		}
2043		if (TAILQ_EMPTY(&m->md.pv_list))
2044			vm_page_flag_clear(m, PG_WRITEABLE);
2045	}
2046	sched_unpin();
2047}
2048
2049
2050/*
2051 * free the pv_entry back to the free list
2052 */
2053static void
2054free_pv_entry(pmap_t pmap, pv_entry_t pv)
2055{
2056	vm_page_t m;
2057	struct pv_chunk *pc;
2058	int idx, field, bit;
2059
2060	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2061	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2062	PV_STAT(pv_entry_frees++);
2063	PV_STAT(pv_entry_spare++);
2064	pv_entry_count--;
2065	pc = pv_to_chunk(pv);
2066	idx = pv - &pc->pc_pventry[0];
2067	field = idx / 32;
2068	bit = idx % 32;
2069	pc->pc_map[field] |= 1ul << bit;
2070	/* move to head of list */
2071	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2072	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2073	for (idx = 0; idx < _NPCM; idx++)
2074		if (pc->pc_map[idx] != pc_freemask[idx])
2075			return;
2076	PV_STAT(pv_entry_spare -= _NPCPV);
2077	PV_STAT(pc_chunk_count--);
2078	PV_STAT(pc_chunk_frees++);
2079	/* entire chunk is free, return it */
2080	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2081	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2082	pmap_qremove((vm_offset_t)pc, 1);
2083	vm_page_unwire(m, 0);
2084	vm_page_free(m);
2085	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2086}
2087
2088/*
2089 * get a new pv_entry, allocating a block from the system
2090 * when needed.
2091 */
2092static pv_entry_t
2093get_pv_entry(pmap_t pmap, int try)
2094{
2095	static const struct timeval printinterval = { 60, 0 };
2096	static struct timeval lastprint;
2097	static vm_pindex_t colour;
2098	struct vpgqueues *pq;
2099	int bit, field;
2100	pv_entry_t pv;
2101	struct pv_chunk *pc;
2102	vm_page_t m;
2103
2104	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2105	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2106	PV_STAT(pv_entry_allocs++);
2107	pv_entry_count++;
2108	if (pv_entry_count > pv_entry_high_water)
2109		if (ratecheck(&lastprint, &printinterval))
2110			printf("Approaching the limit on PV entries, consider "
2111			    "increasing either the vm.pmap.shpgperproc or the "
2112			    "vm.pmap.pv_entry_max tunable.\n");
2113	pq = NULL;
2114retry:
2115	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2116	if (pc != NULL) {
2117		for (field = 0; field < _NPCM; field++) {
2118			if (pc->pc_map[field]) {
2119				bit = bsfl(pc->pc_map[field]);
2120				break;
2121			}
2122		}
2123		if (field < _NPCM) {
2124			pv = &pc->pc_pventry[field * 32 + bit];
2125			pc->pc_map[field] &= ~(1ul << bit);
2126			/* If this was the last item, move it to tail */
2127			for (field = 0; field < _NPCM; field++)
2128				if (pc->pc_map[field] != 0) {
2129					PV_STAT(pv_entry_spare--);
2130					return (pv);	/* not full, return */
2131				}
2132			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2133			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2134			PV_STAT(pv_entry_spare--);
2135			return (pv);
2136		}
2137	}
2138	/*
2139	 * Access to the ptelist "pv_vafree" is synchronized by the page
2140	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2141	 * remain non-empty until pmap_ptelist_alloc() completes.
2142	 */
2143	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2144	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2145	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2146		if (try) {
2147			pv_entry_count--;
2148			PV_STAT(pc_chunk_tryfail++);
2149			return (NULL);
2150		}
2151		/*
2152		 * Reclaim pv entries: At first, destroy mappings to
2153		 * inactive pages.  After that, if a pv chunk entry
2154		 * is still needed, destroy mappings to active pages.
2155		 */
2156		if (pq == NULL) {
2157			PV_STAT(pmap_collect_inactive++);
2158			pq = &vm_page_queues[PQ_INACTIVE];
2159		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2160			PV_STAT(pmap_collect_active++);
2161			pq = &vm_page_queues[PQ_ACTIVE];
2162		} else
2163			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2164		pmap_collect(pmap, pq);
2165		goto retry;
2166	}
2167	PV_STAT(pc_chunk_count++);
2168	PV_STAT(pc_chunk_allocs++);
2169	colour++;
2170	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2171	pmap_qenter((vm_offset_t)pc, &m, 1);
2172	if ((m->flags & PG_ZERO) == 0)
2173		pagezero(pc);
2174	pc->pc_pmap = pmap;
2175	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2176	for (field = 1; field < _NPCM; field++)
2177		pc->pc_map[field] = pc_freemask[field];
2178	pv = &pc->pc_pventry[0];
2179	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2180	PV_STAT(pv_entry_spare += _NPCPV - 1);
2181	return (pv);
2182}
2183
2184static __inline pv_entry_t
2185pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2186{
2187	pv_entry_t pv;
2188
2189	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2190	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2191		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2192			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2193			break;
2194		}
2195	}
2196	return (pv);
2197}
2198
2199static void
2200pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2201{
2202	pv_entry_t pv;
2203
2204	pv = pmap_pvh_remove(pvh, pmap, va);
2205	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2206	free_pv_entry(pmap, pv);
2207}
2208
2209static void
2210pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2211{
2212
2213	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2214	pmap_pvh_free(&m->md, pmap, va);
2215	if (TAILQ_EMPTY(&m->md.pv_list))
2216		vm_page_flag_clear(m, PG_WRITEABLE);
2217}
2218
2219/*
2220 * Conditionally create a pv entry.
2221 */
2222static boolean_t
2223pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2224{
2225	pv_entry_t pv;
2226
2227	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2228	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2229	if (pv_entry_count < pv_entry_high_water &&
2230	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2231		pv->pv_va = va;
2232		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2233		return (TRUE);
2234	} else
2235		return (FALSE);
2236}
2237
2238/*
2239 * pmap_remove_pte: do the things to unmap a page in a process
2240 */
2241static int
2242pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2243{
2244	pt_entry_t oldpte;
2245	vm_page_t m;
2246
2247	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2248	    pmap, (u_long)*ptq, va);
2249
2250	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2251	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2252	oldpte = *ptq;
2253	PT_SET_VA_MA(ptq, 0, TRUE);
2254	if (oldpte & PG_W)
2255		pmap->pm_stats.wired_count -= 1;
2256	/*
2257	 * Machines that don't support invlpg, also don't support
2258	 * PG_G.
2259	 */
2260	if (oldpte & PG_G)
2261		pmap_invalidate_page(kernel_pmap, va);
2262	pmap->pm_stats.resident_count -= 1;
2263	if (oldpte & PG_MANAGED) {
2264		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2265		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2266			vm_page_dirty(m);
2267		if (oldpte & PG_A)
2268			vm_page_flag_set(m, PG_REFERENCED);
2269		pmap_remove_entry(pmap, m, va);
2270	}
2271	return (pmap_unuse_pt(pmap, va, free));
2272}
2273
2274/*
2275 * Remove a single page from a process address space
2276 */
2277static void
2278pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2279{
2280	pt_entry_t *pte;
2281
2282	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2283	    pmap, va);
2284
2285	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2286	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2287	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2288	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2289		return;
2290	pmap_remove_pte(pmap, pte, va, free);
2291	pmap_invalidate_page(pmap, va);
2292	if (*PMAP1)
2293		PT_SET_MA(PADDR1, 0);
2294
2295}
2296
2297/*
2298 *	Remove the given range of addresses from the specified map.
2299 *
2300 *	It is assumed that the start and end are properly
2301 *	rounded to the page size.
2302 */
2303void
2304pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2305{
2306	vm_offset_t pdnxt;
2307	pd_entry_t ptpaddr;
2308	pt_entry_t *pte;
2309	vm_page_t free = NULL;
2310	int anyvalid;
2311
2312	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2313	    pmap, sva, eva);
2314
2315	/*
2316	 * Perform an unsynchronized read.  This is, however, safe.
2317	 */
2318	if (pmap->pm_stats.resident_count == 0)
2319		return;
2320
2321	anyvalid = 0;
2322
2323	vm_page_lock_queues();
2324	sched_pin();
2325	PMAP_LOCK(pmap);
2326
2327	/*
2328	 * special handling of removing one page.  a very
2329	 * common operation and easy to short circuit some
2330	 * code.
2331	 */
2332	if ((sva + PAGE_SIZE == eva) &&
2333	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2334		pmap_remove_page(pmap, sva, &free);
2335		goto out;
2336	}
2337
2338	for (; sva < eva; sva = pdnxt) {
2339		unsigned pdirindex;
2340
2341		/*
2342		 * Calculate index for next page table.
2343		 */
2344		pdnxt = (sva + NBPDR) & ~PDRMASK;
2345		if (pmap->pm_stats.resident_count == 0)
2346			break;
2347
2348		pdirindex = sva >> PDRSHIFT;
2349		ptpaddr = pmap->pm_pdir[pdirindex];
2350
2351		/*
2352		 * Weed out invalid mappings. Note: we assume that the page
2353		 * directory table is always allocated, and in kernel virtual.
2354		 */
2355		if (ptpaddr == 0)
2356			continue;
2357
2358		/*
2359		 * Check for large page.
2360		 */
2361		if ((ptpaddr & PG_PS) != 0) {
2362			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2363			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2364			anyvalid = 1;
2365			continue;
2366		}
2367
2368		/*
2369		 * Limit our scan to either the end of the va represented
2370		 * by the current page table page, or to the end of the
2371		 * range being removed.
2372		 */
2373		if (pdnxt > eva)
2374			pdnxt = eva;
2375
2376		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2377		    sva += PAGE_SIZE) {
2378			if ((*pte & PG_V) == 0)
2379				continue;
2380
2381			/*
2382			 * The TLB entry for a PG_G mapping is invalidated
2383			 * by pmap_remove_pte().
2384			 */
2385			if ((*pte & PG_G) == 0)
2386				anyvalid = 1;
2387			if (pmap_remove_pte(pmap, pte, sva, &free))
2388				break;
2389		}
2390	}
2391	PT_UPDATES_FLUSH();
2392	if (*PMAP1)
2393		PT_SET_VA_MA(PMAP1, 0, TRUE);
2394out:
2395	if (anyvalid)
2396		pmap_invalidate_all(pmap);
2397	sched_unpin();
2398	vm_page_unlock_queues();
2399	PMAP_UNLOCK(pmap);
2400	pmap_free_zero_pages(free);
2401}
2402
2403/*
2404 *	Routine:	pmap_remove_all
2405 *	Function:
2406 *		Removes this physical page from
2407 *		all physical maps in which it resides.
2408 *		Reflects back modify bits to the pager.
2409 *
2410 *	Notes:
2411 *		Original versions of this routine were very
2412 *		inefficient because they iteratively called
2413 *		pmap_remove (slow...)
2414 */
2415
2416void
2417pmap_remove_all(vm_page_t m)
2418{
2419	pv_entry_t pv;
2420	pmap_t pmap;
2421	pt_entry_t *pte, tpte;
2422	vm_page_t free;
2423
2424	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2425	    ("pmap_remove_all: page %p is not managed", m));
2426	free = NULL;
2427	vm_page_lock_queues();
2428	sched_pin();
2429	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2430		pmap = PV_PMAP(pv);
2431		PMAP_LOCK(pmap);
2432		pmap->pm_stats.resident_count--;
2433		pte = pmap_pte_quick(pmap, pv->pv_va);
2434
2435		tpte = *pte;
2436		PT_SET_VA_MA(pte, 0, TRUE);
2437		if (tpte & PG_W)
2438			pmap->pm_stats.wired_count--;
2439		if (tpte & PG_A)
2440			vm_page_flag_set(m, PG_REFERENCED);
2441
2442		/*
2443		 * Update the vm_page_t clean and reference bits.
2444		 */
2445		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2446			vm_page_dirty(m);
2447		pmap_unuse_pt(pmap, pv->pv_va, &free);
2448		pmap_invalidate_page(pmap, pv->pv_va);
2449		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2450		free_pv_entry(pmap, pv);
2451		PMAP_UNLOCK(pmap);
2452	}
2453	vm_page_flag_clear(m, PG_WRITEABLE);
2454	PT_UPDATES_FLUSH();
2455	if (*PMAP1)
2456		PT_SET_MA(PADDR1, 0);
2457	sched_unpin();
2458	vm_page_unlock_queues();
2459	pmap_free_zero_pages(free);
2460}
2461
2462/*
2463 *	Set the physical protection on the
2464 *	specified range of this map as requested.
2465 */
2466void
2467pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2468{
2469	vm_offset_t pdnxt;
2470	pd_entry_t ptpaddr;
2471	pt_entry_t *pte;
2472	int anychanged;
2473
2474	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2475	    pmap, sva, eva, prot);
2476
2477	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2478		pmap_remove(pmap, sva, eva);
2479		return;
2480	}
2481
2482#ifdef PAE
2483	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2484	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2485		return;
2486#else
2487	if (prot & VM_PROT_WRITE)
2488		return;
2489#endif
2490
2491	anychanged = 0;
2492
2493	vm_page_lock_queues();
2494	sched_pin();
2495	PMAP_LOCK(pmap);
2496	for (; sva < eva; sva = pdnxt) {
2497		pt_entry_t obits, pbits;
2498		unsigned pdirindex;
2499
2500		pdnxt = (sva + NBPDR) & ~PDRMASK;
2501
2502		pdirindex = sva >> PDRSHIFT;
2503		ptpaddr = pmap->pm_pdir[pdirindex];
2504
2505		/*
2506		 * Weed out invalid mappings. Note: we assume that the page
2507		 * directory table is always allocated, and in kernel virtual.
2508		 */
2509		if (ptpaddr == 0)
2510			continue;
2511
2512		/*
2513		 * Check for large page.
2514		 */
2515		if ((ptpaddr & PG_PS) != 0) {
2516			if ((prot & VM_PROT_WRITE) == 0)
2517				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2518#ifdef PAE
2519			if ((prot & VM_PROT_EXECUTE) == 0)
2520				pmap->pm_pdir[pdirindex] |= pg_nx;
2521#endif
2522			anychanged = 1;
2523			continue;
2524		}
2525
2526		if (pdnxt > eva)
2527			pdnxt = eva;
2528
2529		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2530		    sva += PAGE_SIZE) {
2531			vm_page_t m;
2532
2533retry:
2534			/*
2535			 * Regardless of whether a pte is 32 or 64 bits in
2536			 * size, PG_RW, PG_A, and PG_M are among the least
2537			 * significant 32 bits.
2538			 */
2539			obits = pbits = *pte;
2540			if ((pbits & PG_V) == 0)
2541				continue;
2542
2543			if ((prot & VM_PROT_WRITE) == 0) {
2544				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2545				    (PG_MANAGED | PG_M | PG_RW)) {
2546					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2547					    PG_FRAME);
2548					vm_page_dirty(m);
2549				}
2550				pbits &= ~(PG_RW | PG_M);
2551			}
2552#ifdef PAE
2553			if ((prot & VM_PROT_EXECUTE) == 0)
2554				pbits |= pg_nx;
2555#endif
2556
2557			if (pbits != obits) {
2558				obits = *pte;
2559				PT_SET_VA_MA(pte, pbits, TRUE);
2560				if (*pte != pbits)
2561					goto retry;
2562				if (obits & PG_G)
2563					pmap_invalidate_page(pmap, sva);
2564				else
2565					anychanged = 1;
2566			}
2567		}
2568	}
2569	PT_UPDATES_FLUSH();
2570	if (*PMAP1)
2571		PT_SET_VA_MA(PMAP1, 0, TRUE);
2572	if (anychanged)
2573		pmap_invalidate_all(pmap);
2574	sched_unpin();
2575	vm_page_unlock_queues();
2576	PMAP_UNLOCK(pmap);
2577}
2578
2579/*
2580 *	Insert the given physical page (p) at
2581 *	the specified virtual address (v) in the
2582 *	target physical map with the protection requested.
2583 *
2584 *	If specified, the page will be wired down, meaning
2585 *	that the related pte can not be reclaimed.
2586 *
2587 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2588 *	or lose information.  That is, this routine must actually
2589 *	insert this page into the given map NOW.
2590 */
2591void
2592pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2593    vm_prot_t prot, boolean_t wired)
2594{
2595	pd_entry_t *pde;
2596	pt_entry_t *pte;
2597	pt_entry_t newpte, origpte;
2598	pv_entry_t pv;
2599	vm_paddr_t opa, pa;
2600	vm_page_t mpte, om;
2601	boolean_t invlva;
2602
2603	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2604	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2605	va = trunc_page(va);
2606	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2607	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2608	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2609	    va));
2610	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2611	    (m->oflags & VPO_BUSY) != 0,
2612	    ("pmap_enter: page %p is not busy", m));
2613
2614	mpte = NULL;
2615
2616	vm_page_lock_queues();
2617	PMAP_LOCK(pmap);
2618	sched_pin();
2619
2620	/*
2621	 * In the case that a page table page is not
2622	 * resident, we are creating it here.
2623	 */
2624	if (va < VM_MAXUSER_ADDRESS) {
2625		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2626	}
2627
2628	pde = pmap_pde(pmap, va);
2629	if ((*pde & PG_PS) != 0)
2630		panic("pmap_enter: attempted pmap_enter on 4MB page");
2631	pte = pmap_pte_quick(pmap, va);
2632
2633	/*
2634	 * Page Directory table entry not valid, we need a new PT page
2635	 */
2636	if (pte == NULL) {
2637		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2638			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2639	}
2640
2641	pa = VM_PAGE_TO_PHYS(m);
2642	om = NULL;
2643	opa = origpte = 0;
2644
2645#if 0
2646	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2647		pte, *pte));
2648#endif
2649	origpte = *pte;
2650	if (origpte)
2651		origpte = xpmap_mtop(origpte);
2652	opa = origpte & PG_FRAME;
2653
2654	/*
2655	 * Mapping has not changed, must be protection or wiring change.
2656	 */
2657	if (origpte && (opa == pa)) {
2658		/*
2659		 * Wiring change, just update stats. We don't worry about
2660		 * wiring PT pages as they remain resident as long as there
2661		 * are valid mappings in them. Hence, if a user page is wired,
2662		 * the PT page will be also.
2663		 */
2664		if (wired && ((origpte & PG_W) == 0))
2665			pmap->pm_stats.wired_count++;
2666		else if (!wired && (origpte & PG_W))
2667			pmap->pm_stats.wired_count--;
2668
2669		/*
2670		 * Remove extra pte reference
2671		 */
2672		if (mpte)
2673			mpte->wire_count--;
2674
2675		if (origpte & PG_MANAGED) {
2676			om = m;
2677			pa |= PG_MANAGED;
2678		}
2679		goto validate;
2680	}
2681
2682	pv = NULL;
2683
2684	/*
2685	 * Mapping has changed, invalidate old range and fall through to
2686	 * handle validating new mapping.
2687	 */
2688	if (opa) {
2689		if (origpte & PG_W)
2690			pmap->pm_stats.wired_count--;
2691		if (origpte & PG_MANAGED) {
2692			om = PHYS_TO_VM_PAGE(opa);
2693			pv = pmap_pvh_remove(&om->md, pmap, va);
2694		} else if (va < VM_MAXUSER_ADDRESS)
2695			printf("va=0x%x is unmanaged :-( \n", va);
2696
2697		if (mpte != NULL) {
2698			mpte->wire_count--;
2699			KASSERT(mpte->wire_count > 0,
2700			    ("pmap_enter: missing reference to page table page,"
2701			     " va: 0x%x", va));
2702		}
2703	} else
2704		pmap->pm_stats.resident_count++;
2705
2706	/*
2707	 * Enter on the PV list if part of our managed memory.
2708	 */
2709	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2710		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2711		    ("pmap_enter: managed mapping within the clean submap"));
2712		if (pv == NULL)
2713			pv = get_pv_entry(pmap, FALSE);
2714		pv->pv_va = va;
2715		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2716		pa |= PG_MANAGED;
2717	} else if (pv != NULL)
2718		free_pv_entry(pmap, pv);
2719
2720	/*
2721	 * Increment counters
2722	 */
2723	if (wired)
2724		pmap->pm_stats.wired_count++;
2725
2726validate:
2727	/*
2728	 * Now validate mapping with desired protection/wiring.
2729	 */
2730	newpte = (pt_entry_t)(pa | PG_V);
2731	if ((prot & VM_PROT_WRITE) != 0) {
2732		newpte |= PG_RW;
2733		if ((newpte & PG_MANAGED) != 0)
2734			vm_page_flag_set(m, PG_WRITEABLE);
2735	}
2736#ifdef PAE
2737	if ((prot & VM_PROT_EXECUTE) == 0)
2738		newpte |= pg_nx;
2739#endif
2740	if (wired)
2741		newpte |= PG_W;
2742	if (va < VM_MAXUSER_ADDRESS)
2743		newpte |= PG_U;
2744	if (pmap == kernel_pmap)
2745		newpte |= pgeflag;
2746
2747	critical_enter();
2748	/*
2749	 * if the mapping or permission bits are different, we need
2750	 * to update the pte.
2751	 */
2752	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2753		if (origpte) {
2754			invlva = FALSE;
2755			origpte = *pte;
2756			PT_SET_VA(pte, newpte | PG_A, FALSE);
2757			if (origpte & PG_A) {
2758				if (origpte & PG_MANAGED)
2759					vm_page_flag_set(om, PG_REFERENCED);
2760				if (opa != VM_PAGE_TO_PHYS(m))
2761					invlva = TRUE;
2762#ifdef PAE
2763				if ((origpte & PG_NX) == 0 &&
2764				    (newpte & PG_NX) != 0)
2765					invlva = TRUE;
2766#endif
2767			}
2768			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2769				if ((origpte & PG_MANAGED) != 0)
2770					vm_page_dirty(om);
2771				if ((prot & VM_PROT_WRITE) == 0)
2772					invlva = TRUE;
2773			}
2774			if ((origpte & PG_MANAGED) != 0 &&
2775			    TAILQ_EMPTY(&om->md.pv_list))
2776				vm_page_flag_clear(om, PG_WRITEABLE);
2777			if (invlva)
2778				pmap_invalidate_page(pmap, va);
2779		} else{
2780			PT_SET_VA(pte, newpte | PG_A, FALSE);
2781		}
2782
2783	}
2784	PT_UPDATES_FLUSH();
2785	critical_exit();
2786	if (*PMAP1)
2787		PT_SET_VA_MA(PMAP1, 0, TRUE);
2788	sched_unpin();
2789	vm_page_unlock_queues();
2790	PMAP_UNLOCK(pmap);
2791}
2792
2793/*
2794 * Maps a sequence of resident pages belonging to the same object.
2795 * The sequence begins with the given page m_start.  This page is
2796 * mapped at the given virtual address start.  Each subsequent page is
2797 * mapped at a virtual address that is offset from start by the same
2798 * amount as the page is offset from m_start within the object.  The
2799 * last page in the sequence is the page with the largest offset from
2800 * m_start that can be mapped at a virtual address less than the given
2801 * virtual address end.  Not every virtual page between start and end
2802 * is mapped; only those for which a resident page exists with the
2803 * corresponding offset from m_start are mapped.
2804 */
2805void
2806pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2807    vm_page_t m_start, vm_prot_t prot)
2808{
2809	vm_page_t m, mpte;
2810	vm_pindex_t diff, psize;
2811	multicall_entry_t mcl[16];
2812	multicall_entry_t *mclp = mcl;
2813	int error, count = 0;
2814
2815	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2816	psize = atop(end - start);
2817
2818	mpte = NULL;
2819	m = m_start;
2820	vm_page_lock_queues();
2821	PMAP_LOCK(pmap);
2822	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2823		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2824		    prot, mpte);
2825		m = TAILQ_NEXT(m, listq);
2826		if (count == 16) {
2827			error = HYPERVISOR_multicall(mcl, count);
2828			KASSERT(error == 0, ("bad multicall %d", error));
2829			mclp = mcl;
2830			count = 0;
2831		}
2832	}
2833	if (count) {
2834		error = HYPERVISOR_multicall(mcl, count);
2835		KASSERT(error == 0, ("bad multicall %d", error));
2836	}
2837	vm_page_unlock_queues();
2838	PMAP_UNLOCK(pmap);
2839}
2840
2841/*
2842 * this code makes some *MAJOR* assumptions:
2843 * 1. Current pmap & pmap exists.
2844 * 2. Not wired.
2845 * 3. Read access.
2846 * 4. No page table pages.
2847 * but is *MUCH* faster than pmap_enter...
2848 */
2849
2850void
2851pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2852{
2853	multicall_entry_t mcl, *mclp;
2854	int count = 0;
2855	mclp = &mcl;
2856
2857	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2858	    pmap, va, m, prot);
2859
2860	vm_page_lock_queues();
2861	PMAP_LOCK(pmap);
2862	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2863	if (count)
2864		HYPERVISOR_multicall(&mcl, count);
2865	vm_page_unlock_queues();
2866	PMAP_UNLOCK(pmap);
2867}
2868
2869#ifdef notyet
2870void
2871pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2872{
2873	int i, error, index = 0;
2874	multicall_entry_t mcl[16];
2875	multicall_entry_t *mclp = mcl;
2876
2877	PMAP_LOCK(pmap);
2878	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2879		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2880			continue;
2881
2882		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2883		if (index == 16) {
2884			error = HYPERVISOR_multicall(mcl, index);
2885			mclp = mcl;
2886			index = 0;
2887			KASSERT(error == 0, ("bad multicall %d", error));
2888		}
2889	}
2890	if (index) {
2891		error = HYPERVISOR_multicall(mcl, index);
2892		KASSERT(error == 0, ("bad multicall %d", error));
2893	}
2894
2895	PMAP_UNLOCK(pmap);
2896}
2897#endif
2898
2899static vm_page_t
2900pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2901    vm_prot_t prot, vm_page_t mpte)
2902{
2903	pt_entry_t *pte;
2904	vm_paddr_t pa;
2905	vm_page_t free;
2906	multicall_entry_t *mcl = *mclpp;
2907
2908	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2909	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2910	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2911	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2912	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2913
2914	/*
2915	 * In the case that a page table page is not
2916	 * resident, we are creating it here.
2917	 */
2918	if (va < VM_MAXUSER_ADDRESS) {
2919		unsigned ptepindex;
2920		pd_entry_t ptema;
2921
2922		/*
2923		 * Calculate pagetable page index
2924		 */
2925		ptepindex = va >> PDRSHIFT;
2926		if (mpte && (mpte->pindex == ptepindex)) {
2927			mpte->wire_count++;
2928		} else {
2929			/*
2930			 * Get the page directory entry
2931			 */
2932			ptema = pmap->pm_pdir[ptepindex];
2933
2934			/*
2935			 * If the page table page is mapped, we just increment
2936			 * the hold count, and activate it.
2937			 */
2938			if (ptema & PG_V) {
2939				if (ptema & PG_PS)
2940					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2941				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2942				mpte->wire_count++;
2943			} else {
2944				mpte = _pmap_allocpte(pmap, ptepindex,
2945				    M_NOWAIT);
2946				if (mpte == NULL)
2947					return (mpte);
2948			}
2949		}
2950	} else {
2951		mpte = NULL;
2952	}
2953
2954	/*
2955	 * This call to vtopte makes the assumption that we are
2956	 * entering the page into the current pmap.  In order to support
2957	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2958	 * But that isn't as quick as vtopte.
2959	 */
2960	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2961	pte = vtopte(va);
2962	if (*pte & PG_V) {
2963		if (mpte != NULL) {
2964			mpte->wire_count--;
2965			mpte = NULL;
2966		}
2967		return (mpte);
2968	}
2969
2970	/*
2971	 * Enter on the PV list if part of our managed memory.
2972	 */
2973	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2974	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2975		if (mpte != NULL) {
2976			free = NULL;
2977			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2978				pmap_invalidate_page(pmap, va);
2979				pmap_free_zero_pages(free);
2980			}
2981
2982			mpte = NULL;
2983		}
2984		return (mpte);
2985	}
2986
2987	/*
2988	 * Increment counters
2989	 */
2990	pmap->pm_stats.resident_count++;
2991
2992	pa = VM_PAGE_TO_PHYS(m);
2993#ifdef PAE
2994	if ((prot & VM_PROT_EXECUTE) == 0)
2995		pa |= pg_nx;
2996#endif
2997
2998#if 0
2999	/*
3000	 * Now validate mapping with RO protection
3001	 */
3002	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3003		pte_store(pte, pa | PG_V | PG_U);
3004	else
3005		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3006#else
3007	/*
3008	 * Now validate mapping with RO protection
3009	 */
3010	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3011		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3012	else
3013		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3014
3015	mcl->op = __HYPERVISOR_update_va_mapping;
3016	mcl->args[0] = va;
3017	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3018	mcl->args[2] = (uint32_t)(pa >> 32);
3019	mcl->args[3] = 0;
3020	*mclpp = mcl + 1;
3021	*count = *count + 1;
3022#endif
3023	return mpte;
3024}
3025
3026/*
3027 * Make a temporary mapping for a physical address.  This is only intended
3028 * to be used for panic dumps.
3029 */
3030void *
3031pmap_kenter_temporary(vm_paddr_t pa, int i)
3032{
3033	vm_offset_t va;
3034	vm_paddr_t ma = xpmap_ptom(pa);
3035
3036	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3037	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3038	invlpg(va);
3039	return ((void *)crashdumpmap);
3040}
3041
3042/*
3043 * This code maps large physical mmap regions into the
3044 * processor address space.  Note that some shortcuts
3045 * are taken, but the code works.
3046 */
3047void
3048pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3049		    vm_object_t object, vm_pindex_t pindex,
3050		    vm_size_t size)
3051{
3052	pd_entry_t *pde;
3053	vm_paddr_t pa, ptepa;
3054	vm_page_t p;
3055	int pat_mode;
3056
3057	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3058	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3059	    ("pmap_object_init_pt: non-device object"));
3060	if (pseflag &&
3061	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3062		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3063			return;
3064		p = vm_page_lookup(object, pindex);
3065		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3066		    ("pmap_object_init_pt: invalid page %p", p));
3067		pat_mode = p->md.pat_mode;
3068		/*
3069		 * Abort the mapping if the first page is not physically
3070		 * aligned to a 2/4MB page boundary.
3071		 */
3072		ptepa = VM_PAGE_TO_PHYS(p);
3073		if (ptepa & (NBPDR - 1))
3074			return;
3075		/*
3076		 * Skip the first page.  Abort the mapping if the rest of
3077		 * the pages are not physically contiguous or have differing
3078		 * memory attributes.
3079		 */
3080		p = TAILQ_NEXT(p, listq);
3081		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3082		    pa += PAGE_SIZE) {
3083			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3084			    ("pmap_object_init_pt: invalid page %p", p));
3085			if (pa != VM_PAGE_TO_PHYS(p) ||
3086			    pat_mode != p->md.pat_mode)
3087				return;
3088			p = TAILQ_NEXT(p, listq);
3089		}
3090		/* Map using 2/4MB pages. */
3091		PMAP_LOCK(pmap);
3092		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3093		    size; pa += NBPDR) {
3094			pde = pmap_pde(pmap, addr);
3095			if (*pde == 0) {
3096				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3097				    PG_U | PG_RW | PG_V);
3098				pmap->pm_stats.resident_count += NBPDR /
3099				    PAGE_SIZE;
3100				pmap_pde_mappings++;
3101			}
3102			/* Else continue on if the PDE is already valid. */
3103			addr += NBPDR;
3104		}
3105		PMAP_UNLOCK(pmap);
3106	}
3107}
3108
3109/*
3110 *	Routine:	pmap_change_wiring
3111 *	Function:	Change the wiring attribute for a map/virtual-address
3112 *			pair.
3113 *	In/out conditions:
3114 *			The mapping must already exist in the pmap.
3115 */
3116void
3117pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3118{
3119	pt_entry_t *pte;
3120
3121	vm_page_lock_queues();
3122	PMAP_LOCK(pmap);
3123	pte = pmap_pte(pmap, va);
3124
3125	if (wired && !pmap_pte_w(pte)) {
3126		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3127		pmap->pm_stats.wired_count++;
3128	} else if (!wired && pmap_pte_w(pte)) {
3129		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3130		pmap->pm_stats.wired_count--;
3131	}
3132
3133	/*
3134	 * Wiring is not a hardware characteristic so there is no need to
3135	 * invalidate TLB.
3136	 */
3137	pmap_pte_release(pte);
3138	PMAP_UNLOCK(pmap);
3139	vm_page_unlock_queues();
3140}
3141
3142
3143
3144/*
3145 *	Copy the range specified by src_addr/len
3146 *	from the source map to the range dst_addr/len
3147 *	in the destination map.
3148 *
3149 *	This routine is only advisory and need not do anything.
3150 */
3151
3152void
3153pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3154	  vm_offset_t src_addr)
3155{
3156	vm_page_t   free;
3157	vm_offset_t addr;
3158	vm_offset_t end_addr = src_addr + len;
3159	vm_offset_t pdnxt;
3160
3161	if (dst_addr != src_addr)
3162		return;
3163
3164	if (!pmap_is_current(src_pmap)) {
3165		CTR2(KTR_PMAP,
3166		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3167		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3168
3169		return;
3170	}
3171	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3172	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3173
3174#ifdef HAMFISTED_LOCKING
3175	mtx_lock(&createdelete_lock);
3176#endif
3177
3178	vm_page_lock_queues();
3179	if (dst_pmap < src_pmap) {
3180		PMAP_LOCK(dst_pmap);
3181		PMAP_LOCK(src_pmap);
3182	} else {
3183		PMAP_LOCK(src_pmap);
3184		PMAP_LOCK(dst_pmap);
3185	}
3186	sched_pin();
3187	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3188		pt_entry_t *src_pte, *dst_pte;
3189		vm_page_t dstmpte, srcmpte;
3190		pd_entry_t srcptepaddr;
3191		unsigned ptepindex;
3192
3193		KASSERT(addr < UPT_MIN_ADDRESS,
3194		    ("pmap_copy: invalid to pmap_copy page tables"));
3195
3196		pdnxt = (addr + NBPDR) & ~PDRMASK;
3197		ptepindex = addr >> PDRSHIFT;
3198
3199		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3200		if (srcptepaddr == 0)
3201			continue;
3202
3203		if (srcptepaddr & PG_PS) {
3204			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3205				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3206				dst_pmap->pm_stats.resident_count +=
3207				    NBPDR / PAGE_SIZE;
3208			}
3209			continue;
3210		}
3211
3212		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3213		KASSERT(srcmpte->wire_count > 0,
3214		    ("pmap_copy: source page table page is unused"));
3215
3216		if (pdnxt > end_addr)
3217			pdnxt = end_addr;
3218
3219		src_pte = vtopte(addr);
3220		while (addr < pdnxt) {
3221			pt_entry_t ptetemp;
3222			ptetemp = *src_pte;
3223			/*
3224			 * we only virtual copy managed pages
3225			 */
3226			if ((ptetemp & PG_MANAGED) != 0) {
3227				dstmpte = pmap_allocpte(dst_pmap, addr,
3228				    M_NOWAIT);
3229				if (dstmpte == NULL)
3230					break;
3231				dst_pte = pmap_pte_quick(dst_pmap, addr);
3232				if (*dst_pte == 0 &&
3233				    pmap_try_insert_pv_entry(dst_pmap, addr,
3234				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3235					/*
3236					 * Clear the wired, modified, and
3237					 * accessed (referenced) bits
3238					 * during the copy.
3239					 */
3240					KASSERT(ptetemp != 0, ("src_pte not set"));
3241					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3242					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3243					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3244						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3245					dst_pmap->pm_stats.resident_count++;
3246	 			} else {
3247					free = NULL;
3248					if (pmap_unwire_pte_hold(dst_pmap,
3249					    dstmpte, &free)) {
3250						pmap_invalidate_page(dst_pmap,
3251						    addr);
3252						pmap_free_zero_pages(free);
3253					}
3254				}
3255				if (dstmpte->wire_count >= srcmpte->wire_count)
3256					break;
3257			}
3258			addr += PAGE_SIZE;
3259			src_pte++;
3260		}
3261	}
3262	PT_UPDATES_FLUSH();
3263	sched_unpin();
3264	vm_page_unlock_queues();
3265	PMAP_UNLOCK(src_pmap);
3266	PMAP_UNLOCK(dst_pmap);
3267
3268#ifdef HAMFISTED_LOCKING
3269	mtx_unlock(&createdelete_lock);
3270#endif
3271}
3272
3273static __inline void
3274pagezero(void *page)
3275{
3276#if defined(I686_CPU)
3277	if (cpu_class == CPUCLASS_686) {
3278#if defined(CPU_ENABLE_SSE)
3279		if (cpu_feature & CPUID_SSE2)
3280			sse2_pagezero(page);
3281		else
3282#endif
3283			i686_pagezero(page);
3284	} else
3285#endif
3286		bzero(page, PAGE_SIZE);
3287}
3288
3289/*
3290 *	pmap_zero_page zeros the specified hardware page by mapping
3291 *	the page into KVM and using bzero to clear its contents.
3292 */
3293void
3294pmap_zero_page(vm_page_t m)
3295{
3296	struct sysmaps *sysmaps;
3297
3298	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3299	mtx_lock(&sysmaps->lock);
3300	if (*sysmaps->CMAP2)
3301		panic("pmap_zero_page: CMAP2 busy");
3302	sched_pin();
3303	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3304	pagezero(sysmaps->CADDR2);
3305	PT_SET_MA(sysmaps->CADDR2, 0);
3306	sched_unpin();
3307	mtx_unlock(&sysmaps->lock);
3308}
3309
3310/*
3311 *	pmap_zero_page_area zeros the specified hardware page by mapping
3312 *	the page into KVM and using bzero to clear its contents.
3313 *
3314 *	off and size may not cover an area beyond a single hardware page.
3315 */
3316void
3317pmap_zero_page_area(vm_page_t m, int off, int size)
3318{
3319	struct sysmaps *sysmaps;
3320
3321	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3322	mtx_lock(&sysmaps->lock);
3323	if (*sysmaps->CMAP2)
3324		panic("pmap_zero_page: CMAP2 busy");
3325	sched_pin();
3326	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3327
3328	if (off == 0 && size == PAGE_SIZE)
3329		pagezero(sysmaps->CADDR2);
3330	else
3331		bzero((char *)sysmaps->CADDR2 + off, size);
3332	PT_SET_MA(sysmaps->CADDR2, 0);
3333	sched_unpin();
3334	mtx_unlock(&sysmaps->lock);
3335}
3336
3337/*
3338 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3339 *	the page into KVM and using bzero to clear its contents.  This
3340 *	is intended to be called from the vm_pagezero process only and
3341 *	outside of Giant.
3342 */
3343void
3344pmap_zero_page_idle(vm_page_t m)
3345{
3346
3347	if (*CMAP3)
3348		panic("pmap_zero_page: CMAP3 busy");
3349	sched_pin();
3350	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3351	pagezero(CADDR3);
3352	PT_SET_MA(CADDR3, 0);
3353	sched_unpin();
3354}
3355
3356/*
3357 *	pmap_copy_page copies the specified (machine independent)
3358 *	page by mapping the page into virtual memory and using
3359 *	bcopy to copy the page, one machine dependent page at a
3360 *	time.
3361 */
3362void
3363pmap_copy_page(vm_page_t src, vm_page_t dst)
3364{
3365	struct sysmaps *sysmaps;
3366
3367	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3368	mtx_lock(&sysmaps->lock);
3369	if (*sysmaps->CMAP1)
3370		panic("pmap_copy_page: CMAP1 busy");
3371	if (*sysmaps->CMAP2)
3372		panic("pmap_copy_page: CMAP2 busy");
3373	sched_pin();
3374	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3375	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3376	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3377	PT_SET_MA(sysmaps->CADDR1, 0);
3378	PT_SET_MA(sysmaps->CADDR2, 0);
3379	sched_unpin();
3380	mtx_unlock(&sysmaps->lock);
3381}
3382
3383/*
3384 * Returns true if the pmap's pv is one of the first
3385 * 16 pvs linked to from this page.  This count may
3386 * be changed upwards or downwards in the future; it
3387 * is only necessary that true be returned for a small
3388 * subset of pmaps for proper page aging.
3389 */
3390boolean_t
3391pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3392{
3393	pv_entry_t pv;
3394	int loops = 0;
3395	boolean_t rv;
3396
3397	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3398	    ("pmap_page_exists_quick: page %p is not managed", m));
3399	rv = FALSE;
3400	vm_page_lock_queues();
3401	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3402		if (PV_PMAP(pv) == pmap) {
3403			rv = TRUE;
3404			break;
3405		}
3406		loops++;
3407		if (loops >= 16)
3408			break;
3409	}
3410	vm_page_unlock_queues();
3411	return (rv);
3412}
3413
3414/*
3415 *	pmap_page_wired_mappings:
3416 *
3417 *	Return the number of managed mappings to the given physical page
3418 *	that are wired.
3419 */
3420int
3421pmap_page_wired_mappings(vm_page_t m)
3422{
3423	pv_entry_t pv;
3424	pt_entry_t *pte;
3425	pmap_t pmap;
3426	int count;
3427
3428	count = 0;
3429	if ((m->flags & PG_FICTITIOUS) != 0)
3430		return (count);
3431	vm_page_lock_queues();
3432	sched_pin();
3433	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3434		pmap = PV_PMAP(pv);
3435		PMAP_LOCK(pmap);
3436		pte = pmap_pte_quick(pmap, pv->pv_va);
3437		if ((*pte & PG_W) != 0)
3438			count++;
3439		PMAP_UNLOCK(pmap);
3440	}
3441	sched_unpin();
3442	vm_page_unlock_queues();
3443	return (count);
3444}
3445
3446/*
3447 * Returns TRUE if the given page is mapped individually or as part of
3448 * a 4mpage.  Otherwise, returns FALSE.
3449 */
3450boolean_t
3451pmap_page_is_mapped(vm_page_t m)
3452{
3453	boolean_t rv;
3454
3455	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3456		return (FALSE);
3457	vm_page_lock_queues();
3458	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3459	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3460	vm_page_unlock_queues();
3461	return (rv);
3462}
3463
3464/*
3465 * Remove all pages from specified address space
3466 * this aids process exit speeds.  Also, this code
3467 * is special cased for current process only, but
3468 * can have the more generic (and slightly slower)
3469 * mode enabled.  This is much faster than pmap_remove
3470 * in the case of running down an entire address space.
3471 */
3472void
3473pmap_remove_pages(pmap_t pmap)
3474{
3475	pt_entry_t *pte, tpte;
3476	vm_page_t m, free = NULL;
3477	pv_entry_t pv;
3478	struct pv_chunk *pc, *npc;
3479	int field, idx;
3480	int32_t bit;
3481	uint32_t inuse, bitmask;
3482	int allfree;
3483
3484	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3485
3486	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3487		printf("warning: pmap_remove_pages called with non-current pmap\n");
3488		return;
3489	}
3490	vm_page_lock_queues();
3491	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3492	PMAP_LOCK(pmap);
3493	sched_pin();
3494	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3495		allfree = 1;
3496		for (field = 0; field < _NPCM; field++) {
3497			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3498			while (inuse != 0) {
3499				bit = bsfl(inuse);
3500				bitmask = 1UL << bit;
3501				idx = field * 32 + bit;
3502				pv = &pc->pc_pventry[idx];
3503				inuse &= ~bitmask;
3504
3505				pte = vtopte(pv->pv_va);
3506				tpte = *pte ? xpmap_mtop(*pte) : 0;
3507
3508				if (tpte == 0) {
3509					printf(
3510					    "TPTE at %p  IS ZERO @ VA %08x\n",
3511					    pte, pv->pv_va);
3512					panic("bad pte");
3513				}
3514
3515/*
3516 * We cannot remove wired pages from a process' mapping at this time
3517 */
3518				if (tpte & PG_W) {
3519					allfree = 0;
3520					continue;
3521				}
3522
3523				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3524				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3525				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3526				    m, (uintmax_t)m->phys_addr,
3527				    (uintmax_t)tpte));
3528
3529				KASSERT(m < &vm_page_array[vm_page_array_size],
3530					("pmap_remove_pages: bad tpte %#jx",
3531					(uintmax_t)tpte));
3532
3533
3534				PT_CLEAR_VA(pte, FALSE);
3535
3536				/*
3537				 * Update the vm_page_t clean/reference bits.
3538				 */
3539				if (tpte & PG_M)
3540					vm_page_dirty(m);
3541
3542				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3543				if (TAILQ_EMPTY(&m->md.pv_list))
3544					vm_page_flag_clear(m, PG_WRITEABLE);
3545
3546				pmap_unuse_pt(pmap, pv->pv_va, &free);
3547
3548				/* Mark free */
3549				PV_STAT(pv_entry_frees++);
3550				PV_STAT(pv_entry_spare++);
3551				pv_entry_count--;
3552				pc->pc_map[field] |= bitmask;
3553				pmap->pm_stats.resident_count--;
3554			}
3555		}
3556		PT_UPDATES_FLUSH();
3557		if (allfree) {
3558			PV_STAT(pv_entry_spare -= _NPCPV);
3559			PV_STAT(pc_chunk_count--);
3560			PV_STAT(pc_chunk_frees++);
3561			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3562			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3563			pmap_qremove((vm_offset_t)pc, 1);
3564			vm_page_unwire(m, 0);
3565			vm_page_free(m);
3566			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3567		}
3568	}
3569	PT_UPDATES_FLUSH();
3570	if (*PMAP1)
3571		PT_SET_MA(PADDR1, 0);
3572
3573	sched_unpin();
3574	pmap_invalidate_all(pmap);
3575	vm_page_unlock_queues();
3576	PMAP_UNLOCK(pmap);
3577	pmap_free_zero_pages(free);
3578}
3579
3580/*
3581 *	pmap_is_modified:
3582 *
3583 *	Return whether or not the specified physical page was modified
3584 *	in any physical maps.
3585 */
3586boolean_t
3587pmap_is_modified(vm_page_t m)
3588{
3589	pv_entry_t pv;
3590	pt_entry_t *pte;
3591	pmap_t pmap;
3592	boolean_t rv;
3593
3594	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3595	    ("pmap_is_modified: page %p is not managed", m));
3596	rv = FALSE;
3597
3598	/*
3599	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
3600	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
3601	 * is clear, no PTEs can have PG_M set.
3602	 */
3603	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3604	if ((m->oflags & VPO_BUSY) == 0 &&
3605	    (m->flags & PG_WRITEABLE) == 0)
3606		return (rv);
3607	vm_page_lock_queues();
3608	sched_pin();
3609	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3610		pmap = PV_PMAP(pv);
3611		PMAP_LOCK(pmap);
3612		pte = pmap_pte_quick(pmap, pv->pv_va);
3613		rv = (*pte & PG_M) != 0;
3614		PMAP_UNLOCK(pmap);
3615		if (rv)
3616			break;
3617	}
3618	if (*PMAP1)
3619		PT_SET_MA(PADDR1, 0);
3620	sched_unpin();
3621	vm_page_unlock_queues();
3622	return (rv);
3623}
3624
3625/*
3626 *	pmap_is_prefaultable:
3627 *
3628 *	Return whether or not the specified virtual address is elgible
3629 *	for prefault.
3630 */
3631static boolean_t
3632pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3633{
3634	pt_entry_t *pte;
3635	boolean_t rv = FALSE;
3636
3637	return (rv);
3638
3639	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3640		pte = vtopte(addr);
3641		rv = (*pte == 0);
3642	}
3643	return (rv);
3644}
3645
3646boolean_t
3647pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3648{
3649	boolean_t rv;
3650
3651	PMAP_LOCK(pmap);
3652	rv = pmap_is_prefaultable_locked(pmap, addr);
3653	PMAP_UNLOCK(pmap);
3654	return (rv);
3655}
3656
3657boolean_t
3658pmap_is_referenced(vm_page_t m)
3659{
3660	pv_entry_t pv;
3661	pt_entry_t *pte;
3662	pmap_t pmap;
3663	boolean_t rv;
3664
3665	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3666	    ("pmap_is_referenced: page %p is not managed", m));
3667	rv = FALSE;
3668	vm_page_lock_queues();
3669	sched_pin();
3670	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3671		pmap = PV_PMAP(pv);
3672		PMAP_LOCK(pmap);
3673		pte = pmap_pte_quick(pmap, pv->pv_va);
3674		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3675		PMAP_UNLOCK(pmap);
3676		if (rv)
3677			break;
3678	}
3679	if (*PMAP1)
3680		PT_SET_MA(PADDR1, 0);
3681	sched_unpin();
3682	vm_page_unlock_queues();
3683	return (rv);
3684}
3685
3686void
3687pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3688{
3689	int i, npages = round_page(len) >> PAGE_SHIFT;
3690	for (i = 0; i < npages; i++) {
3691		pt_entry_t *pte;
3692		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3693		vm_page_lock_queues();
3694		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3695		vm_page_unlock_queues();
3696		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3697		pmap_pte_release(pte);
3698	}
3699}
3700
3701void
3702pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3703{
3704	int i, npages = round_page(len) >> PAGE_SHIFT;
3705	for (i = 0; i < npages; i++) {
3706		pt_entry_t *pte;
3707		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3708		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3709		vm_page_lock_queues();
3710		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3711		vm_page_unlock_queues();
3712		pmap_pte_release(pte);
3713	}
3714}
3715
3716/*
3717 * Clear the write and modified bits in each of the given page's mappings.
3718 */
3719void
3720pmap_remove_write(vm_page_t m)
3721{
3722	pv_entry_t pv;
3723	pmap_t pmap;
3724	pt_entry_t oldpte, *pte;
3725
3726	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3727	    ("pmap_remove_write: page %p is not managed", m));
3728
3729	/*
3730	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
3731	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
3732	 * is clear, no page table entries need updating.
3733	 */
3734	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3735	if ((m->oflags & VPO_BUSY) == 0 &&
3736	    (m->flags & PG_WRITEABLE) == 0)
3737		return;
3738	vm_page_lock_queues();
3739	sched_pin();
3740	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3741		pmap = PV_PMAP(pv);
3742		PMAP_LOCK(pmap);
3743		pte = pmap_pte_quick(pmap, pv->pv_va);
3744retry:
3745		oldpte = *pte;
3746		if ((oldpte & PG_RW) != 0) {
3747			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3748
3749			/*
3750			 * Regardless of whether a pte is 32 or 64 bits
3751			 * in size, PG_RW and PG_M are among the least
3752			 * significant 32 bits.
3753			 */
3754			PT_SET_VA_MA(pte, newpte, TRUE);
3755			if (*pte != newpte)
3756				goto retry;
3757
3758			if ((oldpte & PG_M) != 0)
3759				vm_page_dirty(m);
3760			pmap_invalidate_page(pmap, pv->pv_va);
3761		}
3762		PMAP_UNLOCK(pmap);
3763	}
3764	vm_page_flag_clear(m, PG_WRITEABLE);
3765	PT_UPDATES_FLUSH();
3766	if (*PMAP1)
3767		PT_SET_MA(PADDR1, 0);
3768	sched_unpin();
3769	vm_page_unlock_queues();
3770}
3771
3772/*
3773 *	pmap_ts_referenced:
3774 *
3775 *	Return a count of reference bits for a page, clearing those bits.
3776 *	It is not necessary for every reference bit to be cleared, but it
3777 *	is necessary that 0 only be returned when there are truly no
3778 *	reference bits set.
3779 *
3780 *	XXX: The exact number of bits to check and clear is a matter that
3781 *	should be tested and standardized at some point in the future for
3782 *	optimal aging of shared pages.
3783 */
3784int
3785pmap_ts_referenced(vm_page_t m)
3786{
3787	pv_entry_t pv, pvf, pvn;
3788	pmap_t pmap;
3789	pt_entry_t *pte;
3790	int rtval = 0;
3791
3792	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3793	    ("pmap_ts_referenced: page %p is not managed", m));
3794	vm_page_lock_queues();
3795	sched_pin();
3796	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3797		pvf = pv;
3798		do {
3799			pvn = TAILQ_NEXT(pv, pv_list);
3800			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3801			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3802			pmap = PV_PMAP(pv);
3803			PMAP_LOCK(pmap);
3804			pte = pmap_pte_quick(pmap, pv->pv_va);
3805			if ((*pte & PG_A) != 0) {
3806				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3807				pmap_invalidate_page(pmap, pv->pv_va);
3808				rtval++;
3809				if (rtval > 4)
3810					pvn = NULL;
3811			}
3812			PMAP_UNLOCK(pmap);
3813		} while ((pv = pvn) != NULL && pv != pvf);
3814	}
3815	PT_UPDATES_FLUSH();
3816	if (*PMAP1)
3817		PT_SET_MA(PADDR1, 0);
3818
3819	sched_unpin();
3820	vm_page_unlock_queues();
3821	return (rtval);
3822}
3823
3824/*
3825 *	Clear the modify bits on the specified physical page.
3826 */
3827void
3828pmap_clear_modify(vm_page_t m)
3829{
3830	pv_entry_t pv;
3831	pmap_t pmap;
3832	pt_entry_t *pte;
3833
3834	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3835	    ("pmap_clear_modify: page %p is not managed", m));
3836	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3837	KASSERT((m->oflags & VPO_BUSY) == 0,
3838	    ("pmap_clear_modify: page %p is busy", m));
3839
3840	/*
3841	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
3842	 * If the object containing the page is locked and the page is not
3843	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
3844	 */
3845	if ((m->flags & PG_WRITEABLE) == 0)
3846		return;
3847	vm_page_lock_queues();
3848	sched_pin();
3849	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3850		pmap = PV_PMAP(pv);
3851		PMAP_LOCK(pmap);
3852		pte = pmap_pte_quick(pmap, pv->pv_va);
3853		if ((*pte & PG_M) != 0) {
3854			/*
3855			 * Regardless of whether a pte is 32 or 64 bits
3856			 * in size, PG_M is among the least significant
3857			 * 32 bits.
3858			 */
3859			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3860			pmap_invalidate_page(pmap, pv->pv_va);
3861		}
3862		PMAP_UNLOCK(pmap);
3863	}
3864	sched_unpin();
3865	vm_page_unlock_queues();
3866}
3867
3868/*
3869 *	pmap_clear_reference:
3870 *
3871 *	Clear the reference bit on the specified physical page.
3872 */
3873void
3874pmap_clear_reference(vm_page_t m)
3875{
3876	pv_entry_t pv;
3877	pmap_t pmap;
3878	pt_entry_t *pte;
3879
3880	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3881	    ("pmap_clear_reference: page %p is not managed", m));
3882	vm_page_lock_queues();
3883	sched_pin();
3884	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3885		pmap = PV_PMAP(pv);
3886		PMAP_LOCK(pmap);
3887		pte = pmap_pte_quick(pmap, pv->pv_va);
3888		if ((*pte & PG_A) != 0) {
3889			/*
3890			 * Regardless of whether a pte is 32 or 64 bits
3891			 * in size, PG_A is among the least significant
3892			 * 32 bits.
3893			 */
3894			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3895			pmap_invalidate_page(pmap, pv->pv_va);
3896		}
3897		PMAP_UNLOCK(pmap);
3898	}
3899	sched_unpin();
3900	vm_page_unlock_queues();
3901}
3902
3903/*
3904 * Miscellaneous support routines follow
3905 */
3906
3907/*
3908 * Map a set of physical memory pages into the kernel virtual
3909 * address space. Return a pointer to where it is mapped. This
3910 * routine is intended to be used for mapping device memory,
3911 * NOT real memory.
3912 */
3913void *
3914pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3915{
3916	vm_offset_t va, offset;
3917	vm_size_t tmpsize;
3918
3919	offset = pa & PAGE_MASK;
3920	size = roundup(offset + size, PAGE_SIZE);
3921	pa = pa & PG_FRAME;
3922
3923	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3924		va = KERNBASE + pa;
3925	else
3926		va = kmem_alloc_nofault(kernel_map, size);
3927	if (!va)
3928		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3929
3930	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3931		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3932	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3933	pmap_invalidate_cache_range(va, va + size);
3934	return ((void *)(va + offset));
3935}
3936
3937void *
3938pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3939{
3940
3941	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3942}
3943
3944void *
3945pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3946{
3947
3948	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3949}
3950
3951void
3952pmap_unmapdev(vm_offset_t va, vm_size_t size)
3953{
3954	vm_offset_t base, offset, tmpva;
3955
3956	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3957		return;
3958	base = trunc_page(va);
3959	offset = va & PAGE_MASK;
3960	size = roundup(offset + size, PAGE_SIZE);
3961	critical_enter();
3962	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3963		pmap_kremove(tmpva);
3964	pmap_invalidate_range(kernel_pmap, va, tmpva);
3965	critical_exit();
3966	kmem_free(kernel_map, base, size);
3967}
3968
3969/*
3970 * Sets the memory attribute for the specified page.
3971 */
3972void
3973pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3974{
3975	struct sysmaps *sysmaps;
3976	vm_offset_t sva, eva;
3977
3978	m->md.pat_mode = ma;
3979	if ((m->flags & PG_FICTITIOUS) != 0)
3980		return;
3981
3982	/*
3983	 * If "m" is a normal page, flush it from the cache.
3984	 * See pmap_invalidate_cache_range().
3985	 *
3986	 * First, try to find an existing mapping of the page by sf
3987	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3988	 * flushes the cache.
3989	 */
3990	if (sf_buf_invalidate_cache(m))
3991		return;
3992
3993	/*
3994	 * If page is not mapped by sf buffer, but CPU does not
3995	 * support self snoop, map the page transient and do
3996	 * invalidation. In the worst case, whole cache is flushed by
3997	 * pmap_invalidate_cache_range().
3998	 */
3999	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4000		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4001		mtx_lock(&sysmaps->lock);
4002		if (*sysmaps->CMAP2)
4003			panic("pmap_page_set_memattr: CMAP2 busy");
4004		sched_pin();
4005		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4006		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4007		    pmap_cache_bits(m->md.pat_mode, 0));
4008		invlcaddr(sysmaps->CADDR2);
4009		sva = (vm_offset_t)sysmaps->CADDR2;
4010		eva = sva + PAGE_SIZE;
4011	} else
4012		sva = eva = 0; /* gcc */
4013	pmap_invalidate_cache_range(sva, eva);
4014	if (sva != 0) {
4015		PT_SET_MA(sysmaps->CADDR2, 0);
4016		sched_unpin();
4017		mtx_unlock(&sysmaps->lock);
4018	}
4019}
4020
4021int
4022pmap_change_attr(va, size, mode)
4023	vm_offset_t va;
4024	vm_size_t size;
4025	int mode;
4026{
4027	vm_offset_t base, offset, tmpva;
4028	pt_entry_t *pte;
4029	u_int opte, npte;
4030	pd_entry_t *pde;
4031	boolean_t changed;
4032
4033	base = trunc_page(va);
4034	offset = va & PAGE_MASK;
4035	size = roundup(offset + size, PAGE_SIZE);
4036
4037	/* Only supported on kernel virtual addresses. */
4038	if (base <= VM_MAXUSER_ADDRESS)
4039		return (EINVAL);
4040
4041	/* 4MB pages and pages that aren't mapped aren't supported. */
4042	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4043		pde = pmap_pde(kernel_pmap, tmpva);
4044		if (*pde & PG_PS)
4045			return (EINVAL);
4046		if ((*pde & PG_V) == 0)
4047			return (EINVAL);
4048		pte = vtopte(va);
4049		if ((*pte & PG_V) == 0)
4050			return (EINVAL);
4051	}
4052
4053	changed = FALSE;
4054
4055	/*
4056	 * Ok, all the pages exist and are 4k, so run through them updating
4057	 * their cache mode.
4058	 */
4059	for (tmpva = base; size > 0; ) {
4060		pte = vtopte(tmpva);
4061
4062		/*
4063		 * The cache mode bits are all in the low 32-bits of the
4064		 * PTE, so we can just spin on updating the low 32-bits.
4065		 */
4066		do {
4067			opte = *(u_int *)pte;
4068			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4069			npte |= pmap_cache_bits(mode, 0);
4070			PT_SET_VA_MA(pte, npte, TRUE);
4071		} while (npte != opte && (*pte != npte));
4072		if (npte != opte)
4073			changed = TRUE;
4074		tmpva += PAGE_SIZE;
4075		size -= PAGE_SIZE;
4076	}
4077
4078	/*
4079	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4080	 * be, etc.
4081	 */
4082	if (changed) {
4083		pmap_invalidate_range(kernel_pmap, base, tmpva);
4084		pmap_invalidate_cache_range(base, tmpva);
4085	}
4086	return (0);
4087}
4088
4089/*
4090 * perform the pmap work for mincore
4091 */
4092int
4093pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4094{
4095	pt_entry_t *ptep, pte;
4096	vm_paddr_t pa;
4097	int val;
4098
4099	PMAP_LOCK(pmap);
4100retry:
4101	ptep = pmap_pte(pmap, addr);
4102	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4103	pmap_pte_release(ptep);
4104	val = 0;
4105	if ((pte & PG_V) != 0) {
4106		val |= MINCORE_INCORE;
4107		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4108			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4109		if ((pte & PG_A) != 0)
4110			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4111	}
4112	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4113	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4114	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4115		pa = pte & PG_FRAME;
4116		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4117		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4118			goto retry;
4119	} else
4120		PA_UNLOCK_COND(*locked_pa);
4121	PMAP_UNLOCK(pmap);
4122	return (val);
4123}
4124
4125void
4126pmap_activate(struct thread *td)
4127{
4128	pmap_t	pmap, oldpmap;
4129	u_int32_t  cr3;
4130
4131	critical_enter();
4132	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4133	oldpmap = PCPU_GET(curpmap);
4134#if defined(SMP)
4135	CPU_NAND_ATOMIC(&oldpmap->pm_active, PCPU_PTR(cpumask));
4136	CPU_OR_ATOMIC(&pmap->pm_active, PCPU_PTR(cpumask));
4137#else
4138	CPU_NAND(&oldpmap->pm_active, PCPU_PTR(cpumask));
4139	CPU_OR(&pmap->pm_active, PCPU_PTR(cpumask));
4140#endif
4141#ifdef PAE
4142	cr3 = vtophys(pmap->pm_pdpt);
4143#else
4144	cr3 = vtophys(pmap->pm_pdir);
4145#endif
4146	/*
4147	 * pmap_activate is for the current thread on the current cpu
4148	 */
4149	td->td_pcb->pcb_cr3 = cr3;
4150	PT_UPDATES_FLUSH();
4151	load_cr3(cr3);
4152	PCPU_SET(curpmap, pmap);
4153	critical_exit();
4154}
4155
4156void
4157pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4158{
4159}
4160
4161/*
4162 *	Increase the starting virtual address of the given mapping if a
4163 *	different alignment might result in more superpage mappings.
4164 */
4165void
4166pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4167    vm_offset_t *addr, vm_size_t size)
4168{
4169	vm_offset_t superpage_offset;
4170
4171	if (size < NBPDR)
4172		return;
4173	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4174		offset += ptoa(object->pg_color);
4175	superpage_offset = offset & PDRMASK;
4176	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4177	    (*addr & PDRMASK) == superpage_offset)
4178		return;
4179	if ((*addr & PDRMASK) < superpage_offset)
4180		*addr = (*addr & ~PDRMASK) + superpage_offset;
4181	else
4182		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4183}
4184
4185void
4186pmap_suspend()
4187{
4188	pmap_t pmap;
4189	int i, pdir, offset;
4190	vm_paddr_t pdirma;
4191	mmu_update_t mu[4];
4192
4193	/*
4194	 * We need to remove the recursive mapping structure from all
4195	 * our pmaps so that Xen doesn't get confused when it restores
4196	 * the page tables. The recursive map lives at page directory
4197	 * index PTDPTDI. We assume that the suspend code has stopped
4198	 * the other vcpus (if any).
4199	 */
4200	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4201		for (i = 0; i < 4; i++) {
4202			/*
4203			 * Figure out which page directory (L2) page
4204			 * contains this bit of the recursive map and
4205			 * the offset within that page of the map
4206			 * entry
4207			 */
4208			pdir = (PTDPTDI + i) / NPDEPG;
4209			offset = (PTDPTDI + i) % NPDEPG;
4210			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4211			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4212			mu[i].val = 0;
4213		}
4214		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4215	}
4216}
4217
4218void
4219pmap_resume()
4220{
4221	pmap_t pmap;
4222	int i, pdir, offset;
4223	vm_paddr_t pdirma;
4224	mmu_update_t mu[4];
4225
4226	/*
4227	 * Restore the recursive map that we removed on suspend.
4228	 */
4229	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4230		for (i = 0; i < 4; i++) {
4231			/*
4232			 * Figure out which page directory (L2) page
4233			 * contains this bit of the recursive map and
4234			 * the offset within that page of the map
4235			 * entry
4236			 */
4237			pdir = (PTDPTDI + i) / NPDEPG;
4238			offset = (PTDPTDI + i) % NPDEPG;
4239			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4240			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4241			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4242		}
4243		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4244	}
4245}
4246
4247#if defined(PMAP_DEBUG)
4248pmap_pid_dump(int pid)
4249{
4250	pmap_t pmap;
4251	struct proc *p;
4252	int npte = 0;
4253	int index;
4254
4255	sx_slock(&allproc_lock);
4256	FOREACH_PROC_IN_SYSTEM(p) {
4257		if (p->p_pid != pid)
4258			continue;
4259
4260		if (p->p_vmspace) {
4261			int i,j;
4262			index = 0;
4263			pmap = vmspace_pmap(p->p_vmspace);
4264			for (i = 0; i < NPDEPTD; i++) {
4265				pd_entry_t *pde;
4266				pt_entry_t *pte;
4267				vm_offset_t base = i << PDRSHIFT;
4268
4269				pde = &pmap->pm_pdir[i];
4270				if (pde && pmap_pde_v(pde)) {
4271					for (j = 0; j < NPTEPG; j++) {
4272						vm_offset_t va = base + (j << PAGE_SHIFT);
4273						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4274							if (index) {
4275								index = 0;
4276								printf("\n");
4277							}
4278							sx_sunlock(&allproc_lock);
4279							return npte;
4280						}
4281						pte = pmap_pte(pmap, va);
4282						if (pte && pmap_pte_v(pte)) {
4283							pt_entry_t pa;
4284							vm_page_t m;
4285							pa = PT_GET(pte);
4286							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4287							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4288								va, pa, m->hold_count, m->wire_count, m->flags);
4289							npte++;
4290							index++;
4291							if (index >= 2) {
4292								index = 0;
4293								printf("\n");
4294							} else {
4295								printf(" ");
4296							}
4297						}
4298					}
4299				}
4300			}
4301		}
4302	}
4303	sx_sunlock(&allproc_lock);
4304	return npte;
4305}
4306#endif
4307
4308#if defined(DEBUG)
4309
4310static void	pads(pmap_t pm);
4311void		pmap_pvdump(vm_paddr_t pa);
4312
4313/* print address space of pmap*/
4314static void
4315pads(pmap_t pm)
4316{
4317	int i, j;
4318	vm_paddr_t va;
4319	pt_entry_t *ptep;
4320
4321	if (pm == kernel_pmap)
4322		return;
4323	for (i = 0; i < NPDEPTD; i++)
4324		if (pm->pm_pdir[i])
4325			for (j = 0; j < NPTEPG; j++) {
4326				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4327				if (pm == kernel_pmap && va < KERNBASE)
4328					continue;
4329				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4330					continue;
4331				ptep = pmap_pte(pm, va);
4332				if (pmap_pte_v(ptep))
4333					printf("%x:%x ", va, *ptep);
4334			};
4335
4336}
4337
4338void
4339pmap_pvdump(vm_paddr_t pa)
4340{
4341	pv_entry_t pv;
4342	pmap_t pmap;
4343	vm_page_t m;
4344
4345	printf("pa %x", pa);
4346	m = PHYS_TO_VM_PAGE(pa);
4347	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4348		pmap = PV_PMAP(pv);
4349		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4350		pads(pmap);
4351	}
4352	printf(" ");
4353}
4354#endif
4355