pmap.c revision 217688
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 217688 2011-01-21 10:26:26Z pluknet $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/uma.h>
140
141#include <machine/cpu.h>
142#include <machine/cputypes.h>
143#include <machine/md_var.h>
144#include <machine/pcb.h>
145#include <machine/specialreg.h>
146#ifdef SMP
147#include <machine/smp.h>
148#endif
149
150#ifdef XBOX
151#include <machine/xbox.h>
152#endif
153
154#include <xen/interface/xen.h>
155#include <xen/hypervisor.h>
156#include <machine/xen/hypercall.h>
157#include <machine/xen/xenvar.h>
158#include <machine/xen/xenfunc.h>
159
160#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
161#define CPU_ENABLE_SSE
162#endif
163
164#ifndef PMAP_SHPGPERPROC
165#define PMAP_SHPGPERPROC 200
166#endif
167
168#define DIAGNOSTIC
169
170#if !defined(DIAGNOSTIC)
171#ifdef __GNUC_GNU_INLINE__
172#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
173#else
174#define PMAP_INLINE	extern inline
175#endif
176#else
177#define PMAP_INLINE
178#endif
179
180#define PV_STATS
181#ifdef PV_STATS
182#define PV_STAT(x)	do { x ; } while (0)
183#else
184#define PV_STAT(x)	do { } while (0)
185#endif
186
187#define	pa_index(pa)	((pa) >> PDRSHIFT)
188#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
189
190/*
191 * Get PDEs and PTEs for user/kernel address space
192 */
193#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
194#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
195
196#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
197#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
198#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
199#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
200#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
201
202#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
203
204#define HAMFISTED_LOCKING
205#ifdef HAMFISTED_LOCKING
206static struct mtx createdelete_lock;
207#endif
208
209struct pmap kernel_pmap_store;
210LIST_HEAD(pmaplist, pmap);
211static struct pmaplist allpmaps;
212static struct mtx allpmaps_lock;
213
214vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
215vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
216int pgeflag = 0;		/* PG_G or-in */
217int pseflag = 0;		/* PG_PS or-in */
218
219int nkpt;
220vm_offset_t kernel_vm_end;
221extern u_int32_t KERNend;
222
223#ifdef PAE
224pt_entry_t pg_nx;
225#endif
226
227static int pat_works;			/* Is page attribute table sane? */
228
229/*
230 * Data for the pv entry allocation mechanism
231 */
232static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
233static struct md_page *pv_table;
234static int shpgperproc = PMAP_SHPGPERPROC;
235
236struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
237int pv_maxchunks;			/* How many chunks we have KVA for */
238vm_offset_t pv_vafree;			/* freelist stored in the PTE */
239
240/*
241 * All those kernel PT submaps that BSD is so fond of
242 */
243struct sysmaps {
244	struct	mtx lock;
245	pt_entry_t *CMAP1;
246	pt_entry_t *CMAP2;
247	caddr_t	CADDR1;
248	caddr_t	CADDR2;
249};
250static struct sysmaps sysmaps_pcpu[MAXCPU];
251static pt_entry_t *CMAP3;
252caddr_t ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
281static int pg_ps_enabled;
282SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
283    "Are large page mappings enabled?");
284
285SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
286	"Max number of PV entries");
287SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
288	"Page share factor per proc");
289SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
290    "2/4MB page mapping counters");
291
292static u_long pmap_pde_mappings;
293SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
294    &pmap_pde_mappings, 0, "2/4MB page mappings");
295
296static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
297static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
298static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
299static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
300		    vm_offset_t va);
301
302static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
303    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
304static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
305    vm_page_t *free);
306static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
307    vm_page_t *free);
308static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
309					vm_offset_t va);
310static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
311    vm_page_t m);
312
313static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
314
315static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
316static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
317static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
318static void pmap_pte_release(pt_entry_t *pte);
319static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
320static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
321static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
322static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
323
324static __inline void pagezero(void *page);
325
326CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
327CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
328
329/*
330 * If you get an error here, then you set KVA_PAGES wrong! See the
331 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
332 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
333 */
334CTASSERT(KERNBASE % (1 << 24) == 0);
335
336
337
338void
339pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
340{
341	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
342
343	switch (type) {
344	case SH_PD_SET_VA:
345#if 0
346		xen_queue_pt_update(shadow_pdir_ma,
347				    xpmap_ptom(val & ~(PG_RW)));
348#endif
349		xen_queue_pt_update(pdir_ma,
350				    xpmap_ptom(val));
351		break;
352	case SH_PD_SET_VA_MA:
353#if 0
354		xen_queue_pt_update(shadow_pdir_ma,
355				    val & ~(PG_RW));
356#endif
357		xen_queue_pt_update(pdir_ma, val);
358		break;
359	case SH_PD_SET_VA_CLEAR:
360#if 0
361		xen_queue_pt_update(shadow_pdir_ma, 0);
362#endif
363		xen_queue_pt_update(pdir_ma, 0);
364		break;
365	}
366}
367
368/*
369 * Move the kernel virtual free pointer to the next
370 * 4MB.  This is used to help improve performance
371 * by using a large (4MB) page for much of the kernel
372 * (.text, .data, .bss)
373 */
374static vm_offset_t
375pmap_kmem_choose(vm_offset_t addr)
376{
377	vm_offset_t newaddr = addr;
378
379#ifndef DISABLE_PSE
380	if (cpu_feature & CPUID_PSE)
381		newaddr = (addr + PDRMASK) & ~PDRMASK;
382#endif
383	return newaddr;
384}
385
386/*
387 *	Bootstrap the system enough to run with virtual memory.
388 *
389 *	On the i386 this is called after mapping has already been enabled
390 *	and just syncs the pmap module with what has already been done.
391 *	[We can't call it easily with mapping off since the kernel is not
392 *	mapped with PA == VA, hence we would have to relocate every address
393 *	from the linked base (virtual) address "KERNBASE" to the actual
394 *	(physical) address starting relative to 0]
395 */
396void
397pmap_bootstrap(vm_paddr_t firstaddr)
398{
399	vm_offset_t va;
400	pt_entry_t *pte, *unused;
401	struct sysmaps *sysmaps;
402	int i;
403
404	/*
405	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
406	 * large. It should instead be correctly calculated in locore.s and
407	 * not based on 'first' (which is a physical address, not a virtual
408	 * address, for the start of unused physical memory). The kernel
409	 * page tables are NOT double mapped and thus should not be included
410	 * in this calculation.
411	 */
412	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
413	virtual_avail = pmap_kmem_choose(virtual_avail);
414
415	virtual_end = VM_MAX_KERNEL_ADDRESS;
416
417	/*
418	 * Initialize the kernel pmap (which is statically allocated).
419	 */
420	PMAP_LOCK_INIT(kernel_pmap);
421	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
422#ifdef PAE
423	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
424#endif
425	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
426	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
427	LIST_INIT(&allpmaps);
428	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
429	mtx_lock_spin(&allpmaps_lock);
430	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
431	mtx_unlock_spin(&allpmaps_lock);
432	if (nkpt == 0)
433		nkpt = NKPT;
434
435	/*
436	 * Reserve some special page table entries/VA space for temporary
437	 * mapping of pages.
438	 */
439#define	SYSMAP(c, p, v, n)	\
440	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
441
442	va = virtual_avail;
443	pte = vtopte(va);
444
445	/*
446	 * CMAP1/CMAP2 are used for zeroing and copying pages.
447	 * CMAP3 is used for the idle process page zeroing.
448	 */
449	for (i = 0; i < MAXCPU; i++) {
450		sysmaps = &sysmaps_pcpu[i];
451		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
452		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
453		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
454		PT_SET_MA(sysmaps->CADDR1, 0);
455		PT_SET_MA(sysmaps->CADDR2, 0);
456	}
457	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
458	PT_SET_MA(CADDR3, 0);
459
460	/*
461	 * Crashdump maps.
462	 */
463	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
464
465	/*
466	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
467	 */
468	SYSMAP(caddr_t, unused, ptvmmap, 1)
469
470	/*
471	 * msgbufp is used to map the system message buffer.
472	 */
473	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
474
475	/*
476	 * ptemap is used for pmap_pte_quick
477	 */
478	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
479	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
480
481	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
482
483	virtual_avail = va;
484
485	/*
486	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
487	 * physical memory region that is used by the ACPI wakeup code.  This
488	 * mapping must not have PG_G set.
489	 */
490#ifndef XEN
491	/*
492	 * leave here deliberately to show that this is not supported
493	 */
494#ifdef XBOX
495	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
496	 * an early stadium, we cannot yet neatly map video memory ... :-(
497	 * Better fixes are very welcome! */
498	if (!arch_i386_is_xbox)
499#endif
500	for (i = 1; i < NKPT; i++)
501		PTD[i] = 0;
502
503	/* Initialize the PAT MSR if present. */
504	pmap_init_pat();
505
506	/* Turn on PG_G on kernel page(s) */
507	pmap_set_pg();
508#endif
509
510#ifdef HAMFISTED_LOCKING
511	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
512#endif
513}
514
515/*
516 * Setup the PAT MSR.
517 */
518void
519pmap_init_pat(void)
520{
521	uint64_t pat_msr;
522
523	/* Bail if this CPU doesn't implement PAT. */
524	if (!(cpu_feature & CPUID_PAT))
525		return;
526
527	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
528	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
529		/*
530		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
531		 * Program 4 and 5 as WP and WC.
532		 * Leave 6 and 7 as UC and UC-.
533		 */
534		pat_msr = rdmsr(MSR_PAT);
535		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
536		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
537		    PAT_VALUE(5, PAT_WRITE_COMBINING);
538		pat_works = 1;
539	} else {
540		/*
541		 * Due to some Intel errata, we can only safely use the lower 4
542		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
543		 * of UC-.
544		 *
545		 *   Intel Pentium III Processor Specification Update
546		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
547		 * or Mode C Paging)
548		 *
549		 *   Intel Pentium IV  Processor Specification Update
550		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
551		 */
552		pat_msr = rdmsr(MSR_PAT);
553		pat_msr &= ~PAT_MASK(2);
554		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
555		pat_works = 0;
556	}
557	wrmsr(MSR_PAT, pat_msr);
558}
559
560/*
561 * Initialize a vm_page's machine-dependent fields.
562 */
563void
564pmap_page_init(vm_page_t m)
565{
566
567	TAILQ_INIT(&m->md.pv_list);
568	m->md.pat_mode = PAT_WRITE_BACK;
569}
570
571/*
572 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
573 * Requirements:
574 *  - Must deal with pages in order to ensure that none of the PG_* bits
575 *    are ever set, PG_V in particular.
576 *  - Assumes we can write to ptes without pte_store() atomic ops, even
577 *    on PAE systems.  This should be ok.
578 *  - Assumes nothing will ever test these addresses for 0 to indicate
579 *    no mapping instead of correctly checking PG_V.
580 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
581 * Because PG_V is never set, there can be no mappings to invalidate.
582 */
583static int ptelist_count = 0;
584static vm_offset_t
585pmap_ptelist_alloc(vm_offset_t *head)
586{
587	vm_offset_t va;
588	vm_offset_t *phead = (vm_offset_t *)*head;
589
590	if (ptelist_count == 0) {
591		printf("out of memory!!!!!!\n");
592		return (0);	/* Out of memory */
593	}
594	ptelist_count--;
595	va = phead[ptelist_count];
596	return (va);
597}
598
599static void
600pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
601{
602	vm_offset_t *phead = (vm_offset_t *)*head;
603
604	phead[ptelist_count++] = va;
605}
606
607static void
608pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
609{
610	int i, nstackpages;
611	vm_offset_t va;
612	vm_page_t m;
613
614	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
615	for (i = 0; i < nstackpages; i++) {
616		va = (vm_offset_t)base + i * PAGE_SIZE;
617		m = vm_page_alloc(NULL, i,
618		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
619		    VM_ALLOC_ZERO);
620		pmap_qenter(va, &m, 1);
621	}
622
623	*head = (vm_offset_t)base;
624	for (i = npages - 1; i >= nstackpages; i--) {
625		va = (vm_offset_t)base + i * PAGE_SIZE;
626		pmap_ptelist_free(head, va);
627	}
628}
629
630
631/*
632 *	Initialize the pmap module.
633 *	Called by vm_init, to initialize any structures that the pmap
634 *	system needs to map virtual memory.
635 */
636void
637pmap_init(void)
638{
639	vm_page_t mpte;
640	vm_size_t s;
641	int i, pv_npg;
642
643	/*
644	 * Initialize the vm page array entries for the kernel pmap's
645	 * page table pages.
646	 */
647	for (i = 0; i < nkpt; i++) {
648		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
649		KASSERT(mpte >= vm_page_array &&
650		    mpte < &vm_page_array[vm_page_array_size],
651		    ("pmap_init: page table page is out of range"));
652		mpte->pindex = i + KPTDI;
653		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
654	}
655
656        /*
657	 * Initialize the address space (zone) for the pv entries.  Set a
658	 * high water mark so that the system can recover from excessive
659	 * numbers of pv entries.
660	 */
661	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
662	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
663	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
664	pv_entry_max = roundup(pv_entry_max, _NPCPV);
665	pv_entry_high_water = 9 * (pv_entry_max / 10);
666
667	/*
668	 * Are large page mappings enabled?
669	 */
670	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
671
672	/*
673	 * Calculate the size of the pv head table for superpages.
674	 */
675	for (i = 0; phys_avail[i + 1]; i += 2);
676	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
677
678	/*
679	 * Allocate memory for the pv head table for superpages.
680	 */
681	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
682	s = round_page(s);
683	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
684	for (i = 0; i < pv_npg; i++)
685		TAILQ_INIT(&pv_table[i].pv_list);
686
687	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
688	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
689	    PAGE_SIZE * pv_maxchunks);
690	if (pv_chunkbase == NULL)
691		panic("pmap_init: not enough kvm for pv chunks");
692	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
693}
694
695
696/***************************************************
697 * Low level helper routines.....
698 ***************************************************/
699
700/*
701 * Determine the appropriate bits to set in a PTE or PDE for a specified
702 * caching mode.
703 */
704int
705pmap_cache_bits(int mode, boolean_t is_pde)
706{
707	int pat_flag, pat_index, cache_bits;
708
709	/* The PAT bit is different for PTE's and PDE's. */
710	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
711
712	/* If we don't support PAT, map extended modes to older ones. */
713	if (!(cpu_feature & CPUID_PAT)) {
714		switch (mode) {
715		case PAT_UNCACHEABLE:
716		case PAT_WRITE_THROUGH:
717		case PAT_WRITE_BACK:
718			break;
719		case PAT_UNCACHED:
720		case PAT_WRITE_COMBINING:
721		case PAT_WRITE_PROTECTED:
722			mode = PAT_UNCACHEABLE;
723			break;
724		}
725	}
726
727	/* Map the caching mode to a PAT index. */
728	if (pat_works) {
729		switch (mode) {
730			case PAT_UNCACHEABLE:
731				pat_index = 3;
732				break;
733			case PAT_WRITE_THROUGH:
734				pat_index = 1;
735				break;
736			case PAT_WRITE_BACK:
737				pat_index = 0;
738				break;
739			case PAT_UNCACHED:
740				pat_index = 2;
741				break;
742			case PAT_WRITE_COMBINING:
743				pat_index = 5;
744				break;
745			case PAT_WRITE_PROTECTED:
746				pat_index = 4;
747				break;
748			default:
749				panic("Unknown caching mode %d\n", mode);
750		}
751	} else {
752		switch (mode) {
753			case PAT_UNCACHED:
754			case PAT_UNCACHEABLE:
755			case PAT_WRITE_PROTECTED:
756				pat_index = 3;
757				break;
758			case PAT_WRITE_THROUGH:
759				pat_index = 1;
760				break;
761			case PAT_WRITE_BACK:
762				pat_index = 0;
763				break;
764			case PAT_WRITE_COMBINING:
765				pat_index = 2;
766				break;
767			default:
768				panic("Unknown caching mode %d\n", mode);
769		}
770	}
771
772	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
773	cache_bits = 0;
774	if (pat_index & 0x4)
775		cache_bits |= pat_flag;
776	if (pat_index & 0x2)
777		cache_bits |= PG_NC_PCD;
778	if (pat_index & 0x1)
779		cache_bits |= PG_NC_PWT;
780	return (cache_bits);
781}
782#ifdef SMP
783/*
784 * For SMP, these functions have to use the IPI mechanism for coherence.
785 *
786 * N.B.: Before calling any of the following TLB invalidation functions,
787 * the calling processor must ensure that all stores updating a non-
788 * kernel page table are globally performed.  Otherwise, another
789 * processor could cache an old, pre-update entry without being
790 * invalidated.  This can happen one of two ways: (1) The pmap becomes
791 * active on another processor after its pm_active field is checked by
792 * one of the following functions but before a store updating the page
793 * table is globally performed. (2) The pmap becomes active on another
794 * processor before its pm_active field is checked but due to
795 * speculative loads one of the following functions stills reads the
796 * pmap as inactive on the other processor.
797 *
798 * The kernel page table is exempt because its pm_active field is
799 * immutable.  The kernel page table is always active on every
800 * processor.
801 */
802void
803pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
804{
805	cpumask_t cpumask, other_cpus;
806
807	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
808	    pmap, va);
809
810	sched_pin();
811	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
812		invlpg(va);
813		smp_invlpg(va);
814	} else {
815		cpumask = PCPU_GET(cpumask);
816		other_cpus = PCPU_GET(other_cpus);
817		if (pmap->pm_active & cpumask)
818			invlpg(va);
819		if (pmap->pm_active & other_cpus)
820			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
821	}
822	sched_unpin();
823	PT_UPDATES_FLUSH();
824}
825
826void
827pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
828{
829	cpumask_t cpumask, other_cpus;
830	vm_offset_t addr;
831
832	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
833	    pmap, sva, eva);
834
835	sched_pin();
836	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
837		for (addr = sva; addr < eva; addr += PAGE_SIZE)
838			invlpg(addr);
839		smp_invlpg_range(sva, eva);
840	} else {
841		cpumask = PCPU_GET(cpumask);
842		other_cpus = PCPU_GET(other_cpus);
843		if (pmap->pm_active & cpumask)
844			for (addr = sva; addr < eva; addr += PAGE_SIZE)
845				invlpg(addr);
846		if (pmap->pm_active & other_cpus)
847			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
848			    sva, eva);
849	}
850	sched_unpin();
851	PT_UPDATES_FLUSH();
852}
853
854void
855pmap_invalidate_all(pmap_t pmap)
856{
857	cpumask_t cpumask, other_cpus;
858
859	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
860
861	sched_pin();
862	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
863		invltlb();
864		smp_invltlb();
865	} else {
866		cpumask = PCPU_GET(cpumask);
867		other_cpus = PCPU_GET(other_cpus);
868		if (pmap->pm_active & cpumask)
869			invltlb();
870		if (pmap->pm_active & other_cpus)
871			smp_masked_invltlb(pmap->pm_active & other_cpus);
872	}
873	sched_unpin();
874}
875
876void
877pmap_invalidate_cache(void)
878{
879
880	sched_pin();
881	wbinvd();
882	smp_cache_flush();
883	sched_unpin();
884}
885#else /* !SMP */
886/*
887 * Normal, non-SMP, 486+ invalidation functions.
888 * We inline these within pmap.c for speed.
889 */
890PMAP_INLINE void
891pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
892{
893	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
894	    pmap, va);
895
896	if (pmap == kernel_pmap || pmap->pm_active)
897		invlpg(va);
898	PT_UPDATES_FLUSH();
899}
900
901PMAP_INLINE void
902pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
903{
904	vm_offset_t addr;
905
906	if (eva - sva > PAGE_SIZE)
907		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
908		    pmap, sva, eva);
909
910	if (pmap == kernel_pmap || pmap->pm_active)
911		for (addr = sva; addr < eva; addr += PAGE_SIZE)
912			invlpg(addr);
913	PT_UPDATES_FLUSH();
914}
915
916PMAP_INLINE void
917pmap_invalidate_all(pmap_t pmap)
918{
919
920	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
921
922	if (pmap == kernel_pmap || pmap->pm_active)
923		invltlb();
924}
925
926PMAP_INLINE void
927pmap_invalidate_cache(void)
928{
929
930	wbinvd();
931}
932#endif /* !SMP */
933
934void
935pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
936{
937
938	KASSERT((sva & PAGE_MASK) == 0,
939	    ("pmap_invalidate_cache_range: sva not page-aligned"));
940	KASSERT((eva & PAGE_MASK) == 0,
941	    ("pmap_invalidate_cache_range: eva not page-aligned"));
942
943	if (cpu_feature & CPUID_SS)
944		; /* If "Self Snoop" is supported, do nothing. */
945	else if (cpu_feature & CPUID_CLFSH) {
946
947		/*
948		 * Otherwise, do per-cache line flush.  Use the mfence
949		 * instruction to insure that previous stores are
950		 * included in the write-back.  The processor
951		 * propagates flush to other processors in the cache
952		 * coherence domain.
953		 */
954		mfence();
955		for (; sva < eva; sva += cpu_clflush_line_size)
956			clflush(sva);
957		mfence();
958	} else {
959
960		/*
961		 * No targeted cache flush methods are supported by CPU,
962		 * globally invalidate cache as a last resort.
963		 */
964		pmap_invalidate_cache();
965	}
966}
967
968/*
969 * Are we current address space or kernel?  N.B. We return FALSE when
970 * a pmap's page table is in use because a kernel thread is borrowing
971 * it.  The borrowed page table can change spontaneously, making any
972 * dependence on its continued use subject to a race condition.
973 */
974static __inline int
975pmap_is_current(pmap_t pmap)
976{
977
978	return (pmap == kernel_pmap ||
979	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
980		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
981}
982
983/*
984 * If the given pmap is not the current or kernel pmap, the returned pte must
985 * be released by passing it to pmap_pte_release().
986 */
987pt_entry_t *
988pmap_pte(pmap_t pmap, vm_offset_t va)
989{
990	pd_entry_t newpf;
991	pd_entry_t *pde;
992
993	pde = pmap_pde(pmap, va);
994	if (*pde & PG_PS)
995		return (pde);
996	if (*pde != 0) {
997		/* are we current address space or kernel? */
998		if (pmap_is_current(pmap))
999			return (vtopte(va));
1000		mtx_lock(&PMAP2mutex);
1001		newpf = *pde & PG_FRAME;
1002		if ((*PMAP2 & PG_FRAME) != newpf) {
1003			vm_page_lock_queues();
1004			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1005			vm_page_unlock_queues();
1006			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1007			    pmap, va, (*PMAP2 & 0xffffffff));
1008		}
1009
1010		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1011	}
1012	return (0);
1013}
1014
1015/*
1016 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1017 * being NULL.
1018 */
1019static __inline void
1020pmap_pte_release(pt_entry_t *pte)
1021{
1022
1023	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1024		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1025		    *PMAP2);
1026		vm_page_lock_queues();
1027		PT_SET_VA(PMAP2, 0, TRUE);
1028		vm_page_unlock_queues();
1029		mtx_unlock(&PMAP2mutex);
1030	}
1031}
1032
1033static __inline void
1034invlcaddr(void *caddr)
1035{
1036
1037	invlpg((u_int)caddr);
1038	PT_UPDATES_FLUSH();
1039}
1040
1041/*
1042 * Super fast pmap_pte routine best used when scanning
1043 * the pv lists.  This eliminates many coarse-grained
1044 * invltlb calls.  Note that many of the pv list
1045 * scans are across different pmaps.  It is very wasteful
1046 * to do an entire invltlb for checking a single mapping.
1047 *
1048 * If the given pmap is not the current pmap, vm_page_queue_mtx
1049 * must be held and curthread pinned to a CPU.
1050 */
1051static pt_entry_t *
1052pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1053{
1054	pd_entry_t newpf;
1055	pd_entry_t *pde;
1056
1057	pde = pmap_pde(pmap, va);
1058	if (*pde & PG_PS)
1059		return (pde);
1060	if (*pde != 0) {
1061		/* are we current address space or kernel? */
1062		if (pmap_is_current(pmap))
1063			return (vtopte(va));
1064		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1065		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1066		newpf = *pde & PG_FRAME;
1067		if ((*PMAP1 & PG_FRAME) != newpf) {
1068			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1069			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1070			    pmap, va, (u_long)*PMAP1);
1071
1072#ifdef SMP
1073			PMAP1cpu = PCPU_GET(cpuid);
1074#endif
1075			PMAP1changed++;
1076		} else
1077#ifdef SMP
1078		if (PMAP1cpu != PCPU_GET(cpuid)) {
1079			PMAP1cpu = PCPU_GET(cpuid);
1080			invlcaddr(PADDR1);
1081			PMAP1changedcpu++;
1082		} else
1083#endif
1084			PMAP1unchanged++;
1085		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1086	}
1087	return (0);
1088}
1089
1090/*
1091 *	Routine:	pmap_extract
1092 *	Function:
1093 *		Extract the physical page address associated
1094 *		with the given map/virtual_address pair.
1095 */
1096vm_paddr_t
1097pmap_extract(pmap_t pmap, vm_offset_t va)
1098{
1099	vm_paddr_t rtval;
1100	pt_entry_t *pte;
1101	pd_entry_t pde;
1102	pt_entry_t pteval;
1103
1104	rtval = 0;
1105	PMAP_LOCK(pmap);
1106	pde = pmap->pm_pdir[va >> PDRSHIFT];
1107	if (pde != 0) {
1108		if ((pde & PG_PS) != 0) {
1109			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1110			PMAP_UNLOCK(pmap);
1111			return rtval;
1112		}
1113		pte = pmap_pte(pmap, va);
1114		pteval = *pte ? xpmap_mtop(*pte) : 0;
1115		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1116		pmap_pte_release(pte);
1117	}
1118	PMAP_UNLOCK(pmap);
1119	return (rtval);
1120}
1121
1122/*
1123 *	Routine:	pmap_extract_ma
1124 *	Function:
1125 *		Like pmap_extract, but returns machine address
1126 */
1127vm_paddr_t
1128pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1129{
1130	vm_paddr_t rtval;
1131	pt_entry_t *pte;
1132	pd_entry_t pde;
1133
1134	rtval = 0;
1135	PMAP_LOCK(pmap);
1136	pde = pmap->pm_pdir[va >> PDRSHIFT];
1137	if (pde != 0) {
1138		if ((pde & PG_PS) != 0) {
1139			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1140			PMAP_UNLOCK(pmap);
1141			return rtval;
1142		}
1143		pte = pmap_pte(pmap, va);
1144		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1145		pmap_pte_release(pte);
1146	}
1147	PMAP_UNLOCK(pmap);
1148	return (rtval);
1149}
1150
1151/*
1152 *	Routine:	pmap_extract_and_hold
1153 *	Function:
1154 *		Atomically extract and hold the physical page
1155 *		with the given pmap and virtual address pair
1156 *		if that mapping permits the given protection.
1157 */
1158vm_page_t
1159pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1160{
1161	pd_entry_t pde;
1162	pt_entry_t pte;
1163	vm_page_t m;
1164	vm_paddr_t pa;
1165
1166	pa = 0;
1167	m = NULL;
1168	PMAP_LOCK(pmap);
1169retry:
1170	pde = PT_GET(pmap_pde(pmap, va));
1171	if (pde != 0) {
1172		if (pde & PG_PS) {
1173			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1174				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1175				       (va & PDRMASK), &pa))
1176					goto retry;
1177				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1178				    (va & PDRMASK));
1179				vm_page_hold(m);
1180			}
1181		} else {
1182			sched_pin();
1183			pte = PT_GET(pmap_pte_quick(pmap, va));
1184			if (*PMAP1)
1185				PT_SET_MA(PADDR1, 0);
1186			if ((pte & PG_V) &&
1187			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1188				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1189					goto retry;
1190				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1191				vm_page_hold(m);
1192			}
1193			sched_unpin();
1194		}
1195	}
1196	PA_UNLOCK_COND(pa);
1197	PMAP_UNLOCK(pmap);
1198	return (m);
1199}
1200
1201/***************************************************
1202 * Low level mapping routines.....
1203 ***************************************************/
1204
1205/*
1206 * Add a wired page to the kva.
1207 * Note: not SMP coherent.
1208 */
1209void
1210pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1211{
1212	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1213}
1214
1215void
1216pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1217{
1218	pt_entry_t *pte;
1219
1220	pte = vtopte(va);
1221	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1222}
1223
1224
1225static __inline void
1226pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1227{
1228	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1229}
1230
1231/*
1232 * Remove a page from the kernel pagetables.
1233 * Note: not SMP coherent.
1234 */
1235PMAP_INLINE void
1236pmap_kremove(vm_offset_t va)
1237{
1238	pt_entry_t *pte;
1239
1240	pte = vtopte(va);
1241	PT_CLEAR_VA(pte, FALSE);
1242}
1243
1244/*
1245 *	Used to map a range of physical addresses into kernel
1246 *	virtual address space.
1247 *
1248 *	The value passed in '*virt' is a suggested virtual address for
1249 *	the mapping. Architectures which can support a direct-mapped
1250 *	physical to virtual region can return the appropriate address
1251 *	within that region, leaving '*virt' unchanged. Other
1252 *	architectures should map the pages starting at '*virt' and
1253 *	update '*virt' with the first usable address after the mapped
1254 *	region.
1255 */
1256vm_offset_t
1257pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1258{
1259	vm_offset_t va, sva;
1260
1261	va = sva = *virt;
1262	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1263	    va, start, end, prot);
1264	while (start < end) {
1265		pmap_kenter(va, start);
1266		va += PAGE_SIZE;
1267		start += PAGE_SIZE;
1268	}
1269	pmap_invalidate_range(kernel_pmap, sva, va);
1270	*virt = va;
1271	return (sva);
1272}
1273
1274
1275/*
1276 * Add a list of wired pages to the kva
1277 * this routine is only used for temporary
1278 * kernel mappings that do not need to have
1279 * page modification or references recorded.
1280 * Note that old mappings are simply written
1281 * over.  The page *must* be wired.
1282 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1283 */
1284void
1285pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1286{
1287	pt_entry_t *endpte, *pte;
1288	vm_paddr_t pa;
1289	vm_offset_t va = sva;
1290	int mclcount = 0;
1291	multicall_entry_t mcl[16];
1292	multicall_entry_t *mclp = mcl;
1293	int error;
1294
1295	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1296	pte = vtopte(sva);
1297	endpte = pte + count;
1298	while (pte < endpte) {
1299		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1300
1301		mclp->op = __HYPERVISOR_update_va_mapping;
1302		mclp->args[0] = va;
1303		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1304		mclp->args[2] = (uint32_t)(pa >> 32);
1305		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1306
1307		va += PAGE_SIZE;
1308		pte++;
1309		ma++;
1310		mclp++;
1311		mclcount++;
1312		if (mclcount == 16) {
1313			error = HYPERVISOR_multicall(mcl, mclcount);
1314			mclp = mcl;
1315			mclcount = 0;
1316			KASSERT(error == 0, ("bad multicall %d", error));
1317		}
1318	}
1319	if (mclcount) {
1320		error = HYPERVISOR_multicall(mcl, mclcount);
1321		KASSERT(error == 0, ("bad multicall %d", error));
1322	}
1323
1324#ifdef INVARIANTS
1325	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1326		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1327#endif
1328}
1329
1330
1331/*
1332 * This routine tears out page mappings from the
1333 * kernel -- it is meant only for temporary mappings.
1334 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1335 */
1336void
1337pmap_qremove(vm_offset_t sva, int count)
1338{
1339	vm_offset_t va;
1340
1341	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1342	va = sva;
1343	vm_page_lock_queues();
1344	critical_enter();
1345	while (count-- > 0) {
1346		pmap_kremove(va);
1347		va += PAGE_SIZE;
1348	}
1349	PT_UPDATES_FLUSH();
1350	pmap_invalidate_range(kernel_pmap, sva, va);
1351	critical_exit();
1352	vm_page_unlock_queues();
1353}
1354
1355/***************************************************
1356 * Page table page management routines.....
1357 ***************************************************/
1358static __inline void
1359pmap_free_zero_pages(vm_page_t free)
1360{
1361	vm_page_t m;
1362
1363	while (free != NULL) {
1364		m = free;
1365		free = m->right;
1366		vm_page_free_zero(m);
1367	}
1368}
1369
1370/*
1371 * This routine unholds page table pages, and if the hold count
1372 * drops to zero, then it decrements the wire count.
1373 */
1374static __inline int
1375pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1376{
1377
1378	--m->wire_count;
1379	if (m->wire_count == 0)
1380		return _pmap_unwire_pte_hold(pmap, m, free);
1381	else
1382		return 0;
1383}
1384
1385static int
1386_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1387{
1388	vm_offset_t pteva;
1389
1390	PT_UPDATES_FLUSH();
1391	/*
1392	 * unmap the page table page
1393	 */
1394	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1395	/*
1396	 * page *might* contain residual mapping :-/
1397	 */
1398	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1399	pmap_zero_page(m);
1400	--pmap->pm_stats.resident_count;
1401
1402	/*
1403	 * This is a release store so that the ordinary store unmapping
1404	 * the page table page is globally performed before TLB shoot-
1405	 * down is begun.
1406	 */
1407	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1408
1409	/*
1410	 * Do an invltlb to make the invalidated mapping
1411	 * take effect immediately.
1412	 */
1413	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1414	pmap_invalidate_page(pmap, pteva);
1415
1416	/*
1417	 * Put page on a list so that it is released after
1418	 * *ALL* TLB shootdown is done
1419	 */
1420	m->right = *free;
1421	*free = m;
1422
1423	return 1;
1424}
1425
1426/*
1427 * After removing a page table entry, this routine is used to
1428 * conditionally free the page, and manage the hold/wire counts.
1429 */
1430static int
1431pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1432{
1433	pd_entry_t ptepde;
1434	vm_page_t mpte;
1435
1436	if (va >= VM_MAXUSER_ADDRESS)
1437		return 0;
1438	ptepde = PT_GET(pmap_pde(pmap, va));
1439	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1440	return pmap_unwire_pte_hold(pmap, mpte, free);
1441}
1442
1443void
1444pmap_pinit0(pmap_t pmap)
1445{
1446
1447	PMAP_LOCK_INIT(pmap);
1448	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1449#ifdef PAE
1450	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1451#endif
1452	pmap->pm_active = 0;
1453	PCPU_SET(curpmap, pmap);
1454	TAILQ_INIT(&pmap->pm_pvchunk);
1455	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1456	mtx_lock_spin(&allpmaps_lock);
1457	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1458	mtx_unlock_spin(&allpmaps_lock);
1459}
1460
1461/*
1462 * Initialize a preallocated and zeroed pmap structure,
1463 * such as one in a vmspace structure.
1464 */
1465int
1466pmap_pinit(pmap_t pmap)
1467{
1468	vm_page_t m, ptdpg[NPGPTD + 1];
1469	int npgptd = NPGPTD + 1;
1470	static int color;
1471	int i;
1472
1473#ifdef HAMFISTED_LOCKING
1474	mtx_lock(&createdelete_lock);
1475#endif
1476
1477	PMAP_LOCK_INIT(pmap);
1478
1479	/*
1480	 * No need to allocate page table space yet but we do need a valid
1481	 * page directory table.
1482	 */
1483	if (pmap->pm_pdir == NULL) {
1484		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1485		    NBPTD);
1486		if (pmap->pm_pdir == NULL) {
1487			PMAP_LOCK_DESTROY(pmap);
1488#ifdef HAMFISTED_LOCKING
1489			mtx_unlock(&createdelete_lock);
1490#endif
1491			return (0);
1492		}
1493#ifdef PAE
1494		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1495#endif
1496	}
1497
1498	/*
1499	 * allocate the page directory page(s)
1500	 */
1501	for (i = 0; i < npgptd;) {
1502		m = vm_page_alloc(NULL, color++,
1503		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1504		    VM_ALLOC_ZERO);
1505		if (m == NULL)
1506			VM_WAIT;
1507		else {
1508			ptdpg[i++] = m;
1509		}
1510	}
1511	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1512	for (i = 0; i < NPGPTD; i++) {
1513		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1514			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1515	}
1516
1517	mtx_lock_spin(&allpmaps_lock);
1518	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1519	mtx_unlock_spin(&allpmaps_lock);
1520	/* Wire in kernel global address entries. */
1521
1522	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1523#ifdef PAE
1524	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1525	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1526		bzero(pmap->pm_pdpt, PAGE_SIZE);
1527	for (i = 0; i < NPGPTD; i++) {
1528		vm_paddr_t ma;
1529
1530		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1531		pmap->pm_pdpt[i] = ma | PG_V;
1532
1533	}
1534#endif
1535	for (i = 0; i < NPGPTD; i++) {
1536		pt_entry_t *pd;
1537		vm_paddr_t ma;
1538
1539		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1540		pd = pmap->pm_pdir + (i * NPDEPG);
1541		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1542#if 0
1543		xen_pgd_pin(ma);
1544#endif
1545	}
1546
1547#ifdef PAE
1548	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1549#endif
1550	vm_page_lock_queues();
1551	xen_flush_queue();
1552	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1553	for (i = 0; i < NPGPTD; i++) {
1554		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1555		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1556	}
1557	xen_flush_queue();
1558	vm_page_unlock_queues();
1559	pmap->pm_active = 0;
1560	TAILQ_INIT(&pmap->pm_pvchunk);
1561	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1562
1563#ifdef HAMFISTED_LOCKING
1564	mtx_unlock(&createdelete_lock);
1565#endif
1566	return (1);
1567}
1568
1569/*
1570 * this routine is called if the page table page is not
1571 * mapped correctly.
1572 */
1573static vm_page_t
1574_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1575{
1576	vm_paddr_t ptema;
1577	vm_page_t m;
1578
1579	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1580	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1581	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1582
1583	/*
1584	 * Allocate a page table page.
1585	 */
1586	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1587	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1588		if (flags & M_WAITOK) {
1589			PMAP_UNLOCK(pmap);
1590			vm_page_unlock_queues();
1591			VM_WAIT;
1592			vm_page_lock_queues();
1593			PMAP_LOCK(pmap);
1594		}
1595
1596		/*
1597		 * Indicate the need to retry.  While waiting, the page table
1598		 * page may have been allocated.
1599		 */
1600		return (NULL);
1601	}
1602	if ((m->flags & PG_ZERO) == 0)
1603		pmap_zero_page(m);
1604
1605	/*
1606	 * Map the pagetable page into the process address space, if
1607	 * it isn't already there.
1608	 */
1609	pmap->pm_stats.resident_count++;
1610
1611	ptema = VM_PAGE_TO_MACH(m);
1612	xen_pt_pin(ptema);
1613	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1614		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1615
1616	KASSERT(pmap->pm_pdir[ptepindex],
1617	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1618	return (m);
1619}
1620
1621static vm_page_t
1622pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1623{
1624	unsigned ptepindex;
1625	pd_entry_t ptema;
1626	vm_page_t m;
1627
1628	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1629	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1630	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1631
1632	/*
1633	 * Calculate pagetable page index
1634	 */
1635	ptepindex = va >> PDRSHIFT;
1636retry:
1637	/*
1638	 * Get the page directory entry
1639	 */
1640	ptema = pmap->pm_pdir[ptepindex];
1641
1642	/*
1643	 * This supports switching from a 4MB page to a
1644	 * normal 4K page.
1645	 */
1646	if (ptema & PG_PS) {
1647		/*
1648		 * XXX
1649		 */
1650		pmap->pm_pdir[ptepindex] = 0;
1651		ptema = 0;
1652		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1653		pmap_invalidate_all(kernel_pmap);
1654	}
1655
1656	/*
1657	 * If the page table page is mapped, we just increment the
1658	 * hold count, and activate it.
1659	 */
1660	if (ptema & PG_V) {
1661		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1662		m->wire_count++;
1663	} else {
1664		/*
1665		 * Here if the pte page isn't mapped, or if it has
1666		 * been deallocated.
1667		 */
1668		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1669		    pmap, va, flags);
1670		m = _pmap_allocpte(pmap, ptepindex, flags);
1671		if (m == NULL && (flags & M_WAITOK))
1672			goto retry;
1673
1674		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1675	}
1676	return (m);
1677}
1678
1679
1680/***************************************************
1681* Pmap allocation/deallocation routines.
1682 ***************************************************/
1683
1684#ifdef SMP
1685/*
1686 * Deal with a SMP shootdown of other users of the pmap that we are
1687 * trying to dispose of.  This can be a bit hairy.
1688 */
1689static cpumask_t *lazymask;
1690static u_int lazyptd;
1691static volatile u_int lazywait;
1692
1693void pmap_lazyfix_action(void);
1694
1695void
1696pmap_lazyfix_action(void)
1697{
1698	cpumask_t mymask = PCPU_GET(cpumask);
1699
1700#ifdef COUNT_IPIS
1701	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1702#endif
1703	if (rcr3() == lazyptd)
1704		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1705	atomic_clear_int(lazymask, mymask);
1706	atomic_store_rel_int(&lazywait, 1);
1707}
1708
1709static void
1710pmap_lazyfix_self(cpumask_t mymask)
1711{
1712
1713	if (rcr3() == lazyptd)
1714		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1715	atomic_clear_int(lazymask, mymask);
1716}
1717
1718
1719static void
1720pmap_lazyfix(pmap_t pmap)
1721{
1722	cpumask_t mymask, mask;
1723	u_int spins;
1724
1725	while ((mask = pmap->pm_active) != 0) {
1726		spins = 50000000;
1727		mask = mask & -mask;	/* Find least significant set bit */
1728		mtx_lock_spin(&smp_ipi_mtx);
1729#ifdef PAE
1730		lazyptd = vtophys(pmap->pm_pdpt);
1731#else
1732		lazyptd = vtophys(pmap->pm_pdir);
1733#endif
1734		mymask = PCPU_GET(cpumask);
1735		if (mask == mymask) {
1736			lazymask = &pmap->pm_active;
1737			pmap_lazyfix_self(mymask);
1738		} else {
1739			atomic_store_rel_int((u_int *)&lazymask,
1740			    (u_int)&pmap->pm_active);
1741			atomic_store_rel_int(&lazywait, 0);
1742			ipi_selected(mask, IPI_LAZYPMAP);
1743			while (lazywait == 0) {
1744				ia32_pause();
1745				if (--spins == 0)
1746					break;
1747			}
1748		}
1749		mtx_unlock_spin(&smp_ipi_mtx);
1750		if (spins == 0)
1751			printf("pmap_lazyfix: spun for 50000000\n");
1752	}
1753}
1754
1755#else	/* SMP */
1756
1757/*
1758 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1759 * unlikely to have to even execute this code, including the fact
1760 * that the cleanup is deferred until the parent does a wait(2), which
1761 * means that another userland process has run.
1762 */
1763static void
1764pmap_lazyfix(pmap_t pmap)
1765{
1766	u_int cr3;
1767
1768	cr3 = vtophys(pmap->pm_pdir);
1769	if (cr3 == rcr3()) {
1770		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1771		pmap->pm_active &= ~(PCPU_GET(cpumask));
1772	}
1773}
1774#endif	/* SMP */
1775
1776/*
1777 * Release any resources held by the given physical map.
1778 * Called when a pmap initialized by pmap_pinit is being released.
1779 * Should only be called if the map contains no valid mappings.
1780 */
1781void
1782pmap_release(pmap_t pmap)
1783{
1784	vm_page_t m, ptdpg[2*NPGPTD+1];
1785	vm_paddr_t ma;
1786	int i;
1787#ifdef PAE
1788	int npgptd = NPGPTD + 1;
1789#else
1790	int npgptd = NPGPTD;
1791#endif
1792	KASSERT(pmap->pm_stats.resident_count == 0,
1793	    ("pmap_release: pmap resident count %ld != 0",
1794	    pmap->pm_stats.resident_count));
1795	PT_UPDATES_FLUSH();
1796
1797#ifdef HAMFISTED_LOCKING
1798	mtx_lock(&createdelete_lock);
1799#endif
1800
1801	pmap_lazyfix(pmap);
1802	mtx_lock_spin(&allpmaps_lock);
1803	LIST_REMOVE(pmap, pm_list);
1804	mtx_unlock_spin(&allpmaps_lock);
1805
1806	for (i = 0; i < NPGPTD; i++)
1807		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1808	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1809#ifdef PAE
1810	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1811#endif
1812
1813	for (i = 0; i < npgptd; i++) {
1814		m = ptdpg[i];
1815		ma = VM_PAGE_TO_MACH(m);
1816		/* unpinning L1 and L2 treated the same */
1817#if 0
1818                xen_pgd_unpin(ma);
1819#else
1820		if (i == NPGPTD)
1821	                xen_pgd_unpin(ma);
1822#endif
1823#ifdef PAE
1824		if (i < NPGPTD)
1825			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1826			    ("pmap_release: got wrong ptd page"));
1827#endif
1828		m->wire_count--;
1829		atomic_subtract_int(&cnt.v_wire_count, 1);
1830		vm_page_free(m);
1831	}
1832#ifdef PAE
1833	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1834#endif
1835	PMAP_LOCK_DESTROY(pmap);
1836
1837#ifdef HAMFISTED_LOCKING
1838	mtx_unlock(&createdelete_lock);
1839#endif
1840}
1841
1842static int
1843kvm_size(SYSCTL_HANDLER_ARGS)
1844{
1845	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1846
1847	return sysctl_handle_long(oidp, &ksize, 0, req);
1848}
1849SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1850    0, 0, kvm_size, "IU", "Size of KVM");
1851
1852static int
1853kvm_free(SYSCTL_HANDLER_ARGS)
1854{
1855	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1856
1857	return sysctl_handle_long(oidp, &kfree, 0, req);
1858}
1859SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1860    0, 0, kvm_free, "IU", "Amount of KVM free");
1861
1862/*
1863 * grow the number of kernel page table entries, if needed
1864 */
1865void
1866pmap_growkernel(vm_offset_t addr)
1867{
1868	struct pmap *pmap;
1869	vm_paddr_t ptppaddr;
1870	vm_page_t nkpg;
1871	pd_entry_t newpdir;
1872
1873	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1874	if (kernel_vm_end == 0) {
1875		kernel_vm_end = KERNBASE;
1876		nkpt = 0;
1877		while (pdir_pde(PTD, kernel_vm_end)) {
1878			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1879			nkpt++;
1880			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1881				kernel_vm_end = kernel_map->max_offset;
1882				break;
1883			}
1884		}
1885	}
1886	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1887	if (addr - 1 >= kernel_map->max_offset)
1888		addr = kernel_map->max_offset;
1889	while (kernel_vm_end < addr) {
1890		if (pdir_pde(PTD, kernel_vm_end)) {
1891			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1892			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1893				kernel_vm_end = kernel_map->max_offset;
1894				break;
1895			}
1896			continue;
1897		}
1898
1899		/*
1900		 * This index is bogus, but out of the way
1901		 */
1902		nkpg = vm_page_alloc(NULL, nkpt,
1903		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1904		if (!nkpg)
1905			panic("pmap_growkernel: no memory to grow kernel");
1906
1907		nkpt++;
1908
1909		pmap_zero_page(nkpg);
1910		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1911		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1912		vm_page_lock_queues();
1913		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1914		mtx_lock_spin(&allpmaps_lock);
1915		LIST_FOREACH(pmap, &allpmaps, pm_list)
1916			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1917
1918		mtx_unlock_spin(&allpmaps_lock);
1919		vm_page_unlock_queues();
1920
1921		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1922		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1923			kernel_vm_end = kernel_map->max_offset;
1924			break;
1925		}
1926	}
1927}
1928
1929
1930/***************************************************
1931 * page management routines.
1932 ***************************************************/
1933
1934CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1935CTASSERT(_NPCM == 11);
1936
1937static __inline struct pv_chunk *
1938pv_to_chunk(pv_entry_t pv)
1939{
1940
1941	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1942}
1943
1944#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1945
1946#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1947#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1948
1949static uint32_t pc_freemask[11] = {
1950	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1951	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1952	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1953	PC_FREE0_9, PC_FREE10
1954};
1955
1956SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1957	"Current number of pv entries");
1958
1959#ifdef PV_STATS
1960static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1961
1962SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1963	"Current number of pv entry chunks");
1964SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1965	"Current number of pv entry chunks allocated");
1966SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1967	"Current number of pv entry chunks frees");
1968SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1969	"Number of times tried to get a chunk page but failed.");
1970
1971static long pv_entry_frees, pv_entry_allocs;
1972static int pv_entry_spare;
1973
1974SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1975	"Current number of pv entry frees");
1976SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1977	"Current number of pv entry allocs");
1978SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1979	"Current number of spare pv entries");
1980
1981static int pmap_collect_inactive, pmap_collect_active;
1982
1983SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1984	"Current number times pmap_collect called on inactive queue");
1985SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1986	"Current number times pmap_collect called on active queue");
1987#endif
1988
1989/*
1990 * We are in a serious low memory condition.  Resort to
1991 * drastic measures to free some pages so we can allocate
1992 * another pv entry chunk.  This is normally called to
1993 * unmap inactive pages, and if necessary, active pages.
1994 */
1995static void
1996pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1997{
1998	pmap_t pmap;
1999	pt_entry_t *pte, tpte;
2000	pv_entry_t next_pv, pv;
2001	vm_offset_t va;
2002	vm_page_t m, free;
2003
2004	sched_pin();
2005	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2006		if (m->hold_count || m->busy)
2007			continue;
2008		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2009			va = pv->pv_va;
2010			pmap = PV_PMAP(pv);
2011			/* Avoid deadlock and lock recursion. */
2012			if (pmap > locked_pmap)
2013				PMAP_LOCK(pmap);
2014			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2015				continue;
2016			pmap->pm_stats.resident_count--;
2017			pte = pmap_pte_quick(pmap, va);
2018			tpte = pte_load_clear(pte);
2019			KASSERT((tpte & PG_W) == 0,
2020			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2021			if (tpte & PG_A)
2022				vm_page_flag_set(m, PG_REFERENCED);
2023			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2024				vm_page_dirty(m);
2025			free = NULL;
2026			pmap_unuse_pt(pmap, va, &free);
2027			pmap_invalidate_page(pmap, va);
2028			pmap_free_zero_pages(free);
2029			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2030			free_pv_entry(pmap, pv);
2031			if (pmap != locked_pmap)
2032				PMAP_UNLOCK(pmap);
2033		}
2034		if (TAILQ_EMPTY(&m->md.pv_list))
2035			vm_page_flag_clear(m, PG_WRITEABLE);
2036	}
2037	sched_unpin();
2038}
2039
2040
2041/*
2042 * free the pv_entry back to the free list
2043 */
2044static void
2045free_pv_entry(pmap_t pmap, pv_entry_t pv)
2046{
2047	vm_page_t m;
2048	struct pv_chunk *pc;
2049	int idx, field, bit;
2050
2051	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2052	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2053	PV_STAT(pv_entry_frees++);
2054	PV_STAT(pv_entry_spare++);
2055	pv_entry_count--;
2056	pc = pv_to_chunk(pv);
2057	idx = pv - &pc->pc_pventry[0];
2058	field = idx / 32;
2059	bit = idx % 32;
2060	pc->pc_map[field] |= 1ul << bit;
2061	/* move to head of list */
2062	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2063	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2064	for (idx = 0; idx < _NPCM; idx++)
2065		if (pc->pc_map[idx] != pc_freemask[idx])
2066			return;
2067	PV_STAT(pv_entry_spare -= _NPCPV);
2068	PV_STAT(pc_chunk_count--);
2069	PV_STAT(pc_chunk_frees++);
2070	/* entire chunk is free, return it */
2071	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2072	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2073	pmap_qremove((vm_offset_t)pc, 1);
2074	vm_page_unwire(m, 0);
2075	vm_page_free(m);
2076	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2077}
2078
2079/*
2080 * get a new pv_entry, allocating a block from the system
2081 * when needed.
2082 */
2083static pv_entry_t
2084get_pv_entry(pmap_t pmap, int try)
2085{
2086	static const struct timeval printinterval = { 60, 0 };
2087	static struct timeval lastprint;
2088	static vm_pindex_t colour;
2089	struct vpgqueues *pq;
2090	int bit, field;
2091	pv_entry_t pv;
2092	struct pv_chunk *pc;
2093	vm_page_t m;
2094
2095	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2096	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2097	PV_STAT(pv_entry_allocs++);
2098	pv_entry_count++;
2099	if (pv_entry_count > pv_entry_high_water)
2100		if (ratecheck(&lastprint, &printinterval))
2101			printf("Approaching the limit on PV entries, consider "
2102			    "increasing either the vm.pmap.shpgperproc or the "
2103			    "vm.pmap.pv_entry_max tunable.\n");
2104	pq = NULL;
2105retry:
2106	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2107	if (pc != NULL) {
2108		for (field = 0; field < _NPCM; field++) {
2109			if (pc->pc_map[field]) {
2110				bit = bsfl(pc->pc_map[field]);
2111				break;
2112			}
2113		}
2114		if (field < _NPCM) {
2115			pv = &pc->pc_pventry[field * 32 + bit];
2116			pc->pc_map[field] &= ~(1ul << bit);
2117			/* If this was the last item, move it to tail */
2118			for (field = 0; field < _NPCM; field++)
2119				if (pc->pc_map[field] != 0) {
2120					PV_STAT(pv_entry_spare--);
2121					return (pv);	/* not full, return */
2122				}
2123			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2124			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2125			PV_STAT(pv_entry_spare--);
2126			return (pv);
2127		}
2128	}
2129	/*
2130	 * Access to the ptelist "pv_vafree" is synchronized by the page
2131	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2132	 * remain non-empty until pmap_ptelist_alloc() completes.
2133	 */
2134	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2135	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2136	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2137		if (try) {
2138			pv_entry_count--;
2139			PV_STAT(pc_chunk_tryfail++);
2140			return (NULL);
2141		}
2142		/*
2143		 * Reclaim pv entries: At first, destroy mappings to
2144		 * inactive pages.  After that, if a pv chunk entry
2145		 * is still needed, destroy mappings to active pages.
2146		 */
2147		if (pq == NULL) {
2148			PV_STAT(pmap_collect_inactive++);
2149			pq = &vm_page_queues[PQ_INACTIVE];
2150		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2151			PV_STAT(pmap_collect_active++);
2152			pq = &vm_page_queues[PQ_ACTIVE];
2153		} else
2154			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2155		pmap_collect(pmap, pq);
2156		goto retry;
2157	}
2158	PV_STAT(pc_chunk_count++);
2159	PV_STAT(pc_chunk_allocs++);
2160	colour++;
2161	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2162	pmap_qenter((vm_offset_t)pc, &m, 1);
2163	if ((m->flags & PG_ZERO) == 0)
2164		pagezero(pc);
2165	pc->pc_pmap = pmap;
2166	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2167	for (field = 1; field < _NPCM; field++)
2168		pc->pc_map[field] = pc_freemask[field];
2169	pv = &pc->pc_pventry[0];
2170	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2171	PV_STAT(pv_entry_spare += _NPCPV - 1);
2172	return (pv);
2173}
2174
2175static __inline pv_entry_t
2176pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2177{
2178	pv_entry_t pv;
2179
2180	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2181	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2182		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2183			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2184			break;
2185		}
2186	}
2187	return (pv);
2188}
2189
2190static void
2191pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2192{
2193	pv_entry_t pv;
2194
2195	pv = pmap_pvh_remove(pvh, pmap, va);
2196	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2197	free_pv_entry(pmap, pv);
2198}
2199
2200static void
2201pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2202{
2203
2204	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2205	pmap_pvh_free(&m->md, pmap, va);
2206	if (TAILQ_EMPTY(&m->md.pv_list))
2207		vm_page_flag_clear(m, PG_WRITEABLE);
2208}
2209
2210/*
2211 * Conditionally create a pv entry.
2212 */
2213static boolean_t
2214pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2215{
2216	pv_entry_t pv;
2217
2218	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2219	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2220	if (pv_entry_count < pv_entry_high_water &&
2221	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2222		pv->pv_va = va;
2223		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2224		return (TRUE);
2225	} else
2226		return (FALSE);
2227}
2228
2229/*
2230 * pmap_remove_pte: do the things to unmap a page in a process
2231 */
2232static int
2233pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2234{
2235	pt_entry_t oldpte;
2236	vm_page_t m;
2237
2238	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2239	    pmap, (u_long)*ptq, va);
2240
2241	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2242	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2243	oldpte = *ptq;
2244	PT_SET_VA_MA(ptq, 0, TRUE);
2245	if (oldpte & PG_W)
2246		pmap->pm_stats.wired_count -= 1;
2247	/*
2248	 * Machines that don't support invlpg, also don't support
2249	 * PG_G.
2250	 */
2251	if (oldpte & PG_G)
2252		pmap_invalidate_page(kernel_pmap, va);
2253	pmap->pm_stats.resident_count -= 1;
2254	if (oldpte & PG_MANAGED) {
2255		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2256		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2257			vm_page_dirty(m);
2258		if (oldpte & PG_A)
2259			vm_page_flag_set(m, PG_REFERENCED);
2260		pmap_remove_entry(pmap, m, va);
2261	}
2262	return (pmap_unuse_pt(pmap, va, free));
2263}
2264
2265/*
2266 * Remove a single page from a process address space
2267 */
2268static void
2269pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2270{
2271	pt_entry_t *pte;
2272
2273	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2274	    pmap, va);
2275
2276	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2277	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2278	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2279	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2280		return;
2281	pmap_remove_pte(pmap, pte, va, free);
2282	pmap_invalidate_page(pmap, va);
2283	if (*PMAP1)
2284		PT_SET_MA(PADDR1, 0);
2285
2286}
2287
2288/*
2289 *	Remove the given range of addresses from the specified map.
2290 *
2291 *	It is assumed that the start and end are properly
2292 *	rounded to the page size.
2293 */
2294void
2295pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2296{
2297	vm_offset_t pdnxt;
2298	pd_entry_t ptpaddr;
2299	pt_entry_t *pte;
2300	vm_page_t free = NULL;
2301	int anyvalid;
2302
2303	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2304	    pmap, sva, eva);
2305
2306	/*
2307	 * Perform an unsynchronized read.  This is, however, safe.
2308	 */
2309	if (pmap->pm_stats.resident_count == 0)
2310		return;
2311
2312	anyvalid = 0;
2313
2314	vm_page_lock_queues();
2315	sched_pin();
2316	PMAP_LOCK(pmap);
2317
2318	/*
2319	 * special handling of removing one page.  a very
2320	 * common operation and easy to short circuit some
2321	 * code.
2322	 */
2323	if ((sva + PAGE_SIZE == eva) &&
2324	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2325		pmap_remove_page(pmap, sva, &free);
2326		goto out;
2327	}
2328
2329	for (; sva < eva; sva = pdnxt) {
2330		unsigned pdirindex;
2331
2332		/*
2333		 * Calculate index for next page table.
2334		 */
2335		pdnxt = (sva + NBPDR) & ~PDRMASK;
2336		if (pmap->pm_stats.resident_count == 0)
2337			break;
2338
2339		pdirindex = sva >> PDRSHIFT;
2340		ptpaddr = pmap->pm_pdir[pdirindex];
2341
2342		/*
2343		 * Weed out invalid mappings. Note: we assume that the page
2344		 * directory table is always allocated, and in kernel virtual.
2345		 */
2346		if (ptpaddr == 0)
2347			continue;
2348
2349		/*
2350		 * Check for large page.
2351		 */
2352		if ((ptpaddr & PG_PS) != 0) {
2353			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2354			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2355			anyvalid = 1;
2356			continue;
2357		}
2358
2359		/*
2360		 * Limit our scan to either the end of the va represented
2361		 * by the current page table page, or to the end of the
2362		 * range being removed.
2363		 */
2364		if (pdnxt > eva)
2365			pdnxt = eva;
2366
2367		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2368		    sva += PAGE_SIZE) {
2369			if ((*pte & PG_V) == 0)
2370				continue;
2371
2372			/*
2373			 * The TLB entry for a PG_G mapping is invalidated
2374			 * by pmap_remove_pte().
2375			 */
2376			if ((*pte & PG_G) == 0)
2377				anyvalid = 1;
2378			if (pmap_remove_pte(pmap, pte, sva, &free))
2379				break;
2380		}
2381	}
2382	PT_UPDATES_FLUSH();
2383	if (*PMAP1)
2384		PT_SET_VA_MA(PMAP1, 0, TRUE);
2385out:
2386	if (anyvalid)
2387		pmap_invalidate_all(pmap);
2388	sched_unpin();
2389	vm_page_unlock_queues();
2390	PMAP_UNLOCK(pmap);
2391	pmap_free_zero_pages(free);
2392}
2393
2394/*
2395 *	Routine:	pmap_remove_all
2396 *	Function:
2397 *		Removes this physical page from
2398 *		all physical maps in which it resides.
2399 *		Reflects back modify bits to the pager.
2400 *
2401 *	Notes:
2402 *		Original versions of this routine were very
2403 *		inefficient because they iteratively called
2404 *		pmap_remove (slow...)
2405 */
2406
2407void
2408pmap_remove_all(vm_page_t m)
2409{
2410	pv_entry_t pv;
2411	pmap_t pmap;
2412	pt_entry_t *pte, tpte;
2413	vm_page_t free;
2414
2415	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2416	    ("pmap_remove_all: page %p is fictitious", m));
2417	free = NULL;
2418	vm_page_lock_queues();
2419	sched_pin();
2420	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2421		pmap = PV_PMAP(pv);
2422		PMAP_LOCK(pmap);
2423		pmap->pm_stats.resident_count--;
2424		pte = pmap_pte_quick(pmap, pv->pv_va);
2425
2426		tpte = *pte;
2427		PT_SET_VA_MA(pte, 0, TRUE);
2428		if (tpte & PG_W)
2429			pmap->pm_stats.wired_count--;
2430		if (tpte & PG_A)
2431			vm_page_flag_set(m, PG_REFERENCED);
2432
2433		/*
2434		 * Update the vm_page_t clean and reference bits.
2435		 */
2436		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2437			vm_page_dirty(m);
2438		pmap_unuse_pt(pmap, pv->pv_va, &free);
2439		pmap_invalidate_page(pmap, pv->pv_va);
2440		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2441		free_pv_entry(pmap, pv);
2442		PMAP_UNLOCK(pmap);
2443	}
2444	vm_page_flag_clear(m, PG_WRITEABLE);
2445	PT_UPDATES_FLUSH();
2446	if (*PMAP1)
2447		PT_SET_MA(PADDR1, 0);
2448	sched_unpin();
2449	vm_page_unlock_queues();
2450	pmap_free_zero_pages(free);
2451}
2452
2453/*
2454 *	Set the physical protection on the
2455 *	specified range of this map as requested.
2456 */
2457void
2458pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2459{
2460	vm_offset_t pdnxt;
2461	pd_entry_t ptpaddr;
2462	pt_entry_t *pte;
2463	int anychanged;
2464
2465	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2466	    pmap, sva, eva, prot);
2467
2468	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2469		pmap_remove(pmap, sva, eva);
2470		return;
2471	}
2472
2473#ifdef PAE
2474	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2475	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2476		return;
2477#else
2478	if (prot & VM_PROT_WRITE)
2479		return;
2480#endif
2481
2482	anychanged = 0;
2483
2484	vm_page_lock_queues();
2485	sched_pin();
2486	PMAP_LOCK(pmap);
2487	for (; sva < eva; sva = pdnxt) {
2488		pt_entry_t obits, pbits;
2489		unsigned pdirindex;
2490
2491		pdnxt = (sva + NBPDR) & ~PDRMASK;
2492
2493		pdirindex = sva >> PDRSHIFT;
2494		ptpaddr = pmap->pm_pdir[pdirindex];
2495
2496		/*
2497		 * Weed out invalid mappings. Note: we assume that the page
2498		 * directory table is always allocated, and in kernel virtual.
2499		 */
2500		if (ptpaddr == 0)
2501			continue;
2502
2503		/*
2504		 * Check for large page.
2505		 */
2506		if ((ptpaddr & PG_PS) != 0) {
2507			if ((prot & VM_PROT_WRITE) == 0)
2508				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2509#ifdef PAE
2510			if ((prot & VM_PROT_EXECUTE) == 0)
2511				pmap->pm_pdir[pdirindex] |= pg_nx;
2512#endif
2513			anychanged = 1;
2514			continue;
2515		}
2516
2517		if (pdnxt > eva)
2518			pdnxt = eva;
2519
2520		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2521		    sva += PAGE_SIZE) {
2522			vm_page_t m;
2523
2524retry:
2525			/*
2526			 * Regardless of whether a pte is 32 or 64 bits in
2527			 * size, PG_RW, PG_A, and PG_M are among the least
2528			 * significant 32 bits.
2529			 */
2530			obits = pbits = *pte;
2531			if ((pbits & PG_V) == 0)
2532				continue;
2533
2534			if ((prot & VM_PROT_WRITE) == 0) {
2535				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2536				    (PG_MANAGED | PG_M | PG_RW)) {
2537					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2538					    PG_FRAME);
2539					vm_page_dirty(m);
2540				}
2541				pbits &= ~(PG_RW | PG_M);
2542			}
2543#ifdef PAE
2544			if ((prot & VM_PROT_EXECUTE) == 0)
2545				pbits |= pg_nx;
2546#endif
2547
2548			if (pbits != obits) {
2549				obits = *pte;
2550				PT_SET_VA_MA(pte, pbits, TRUE);
2551				if (*pte != pbits)
2552					goto retry;
2553				if (obits & PG_G)
2554					pmap_invalidate_page(pmap, sva);
2555				else
2556					anychanged = 1;
2557			}
2558		}
2559	}
2560	PT_UPDATES_FLUSH();
2561	if (*PMAP1)
2562		PT_SET_VA_MA(PMAP1, 0, TRUE);
2563	if (anychanged)
2564		pmap_invalidate_all(pmap);
2565	sched_unpin();
2566	vm_page_unlock_queues();
2567	PMAP_UNLOCK(pmap);
2568}
2569
2570/*
2571 *	Insert the given physical page (p) at
2572 *	the specified virtual address (v) in the
2573 *	target physical map with the protection requested.
2574 *
2575 *	If specified, the page will be wired down, meaning
2576 *	that the related pte can not be reclaimed.
2577 *
2578 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2579 *	or lose information.  That is, this routine must actually
2580 *	insert this page into the given map NOW.
2581 */
2582void
2583pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2584    vm_prot_t prot, boolean_t wired)
2585{
2586	pd_entry_t *pde;
2587	pt_entry_t *pte;
2588	pt_entry_t newpte, origpte;
2589	pv_entry_t pv;
2590	vm_paddr_t opa, pa;
2591	vm_page_t mpte, om;
2592	boolean_t invlva;
2593
2594	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2595	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2596	va = trunc_page(va);
2597	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2598	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2599	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2600	    va));
2601	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2602	    (m->oflags & VPO_BUSY) != 0,
2603	    ("pmap_enter: page %p is not busy", m));
2604
2605	mpte = NULL;
2606
2607	vm_page_lock_queues();
2608	PMAP_LOCK(pmap);
2609	sched_pin();
2610
2611	/*
2612	 * In the case that a page table page is not
2613	 * resident, we are creating it here.
2614	 */
2615	if (va < VM_MAXUSER_ADDRESS) {
2616		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2617	}
2618
2619	pde = pmap_pde(pmap, va);
2620	if ((*pde & PG_PS) != 0)
2621		panic("pmap_enter: attempted pmap_enter on 4MB page");
2622	pte = pmap_pte_quick(pmap, va);
2623
2624	/*
2625	 * Page Directory table entry not valid, we need a new PT page
2626	 */
2627	if (pte == NULL) {
2628		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2629			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2630	}
2631
2632	pa = VM_PAGE_TO_PHYS(m);
2633	om = NULL;
2634	opa = origpte = 0;
2635
2636#if 0
2637	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2638		pte, *pte));
2639#endif
2640	origpte = *pte;
2641	if (origpte)
2642		origpte = xpmap_mtop(origpte);
2643	opa = origpte & PG_FRAME;
2644
2645	/*
2646	 * Mapping has not changed, must be protection or wiring change.
2647	 */
2648	if (origpte && (opa == pa)) {
2649		/*
2650		 * Wiring change, just update stats. We don't worry about
2651		 * wiring PT pages as they remain resident as long as there
2652		 * are valid mappings in them. Hence, if a user page is wired,
2653		 * the PT page will be also.
2654		 */
2655		if (wired && ((origpte & PG_W) == 0))
2656			pmap->pm_stats.wired_count++;
2657		else if (!wired && (origpte & PG_W))
2658			pmap->pm_stats.wired_count--;
2659
2660		/*
2661		 * Remove extra pte reference
2662		 */
2663		if (mpte)
2664			mpte->wire_count--;
2665
2666		if (origpte & PG_MANAGED) {
2667			om = m;
2668			pa |= PG_MANAGED;
2669		}
2670		goto validate;
2671	}
2672
2673	pv = NULL;
2674
2675	/*
2676	 * Mapping has changed, invalidate old range and fall through to
2677	 * handle validating new mapping.
2678	 */
2679	if (opa) {
2680		if (origpte & PG_W)
2681			pmap->pm_stats.wired_count--;
2682		if (origpte & PG_MANAGED) {
2683			om = PHYS_TO_VM_PAGE(opa);
2684			pv = pmap_pvh_remove(&om->md, pmap, va);
2685		} else if (va < VM_MAXUSER_ADDRESS)
2686			printf("va=0x%x is unmanaged :-( \n", va);
2687
2688		if (mpte != NULL) {
2689			mpte->wire_count--;
2690			KASSERT(mpte->wire_count > 0,
2691			    ("pmap_enter: missing reference to page table page,"
2692			     " va: 0x%x", va));
2693		}
2694	} else
2695		pmap->pm_stats.resident_count++;
2696
2697	/*
2698	 * Enter on the PV list if part of our managed memory.
2699	 */
2700	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2701		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2702		    ("pmap_enter: managed mapping within the clean submap"));
2703		if (pv == NULL)
2704			pv = get_pv_entry(pmap, FALSE);
2705		pv->pv_va = va;
2706		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2707		pa |= PG_MANAGED;
2708	} else if (pv != NULL)
2709		free_pv_entry(pmap, pv);
2710
2711	/*
2712	 * Increment counters
2713	 */
2714	if (wired)
2715		pmap->pm_stats.wired_count++;
2716
2717validate:
2718	/*
2719	 * Now validate mapping with desired protection/wiring.
2720	 */
2721	newpte = (pt_entry_t)(pa | PG_V);
2722	if ((prot & VM_PROT_WRITE) != 0) {
2723		newpte |= PG_RW;
2724		if ((newpte & PG_MANAGED) != 0)
2725			vm_page_flag_set(m, PG_WRITEABLE);
2726	}
2727#ifdef PAE
2728	if ((prot & VM_PROT_EXECUTE) == 0)
2729		newpte |= pg_nx;
2730#endif
2731	if (wired)
2732		newpte |= PG_W;
2733	if (va < VM_MAXUSER_ADDRESS)
2734		newpte |= PG_U;
2735	if (pmap == kernel_pmap)
2736		newpte |= pgeflag;
2737
2738	critical_enter();
2739	/*
2740	 * if the mapping or permission bits are different, we need
2741	 * to update the pte.
2742	 */
2743	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2744		if (origpte) {
2745			invlva = FALSE;
2746			origpte = *pte;
2747			PT_SET_VA(pte, newpte | PG_A, FALSE);
2748			if (origpte & PG_A) {
2749				if (origpte & PG_MANAGED)
2750					vm_page_flag_set(om, PG_REFERENCED);
2751				if (opa != VM_PAGE_TO_PHYS(m))
2752					invlva = TRUE;
2753#ifdef PAE
2754				if ((origpte & PG_NX) == 0 &&
2755				    (newpte & PG_NX) != 0)
2756					invlva = TRUE;
2757#endif
2758			}
2759			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2760				if ((origpte & PG_MANAGED) != 0)
2761					vm_page_dirty(om);
2762				if ((prot & VM_PROT_WRITE) == 0)
2763					invlva = TRUE;
2764			}
2765			if ((origpte & PG_MANAGED) != 0 &&
2766			    TAILQ_EMPTY(&om->md.pv_list))
2767				vm_page_flag_clear(om, PG_WRITEABLE);
2768			if (invlva)
2769				pmap_invalidate_page(pmap, va);
2770		} else{
2771			PT_SET_VA(pte, newpte | PG_A, FALSE);
2772		}
2773
2774	}
2775	PT_UPDATES_FLUSH();
2776	critical_exit();
2777	if (*PMAP1)
2778		PT_SET_VA_MA(PMAP1, 0, TRUE);
2779	sched_unpin();
2780	vm_page_unlock_queues();
2781	PMAP_UNLOCK(pmap);
2782}
2783
2784/*
2785 * Maps a sequence of resident pages belonging to the same object.
2786 * The sequence begins with the given page m_start.  This page is
2787 * mapped at the given virtual address start.  Each subsequent page is
2788 * mapped at a virtual address that is offset from start by the same
2789 * amount as the page is offset from m_start within the object.  The
2790 * last page in the sequence is the page with the largest offset from
2791 * m_start that can be mapped at a virtual address less than the given
2792 * virtual address end.  Not every virtual page between start and end
2793 * is mapped; only those for which a resident page exists with the
2794 * corresponding offset from m_start are mapped.
2795 */
2796void
2797pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2798    vm_page_t m_start, vm_prot_t prot)
2799{
2800	vm_page_t m, mpte;
2801	vm_pindex_t diff, psize;
2802	multicall_entry_t mcl[16];
2803	multicall_entry_t *mclp = mcl;
2804	int error, count = 0;
2805
2806	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2807	psize = atop(end - start);
2808
2809	mpte = NULL;
2810	m = m_start;
2811	vm_page_lock_queues();
2812	PMAP_LOCK(pmap);
2813	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2814		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2815		    prot, mpte);
2816		m = TAILQ_NEXT(m, listq);
2817		if (count == 16) {
2818			error = HYPERVISOR_multicall(mcl, count);
2819			KASSERT(error == 0, ("bad multicall %d", error));
2820			mclp = mcl;
2821			count = 0;
2822		}
2823	}
2824	if (count) {
2825		error = HYPERVISOR_multicall(mcl, count);
2826		KASSERT(error == 0, ("bad multicall %d", error));
2827	}
2828	vm_page_unlock_queues();
2829	PMAP_UNLOCK(pmap);
2830}
2831
2832/*
2833 * this code makes some *MAJOR* assumptions:
2834 * 1. Current pmap & pmap exists.
2835 * 2. Not wired.
2836 * 3. Read access.
2837 * 4. No page table pages.
2838 * but is *MUCH* faster than pmap_enter...
2839 */
2840
2841void
2842pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2843{
2844	multicall_entry_t mcl, *mclp;
2845	int count = 0;
2846	mclp = &mcl;
2847
2848	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2849	    pmap, va, m, prot);
2850
2851	vm_page_lock_queues();
2852	PMAP_LOCK(pmap);
2853	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2854	if (count)
2855		HYPERVISOR_multicall(&mcl, count);
2856	vm_page_unlock_queues();
2857	PMAP_UNLOCK(pmap);
2858}
2859
2860#ifdef notyet
2861void
2862pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2863{
2864	int i, error, index = 0;
2865	multicall_entry_t mcl[16];
2866	multicall_entry_t *mclp = mcl;
2867
2868	PMAP_LOCK(pmap);
2869	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2870		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2871			continue;
2872
2873		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2874		if (index == 16) {
2875			error = HYPERVISOR_multicall(mcl, index);
2876			mclp = mcl;
2877			index = 0;
2878			KASSERT(error == 0, ("bad multicall %d", error));
2879		}
2880	}
2881	if (index) {
2882		error = HYPERVISOR_multicall(mcl, index);
2883		KASSERT(error == 0, ("bad multicall %d", error));
2884	}
2885
2886	PMAP_UNLOCK(pmap);
2887}
2888#endif
2889
2890static vm_page_t
2891pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2892    vm_prot_t prot, vm_page_t mpte)
2893{
2894	pt_entry_t *pte;
2895	vm_paddr_t pa;
2896	vm_page_t free;
2897	multicall_entry_t *mcl = *mclpp;
2898
2899	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2900	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2901	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2902	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2903	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2904
2905	/*
2906	 * In the case that a page table page is not
2907	 * resident, we are creating it here.
2908	 */
2909	if (va < VM_MAXUSER_ADDRESS) {
2910		unsigned ptepindex;
2911		pd_entry_t ptema;
2912
2913		/*
2914		 * Calculate pagetable page index
2915		 */
2916		ptepindex = va >> PDRSHIFT;
2917		if (mpte && (mpte->pindex == ptepindex)) {
2918			mpte->wire_count++;
2919		} else {
2920			/*
2921			 * Get the page directory entry
2922			 */
2923			ptema = pmap->pm_pdir[ptepindex];
2924
2925			/*
2926			 * If the page table page is mapped, we just increment
2927			 * the hold count, and activate it.
2928			 */
2929			if (ptema & PG_V) {
2930				if (ptema & PG_PS)
2931					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2932				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2933				mpte->wire_count++;
2934			} else {
2935				mpte = _pmap_allocpte(pmap, ptepindex,
2936				    M_NOWAIT);
2937				if (mpte == NULL)
2938					return (mpte);
2939			}
2940		}
2941	} else {
2942		mpte = NULL;
2943	}
2944
2945	/*
2946	 * This call to vtopte makes the assumption that we are
2947	 * entering the page into the current pmap.  In order to support
2948	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2949	 * But that isn't as quick as vtopte.
2950	 */
2951	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2952	pte = vtopte(va);
2953	if (*pte & PG_V) {
2954		if (mpte != NULL) {
2955			mpte->wire_count--;
2956			mpte = NULL;
2957		}
2958		return (mpte);
2959	}
2960
2961	/*
2962	 * Enter on the PV list if part of our managed memory.
2963	 */
2964	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2965	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2966		if (mpte != NULL) {
2967			free = NULL;
2968			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2969				pmap_invalidate_page(pmap, va);
2970				pmap_free_zero_pages(free);
2971			}
2972
2973			mpte = NULL;
2974		}
2975		return (mpte);
2976	}
2977
2978	/*
2979	 * Increment counters
2980	 */
2981	pmap->pm_stats.resident_count++;
2982
2983	pa = VM_PAGE_TO_PHYS(m);
2984#ifdef PAE
2985	if ((prot & VM_PROT_EXECUTE) == 0)
2986		pa |= pg_nx;
2987#endif
2988
2989#if 0
2990	/*
2991	 * Now validate mapping with RO protection
2992	 */
2993	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2994		pte_store(pte, pa | PG_V | PG_U);
2995	else
2996		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2997#else
2998	/*
2999	 * Now validate mapping with RO protection
3000	 */
3001	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3002		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3003	else
3004		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3005
3006	mcl->op = __HYPERVISOR_update_va_mapping;
3007	mcl->args[0] = va;
3008	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3009	mcl->args[2] = (uint32_t)(pa >> 32);
3010	mcl->args[3] = 0;
3011	*mclpp = mcl + 1;
3012	*count = *count + 1;
3013#endif
3014	return mpte;
3015}
3016
3017/*
3018 * Make a temporary mapping for a physical address.  This is only intended
3019 * to be used for panic dumps.
3020 */
3021void *
3022pmap_kenter_temporary(vm_paddr_t pa, int i)
3023{
3024	vm_offset_t va;
3025	vm_paddr_t ma = xpmap_ptom(pa);
3026
3027	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3028	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3029	invlpg(va);
3030	return ((void *)crashdumpmap);
3031}
3032
3033/*
3034 * This code maps large physical mmap regions into the
3035 * processor address space.  Note that some shortcuts
3036 * are taken, but the code works.
3037 */
3038void
3039pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3040		    vm_object_t object, vm_pindex_t pindex,
3041		    vm_size_t size)
3042{
3043	pd_entry_t *pde;
3044	vm_paddr_t pa, ptepa;
3045	vm_page_t p;
3046	int pat_mode;
3047
3048	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3049	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3050	    ("pmap_object_init_pt: non-device object"));
3051	if (pseflag &&
3052	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3053		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3054			return;
3055		p = vm_page_lookup(object, pindex);
3056		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3057		    ("pmap_object_init_pt: invalid page %p", p));
3058		pat_mode = p->md.pat_mode;
3059		/*
3060		 * Abort the mapping if the first page is not physically
3061		 * aligned to a 2/4MB page boundary.
3062		 */
3063		ptepa = VM_PAGE_TO_PHYS(p);
3064		if (ptepa & (NBPDR - 1))
3065			return;
3066		/*
3067		 * Skip the first page.  Abort the mapping if the rest of
3068		 * the pages are not physically contiguous or have differing
3069		 * memory attributes.
3070		 */
3071		p = TAILQ_NEXT(p, listq);
3072		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3073		    pa += PAGE_SIZE) {
3074			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3075			    ("pmap_object_init_pt: invalid page %p", p));
3076			if (pa != VM_PAGE_TO_PHYS(p) ||
3077			    pat_mode != p->md.pat_mode)
3078				return;
3079			p = TAILQ_NEXT(p, listq);
3080		}
3081		/* Map using 2/4MB pages. */
3082		PMAP_LOCK(pmap);
3083		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3084		    size; pa += NBPDR) {
3085			pde = pmap_pde(pmap, addr);
3086			if (*pde == 0) {
3087				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3088				    PG_U | PG_RW | PG_V);
3089				pmap->pm_stats.resident_count += NBPDR /
3090				    PAGE_SIZE;
3091				pmap_pde_mappings++;
3092			}
3093			/* Else continue on if the PDE is already valid. */
3094			addr += NBPDR;
3095		}
3096		PMAP_UNLOCK(pmap);
3097	}
3098}
3099
3100/*
3101 *	Routine:	pmap_change_wiring
3102 *	Function:	Change the wiring attribute for a map/virtual-address
3103 *			pair.
3104 *	In/out conditions:
3105 *			The mapping must already exist in the pmap.
3106 */
3107void
3108pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3109{
3110	pt_entry_t *pte;
3111
3112	vm_page_lock_queues();
3113	PMAP_LOCK(pmap);
3114	pte = pmap_pte(pmap, va);
3115
3116	if (wired && !pmap_pte_w(pte)) {
3117		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3118		pmap->pm_stats.wired_count++;
3119	} else if (!wired && pmap_pte_w(pte)) {
3120		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3121		pmap->pm_stats.wired_count--;
3122	}
3123
3124	/*
3125	 * Wiring is not a hardware characteristic so there is no need to
3126	 * invalidate TLB.
3127	 */
3128	pmap_pte_release(pte);
3129	PMAP_UNLOCK(pmap);
3130	vm_page_unlock_queues();
3131}
3132
3133
3134
3135/*
3136 *	Copy the range specified by src_addr/len
3137 *	from the source map to the range dst_addr/len
3138 *	in the destination map.
3139 *
3140 *	This routine is only advisory and need not do anything.
3141 */
3142
3143void
3144pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3145	  vm_offset_t src_addr)
3146{
3147	vm_page_t   free;
3148	vm_offset_t addr;
3149	vm_offset_t end_addr = src_addr + len;
3150	vm_offset_t pdnxt;
3151
3152	if (dst_addr != src_addr)
3153		return;
3154
3155	if (!pmap_is_current(src_pmap)) {
3156		CTR2(KTR_PMAP,
3157		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3158		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3159
3160		return;
3161	}
3162	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3163	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3164
3165#ifdef HAMFISTED_LOCKING
3166	mtx_lock(&createdelete_lock);
3167#endif
3168
3169	vm_page_lock_queues();
3170	if (dst_pmap < src_pmap) {
3171		PMAP_LOCK(dst_pmap);
3172		PMAP_LOCK(src_pmap);
3173	} else {
3174		PMAP_LOCK(src_pmap);
3175		PMAP_LOCK(dst_pmap);
3176	}
3177	sched_pin();
3178	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3179		pt_entry_t *src_pte, *dst_pte;
3180		vm_page_t dstmpte, srcmpte;
3181		pd_entry_t srcptepaddr;
3182		unsigned ptepindex;
3183
3184		KASSERT(addr < UPT_MIN_ADDRESS,
3185		    ("pmap_copy: invalid to pmap_copy page tables"));
3186
3187		pdnxt = (addr + NBPDR) & ~PDRMASK;
3188		ptepindex = addr >> PDRSHIFT;
3189
3190		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3191		if (srcptepaddr == 0)
3192			continue;
3193
3194		if (srcptepaddr & PG_PS) {
3195			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3196				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3197				dst_pmap->pm_stats.resident_count +=
3198				    NBPDR / PAGE_SIZE;
3199			}
3200			continue;
3201		}
3202
3203		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3204		KASSERT(srcmpte->wire_count > 0,
3205		    ("pmap_copy: source page table page is unused"));
3206
3207		if (pdnxt > end_addr)
3208			pdnxt = end_addr;
3209
3210		src_pte = vtopte(addr);
3211		while (addr < pdnxt) {
3212			pt_entry_t ptetemp;
3213			ptetemp = *src_pte;
3214			/*
3215			 * we only virtual copy managed pages
3216			 */
3217			if ((ptetemp & PG_MANAGED) != 0) {
3218				dstmpte = pmap_allocpte(dst_pmap, addr,
3219				    M_NOWAIT);
3220				if (dstmpte == NULL)
3221					break;
3222				dst_pte = pmap_pte_quick(dst_pmap, addr);
3223				if (*dst_pte == 0 &&
3224				    pmap_try_insert_pv_entry(dst_pmap, addr,
3225				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3226					/*
3227					 * Clear the wired, modified, and
3228					 * accessed (referenced) bits
3229					 * during the copy.
3230					 */
3231					KASSERT(ptetemp != 0, ("src_pte not set"));
3232					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3233					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3234					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3235						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3236					dst_pmap->pm_stats.resident_count++;
3237	 			} else {
3238					free = NULL;
3239					if (pmap_unwire_pte_hold(dst_pmap,
3240					    dstmpte, &free)) {
3241						pmap_invalidate_page(dst_pmap,
3242						    addr);
3243						pmap_free_zero_pages(free);
3244					}
3245				}
3246				if (dstmpte->wire_count >= srcmpte->wire_count)
3247					break;
3248			}
3249			addr += PAGE_SIZE;
3250			src_pte++;
3251		}
3252	}
3253	PT_UPDATES_FLUSH();
3254	sched_unpin();
3255	vm_page_unlock_queues();
3256	PMAP_UNLOCK(src_pmap);
3257	PMAP_UNLOCK(dst_pmap);
3258
3259#ifdef HAMFISTED_LOCKING
3260	mtx_unlock(&createdelete_lock);
3261#endif
3262}
3263
3264static __inline void
3265pagezero(void *page)
3266{
3267#if defined(I686_CPU)
3268	if (cpu_class == CPUCLASS_686) {
3269#if defined(CPU_ENABLE_SSE)
3270		if (cpu_feature & CPUID_SSE2)
3271			sse2_pagezero(page);
3272		else
3273#endif
3274			i686_pagezero(page);
3275	} else
3276#endif
3277		bzero(page, PAGE_SIZE);
3278}
3279
3280/*
3281 *	pmap_zero_page zeros the specified hardware page by mapping
3282 *	the page into KVM and using bzero to clear its contents.
3283 */
3284void
3285pmap_zero_page(vm_page_t m)
3286{
3287	struct sysmaps *sysmaps;
3288
3289	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3290	mtx_lock(&sysmaps->lock);
3291	if (*sysmaps->CMAP2)
3292		panic("pmap_zero_page: CMAP2 busy");
3293	sched_pin();
3294	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3295	pagezero(sysmaps->CADDR2);
3296	PT_SET_MA(sysmaps->CADDR2, 0);
3297	sched_unpin();
3298	mtx_unlock(&sysmaps->lock);
3299}
3300
3301/*
3302 *	pmap_zero_page_area zeros the specified hardware page by mapping
3303 *	the page into KVM and using bzero to clear its contents.
3304 *
3305 *	off and size may not cover an area beyond a single hardware page.
3306 */
3307void
3308pmap_zero_page_area(vm_page_t m, int off, int size)
3309{
3310	struct sysmaps *sysmaps;
3311
3312	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3313	mtx_lock(&sysmaps->lock);
3314	if (*sysmaps->CMAP2)
3315		panic("pmap_zero_page: CMAP2 busy");
3316	sched_pin();
3317	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3318
3319	if (off == 0 && size == PAGE_SIZE)
3320		pagezero(sysmaps->CADDR2);
3321	else
3322		bzero((char *)sysmaps->CADDR2 + off, size);
3323	PT_SET_MA(sysmaps->CADDR2, 0);
3324	sched_unpin();
3325	mtx_unlock(&sysmaps->lock);
3326}
3327
3328/*
3329 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3330 *	the page into KVM and using bzero to clear its contents.  This
3331 *	is intended to be called from the vm_pagezero process only and
3332 *	outside of Giant.
3333 */
3334void
3335pmap_zero_page_idle(vm_page_t m)
3336{
3337
3338	if (*CMAP3)
3339		panic("pmap_zero_page: CMAP3 busy");
3340	sched_pin();
3341	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3342	pagezero(CADDR3);
3343	PT_SET_MA(CADDR3, 0);
3344	sched_unpin();
3345}
3346
3347/*
3348 *	pmap_copy_page copies the specified (machine independent)
3349 *	page by mapping the page into virtual memory and using
3350 *	bcopy to copy the page, one machine dependent page at a
3351 *	time.
3352 */
3353void
3354pmap_copy_page(vm_page_t src, vm_page_t dst)
3355{
3356	struct sysmaps *sysmaps;
3357
3358	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3359	mtx_lock(&sysmaps->lock);
3360	if (*sysmaps->CMAP1)
3361		panic("pmap_copy_page: CMAP1 busy");
3362	if (*sysmaps->CMAP2)
3363		panic("pmap_copy_page: CMAP2 busy");
3364	sched_pin();
3365	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3366	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3367	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3368	PT_SET_MA(sysmaps->CADDR1, 0);
3369	PT_SET_MA(sysmaps->CADDR2, 0);
3370	sched_unpin();
3371	mtx_unlock(&sysmaps->lock);
3372}
3373
3374/*
3375 * Returns true if the pmap's pv is one of the first
3376 * 16 pvs linked to from this page.  This count may
3377 * be changed upwards or downwards in the future; it
3378 * is only necessary that true be returned for a small
3379 * subset of pmaps for proper page aging.
3380 */
3381boolean_t
3382pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3383{
3384	pv_entry_t pv;
3385	int loops = 0;
3386	boolean_t rv;
3387
3388	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3389	    ("pmap_page_exists_quick: page %p is not managed", m));
3390	rv = FALSE;
3391	vm_page_lock_queues();
3392	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3393		if (PV_PMAP(pv) == pmap) {
3394			rv = TRUE;
3395			break;
3396		}
3397		loops++;
3398		if (loops >= 16)
3399			break;
3400	}
3401	vm_page_unlock_queues();
3402	return (rv);
3403}
3404
3405/*
3406 *	pmap_page_wired_mappings:
3407 *
3408 *	Return the number of managed mappings to the given physical page
3409 *	that are wired.
3410 */
3411int
3412pmap_page_wired_mappings(vm_page_t m)
3413{
3414	pv_entry_t pv;
3415	pt_entry_t *pte;
3416	pmap_t pmap;
3417	int count;
3418
3419	count = 0;
3420	if ((m->flags & PG_FICTITIOUS) != 0)
3421		return (count);
3422	vm_page_lock_queues();
3423	sched_pin();
3424	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3425		pmap = PV_PMAP(pv);
3426		PMAP_LOCK(pmap);
3427		pte = pmap_pte_quick(pmap, pv->pv_va);
3428		if ((*pte & PG_W) != 0)
3429			count++;
3430		PMAP_UNLOCK(pmap);
3431	}
3432	sched_unpin();
3433	vm_page_unlock_queues();
3434	return (count);
3435}
3436
3437/*
3438 * Returns TRUE if the given page is mapped individually or as part of
3439 * a 4mpage.  Otherwise, returns FALSE.
3440 */
3441boolean_t
3442pmap_page_is_mapped(vm_page_t m)
3443{
3444	boolean_t rv;
3445
3446	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3447		return (FALSE);
3448	vm_page_lock_queues();
3449	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3450	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3451	vm_page_unlock_queues();
3452	return (rv);
3453}
3454
3455/*
3456 * Remove all pages from specified address space
3457 * this aids process exit speeds.  Also, this code
3458 * is special cased for current process only, but
3459 * can have the more generic (and slightly slower)
3460 * mode enabled.  This is much faster than pmap_remove
3461 * in the case of running down an entire address space.
3462 */
3463void
3464pmap_remove_pages(pmap_t pmap)
3465{
3466	pt_entry_t *pte, tpte;
3467	vm_page_t m, free = NULL;
3468	pv_entry_t pv;
3469	struct pv_chunk *pc, *npc;
3470	int field, idx;
3471	int32_t bit;
3472	uint32_t inuse, bitmask;
3473	int allfree;
3474
3475	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3476
3477	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3478		printf("warning: pmap_remove_pages called with non-current pmap\n");
3479		return;
3480	}
3481	vm_page_lock_queues();
3482	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3483	PMAP_LOCK(pmap);
3484	sched_pin();
3485	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3486		allfree = 1;
3487		for (field = 0; field < _NPCM; field++) {
3488			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3489			while (inuse != 0) {
3490				bit = bsfl(inuse);
3491				bitmask = 1UL << bit;
3492				idx = field * 32 + bit;
3493				pv = &pc->pc_pventry[idx];
3494				inuse &= ~bitmask;
3495
3496				pte = vtopte(pv->pv_va);
3497				tpte = *pte ? xpmap_mtop(*pte) : 0;
3498
3499				if (tpte == 0) {
3500					printf(
3501					    "TPTE at %p  IS ZERO @ VA %08x\n",
3502					    pte, pv->pv_va);
3503					panic("bad pte");
3504				}
3505
3506/*
3507 * We cannot remove wired pages from a process' mapping at this time
3508 */
3509				if (tpte & PG_W) {
3510					allfree = 0;
3511					continue;
3512				}
3513
3514				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3515				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3516				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3517				    m, (uintmax_t)m->phys_addr,
3518				    (uintmax_t)tpte));
3519
3520				KASSERT(m < &vm_page_array[vm_page_array_size],
3521					("pmap_remove_pages: bad tpte %#jx",
3522					(uintmax_t)tpte));
3523
3524
3525				PT_CLEAR_VA(pte, FALSE);
3526
3527				/*
3528				 * Update the vm_page_t clean/reference bits.
3529				 */
3530				if (tpte & PG_M)
3531					vm_page_dirty(m);
3532
3533				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3534				if (TAILQ_EMPTY(&m->md.pv_list))
3535					vm_page_flag_clear(m, PG_WRITEABLE);
3536
3537				pmap_unuse_pt(pmap, pv->pv_va, &free);
3538
3539				/* Mark free */
3540				PV_STAT(pv_entry_frees++);
3541				PV_STAT(pv_entry_spare++);
3542				pv_entry_count--;
3543				pc->pc_map[field] |= bitmask;
3544				pmap->pm_stats.resident_count--;
3545			}
3546		}
3547		PT_UPDATES_FLUSH();
3548		if (allfree) {
3549			PV_STAT(pv_entry_spare -= _NPCPV);
3550			PV_STAT(pc_chunk_count--);
3551			PV_STAT(pc_chunk_frees++);
3552			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3553			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3554			pmap_qremove((vm_offset_t)pc, 1);
3555			vm_page_unwire(m, 0);
3556			vm_page_free(m);
3557			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3558		}
3559	}
3560	PT_UPDATES_FLUSH();
3561	if (*PMAP1)
3562		PT_SET_MA(PADDR1, 0);
3563
3564	sched_unpin();
3565	pmap_invalidate_all(pmap);
3566	vm_page_unlock_queues();
3567	PMAP_UNLOCK(pmap);
3568	pmap_free_zero_pages(free);
3569}
3570
3571/*
3572 *	pmap_is_modified:
3573 *
3574 *	Return whether or not the specified physical page was modified
3575 *	in any physical maps.
3576 */
3577boolean_t
3578pmap_is_modified(vm_page_t m)
3579{
3580	pv_entry_t pv;
3581	pt_entry_t *pte;
3582	pmap_t pmap;
3583	boolean_t rv;
3584
3585	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3586	    ("pmap_is_modified: page %p is not managed", m));
3587	rv = FALSE;
3588
3589	/*
3590	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
3591	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
3592	 * is clear, no PTEs can have PG_M set.
3593	 */
3594	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3595	if ((m->oflags & VPO_BUSY) == 0 &&
3596	    (m->flags & PG_WRITEABLE) == 0)
3597		return (rv);
3598	vm_page_lock_queues();
3599	sched_pin();
3600	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3601		pmap = PV_PMAP(pv);
3602		PMAP_LOCK(pmap);
3603		pte = pmap_pte_quick(pmap, pv->pv_va);
3604		rv = (*pte & PG_M) != 0;
3605		PMAP_UNLOCK(pmap);
3606		if (rv)
3607			break;
3608	}
3609	if (*PMAP1)
3610		PT_SET_MA(PADDR1, 0);
3611	sched_unpin();
3612	vm_page_unlock_queues();
3613	return (rv);
3614}
3615
3616/*
3617 *	pmap_is_prefaultable:
3618 *
3619 *	Return whether or not the specified virtual address is elgible
3620 *	for prefault.
3621 */
3622static boolean_t
3623pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3624{
3625	pt_entry_t *pte;
3626	boolean_t rv = FALSE;
3627
3628	return (rv);
3629
3630	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3631		pte = vtopte(addr);
3632		rv = (*pte == 0);
3633	}
3634	return (rv);
3635}
3636
3637boolean_t
3638pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3639{
3640	boolean_t rv;
3641
3642	PMAP_LOCK(pmap);
3643	rv = pmap_is_prefaultable_locked(pmap, addr);
3644	PMAP_UNLOCK(pmap);
3645	return (rv);
3646}
3647
3648boolean_t
3649pmap_is_referenced(vm_page_t m)
3650{
3651	pv_entry_t pv;
3652	pt_entry_t *pte;
3653	pmap_t pmap;
3654	boolean_t rv;
3655
3656	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3657	    ("pmap_is_referenced: page %p is not managed", m));
3658	rv = FALSE;
3659	vm_page_lock_queues();
3660	sched_pin();
3661	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3662		pmap = PV_PMAP(pv);
3663		PMAP_LOCK(pmap);
3664		pte = pmap_pte_quick(pmap, pv->pv_va);
3665		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3666		PMAP_UNLOCK(pmap);
3667		if (rv)
3668			break;
3669	}
3670	if (*PMAP1)
3671		PT_SET_MA(PADDR1, 0);
3672	sched_unpin();
3673	vm_page_unlock_queues();
3674	return (rv);
3675}
3676
3677void
3678pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3679{
3680	int i, npages = round_page(len) >> PAGE_SHIFT;
3681	for (i = 0; i < npages; i++) {
3682		pt_entry_t *pte;
3683		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3684		vm_page_lock_queues();
3685		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3686		vm_page_unlock_queues();
3687		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3688		pmap_pte_release(pte);
3689	}
3690}
3691
3692void
3693pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3694{
3695	int i, npages = round_page(len) >> PAGE_SHIFT;
3696	for (i = 0; i < npages; i++) {
3697		pt_entry_t *pte;
3698		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3699		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3700		vm_page_lock_queues();
3701		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3702		vm_page_unlock_queues();
3703		pmap_pte_release(pte);
3704	}
3705}
3706
3707/*
3708 * Clear the write and modified bits in each of the given page's mappings.
3709 */
3710void
3711pmap_remove_write(vm_page_t m)
3712{
3713	pv_entry_t pv;
3714	pmap_t pmap;
3715	pt_entry_t oldpte, *pte;
3716
3717	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3718	    ("pmap_remove_write: page %p is not managed", m));
3719
3720	/*
3721	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
3722	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
3723	 * is clear, no page table entries need updating.
3724	 */
3725	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3726	if ((m->oflags & VPO_BUSY) == 0 &&
3727	    (m->flags & PG_WRITEABLE) == 0)
3728		return;
3729	vm_page_lock_queues();
3730	sched_pin();
3731	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3732		pmap = PV_PMAP(pv);
3733		PMAP_LOCK(pmap);
3734		pte = pmap_pte_quick(pmap, pv->pv_va);
3735retry:
3736		oldpte = *pte;
3737		if ((oldpte & PG_RW) != 0) {
3738			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3739
3740			/*
3741			 * Regardless of whether a pte is 32 or 64 bits
3742			 * in size, PG_RW and PG_M are among the least
3743			 * significant 32 bits.
3744			 */
3745			PT_SET_VA_MA(pte, newpte, TRUE);
3746			if (*pte != newpte)
3747				goto retry;
3748
3749			if ((oldpte & PG_M) != 0)
3750				vm_page_dirty(m);
3751			pmap_invalidate_page(pmap, pv->pv_va);
3752		}
3753		PMAP_UNLOCK(pmap);
3754	}
3755	vm_page_flag_clear(m, PG_WRITEABLE);
3756	PT_UPDATES_FLUSH();
3757	if (*PMAP1)
3758		PT_SET_MA(PADDR1, 0);
3759	sched_unpin();
3760	vm_page_unlock_queues();
3761}
3762
3763/*
3764 *	pmap_ts_referenced:
3765 *
3766 *	Return a count of reference bits for a page, clearing those bits.
3767 *	It is not necessary for every reference bit to be cleared, but it
3768 *	is necessary that 0 only be returned when there are truly no
3769 *	reference bits set.
3770 *
3771 *	XXX: The exact number of bits to check and clear is a matter that
3772 *	should be tested and standardized at some point in the future for
3773 *	optimal aging of shared pages.
3774 */
3775int
3776pmap_ts_referenced(vm_page_t m)
3777{
3778	pv_entry_t pv, pvf, pvn;
3779	pmap_t pmap;
3780	pt_entry_t *pte;
3781	int rtval = 0;
3782
3783	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3784	    ("pmap_ts_referenced: page %p is not managed", m));
3785	vm_page_lock_queues();
3786	sched_pin();
3787	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3788		pvf = pv;
3789		do {
3790			pvn = TAILQ_NEXT(pv, pv_list);
3791			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3792			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3793			pmap = PV_PMAP(pv);
3794			PMAP_LOCK(pmap);
3795			pte = pmap_pte_quick(pmap, pv->pv_va);
3796			if ((*pte & PG_A) != 0) {
3797				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3798				pmap_invalidate_page(pmap, pv->pv_va);
3799				rtval++;
3800				if (rtval > 4)
3801					pvn = NULL;
3802			}
3803			PMAP_UNLOCK(pmap);
3804		} while ((pv = pvn) != NULL && pv != pvf);
3805	}
3806	PT_UPDATES_FLUSH();
3807	if (*PMAP1)
3808		PT_SET_MA(PADDR1, 0);
3809
3810	sched_unpin();
3811	vm_page_unlock_queues();
3812	return (rtval);
3813}
3814
3815/*
3816 *	Clear the modify bits on the specified physical page.
3817 */
3818void
3819pmap_clear_modify(vm_page_t m)
3820{
3821	pv_entry_t pv;
3822	pmap_t pmap;
3823	pt_entry_t *pte;
3824
3825	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3826	    ("pmap_clear_modify: page %p is not managed", m));
3827	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3828	KASSERT((m->oflags & VPO_BUSY) == 0,
3829	    ("pmap_clear_modify: page %p is busy", m));
3830
3831	/*
3832	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
3833	 * If the object containing the page is locked and the page is not
3834	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
3835	 */
3836	if ((m->flags & PG_WRITEABLE) == 0)
3837		return;
3838	vm_page_lock_queues();
3839	sched_pin();
3840	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3841		pmap = PV_PMAP(pv);
3842		PMAP_LOCK(pmap);
3843		pte = pmap_pte_quick(pmap, pv->pv_va);
3844		if ((*pte & PG_M) != 0) {
3845			/*
3846			 * Regardless of whether a pte is 32 or 64 bits
3847			 * in size, PG_M is among the least significant
3848			 * 32 bits.
3849			 */
3850			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3851			pmap_invalidate_page(pmap, pv->pv_va);
3852		}
3853		PMAP_UNLOCK(pmap);
3854	}
3855	sched_unpin();
3856	vm_page_unlock_queues();
3857}
3858
3859/*
3860 *	pmap_clear_reference:
3861 *
3862 *	Clear the reference bit on the specified physical page.
3863 */
3864void
3865pmap_clear_reference(vm_page_t m)
3866{
3867	pv_entry_t pv;
3868	pmap_t pmap;
3869	pt_entry_t *pte;
3870
3871	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3872	    ("pmap_clear_reference: page %p is not managed", m));
3873	vm_page_lock_queues();
3874	sched_pin();
3875	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3876		pmap = PV_PMAP(pv);
3877		PMAP_LOCK(pmap);
3878		pte = pmap_pte_quick(pmap, pv->pv_va);
3879		if ((*pte & PG_A) != 0) {
3880			/*
3881			 * Regardless of whether a pte is 32 or 64 bits
3882			 * in size, PG_A is among the least significant
3883			 * 32 bits.
3884			 */
3885			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3886			pmap_invalidate_page(pmap, pv->pv_va);
3887		}
3888		PMAP_UNLOCK(pmap);
3889	}
3890	sched_unpin();
3891	vm_page_unlock_queues();
3892}
3893
3894/*
3895 * Miscellaneous support routines follow
3896 */
3897
3898/*
3899 * Map a set of physical memory pages into the kernel virtual
3900 * address space. Return a pointer to where it is mapped. This
3901 * routine is intended to be used for mapping device memory,
3902 * NOT real memory.
3903 */
3904void *
3905pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3906{
3907	vm_offset_t va, offset;
3908	vm_size_t tmpsize;
3909
3910	offset = pa & PAGE_MASK;
3911	size = roundup(offset + size, PAGE_SIZE);
3912	pa = pa & PG_FRAME;
3913
3914	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3915		va = KERNBASE + pa;
3916	else
3917		va = kmem_alloc_nofault(kernel_map, size);
3918	if (!va)
3919		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3920
3921	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3922		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3923	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3924	pmap_invalidate_cache_range(va, va + size);
3925	return ((void *)(va + offset));
3926}
3927
3928void *
3929pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3930{
3931
3932	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3933}
3934
3935void *
3936pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3937{
3938
3939	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3940}
3941
3942void
3943pmap_unmapdev(vm_offset_t va, vm_size_t size)
3944{
3945	vm_offset_t base, offset, tmpva;
3946
3947	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3948		return;
3949	base = trunc_page(va);
3950	offset = va & PAGE_MASK;
3951	size = roundup(offset + size, PAGE_SIZE);
3952	critical_enter();
3953	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3954		pmap_kremove(tmpva);
3955	pmap_invalidate_range(kernel_pmap, va, tmpva);
3956	critical_exit();
3957	kmem_free(kernel_map, base, size);
3958}
3959
3960/*
3961 * Sets the memory attribute for the specified page.
3962 */
3963void
3964pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3965{
3966	struct sysmaps *sysmaps;
3967	vm_offset_t sva, eva;
3968
3969	m->md.pat_mode = ma;
3970	if ((m->flags & PG_FICTITIOUS) != 0)
3971		return;
3972
3973	/*
3974	 * If "m" is a normal page, flush it from the cache.
3975	 * See pmap_invalidate_cache_range().
3976	 *
3977	 * First, try to find an existing mapping of the page by sf
3978	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3979	 * flushes the cache.
3980	 */
3981	if (sf_buf_invalidate_cache(m))
3982		return;
3983
3984	/*
3985	 * If page is not mapped by sf buffer, but CPU does not
3986	 * support self snoop, map the page transient and do
3987	 * invalidation. In the worst case, whole cache is flushed by
3988	 * pmap_invalidate_cache_range().
3989	 */
3990	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
3991		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3992		mtx_lock(&sysmaps->lock);
3993		if (*sysmaps->CMAP2)
3994			panic("pmap_page_set_memattr: CMAP2 busy");
3995		sched_pin();
3996		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3997		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
3998		    pmap_cache_bits(m->md.pat_mode, 0));
3999		invlcaddr(sysmaps->CADDR2);
4000		sva = (vm_offset_t)sysmaps->CADDR2;
4001		eva = sva + PAGE_SIZE;
4002	} else
4003		sva = eva = 0; /* gcc */
4004	pmap_invalidate_cache_range(sva, eva);
4005	if (sva != 0) {
4006		PT_SET_MA(sysmaps->CADDR2, 0);
4007		sched_unpin();
4008		mtx_unlock(&sysmaps->lock);
4009	}
4010}
4011
4012int
4013pmap_change_attr(va, size, mode)
4014	vm_offset_t va;
4015	vm_size_t size;
4016	int mode;
4017{
4018	vm_offset_t base, offset, tmpva;
4019	pt_entry_t *pte;
4020	u_int opte, npte;
4021	pd_entry_t *pde;
4022	boolean_t changed;
4023
4024	base = trunc_page(va);
4025	offset = va & PAGE_MASK;
4026	size = roundup(offset + size, PAGE_SIZE);
4027
4028	/* Only supported on kernel virtual addresses. */
4029	if (base <= VM_MAXUSER_ADDRESS)
4030		return (EINVAL);
4031
4032	/* 4MB pages and pages that aren't mapped aren't supported. */
4033	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4034		pde = pmap_pde(kernel_pmap, tmpva);
4035		if (*pde & PG_PS)
4036			return (EINVAL);
4037		if ((*pde & PG_V) == 0)
4038			return (EINVAL);
4039		pte = vtopte(va);
4040		if ((*pte & PG_V) == 0)
4041			return (EINVAL);
4042	}
4043
4044	changed = FALSE;
4045
4046	/*
4047	 * Ok, all the pages exist and are 4k, so run through them updating
4048	 * their cache mode.
4049	 */
4050	for (tmpva = base; size > 0; ) {
4051		pte = vtopte(tmpva);
4052
4053		/*
4054		 * The cache mode bits are all in the low 32-bits of the
4055		 * PTE, so we can just spin on updating the low 32-bits.
4056		 */
4057		do {
4058			opte = *(u_int *)pte;
4059			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4060			npte |= pmap_cache_bits(mode, 0);
4061			PT_SET_VA_MA(pte, npte, TRUE);
4062		} while (npte != opte && (*pte != npte));
4063		if (npte != opte)
4064			changed = TRUE;
4065		tmpva += PAGE_SIZE;
4066		size -= PAGE_SIZE;
4067	}
4068
4069	/*
4070	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4071	 * be, etc.
4072	 */
4073	if (changed) {
4074		pmap_invalidate_range(kernel_pmap, base, tmpva);
4075		pmap_invalidate_cache_range(base, tmpva);
4076	}
4077	return (0);
4078}
4079
4080/*
4081 * perform the pmap work for mincore
4082 */
4083int
4084pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4085{
4086	pt_entry_t *ptep, pte;
4087	vm_paddr_t pa;
4088	int val;
4089
4090	PMAP_LOCK(pmap);
4091retry:
4092	ptep = pmap_pte(pmap, addr);
4093	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4094	pmap_pte_release(ptep);
4095	val = 0;
4096	if ((pte & PG_V) != 0) {
4097		val |= MINCORE_INCORE;
4098		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4099			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4100		if ((pte & PG_A) != 0)
4101			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4102	}
4103	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4104	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4105	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4106		pa = pte & PG_FRAME;
4107		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4108		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4109			goto retry;
4110	} else
4111		PA_UNLOCK_COND(*locked_pa);
4112	PMAP_UNLOCK(pmap);
4113	return (val);
4114}
4115
4116void
4117pmap_activate(struct thread *td)
4118{
4119	pmap_t	pmap, oldpmap;
4120	u_int32_t  cr3;
4121
4122	critical_enter();
4123	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4124	oldpmap = PCPU_GET(curpmap);
4125#if defined(SMP)
4126	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4127	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4128#else
4129	oldpmap->pm_active &= ~1;
4130	pmap->pm_active |= 1;
4131#endif
4132#ifdef PAE
4133	cr3 = vtophys(pmap->pm_pdpt);
4134#else
4135	cr3 = vtophys(pmap->pm_pdir);
4136#endif
4137	/*
4138	 * pmap_activate is for the current thread on the current cpu
4139	 */
4140	td->td_pcb->pcb_cr3 = cr3;
4141	PT_UPDATES_FLUSH();
4142	load_cr3(cr3);
4143	PCPU_SET(curpmap, pmap);
4144	critical_exit();
4145}
4146
4147void
4148pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4149{
4150}
4151
4152/*
4153 *	Increase the starting virtual address of the given mapping if a
4154 *	different alignment might result in more superpage mappings.
4155 */
4156void
4157pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4158    vm_offset_t *addr, vm_size_t size)
4159{
4160	vm_offset_t superpage_offset;
4161
4162	if (size < NBPDR)
4163		return;
4164	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4165		offset += ptoa(object->pg_color);
4166	superpage_offset = offset & PDRMASK;
4167	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4168	    (*addr & PDRMASK) == superpage_offset)
4169		return;
4170	if ((*addr & PDRMASK) < superpage_offset)
4171		*addr = (*addr & ~PDRMASK) + superpage_offset;
4172	else
4173		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4174}
4175
4176void
4177pmap_suspend()
4178{
4179	pmap_t pmap;
4180	int i, pdir, offset;
4181	vm_paddr_t pdirma;
4182	mmu_update_t mu[4];
4183
4184	/*
4185	 * We need to remove the recursive mapping structure from all
4186	 * our pmaps so that Xen doesn't get confused when it restores
4187	 * the page tables. The recursive map lives at page directory
4188	 * index PTDPTDI. We assume that the suspend code has stopped
4189	 * the other vcpus (if any).
4190	 */
4191	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4192		for (i = 0; i < 4; i++) {
4193			/*
4194			 * Figure out which page directory (L2) page
4195			 * contains this bit of the recursive map and
4196			 * the offset within that page of the map
4197			 * entry
4198			 */
4199			pdir = (PTDPTDI + i) / NPDEPG;
4200			offset = (PTDPTDI + i) % NPDEPG;
4201			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4202			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4203			mu[i].val = 0;
4204		}
4205		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4206	}
4207}
4208
4209void
4210pmap_resume()
4211{
4212	pmap_t pmap;
4213	int i, pdir, offset;
4214	vm_paddr_t pdirma;
4215	mmu_update_t mu[4];
4216
4217	/*
4218	 * Restore the recursive map that we removed on suspend.
4219	 */
4220	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4221		for (i = 0; i < 4; i++) {
4222			/*
4223			 * Figure out which page directory (L2) page
4224			 * contains this bit of the recursive map and
4225			 * the offset within that page of the map
4226			 * entry
4227			 */
4228			pdir = (PTDPTDI + i) / NPDEPG;
4229			offset = (PTDPTDI + i) % NPDEPG;
4230			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4231			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4232			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4233		}
4234		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4235	}
4236}
4237
4238#if defined(PMAP_DEBUG)
4239pmap_pid_dump(int pid)
4240{
4241	pmap_t pmap;
4242	struct proc *p;
4243	int npte = 0;
4244	int index;
4245
4246	sx_slock(&allproc_lock);
4247	FOREACH_PROC_IN_SYSTEM(p) {
4248		if (p->p_pid != pid)
4249			continue;
4250
4251		if (p->p_vmspace) {
4252			int i,j;
4253			index = 0;
4254			pmap = vmspace_pmap(p->p_vmspace);
4255			for (i = 0; i < NPDEPTD; i++) {
4256				pd_entry_t *pde;
4257				pt_entry_t *pte;
4258				vm_offset_t base = i << PDRSHIFT;
4259
4260				pde = &pmap->pm_pdir[i];
4261				if (pde && pmap_pde_v(pde)) {
4262					for (j = 0; j < NPTEPG; j++) {
4263						vm_offset_t va = base + (j << PAGE_SHIFT);
4264						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4265							if (index) {
4266								index = 0;
4267								printf("\n");
4268							}
4269							sx_sunlock(&allproc_lock);
4270							return npte;
4271						}
4272						pte = pmap_pte(pmap, va);
4273						if (pte && pmap_pte_v(pte)) {
4274							pt_entry_t pa;
4275							vm_page_t m;
4276							pa = PT_GET(pte);
4277							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4278							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4279								va, pa, m->hold_count, m->wire_count, m->flags);
4280							npte++;
4281							index++;
4282							if (index >= 2) {
4283								index = 0;
4284								printf("\n");
4285							} else {
4286								printf(" ");
4287							}
4288						}
4289					}
4290				}
4291			}
4292		}
4293	}
4294	sx_sunlock(&allproc_lock);
4295	return npte;
4296}
4297#endif
4298
4299#if defined(DEBUG)
4300
4301static void	pads(pmap_t pm);
4302void		pmap_pvdump(vm_paddr_t pa);
4303
4304/* print address space of pmap*/
4305static void
4306pads(pmap_t pm)
4307{
4308	int i, j;
4309	vm_paddr_t va;
4310	pt_entry_t *ptep;
4311
4312	if (pm == kernel_pmap)
4313		return;
4314	for (i = 0; i < NPDEPTD; i++)
4315		if (pm->pm_pdir[i])
4316			for (j = 0; j < NPTEPG; j++) {
4317				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4318				if (pm == kernel_pmap && va < KERNBASE)
4319					continue;
4320				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4321					continue;
4322				ptep = pmap_pte(pm, va);
4323				if (pmap_pte_v(ptep))
4324					printf("%x:%x ", va, *ptep);
4325			};
4326
4327}
4328
4329void
4330pmap_pvdump(vm_paddr_t pa)
4331{
4332	pv_entry_t pv;
4333	pmap_t pmap;
4334	vm_page_t m;
4335
4336	printf("pa %x", pa);
4337	m = PHYS_TO_VM_PAGE(pa);
4338	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4339		pmap = PV_PMAP(pv);
4340		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4341		pads(pmap);
4342	}
4343	printf(" ");
4344}
4345#endif
4346