pmap.c revision 216762
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 216762 2010-12-28 14:36:32Z cperciva $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/uma.h>
141
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifdef XBOX
152#include <machine/xbox.h>
153#endif
154
155#include <xen/interface/xen.h>
156#include <xen/hypervisor.h>
157#include <machine/xen/hypercall.h>
158#include <machine/xen/xenvar.h>
159#include <machine/xen/xenfunc.h>
160
161#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
162#define CPU_ENABLE_SSE
163#endif
164
165#ifndef PMAP_SHPGPERPROC
166#define PMAP_SHPGPERPROC 200
167#endif
168
169#define DIAGNOSTIC
170
171#if !defined(DIAGNOSTIC)
172#ifdef __GNUC_GNU_INLINE__
173#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
174#else
175#define PMAP_INLINE	extern inline
176#endif
177#else
178#define PMAP_INLINE
179#endif
180
181#define PV_STATS
182#ifdef PV_STATS
183#define PV_STAT(x)	do { x ; } while (0)
184#else
185#define PV_STAT(x)	do { } while (0)
186#endif
187
188#define	pa_index(pa)	((pa) >> PDRSHIFT)
189#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
190
191/*
192 * Get PDEs and PTEs for user/kernel address space
193 */
194#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
195#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
196
197#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
198#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
199#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
200#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
201#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
202
203#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204
205struct pmap kernel_pmap_store;
206LIST_HEAD(pmaplist, pmap);
207static struct pmaplist allpmaps;
208static struct mtx allpmaps_lock;
209
210vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
211vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
212int pgeflag = 0;		/* PG_G or-in */
213int pseflag = 0;		/* PG_PS or-in */
214
215int nkpt;
216vm_offset_t kernel_vm_end;
217extern u_int32_t KERNend;
218
219#ifdef PAE
220pt_entry_t pg_nx;
221#endif
222
223static int pat_works;			/* Is page attribute table sane? */
224
225/*
226 * Data for the pv entry allocation mechanism
227 */
228static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
229static struct md_page *pv_table;
230static int shpgperproc = PMAP_SHPGPERPROC;
231
232struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
233int pv_maxchunks;			/* How many chunks we have KVA for */
234vm_offset_t pv_vafree;			/* freelist stored in the PTE */
235
236/*
237 * All those kernel PT submaps that BSD is so fond of
238 */
239struct sysmaps {
240	struct	mtx lock;
241	pt_entry_t *CMAP1;
242	pt_entry_t *CMAP2;
243	caddr_t	CADDR1;
244	caddr_t	CADDR2;
245};
246static struct sysmaps sysmaps_pcpu[MAXCPU];
247static pt_entry_t *CMAP3;
248caddr_t ptvmmap = 0;
249static caddr_t CADDR3;
250struct msgbuf *msgbufp = 0;
251
252/*
253 * Crashdump maps.
254 */
255static caddr_t crashdumpmap;
256
257static pt_entry_t *PMAP1 = 0, *PMAP2;
258static pt_entry_t *PADDR1 = 0, *PADDR2;
259#ifdef SMP
260static int PMAP1cpu;
261static int PMAP1changedcpu;
262SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
263	   &PMAP1changedcpu, 0,
264	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
265#endif
266static int PMAP1changed;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
268	   &PMAP1changed, 0,
269	   "Number of times pmap_pte_quick changed PMAP1");
270static int PMAP1unchanged;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
272	   &PMAP1unchanged, 0,
273	   "Number of times pmap_pte_quick didn't change PMAP1");
274static struct mtx PMAP2mutex;
275
276SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
277static int pg_ps_enabled;
278SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
279    "Are large page mappings enabled?");
280
281SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
282	"Max number of PV entries");
283SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
284	"Page share factor per proc");
285SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
286    "2/4MB page mapping counters");
287
288static u_long pmap_pde_mappings;
289SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
290    &pmap_pde_mappings, 0, "2/4MB page mappings");
291
292static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
293static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
294static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
295static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
296		    vm_offset_t va);
297
298static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
299    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
300static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
301    vm_page_t *free);
302static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
303    vm_page_t *free);
304static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
305					vm_offset_t va);
306static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
307    vm_page_t m);
308
309static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
310
311static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
312static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
313static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
314static void pmap_pte_release(pt_entry_t *pte);
315static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
316static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
317static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
318static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
319
320static __inline void pagezero(void *page);
321
322CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
323CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
324
325/*
326 * If you get an error here, then you set KVA_PAGES wrong! See the
327 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
328 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
329 */
330CTASSERT(KERNBASE % (1 << 24) == 0);
331
332
333
334void
335pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
336{
337	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
338
339	switch (type) {
340	case SH_PD_SET_VA:
341#if 0
342		xen_queue_pt_update(shadow_pdir_ma,
343				    xpmap_ptom(val & ~(PG_RW)));
344#endif
345		xen_queue_pt_update(pdir_ma,
346				    xpmap_ptom(val));
347		break;
348	case SH_PD_SET_VA_MA:
349#if 0
350		xen_queue_pt_update(shadow_pdir_ma,
351				    val & ~(PG_RW));
352#endif
353		xen_queue_pt_update(pdir_ma, val);
354		break;
355	case SH_PD_SET_VA_CLEAR:
356#if 0
357		xen_queue_pt_update(shadow_pdir_ma, 0);
358#endif
359		xen_queue_pt_update(pdir_ma, 0);
360		break;
361	}
362}
363
364/*
365 * Move the kernel virtual free pointer to the next
366 * 4MB.  This is used to help improve performance
367 * by using a large (4MB) page for much of the kernel
368 * (.text, .data, .bss)
369 */
370static vm_offset_t
371pmap_kmem_choose(vm_offset_t addr)
372{
373	vm_offset_t newaddr = addr;
374
375#ifndef DISABLE_PSE
376	if (cpu_feature & CPUID_PSE)
377		newaddr = (addr + PDRMASK) & ~PDRMASK;
378#endif
379	return newaddr;
380}
381
382/*
383 *	Bootstrap the system enough to run with virtual memory.
384 *
385 *	On the i386 this is called after mapping has already been enabled
386 *	and just syncs the pmap module with what has already been done.
387 *	[We can't call it easily with mapping off since the kernel is not
388 *	mapped with PA == VA, hence we would have to relocate every address
389 *	from the linked base (virtual) address "KERNBASE" to the actual
390 *	(physical) address starting relative to 0]
391 */
392void
393pmap_bootstrap(vm_paddr_t firstaddr)
394{
395	vm_offset_t va;
396	pt_entry_t *pte, *unused;
397	struct sysmaps *sysmaps;
398	int i;
399
400	/*
401	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
402	 * large. It should instead be correctly calculated in locore.s and
403	 * not based on 'first' (which is a physical address, not a virtual
404	 * address, for the start of unused physical memory). The kernel
405	 * page tables are NOT double mapped and thus should not be included
406	 * in this calculation.
407	 */
408	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
409	virtual_avail = pmap_kmem_choose(virtual_avail);
410
411	virtual_end = VM_MAX_KERNEL_ADDRESS;
412
413	/*
414	 * Initialize the kernel pmap (which is statically allocated).
415	 */
416	PMAP_LOCK_INIT(kernel_pmap);
417	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
418#ifdef PAE
419	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
420#endif
421	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
422	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
423	LIST_INIT(&allpmaps);
424	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
425	mtx_lock_spin(&allpmaps_lock);
426	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
427	mtx_unlock_spin(&allpmaps_lock);
428	if (nkpt == 0)
429		nkpt = NKPT;
430
431	/*
432	 * Reserve some special page table entries/VA space for temporary
433	 * mapping of pages.
434	 */
435#define	SYSMAP(c, p, v, n)	\
436	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
437
438	va = virtual_avail;
439	pte = vtopte(va);
440
441	/*
442	 * CMAP1/CMAP2 are used for zeroing and copying pages.
443	 * CMAP3 is used for the idle process page zeroing.
444	 */
445	for (i = 0; i < MAXCPU; i++) {
446		sysmaps = &sysmaps_pcpu[i];
447		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
448		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
449		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
450		PT_SET_MA(sysmaps->CADDR1, 0);
451		PT_SET_MA(sysmaps->CADDR2, 0);
452	}
453	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
454	PT_SET_MA(CADDR3, 0);
455
456	/*
457	 * Crashdump maps.
458	 */
459	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
460
461	/*
462	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
463	 */
464	SYSMAP(caddr_t, unused, ptvmmap, 1)
465
466	/*
467	 * msgbufp is used to map the system message buffer.
468	 */
469	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
470
471	/*
472	 * ptemap is used for pmap_pte_quick
473	 */
474	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
475	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
476
477	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
478
479	virtual_avail = va;
480
481	/*
482	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
483	 * physical memory region that is used by the ACPI wakeup code.  This
484	 * mapping must not have PG_G set.
485	 */
486#ifndef XEN
487	/*
488	 * leave here deliberately to show that this is not supported
489	 */
490#ifdef XBOX
491	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
492	 * an early stadium, we cannot yet neatly map video memory ... :-(
493	 * Better fixes are very welcome! */
494	if (!arch_i386_is_xbox)
495#endif
496	for (i = 1; i < NKPT; i++)
497		PTD[i] = 0;
498
499	/* Initialize the PAT MSR if present. */
500	pmap_init_pat();
501
502	/* Turn on PG_G on kernel page(s) */
503	pmap_set_pg();
504#endif
505}
506
507/*
508 * Setup the PAT MSR.
509 */
510void
511pmap_init_pat(void)
512{
513	uint64_t pat_msr;
514
515	/* Bail if this CPU doesn't implement PAT. */
516	if (!(cpu_feature & CPUID_PAT))
517		return;
518
519	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
520	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
521		/*
522		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
523		 * Program 4 and 5 as WP and WC.
524		 * Leave 6 and 7 as UC and UC-.
525		 */
526		pat_msr = rdmsr(MSR_PAT);
527		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
528		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
529		    PAT_VALUE(5, PAT_WRITE_COMBINING);
530		pat_works = 1;
531	} else {
532		/*
533		 * Due to some Intel errata, we can only safely use the lower 4
534		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
535		 * of UC-.
536		 *
537		 *   Intel Pentium III Processor Specification Update
538		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
539		 * or Mode C Paging)
540		 *
541		 *   Intel Pentium IV  Processor Specification Update
542		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
543		 */
544		pat_msr = rdmsr(MSR_PAT);
545		pat_msr &= ~PAT_MASK(2);
546		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
547		pat_works = 0;
548	}
549	wrmsr(MSR_PAT, pat_msr);
550}
551
552/*
553 * Initialize a vm_page's machine-dependent fields.
554 */
555void
556pmap_page_init(vm_page_t m)
557{
558
559	TAILQ_INIT(&m->md.pv_list);
560	m->md.pat_mode = PAT_WRITE_BACK;
561}
562
563/*
564 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
565 * Requirements:
566 *  - Must deal with pages in order to ensure that none of the PG_* bits
567 *    are ever set, PG_V in particular.
568 *  - Assumes we can write to ptes without pte_store() atomic ops, even
569 *    on PAE systems.  This should be ok.
570 *  - Assumes nothing will ever test these addresses for 0 to indicate
571 *    no mapping instead of correctly checking PG_V.
572 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
573 * Because PG_V is never set, there can be no mappings to invalidate.
574 */
575static int ptelist_count = 0;
576static vm_offset_t
577pmap_ptelist_alloc(vm_offset_t *head)
578{
579	vm_offset_t va;
580	vm_offset_t *phead = (vm_offset_t *)*head;
581
582	if (ptelist_count == 0) {
583		printf("out of memory!!!!!!\n");
584		return (0);	/* Out of memory */
585	}
586	ptelist_count--;
587	va = phead[ptelist_count];
588	return (va);
589}
590
591static void
592pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
593{
594	vm_offset_t *phead = (vm_offset_t *)*head;
595
596	phead[ptelist_count++] = va;
597}
598
599static void
600pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
601{
602	int i, nstackpages;
603	vm_offset_t va;
604	vm_page_t m;
605
606	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
607	for (i = 0; i < nstackpages; i++) {
608		va = (vm_offset_t)base + i * PAGE_SIZE;
609		m = vm_page_alloc(NULL, i,
610		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
611		    VM_ALLOC_ZERO);
612		pmap_qenter(va, &m, 1);
613	}
614
615	*head = (vm_offset_t)base;
616	for (i = npages - 1; i >= nstackpages; i--) {
617		va = (vm_offset_t)base + i * PAGE_SIZE;
618		pmap_ptelist_free(head, va);
619	}
620}
621
622
623/*
624 *	Initialize the pmap module.
625 *	Called by vm_init, to initialize any structures that the pmap
626 *	system needs to map virtual memory.
627 */
628void
629pmap_init(void)
630{
631	vm_page_t mpte;
632	vm_size_t s;
633	int i, pv_npg;
634
635	/*
636	 * Initialize the vm page array entries for the kernel pmap's
637	 * page table pages.
638	 */
639	for (i = 0; i < nkpt; i++) {
640		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
641		KASSERT(mpte >= vm_page_array &&
642		    mpte < &vm_page_array[vm_page_array_size],
643		    ("pmap_init: page table page is out of range"));
644		mpte->pindex = i + KPTDI;
645		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
646	}
647
648        /*
649	 * Initialize the address space (zone) for the pv entries.  Set a
650	 * high water mark so that the system can recover from excessive
651	 * numbers of pv entries.
652	 */
653	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
654	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
655	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
656	pv_entry_max = roundup(pv_entry_max, _NPCPV);
657	pv_entry_high_water = 9 * (pv_entry_max / 10);
658
659	/*
660	 * Are large page mappings enabled?
661	 */
662	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
663
664	/*
665	 * Calculate the size of the pv head table for superpages.
666	 */
667	for (i = 0; phys_avail[i + 1]; i += 2);
668	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
669
670	/*
671	 * Allocate memory for the pv head table for superpages.
672	 */
673	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
674	s = round_page(s);
675	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
676	for (i = 0; i < pv_npg; i++)
677		TAILQ_INIT(&pv_table[i].pv_list);
678
679	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
680	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
681	    PAGE_SIZE * pv_maxchunks);
682	if (pv_chunkbase == NULL)
683		panic("pmap_init: not enough kvm for pv chunks");
684	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
685}
686
687
688/***************************************************
689 * Low level helper routines.....
690 ***************************************************/
691
692/*
693 * Determine the appropriate bits to set in a PTE or PDE for a specified
694 * caching mode.
695 */
696int
697pmap_cache_bits(int mode, boolean_t is_pde)
698{
699	int pat_flag, pat_index, cache_bits;
700
701	/* The PAT bit is different for PTE's and PDE's. */
702	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
703
704	/* If we don't support PAT, map extended modes to older ones. */
705	if (!(cpu_feature & CPUID_PAT)) {
706		switch (mode) {
707		case PAT_UNCACHEABLE:
708		case PAT_WRITE_THROUGH:
709		case PAT_WRITE_BACK:
710			break;
711		case PAT_UNCACHED:
712		case PAT_WRITE_COMBINING:
713		case PAT_WRITE_PROTECTED:
714			mode = PAT_UNCACHEABLE;
715			break;
716		}
717	}
718
719	/* Map the caching mode to a PAT index. */
720	if (pat_works) {
721		switch (mode) {
722			case PAT_UNCACHEABLE:
723				pat_index = 3;
724				break;
725			case PAT_WRITE_THROUGH:
726				pat_index = 1;
727				break;
728			case PAT_WRITE_BACK:
729				pat_index = 0;
730				break;
731			case PAT_UNCACHED:
732				pat_index = 2;
733				break;
734			case PAT_WRITE_COMBINING:
735				pat_index = 5;
736				break;
737			case PAT_WRITE_PROTECTED:
738				pat_index = 4;
739				break;
740			default:
741				panic("Unknown caching mode %d\n", mode);
742		}
743	} else {
744		switch (mode) {
745			case PAT_UNCACHED:
746			case PAT_UNCACHEABLE:
747			case PAT_WRITE_PROTECTED:
748				pat_index = 3;
749				break;
750			case PAT_WRITE_THROUGH:
751				pat_index = 1;
752				break;
753			case PAT_WRITE_BACK:
754				pat_index = 0;
755				break;
756			case PAT_WRITE_COMBINING:
757				pat_index = 2;
758				break;
759			default:
760				panic("Unknown caching mode %d\n", mode);
761		}
762	}
763
764	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
765	cache_bits = 0;
766	if (pat_index & 0x4)
767		cache_bits |= pat_flag;
768	if (pat_index & 0x2)
769		cache_bits |= PG_NC_PCD;
770	if (pat_index & 0x1)
771		cache_bits |= PG_NC_PWT;
772	return (cache_bits);
773}
774#ifdef SMP
775/*
776 * For SMP, these functions have to use the IPI mechanism for coherence.
777 *
778 * N.B.: Before calling any of the following TLB invalidation functions,
779 * the calling processor must ensure that all stores updating a non-
780 * kernel page table are globally performed.  Otherwise, another
781 * processor could cache an old, pre-update entry without being
782 * invalidated.  This can happen one of two ways: (1) The pmap becomes
783 * active on another processor after its pm_active field is checked by
784 * one of the following functions but before a store updating the page
785 * table is globally performed. (2) The pmap becomes active on another
786 * processor before its pm_active field is checked but due to
787 * speculative loads one of the following functions stills reads the
788 * pmap as inactive on the other processor.
789 *
790 * The kernel page table is exempt because its pm_active field is
791 * immutable.  The kernel page table is always active on every
792 * processor.
793 */
794void
795pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
796{
797	cpumask_t cpumask, other_cpus;
798
799	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
800	    pmap, va);
801
802	sched_pin();
803	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
804		invlpg(va);
805		smp_invlpg(va);
806	} else {
807		cpumask = PCPU_GET(cpumask);
808		other_cpus = PCPU_GET(other_cpus);
809		if (pmap->pm_active & cpumask)
810			invlpg(va);
811		if (pmap->pm_active & other_cpus)
812			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
813	}
814	sched_unpin();
815	PT_UPDATES_FLUSH();
816}
817
818void
819pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
820{
821	cpumask_t cpumask, other_cpus;
822	vm_offset_t addr;
823
824	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
825	    pmap, sva, eva);
826
827	sched_pin();
828	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
829		for (addr = sva; addr < eva; addr += PAGE_SIZE)
830			invlpg(addr);
831		smp_invlpg_range(sva, eva);
832	} else {
833		cpumask = PCPU_GET(cpumask);
834		other_cpus = PCPU_GET(other_cpus);
835		if (pmap->pm_active & cpumask)
836			for (addr = sva; addr < eva; addr += PAGE_SIZE)
837				invlpg(addr);
838		if (pmap->pm_active & other_cpus)
839			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
840			    sva, eva);
841	}
842	sched_unpin();
843	PT_UPDATES_FLUSH();
844}
845
846void
847pmap_invalidate_all(pmap_t pmap)
848{
849	cpumask_t cpumask, other_cpus;
850
851	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
852
853	sched_pin();
854	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
855		invltlb();
856		smp_invltlb();
857	} else {
858		cpumask = PCPU_GET(cpumask);
859		other_cpus = PCPU_GET(other_cpus);
860		if (pmap->pm_active & cpumask)
861			invltlb();
862		if (pmap->pm_active & other_cpus)
863			smp_masked_invltlb(pmap->pm_active & other_cpus);
864	}
865	sched_unpin();
866}
867
868void
869pmap_invalidate_cache(void)
870{
871
872	sched_pin();
873	wbinvd();
874	smp_cache_flush();
875	sched_unpin();
876}
877#else /* !SMP */
878/*
879 * Normal, non-SMP, 486+ invalidation functions.
880 * We inline these within pmap.c for speed.
881 */
882PMAP_INLINE void
883pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
884{
885	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
886	    pmap, va);
887
888	if (pmap == kernel_pmap || pmap->pm_active)
889		invlpg(va);
890	PT_UPDATES_FLUSH();
891}
892
893PMAP_INLINE void
894pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
895{
896	vm_offset_t addr;
897
898	if (eva - sva > PAGE_SIZE)
899		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
900		    pmap, sva, eva);
901
902	if (pmap == kernel_pmap || pmap->pm_active)
903		for (addr = sva; addr < eva; addr += PAGE_SIZE)
904			invlpg(addr);
905	PT_UPDATES_FLUSH();
906}
907
908PMAP_INLINE void
909pmap_invalidate_all(pmap_t pmap)
910{
911
912	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
913
914	if (pmap == kernel_pmap || pmap->pm_active)
915		invltlb();
916}
917
918PMAP_INLINE void
919pmap_invalidate_cache(void)
920{
921
922	wbinvd();
923}
924#endif /* !SMP */
925
926void
927pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
928{
929
930	KASSERT((sva & PAGE_MASK) == 0,
931	    ("pmap_invalidate_cache_range: sva not page-aligned"));
932	KASSERT((eva & PAGE_MASK) == 0,
933	    ("pmap_invalidate_cache_range: eva not page-aligned"));
934
935	if (cpu_feature & CPUID_SS)
936		; /* If "Self Snoop" is supported, do nothing. */
937	else if (cpu_feature & CPUID_CLFSH) {
938
939		/*
940		 * Otherwise, do per-cache line flush.  Use the mfence
941		 * instruction to insure that previous stores are
942		 * included in the write-back.  The processor
943		 * propagates flush to other processors in the cache
944		 * coherence domain.
945		 */
946		mfence();
947		for (; sva < eva; sva += cpu_clflush_line_size)
948			clflush(sva);
949		mfence();
950	} else {
951
952		/*
953		 * No targeted cache flush methods are supported by CPU,
954		 * globally invalidate cache as a last resort.
955		 */
956		pmap_invalidate_cache();
957	}
958}
959
960/*
961 * Are we current address space or kernel?  N.B. We return FALSE when
962 * a pmap's page table is in use because a kernel thread is borrowing
963 * it.  The borrowed page table can change spontaneously, making any
964 * dependence on its continued use subject to a race condition.
965 */
966static __inline int
967pmap_is_current(pmap_t pmap)
968{
969
970	return (pmap == kernel_pmap ||
971	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
972		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
973}
974
975/*
976 * If the given pmap is not the current or kernel pmap, the returned pte must
977 * be released by passing it to pmap_pte_release().
978 */
979pt_entry_t *
980pmap_pte(pmap_t pmap, vm_offset_t va)
981{
982	pd_entry_t newpf;
983	pd_entry_t *pde;
984
985	pde = pmap_pde(pmap, va);
986	if (*pde & PG_PS)
987		return (pde);
988	if (*pde != 0) {
989		/* are we current address space or kernel? */
990		if (pmap_is_current(pmap))
991			return (vtopte(va));
992		mtx_lock(&PMAP2mutex);
993		newpf = *pde & PG_FRAME;
994		if ((*PMAP2 & PG_FRAME) != newpf) {
995			vm_page_lock_queues();
996			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
997			vm_page_unlock_queues();
998			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
999			    pmap, va, (*PMAP2 & 0xffffffff));
1000		}
1001
1002		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1003	}
1004	return (0);
1005}
1006
1007/*
1008 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1009 * being NULL.
1010 */
1011static __inline void
1012pmap_pte_release(pt_entry_t *pte)
1013{
1014
1015	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1016		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1017		    *PMAP2);
1018		vm_page_lock_queues();
1019		PT_SET_VA(PMAP2, 0, TRUE);
1020		vm_page_unlock_queues();
1021		mtx_unlock(&PMAP2mutex);
1022	}
1023}
1024
1025static __inline void
1026invlcaddr(void *caddr)
1027{
1028
1029	invlpg((u_int)caddr);
1030	PT_UPDATES_FLUSH();
1031}
1032
1033/*
1034 * Super fast pmap_pte routine best used when scanning
1035 * the pv lists.  This eliminates many coarse-grained
1036 * invltlb calls.  Note that many of the pv list
1037 * scans are across different pmaps.  It is very wasteful
1038 * to do an entire invltlb for checking a single mapping.
1039 *
1040 * If the given pmap is not the current pmap, vm_page_queue_mtx
1041 * must be held and curthread pinned to a CPU.
1042 */
1043static pt_entry_t *
1044pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1045{
1046	pd_entry_t newpf;
1047	pd_entry_t *pde;
1048
1049	pde = pmap_pde(pmap, va);
1050	if (*pde & PG_PS)
1051		return (pde);
1052	if (*pde != 0) {
1053		/* are we current address space or kernel? */
1054		if (pmap_is_current(pmap))
1055			return (vtopte(va));
1056		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1057		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1058		newpf = *pde & PG_FRAME;
1059		if ((*PMAP1 & PG_FRAME) != newpf) {
1060			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1061			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1062			    pmap, va, (u_long)*PMAP1);
1063
1064#ifdef SMP
1065			PMAP1cpu = PCPU_GET(cpuid);
1066#endif
1067			PMAP1changed++;
1068		} else
1069#ifdef SMP
1070		if (PMAP1cpu != PCPU_GET(cpuid)) {
1071			PMAP1cpu = PCPU_GET(cpuid);
1072			invlcaddr(PADDR1);
1073			PMAP1changedcpu++;
1074		} else
1075#endif
1076			PMAP1unchanged++;
1077		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1078	}
1079	return (0);
1080}
1081
1082/*
1083 *	Routine:	pmap_extract
1084 *	Function:
1085 *		Extract the physical page address associated
1086 *		with the given map/virtual_address pair.
1087 */
1088vm_paddr_t
1089pmap_extract(pmap_t pmap, vm_offset_t va)
1090{
1091	vm_paddr_t rtval;
1092	pt_entry_t *pte;
1093	pd_entry_t pde;
1094	pt_entry_t pteval;
1095
1096	rtval = 0;
1097	PMAP_LOCK(pmap);
1098	pde = pmap->pm_pdir[va >> PDRSHIFT];
1099	if (pde != 0) {
1100		if ((pde & PG_PS) != 0) {
1101			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1102			PMAP_UNLOCK(pmap);
1103			return rtval;
1104		}
1105		pte = pmap_pte(pmap, va);
1106		pteval = *pte ? xpmap_mtop(*pte) : 0;
1107		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1108		pmap_pte_release(pte);
1109	}
1110	PMAP_UNLOCK(pmap);
1111	return (rtval);
1112}
1113
1114/*
1115 *	Routine:	pmap_extract_ma
1116 *	Function:
1117 *		Like pmap_extract, but returns machine address
1118 */
1119vm_paddr_t
1120pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1121{
1122	vm_paddr_t rtval;
1123	pt_entry_t *pte;
1124	pd_entry_t pde;
1125
1126	rtval = 0;
1127	PMAP_LOCK(pmap);
1128	pde = pmap->pm_pdir[va >> PDRSHIFT];
1129	if (pde != 0) {
1130		if ((pde & PG_PS) != 0) {
1131			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1132			PMAP_UNLOCK(pmap);
1133			return rtval;
1134		}
1135		pte = pmap_pte(pmap, va);
1136		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1137		pmap_pte_release(pte);
1138	}
1139	PMAP_UNLOCK(pmap);
1140	return (rtval);
1141}
1142
1143/*
1144 *	Routine:	pmap_extract_and_hold
1145 *	Function:
1146 *		Atomically extract and hold the physical page
1147 *		with the given pmap and virtual address pair
1148 *		if that mapping permits the given protection.
1149 */
1150vm_page_t
1151pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1152{
1153	pd_entry_t pde;
1154	pt_entry_t pte;
1155	vm_page_t m;
1156	vm_paddr_t pa;
1157
1158	pa = 0;
1159	m = NULL;
1160	PMAP_LOCK(pmap);
1161retry:
1162	pde = PT_GET(pmap_pde(pmap, va));
1163	if (pde != 0) {
1164		if (pde & PG_PS) {
1165			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1166				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1167				       (va & PDRMASK), &pa))
1168					goto retry;
1169				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1170				    (va & PDRMASK));
1171				vm_page_hold(m);
1172			}
1173		} else {
1174			sched_pin();
1175			pte = PT_GET(pmap_pte_quick(pmap, va));
1176			if (*PMAP1)
1177				PT_SET_MA(PADDR1, 0);
1178			if ((pte & PG_V) &&
1179			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1180				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1181					goto retry;
1182				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1183				vm_page_hold(m);
1184			}
1185			sched_unpin();
1186		}
1187	}
1188	PA_UNLOCK_COND(pa);
1189	PMAP_UNLOCK(pmap);
1190	return (m);
1191}
1192
1193/***************************************************
1194 * Low level mapping routines.....
1195 ***************************************************/
1196
1197/*
1198 * Add a wired page to the kva.
1199 * Note: not SMP coherent.
1200 */
1201void
1202pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1203{
1204	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1205}
1206
1207void
1208pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1209{
1210	pt_entry_t *pte;
1211
1212	pte = vtopte(va);
1213	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1214}
1215
1216
1217static __inline void
1218pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1219{
1220	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1221}
1222
1223/*
1224 * Remove a page from the kernel pagetables.
1225 * Note: not SMP coherent.
1226 */
1227PMAP_INLINE void
1228pmap_kremove(vm_offset_t va)
1229{
1230	pt_entry_t *pte;
1231
1232	pte = vtopte(va);
1233	PT_CLEAR_VA(pte, FALSE);
1234}
1235
1236/*
1237 *	Used to map a range of physical addresses into kernel
1238 *	virtual address space.
1239 *
1240 *	The value passed in '*virt' is a suggested virtual address for
1241 *	the mapping. Architectures which can support a direct-mapped
1242 *	physical to virtual region can return the appropriate address
1243 *	within that region, leaving '*virt' unchanged. Other
1244 *	architectures should map the pages starting at '*virt' and
1245 *	update '*virt' with the first usable address after the mapped
1246 *	region.
1247 */
1248vm_offset_t
1249pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1250{
1251	vm_offset_t va, sva;
1252
1253	va = sva = *virt;
1254	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1255	    va, start, end, prot);
1256	while (start < end) {
1257		pmap_kenter(va, start);
1258		va += PAGE_SIZE;
1259		start += PAGE_SIZE;
1260	}
1261	pmap_invalidate_range(kernel_pmap, sva, va);
1262	*virt = va;
1263	return (sva);
1264}
1265
1266
1267/*
1268 * Add a list of wired pages to the kva
1269 * this routine is only used for temporary
1270 * kernel mappings that do not need to have
1271 * page modification or references recorded.
1272 * Note that old mappings are simply written
1273 * over.  The page *must* be wired.
1274 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1275 */
1276void
1277pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1278{
1279	pt_entry_t *endpte, *pte;
1280	vm_paddr_t pa;
1281	vm_offset_t va = sva;
1282	int mclcount = 0;
1283	multicall_entry_t mcl[16];
1284	multicall_entry_t *mclp = mcl;
1285	int error;
1286
1287	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1288	pte = vtopte(sva);
1289	endpte = pte + count;
1290	while (pte < endpte) {
1291		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1292
1293		mclp->op = __HYPERVISOR_update_va_mapping;
1294		mclp->args[0] = va;
1295		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1296		mclp->args[2] = (uint32_t)(pa >> 32);
1297		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1298
1299		va += PAGE_SIZE;
1300		pte++;
1301		ma++;
1302		mclp++;
1303		mclcount++;
1304		if (mclcount == 16) {
1305			error = HYPERVISOR_multicall(mcl, mclcount);
1306			mclp = mcl;
1307			mclcount = 0;
1308			KASSERT(error == 0, ("bad multicall %d", error));
1309		}
1310	}
1311	if (mclcount) {
1312		error = HYPERVISOR_multicall(mcl, mclcount);
1313		KASSERT(error == 0, ("bad multicall %d", error));
1314	}
1315
1316#ifdef INVARIANTS
1317	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1318		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1319#endif
1320}
1321
1322
1323/*
1324 * This routine tears out page mappings from the
1325 * kernel -- it is meant only for temporary mappings.
1326 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1327 */
1328void
1329pmap_qremove(vm_offset_t sva, int count)
1330{
1331	vm_offset_t va;
1332
1333	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1334	va = sva;
1335	vm_page_lock_queues();
1336	critical_enter();
1337	while (count-- > 0) {
1338		pmap_kremove(va);
1339		va += PAGE_SIZE;
1340	}
1341	PT_UPDATES_FLUSH();
1342	pmap_invalidate_range(kernel_pmap, sva, va);
1343	critical_exit();
1344	vm_page_unlock_queues();
1345}
1346
1347/***************************************************
1348 * Page table page management routines.....
1349 ***************************************************/
1350static __inline void
1351pmap_free_zero_pages(vm_page_t free)
1352{
1353	vm_page_t m;
1354
1355	while (free != NULL) {
1356		m = free;
1357		free = m->right;
1358		vm_page_free_zero(m);
1359	}
1360}
1361
1362/*
1363 * This routine unholds page table pages, and if the hold count
1364 * drops to zero, then it decrements the wire count.
1365 */
1366static __inline int
1367pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1368{
1369
1370	--m->wire_count;
1371	if (m->wire_count == 0)
1372		return _pmap_unwire_pte_hold(pmap, m, free);
1373	else
1374		return 0;
1375}
1376
1377static int
1378_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1379{
1380	vm_offset_t pteva;
1381
1382	PT_UPDATES_FLUSH();
1383	/*
1384	 * unmap the page table page
1385	 */
1386	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1387	/*
1388	 * page *might* contain residual mapping :-/
1389	 */
1390	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1391	pmap_zero_page(m);
1392	--pmap->pm_stats.resident_count;
1393
1394	/*
1395	 * This is a release store so that the ordinary store unmapping
1396	 * the page table page is globally performed before TLB shoot-
1397	 * down is begun.
1398	 */
1399	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1400
1401	/*
1402	 * Do an invltlb to make the invalidated mapping
1403	 * take effect immediately.
1404	 */
1405	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1406	pmap_invalidate_page(pmap, pteva);
1407
1408	/*
1409	 * Put page on a list so that it is released after
1410	 * *ALL* TLB shootdown is done
1411	 */
1412	m->right = *free;
1413	*free = m;
1414
1415	return 1;
1416}
1417
1418/*
1419 * After removing a page table entry, this routine is used to
1420 * conditionally free the page, and manage the hold/wire counts.
1421 */
1422static int
1423pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1424{
1425	pd_entry_t ptepde;
1426	vm_page_t mpte;
1427
1428	if (va >= VM_MAXUSER_ADDRESS)
1429		return 0;
1430	ptepde = PT_GET(pmap_pde(pmap, va));
1431	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1432	return pmap_unwire_pte_hold(pmap, mpte, free);
1433}
1434
1435void
1436pmap_pinit0(pmap_t pmap)
1437{
1438
1439	PMAP_LOCK_INIT(pmap);
1440	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1441#ifdef PAE
1442	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1443#endif
1444	pmap->pm_active = 0;
1445	PCPU_SET(curpmap, pmap);
1446	TAILQ_INIT(&pmap->pm_pvchunk);
1447	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1448	mtx_lock_spin(&allpmaps_lock);
1449	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1450	mtx_unlock_spin(&allpmaps_lock);
1451}
1452
1453/*
1454 * Initialize a preallocated and zeroed pmap structure,
1455 * such as one in a vmspace structure.
1456 */
1457int
1458pmap_pinit(pmap_t pmap)
1459{
1460	vm_page_t m, ptdpg[NPGPTD + 1];
1461	int npgptd = NPGPTD + 1;
1462	static int color;
1463	int i;
1464
1465	PMAP_LOCK_INIT(pmap);
1466
1467	/*
1468	 * No need to allocate page table space yet but we do need a valid
1469	 * page directory table.
1470	 */
1471	if (pmap->pm_pdir == NULL) {
1472		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1473		    NBPTD);
1474		if (pmap->pm_pdir == NULL) {
1475			PMAP_LOCK_DESTROY(pmap);
1476			return (0);
1477		}
1478#ifdef PAE
1479		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1480#endif
1481	}
1482
1483	/*
1484	 * allocate the page directory page(s)
1485	 */
1486	for (i = 0; i < npgptd;) {
1487		m = vm_page_alloc(NULL, color++,
1488		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1489		    VM_ALLOC_ZERO);
1490		if (m == NULL)
1491			VM_WAIT;
1492		else {
1493			ptdpg[i++] = m;
1494		}
1495	}
1496	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1497	for (i = 0; i < NPGPTD; i++) {
1498		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1499			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1500	}
1501
1502	mtx_lock_spin(&allpmaps_lock);
1503	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1504	mtx_unlock_spin(&allpmaps_lock);
1505	/* Wire in kernel global address entries. */
1506
1507	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1508#ifdef PAE
1509	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1510	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1511		bzero(pmap->pm_pdpt, PAGE_SIZE);
1512	for (i = 0; i < NPGPTD; i++) {
1513		vm_paddr_t ma;
1514
1515		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1516		pmap->pm_pdpt[i] = ma | PG_V;
1517
1518	}
1519#endif
1520	for (i = 0; i < NPGPTD; i++) {
1521		pt_entry_t *pd;
1522		vm_paddr_t ma;
1523
1524		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1525		pd = pmap->pm_pdir + (i * NPDEPG);
1526		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1527#if 0
1528		xen_pgd_pin(ma);
1529#endif
1530	}
1531
1532#ifdef PAE
1533	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1534#endif
1535	vm_page_lock_queues();
1536	xen_flush_queue();
1537	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1538	for (i = 0; i < NPGPTD; i++) {
1539		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1540		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1541	}
1542	xen_flush_queue();
1543	vm_page_unlock_queues();
1544	pmap->pm_active = 0;
1545	TAILQ_INIT(&pmap->pm_pvchunk);
1546	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1547
1548	return (1);
1549}
1550
1551/*
1552 * this routine is called if the page table page is not
1553 * mapped correctly.
1554 */
1555static vm_page_t
1556_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1557{
1558	vm_paddr_t ptema;
1559	vm_page_t m;
1560
1561	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1562	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1563	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1564
1565	/*
1566	 * Allocate a page table page.
1567	 */
1568	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1569	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1570		if (flags & M_WAITOK) {
1571			PMAP_UNLOCK(pmap);
1572			vm_page_unlock_queues();
1573			VM_WAIT;
1574			vm_page_lock_queues();
1575			PMAP_LOCK(pmap);
1576		}
1577
1578		/*
1579		 * Indicate the need to retry.  While waiting, the page table
1580		 * page may have been allocated.
1581		 */
1582		return (NULL);
1583	}
1584	if ((m->flags & PG_ZERO) == 0)
1585		pmap_zero_page(m);
1586
1587	/*
1588	 * Map the pagetable page into the process address space, if
1589	 * it isn't already there.
1590	 */
1591	pmap->pm_stats.resident_count++;
1592
1593	ptema = VM_PAGE_TO_MACH(m);
1594	xen_pt_pin(ptema);
1595	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1596		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1597
1598	KASSERT(pmap->pm_pdir[ptepindex],
1599	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1600	return (m);
1601}
1602
1603static vm_page_t
1604pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1605{
1606	unsigned ptepindex;
1607	pd_entry_t ptema;
1608	vm_page_t m;
1609
1610	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1611	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1612	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1613
1614	/*
1615	 * Calculate pagetable page index
1616	 */
1617	ptepindex = va >> PDRSHIFT;
1618retry:
1619	/*
1620	 * Get the page directory entry
1621	 */
1622	ptema = pmap->pm_pdir[ptepindex];
1623
1624	/*
1625	 * This supports switching from a 4MB page to a
1626	 * normal 4K page.
1627	 */
1628	if (ptema & PG_PS) {
1629		/*
1630		 * XXX
1631		 */
1632		pmap->pm_pdir[ptepindex] = 0;
1633		ptema = 0;
1634		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1635		pmap_invalidate_all(kernel_pmap);
1636	}
1637
1638	/*
1639	 * If the page table page is mapped, we just increment the
1640	 * hold count, and activate it.
1641	 */
1642	if (ptema & PG_V) {
1643		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1644		m->wire_count++;
1645	} else {
1646		/*
1647		 * Here if the pte page isn't mapped, or if it has
1648		 * been deallocated.
1649		 */
1650		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1651		    pmap, va, flags);
1652		m = _pmap_allocpte(pmap, ptepindex, flags);
1653		if (m == NULL && (flags & M_WAITOK))
1654			goto retry;
1655
1656		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1657	}
1658	return (m);
1659}
1660
1661
1662/***************************************************
1663* Pmap allocation/deallocation routines.
1664 ***************************************************/
1665
1666#ifdef SMP
1667/*
1668 * Deal with a SMP shootdown of other users of the pmap that we are
1669 * trying to dispose of.  This can be a bit hairy.
1670 */
1671static cpumask_t *lazymask;
1672static u_int lazyptd;
1673static volatile u_int lazywait;
1674
1675void pmap_lazyfix_action(void);
1676
1677void
1678pmap_lazyfix_action(void)
1679{
1680	cpumask_t mymask = PCPU_GET(cpumask);
1681
1682#ifdef COUNT_IPIS
1683	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1684#endif
1685	if (rcr3() == lazyptd)
1686		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1687	atomic_clear_int(lazymask, mymask);
1688	atomic_store_rel_int(&lazywait, 1);
1689}
1690
1691static void
1692pmap_lazyfix_self(cpumask_t mymask)
1693{
1694
1695	if (rcr3() == lazyptd)
1696		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1697	atomic_clear_int(lazymask, mymask);
1698}
1699
1700
1701static void
1702pmap_lazyfix(pmap_t pmap)
1703{
1704	cpumask_t mymask, mask;
1705	u_int spins;
1706
1707	while ((mask = pmap->pm_active) != 0) {
1708		spins = 50000000;
1709		mask = mask & -mask;	/* Find least significant set bit */
1710		mtx_lock_spin(&smp_ipi_mtx);
1711#ifdef PAE
1712		lazyptd = vtophys(pmap->pm_pdpt);
1713#else
1714		lazyptd = vtophys(pmap->pm_pdir);
1715#endif
1716		mymask = PCPU_GET(cpumask);
1717		if (mask == mymask) {
1718			lazymask = &pmap->pm_active;
1719			pmap_lazyfix_self(mymask);
1720		} else {
1721			atomic_store_rel_int((u_int *)&lazymask,
1722			    (u_int)&pmap->pm_active);
1723			atomic_store_rel_int(&lazywait, 0);
1724			ipi_selected(mask, IPI_LAZYPMAP);
1725			while (lazywait == 0) {
1726				ia32_pause();
1727				if (--spins == 0)
1728					break;
1729			}
1730		}
1731		mtx_unlock_spin(&smp_ipi_mtx);
1732		if (spins == 0)
1733			printf("pmap_lazyfix: spun for 50000000\n");
1734	}
1735}
1736
1737#else	/* SMP */
1738
1739/*
1740 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1741 * unlikely to have to even execute this code, including the fact
1742 * that the cleanup is deferred until the parent does a wait(2), which
1743 * means that another userland process has run.
1744 */
1745static void
1746pmap_lazyfix(pmap_t pmap)
1747{
1748	u_int cr3;
1749
1750	cr3 = vtophys(pmap->pm_pdir);
1751	if (cr3 == rcr3()) {
1752		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1753		pmap->pm_active &= ~(PCPU_GET(cpumask));
1754	}
1755}
1756#endif	/* SMP */
1757
1758/*
1759 * Release any resources held by the given physical map.
1760 * Called when a pmap initialized by pmap_pinit is being released.
1761 * Should only be called if the map contains no valid mappings.
1762 */
1763void
1764pmap_release(pmap_t pmap)
1765{
1766	vm_page_t m, ptdpg[2*NPGPTD+1];
1767	vm_paddr_t ma;
1768	int i;
1769#ifdef PAE
1770	int npgptd = NPGPTD + 1;
1771#else
1772	int npgptd = NPGPTD;
1773#endif
1774	KASSERT(pmap->pm_stats.resident_count == 0,
1775	    ("pmap_release: pmap resident count %ld != 0",
1776	    pmap->pm_stats.resident_count));
1777	PT_UPDATES_FLUSH();
1778
1779	pmap_lazyfix(pmap);
1780	mtx_lock_spin(&allpmaps_lock);
1781	LIST_REMOVE(pmap, pm_list);
1782	mtx_unlock_spin(&allpmaps_lock);
1783
1784	for (i = 0; i < NPGPTD; i++)
1785		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1786	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1787#ifdef PAE
1788	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1789#endif
1790
1791	for (i = 0; i < npgptd; i++) {
1792		m = ptdpg[i];
1793		ma = VM_PAGE_TO_MACH(m);
1794		/* unpinning L1 and L2 treated the same */
1795#if 0
1796                xen_pgd_unpin(ma);
1797#else
1798		if (i == NPGPTD)
1799	                xen_pgd_unpin(ma);
1800#endif
1801#ifdef PAE
1802		if (i < NPGPTD)
1803			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1804			    ("pmap_release: got wrong ptd page"));
1805#endif
1806		m->wire_count--;
1807		atomic_subtract_int(&cnt.v_wire_count, 1);
1808		vm_page_free(m);
1809	}
1810#ifdef PAE
1811	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1812#endif
1813	PMAP_LOCK_DESTROY(pmap);
1814}
1815
1816static int
1817kvm_size(SYSCTL_HANDLER_ARGS)
1818{
1819	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1820
1821	return sysctl_handle_long(oidp, &ksize, 0, req);
1822}
1823SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1824    0, 0, kvm_size, "IU", "Size of KVM");
1825
1826static int
1827kvm_free(SYSCTL_HANDLER_ARGS)
1828{
1829	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1830
1831	return sysctl_handle_long(oidp, &kfree, 0, req);
1832}
1833SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1834    0, 0, kvm_free, "IU", "Amount of KVM free");
1835
1836/*
1837 * grow the number of kernel page table entries, if needed
1838 */
1839void
1840pmap_growkernel(vm_offset_t addr)
1841{
1842	struct pmap *pmap;
1843	vm_paddr_t ptppaddr;
1844	vm_page_t nkpg;
1845	pd_entry_t newpdir;
1846
1847	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1848	if (kernel_vm_end == 0) {
1849		kernel_vm_end = KERNBASE;
1850		nkpt = 0;
1851		while (pdir_pde(PTD, kernel_vm_end)) {
1852			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1853			nkpt++;
1854			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1855				kernel_vm_end = kernel_map->max_offset;
1856				break;
1857			}
1858		}
1859	}
1860	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1861	if (addr - 1 >= kernel_map->max_offset)
1862		addr = kernel_map->max_offset;
1863	while (kernel_vm_end < addr) {
1864		if (pdir_pde(PTD, kernel_vm_end)) {
1865			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1866			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1867				kernel_vm_end = kernel_map->max_offset;
1868				break;
1869			}
1870			continue;
1871		}
1872
1873		/*
1874		 * This index is bogus, but out of the way
1875		 */
1876		nkpg = vm_page_alloc(NULL, nkpt,
1877		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1878		if (!nkpg)
1879			panic("pmap_growkernel: no memory to grow kernel");
1880
1881		nkpt++;
1882
1883		pmap_zero_page(nkpg);
1884		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1885		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1886		vm_page_lock_queues();
1887		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1888		mtx_lock_spin(&allpmaps_lock);
1889		LIST_FOREACH(pmap, &allpmaps, pm_list)
1890			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1891
1892		mtx_unlock_spin(&allpmaps_lock);
1893		vm_page_unlock_queues();
1894
1895		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1896		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1897			kernel_vm_end = kernel_map->max_offset;
1898			break;
1899		}
1900	}
1901}
1902
1903
1904/***************************************************
1905 * page management routines.
1906 ***************************************************/
1907
1908CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1909CTASSERT(_NPCM == 11);
1910
1911static __inline struct pv_chunk *
1912pv_to_chunk(pv_entry_t pv)
1913{
1914
1915	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1916}
1917
1918#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1919
1920#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1921#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1922
1923static uint32_t pc_freemask[11] = {
1924	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1925	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1926	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1927	PC_FREE0_9, PC_FREE10
1928};
1929
1930SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1931	"Current number of pv entries");
1932
1933#ifdef PV_STATS
1934static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1935
1936SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1937	"Current number of pv entry chunks");
1938SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1939	"Current number of pv entry chunks allocated");
1940SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1941	"Current number of pv entry chunks frees");
1942SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1943	"Number of times tried to get a chunk page but failed.");
1944
1945static long pv_entry_frees, pv_entry_allocs;
1946static int pv_entry_spare;
1947
1948SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1949	"Current number of pv entry frees");
1950SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1951	"Current number of pv entry allocs");
1952SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1953	"Current number of spare pv entries");
1954
1955static int pmap_collect_inactive, pmap_collect_active;
1956
1957SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1958	"Current number times pmap_collect called on inactive queue");
1959SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1960	"Current number times pmap_collect called on active queue");
1961#endif
1962
1963/*
1964 * We are in a serious low memory condition.  Resort to
1965 * drastic measures to free some pages so we can allocate
1966 * another pv entry chunk.  This is normally called to
1967 * unmap inactive pages, and if necessary, active pages.
1968 */
1969static void
1970pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1971{
1972	pmap_t pmap;
1973	pt_entry_t *pte, tpte;
1974	pv_entry_t next_pv, pv;
1975	vm_offset_t va;
1976	vm_page_t m, free;
1977
1978	sched_pin();
1979	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1980		if (m->hold_count || m->busy)
1981			continue;
1982		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1983			va = pv->pv_va;
1984			pmap = PV_PMAP(pv);
1985			/* Avoid deadlock and lock recursion. */
1986			if (pmap > locked_pmap)
1987				PMAP_LOCK(pmap);
1988			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1989				continue;
1990			pmap->pm_stats.resident_count--;
1991			pte = pmap_pte_quick(pmap, va);
1992			tpte = pte_load_clear(pte);
1993			KASSERT((tpte & PG_W) == 0,
1994			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1995			if (tpte & PG_A)
1996				vm_page_flag_set(m, PG_REFERENCED);
1997			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1998				vm_page_dirty(m);
1999			free = NULL;
2000			pmap_unuse_pt(pmap, va, &free);
2001			pmap_invalidate_page(pmap, va);
2002			pmap_free_zero_pages(free);
2003			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2004			free_pv_entry(pmap, pv);
2005			if (pmap != locked_pmap)
2006				PMAP_UNLOCK(pmap);
2007		}
2008		if (TAILQ_EMPTY(&m->md.pv_list))
2009			vm_page_flag_clear(m, PG_WRITEABLE);
2010	}
2011	sched_unpin();
2012}
2013
2014
2015/*
2016 * free the pv_entry back to the free list
2017 */
2018static void
2019free_pv_entry(pmap_t pmap, pv_entry_t pv)
2020{
2021	vm_page_t m;
2022	struct pv_chunk *pc;
2023	int idx, field, bit;
2024
2025	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2026	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2027	PV_STAT(pv_entry_frees++);
2028	PV_STAT(pv_entry_spare++);
2029	pv_entry_count--;
2030	pc = pv_to_chunk(pv);
2031	idx = pv - &pc->pc_pventry[0];
2032	field = idx / 32;
2033	bit = idx % 32;
2034	pc->pc_map[field] |= 1ul << bit;
2035	/* move to head of list */
2036	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2037	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2038	for (idx = 0; idx < _NPCM; idx++)
2039		if (pc->pc_map[idx] != pc_freemask[idx])
2040			return;
2041	PV_STAT(pv_entry_spare -= _NPCPV);
2042	PV_STAT(pc_chunk_count--);
2043	PV_STAT(pc_chunk_frees++);
2044	/* entire chunk is free, return it */
2045	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2046	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2047	pmap_qremove((vm_offset_t)pc, 1);
2048	vm_page_unwire(m, 0);
2049	vm_page_free(m);
2050	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2051}
2052
2053/*
2054 * get a new pv_entry, allocating a block from the system
2055 * when needed.
2056 */
2057static pv_entry_t
2058get_pv_entry(pmap_t pmap, int try)
2059{
2060	static const struct timeval printinterval = { 60, 0 };
2061	static struct timeval lastprint;
2062	static vm_pindex_t colour;
2063	struct vpgqueues *pq;
2064	int bit, field;
2065	pv_entry_t pv;
2066	struct pv_chunk *pc;
2067	vm_page_t m;
2068
2069	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2070	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2071	PV_STAT(pv_entry_allocs++);
2072	pv_entry_count++;
2073	if (pv_entry_count > pv_entry_high_water)
2074		if (ratecheck(&lastprint, &printinterval))
2075			printf("Approaching the limit on PV entries, consider "
2076			    "increasing either the vm.pmap.shpgperproc or the "
2077			    "vm.pmap.pv_entry_max tunable.\n");
2078	pq = NULL;
2079retry:
2080	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2081	if (pc != NULL) {
2082		for (field = 0; field < _NPCM; field++) {
2083			if (pc->pc_map[field]) {
2084				bit = bsfl(pc->pc_map[field]);
2085				break;
2086			}
2087		}
2088		if (field < _NPCM) {
2089			pv = &pc->pc_pventry[field * 32 + bit];
2090			pc->pc_map[field] &= ~(1ul << bit);
2091			/* If this was the last item, move it to tail */
2092			for (field = 0; field < _NPCM; field++)
2093				if (pc->pc_map[field] != 0) {
2094					PV_STAT(pv_entry_spare--);
2095					return (pv);	/* not full, return */
2096				}
2097			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2098			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2099			PV_STAT(pv_entry_spare--);
2100			return (pv);
2101		}
2102	}
2103	/*
2104	 * Access to the ptelist "pv_vafree" is synchronized by the page
2105	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2106	 * remain non-empty until pmap_ptelist_alloc() completes.
2107	 */
2108	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2109	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2110	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2111		if (try) {
2112			pv_entry_count--;
2113			PV_STAT(pc_chunk_tryfail++);
2114			return (NULL);
2115		}
2116		/*
2117		 * Reclaim pv entries: At first, destroy mappings to
2118		 * inactive pages.  After that, if a pv chunk entry
2119		 * is still needed, destroy mappings to active pages.
2120		 */
2121		if (pq == NULL) {
2122			PV_STAT(pmap_collect_inactive++);
2123			pq = &vm_page_queues[PQ_INACTIVE];
2124		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2125			PV_STAT(pmap_collect_active++);
2126			pq = &vm_page_queues[PQ_ACTIVE];
2127		} else
2128			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2129		pmap_collect(pmap, pq);
2130		goto retry;
2131	}
2132	PV_STAT(pc_chunk_count++);
2133	PV_STAT(pc_chunk_allocs++);
2134	colour++;
2135	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2136	pmap_qenter((vm_offset_t)pc, &m, 1);
2137	if ((m->flags & PG_ZERO) == 0)
2138		pagezero(pc);
2139	pc->pc_pmap = pmap;
2140	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2141	for (field = 1; field < _NPCM; field++)
2142		pc->pc_map[field] = pc_freemask[field];
2143	pv = &pc->pc_pventry[0];
2144	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2145	PV_STAT(pv_entry_spare += _NPCPV - 1);
2146	return (pv);
2147}
2148
2149static __inline pv_entry_t
2150pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2151{
2152	pv_entry_t pv;
2153
2154	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2155	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2156		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2157			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2158			break;
2159		}
2160	}
2161	return (pv);
2162}
2163
2164static void
2165pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2166{
2167	pv_entry_t pv;
2168
2169	pv = pmap_pvh_remove(pvh, pmap, va);
2170	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2171	free_pv_entry(pmap, pv);
2172}
2173
2174static void
2175pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2176{
2177
2178	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2179	pmap_pvh_free(&m->md, pmap, va);
2180	if (TAILQ_EMPTY(&m->md.pv_list))
2181		vm_page_flag_clear(m, PG_WRITEABLE);
2182}
2183
2184/*
2185 * Conditionally create a pv entry.
2186 */
2187static boolean_t
2188pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2189{
2190	pv_entry_t pv;
2191
2192	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2193	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2194	if (pv_entry_count < pv_entry_high_water &&
2195	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2196		pv->pv_va = va;
2197		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2198		return (TRUE);
2199	} else
2200		return (FALSE);
2201}
2202
2203/*
2204 * pmap_remove_pte: do the things to unmap a page in a process
2205 */
2206static int
2207pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2208{
2209	pt_entry_t oldpte;
2210	vm_page_t m;
2211
2212	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2213	    pmap, (u_long)*ptq, va);
2214
2215	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2216	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2217	oldpte = *ptq;
2218	PT_SET_VA_MA(ptq, 0, TRUE);
2219	if (oldpte & PG_W)
2220		pmap->pm_stats.wired_count -= 1;
2221	/*
2222	 * Machines that don't support invlpg, also don't support
2223	 * PG_G.
2224	 */
2225	if (oldpte & PG_G)
2226		pmap_invalidate_page(kernel_pmap, va);
2227	pmap->pm_stats.resident_count -= 1;
2228	if (oldpte & PG_MANAGED) {
2229		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2230		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2231			vm_page_dirty(m);
2232		if (oldpte & PG_A)
2233			vm_page_flag_set(m, PG_REFERENCED);
2234		pmap_remove_entry(pmap, m, va);
2235	}
2236	return (pmap_unuse_pt(pmap, va, free));
2237}
2238
2239/*
2240 * Remove a single page from a process address space
2241 */
2242static void
2243pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2244{
2245	pt_entry_t *pte;
2246
2247	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2248	    pmap, va);
2249
2250	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2251	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2252	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2253	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2254		return;
2255	pmap_remove_pte(pmap, pte, va, free);
2256	pmap_invalidate_page(pmap, va);
2257	if (*PMAP1)
2258		PT_SET_MA(PADDR1, 0);
2259
2260}
2261
2262/*
2263 *	Remove the given range of addresses from the specified map.
2264 *
2265 *	It is assumed that the start and end are properly
2266 *	rounded to the page size.
2267 */
2268void
2269pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2270{
2271	vm_offset_t pdnxt;
2272	pd_entry_t ptpaddr;
2273	pt_entry_t *pte;
2274	vm_page_t free = NULL;
2275	int anyvalid;
2276
2277	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2278	    pmap, sva, eva);
2279
2280	/*
2281	 * Perform an unsynchronized read.  This is, however, safe.
2282	 */
2283	if (pmap->pm_stats.resident_count == 0)
2284		return;
2285
2286	anyvalid = 0;
2287
2288	vm_page_lock_queues();
2289	sched_pin();
2290	PMAP_LOCK(pmap);
2291
2292	/*
2293	 * special handling of removing one page.  a very
2294	 * common operation and easy to short circuit some
2295	 * code.
2296	 */
2297	if ((sva + PAGE_SIZE == eva) &&
2298	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2299		pmap_remove_page(pmap, sva, &free);
2300		goto out;
2301	}
2302
2303	for (; sva < eva; sva = pdnxt) {
2304		unsigned pdirindex;
2305
2306		/*
2307		 * Calculate index for next page table.
2308		 */
2309		pdnxt = (sva + NBPDR) & ~PDRMASK;
2310		if (pmap->pm_stats.resident_count == 0)
2311			break;
2312
2313		pdirindex = sva >> PDRSHIFT;
2314		ptpaddr = pmap->pm_pdir[pdirindex];
2315
2316		/*
2317		 * Weed out invalid mappings. Note: we assume that the page
2318		 * directory table is always allocated, and in kernel virtual.
2319		 */
2320		if (ptpaddr == 0)
2321			continue;
2322
2323		/*
2324		 * Check for large page.
2325		 */
2326		if ((ptpaddr & PG_PS) != 0) {
2327			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2328			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2329			anyvalid = 1;
2330			continue;
2331		}
2332
2333		/*
2334		 * Limit our scan to either the end of the va represented
2335		 * by the current page table page, or to the end of the
2336		 * range being removed.
2337		 */
2338		if (pdnxt > eva)
2339			pdnxt = eva;
2340
2341		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2342		    sva += PAGE_SIZE) {
2343			if ((*pte & PG_V) == 0)
2344				continue;
2345
2346			/*
2347			 * The TLB entry for a PG_G mapping is invalidated
2348			 * by pmap_remove_pte().
2349			 */
2350			if ((*pte & PG_G) == 0)
2351				anyvalid = 1;
2352			if (pmap_remove_pte(pmap, pte, sva, &free))
2353				break;
2354		}
2355	}
2356	PT_UPDATES_FLUSH();
2357	if (*PMAP1)
2358		PT_SET_VA_MA(PMAP1, 0, TRUE);
2359out:
2360	if (anyvalid)
2361		pmap_invalidate_all(pmap);
2362	sched_unpin();
2363	vm_page_unlock_queues();
2364	PMAP_UNLOCK(pmap);
2365	pmap_free_zero_pages(free);
2366}
2367
2368/*
2369 *	Routine:	pmap_remove_all
2370 *	Function:
2371 *		Removes this physical page from
2372 *		all physical maps in which it resides.
2373 *		Reflects back modify bits to the pager.
2374 *
2375 *	Notes:
2376 *		Original versions of this routine were very
2377 *		inefficient because they iteratively called
2378 *		pmap_remove (slow...)
2379 */
2380
2381void
2382pmap_remove_all(vm_page_t m)
2383{
2384	pv_entry_t pv;
2385	pmap_t pmap;
2386	pt_entry_t *pte, tpte;
2387	vm_page_t free;
2388
2389	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2390	    ("pmap_remove_all: page %p is fictitious", m));
2391	free = NULL;
2392	vm_page_lock_queues();
2393	sched_pin();
2394	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2395		pmap = PV_PMAP(pv);
2396		PMAP_LOCK(pmap);
2397		pmap->pm_stats.resident_count--;
2398		pte = pmap_pte_quick(pmap, pv->pv_va);
2399
2400		tpte = *pte;
2401		PT_SET_VA_MA(pte, 0, TRUE);
2402		if (tpte & PG_W)
2403			pmap->pm_stats.wired_count--;
2404		if (tpte & PG_A)
2405			vm_page_flag_set(m, PG_REFERENCED);
2406
2407		/*
2408		 * Update the vm_page_t clean and reference bits.
2409		 */
2410		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2411			vm_page_dirty(m);
2412		pmap_unuse_pt(pmap, pv->pv_va, &free);
2413		pmap_invalidate_page(pmap, pv->pv_va);
2414		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2415		free_pv_entry(pmap, pv);
2416		PMAP_UNLOCK(pmap);
2417	}
2418	vm_page_flag_clear(m, PG_WRITEABLE);
2419	PT_UPDATES_FLUSH();
2420	if (*PMAP1)
2421		PT_SET_MA(PADDR1, 0);
2422	sched_unpin();
2423	vm_page_unlock_queues();
2424	pmap_free_zero_pages(free);
2425}
2426
2427/*
2428 *	Set the physical protection on the
2429 *	specified range of this map as requested.
2430 */
2431void
2432pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2433{
2434	vm_offset_t pdnxt;
2435	pd_entry_t ptpaddr;
2436	pt_entry_t *pte;
2437	int anychanged;
2438
2439	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2440	    pmap, sva, eva, prot);
2441
2442	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2443		pmap_remove(pmap, sva, eva);
2444		return;
2445	}
2446
2447#ifdef PAE
2448	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2449	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2450		return;
2451#else
2452	if (prot & VM_PROT_WRITE)
2453		return;
2454#endif
2455
2456	anychanged = 0;
2457
2458	vm_page_lock_queues();
2459	sched_pin();
2460	PMAP_LOCK(pmap);
2461	for (; sva < eva; sva = pdnxt) {
2462		pt_entry_t obits, pbits;
2463		unsigned pdirindex;
2464
2465		pdnxt = (sva + NBPDR) & ~PDRMASK;
2466
2467		pdirindex = sva >> PDRSHIFT;
2468		ptpaddr = pmap->pm_pdir[pdirindex];
2469
2470		/*
2471		 * Weed out invalid mappings. Note: we assume that the page
2472		 * directory table is always allocated, and in kernel virtual.
2473		 */
2474		if (ptpaddr == 0)
2475			continue;
2476
2477		/*
2478		 * Check for large page.
2479		 */
2480		if ((ptpaddr & PG_PS) != 0) {
2481			if ((prot & VM_PROT_WRITE) == 0)
2482				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2483#ifdef PAE
2484			if ((prot & VM_PROT_EXECUTE) == 0)
2485				pmap->pm_pdir[pdirindex] |= pg_nx;
2486#endif
2487			anychanged = 1;
2488			continue;
2489		}
2490
2491		if (pdnxt > eva)
2492			pdnxt = eva;
2493
2494		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2495		    sva += PAGE_SIZE) {
2496			vm_page_t m;
2497
2498retry:
2499			/*
2500			 * Regardless of whether a pte is 32 or 64 bits in
2501			 * size, PG_RW, PG_A, and PG_M are among the least
2502			 * significant 32 bits.
2503			 */
2504			obits = pbits = *pte;
2505			if ((pbits & PG_V) == 0)
2506				continue;
2507
2508			if ((prot & VM_PROT_WRITE) == 0) {
2509				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2510				    (PG_MANAGED | PG_M | PG_RW)) {
2511					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2512					    PG_FRAME);
2513					vm_page_dirty(m);
2514				}
2515				pbits &= ~(PG_RW | PG_M);
2516			}
2517#ifdef PAE
2518			if ((prot & VM_PROT_EXECUTE) == 0)
2519				pbits |= pg_nx;
2520#endif
2521
2522			if (pbits != obits) {
2523				obits = *pte;
2524				PT_SET_VA_MA(pte, pbits, TRUE);
2525				if (*pte != pbits)
2526					goto retry;
2527				if (obits & PG_G)
2528					pmap_invalidate_page(pmap, sva);
2529				else
2530					anychanged = 1;
2531			}
2532		}
2533	}
2534	PT_UPDATES_FLUSH();
2535	if (*PMAP1)
2536		PT_SET_VA_MA(PMAP1, 0, TRUE);
2537	if (anychanged)
2538		pmap_invalidate_all(pmap);
2539	sched_unpin();
2540	vm_page_unlock_queues();
2541	PMAP_UNLOCK(pmap);
2542}
2543
2544/*
2545 *	Insert the given physical page (p) at
2546 *	the specified virtual address (v) in the
2547 *	target physical map with the protection requested.
2548 *
2549 *	If specified, the page will be wired down, meaning
2550 *	that the related pte can not be reclaimed.
2551 *
2552 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2553 *	or lose information.  That is, this routine must actually
2554 *	insert this page into the given map NOW.
2555 */
2556void
2557pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2558    vm_prot_t prot, boolean_t wired)
2559{
2560	pd_entry_t *pde;
2561	pt_entry_t *pte;
2562	pt_entry_t newpte, origpte;
2563	pv_entry_t pv;
2564	vm_paddr_t opa, pa;
2565	vm_page_t mpte, om;
2566	boolean_t invlva;
2567
2568	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2569	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2570	va = trunc_page(va);
2571	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2572	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2573	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2574	    va));
2575	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2576	    (m->oflags & VPO_BUSY) != 0,
2577	    ("pmap_enter: page %p is not busy", m));
2578
2579	mpte = NULL;
2580
2581	vm_page_lock_queues();
2582	PMAP_LOCK(pmap);
2583	sched_pin();
2584
2585	/*
2586	 * In the case that a page table page is not
2587	 * resident, we are creating it here.
2588	 */
2589	if (va < VM_MAXUSER_ADDRESS) {
2590		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2591	}
2592
2593	pde = pmap_pde(pmap, va);
2594	if ((*pde & PG_PS) != 0)
2595		panic("pmap_enter: attempted pmap_enter on 4MB page");
2596	pte = pmap_pte_quick(pmap, va);
2597
2598	/*
2599	 * Page Directory table entry not valid, we need a new PT page
2600	 */
2601	if (pte == NULL) {
2602		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2603			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2604	}
2605
2606	pa = VM_PAGE_TO_PHYS(m);
2607	om = NULL;
2608	opa = origpte = 0;
2609
2610#if 0
2611	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2612		pte, *pte));
2613#endif
2614	origpte = *pte;
2615	if (origpte)
2616		origpte = xpmap_mtop(origpte);
2617	opa = origpte & PG_FRAME;
2618
2619	/*
2620	 * Mapping has not changed, must be protection or wiring change.
2621	 */
2622	if (origpte && (opa == pa)) {
2623		/*
2624		 * Wiring change, just update stats. We don't worry about
2625		 * wiring PT pages as they remain resident as long as there
2626		 * are valid mappings in them. Hence, if a user page is wired,
2627		 * the PT page will be also.
2628		 */
2629		if (wired && ((origpte & PG_W) == 0))
2630			pmap->pm_stats.wired_count++;
2631		else if (!wired && (origpte & PG_W))
2632			pmap->pm_stats.wired_count--;
2633
2634		/*
2635		 * Remove extra pte reference
2636		 */
2637		if (mpte)
2638			mpte->wire_count--;
2639
2640		if (origpte & PG_MANAGED) {
2641			om = m;
2642			pa |= PG_MANAGED;
2643		}
2644		goto validate;
2645	}
2646
2647	pv = NULL;
2648
2649	/*
2650	 * Mapping has changed, invalidate old range and fall through to
2651	 * handle validating new mapping.
2652	 */
2653	if (opa) {
2654		if (origpte & PG_W)
2655			pmap->pm_stats.wired_count--;
2656		if (origpte & PG_MANAGED) {
2657			om = PHYS_TO_VM_PAGE(opa);
2658			pv = pmap_pvh_remove(&om->md, pmap, va);
2659		} else if (va < VM_MAXUSER_ADDRESS)
2660			printf("va=0x%x is unmanaged :-( \n", va);
2661
2662		if (mpte != NULL) {
2663			mpte->wire_count--;
2664			KASSERT(mpte->wire_count > 0,
2665			    ("pmap_enter: missing reference to page table page,"
2666			     " va: 0x%x", va));
2667		}
2668	} else
2669		pmap->pm_stats.resident_count++;
2670
2671	/*
2672	 * Enter on the PV list if part of our managed memory.
2673	 */
2674	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2675		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2676		    ("pmap_enter: managed mapping within the clean submap"));
2677		if (pv == NULL)
2678			pv = get_pv_entry(pmap, FALSE);
2679		pv->pv_va = va;
2680		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2681		pa |= PG_MANAGED;
2682	} else if (pv != NULL)
2683		free_pv_entry(pmap, pv);
2684
2685	/*
2686	 * Increment counters
2687	 */
2688	if (wired)
2689		pmap->pm_stats.wired_count++;
2690
2691validate:
2692	/*
2693	 * Now validate mapping with desired protection/wiring.
2694	 */
2695	newpte = (pt_entry_t)(pa | PG_V);
2696	if ((prot & VM_PROT_WRITE) != 0) {
2697		newpte |= PG_RW;
2698		if ((newpte & PG_MANAGED) != 0)
2699			vm_page_flag_set(m, PG_WRITEABLE);
2700	}
2701#ifdef PAE
2702	if ((prot & VM_PROT_EXECUTE) == 0)
2703		newpte |= pg_nx;
2704#endif
2705	if (wired)
2706		newpte |= PG_W;
2707	if (va < VM_MAXUSER_ADDRESS)
2708		newpte |= PG_U;
2709	if (pmap == kernel_pmap)
2710		newpte |= pgeflag;
2711
2712	critical_enter();
2713	/*
2714	 * if the mapping or permission bits are different, we need
2715	 * to update the pte.
2716	 */
2717	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2718		if (origpte) {
2719			invlva = FALSE;
2720			origpte = *pte;
2721			PT_SET_VA(pte, newpte | PG_A, FALSE);
2722			if (origpte & PG_A) {
2723				if (origpte & PG_MANAGED)
2724					vm_page_flag_set(om, PG_REFERENCED);
2725				if (opa != VM_PAGE_TO_PHYS(m))
2726					invlva = TRUE;
2727#ifdef PAE
2728				if ((origpte & PG_NX) == 0 &&
2729				    (newpte & PG_NX) != 0)
2730					invlva = TRUE;
2731#endif
2732			}
2733			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2734				if ((origpte & PG_MANAGED) != 0)
2735					vm_page_dirty(om);
2736				if ((prot & VM_PROT_WRITE) == 0)
2737					invlva = TRUE;
2738			}
2739			if ((origpte & PG_MANAGED) != 0 &&
2740			    TAILQ_EMPTY(&om->md.pv_list))
2741				vm_page_flag_clear(om, PG_WRITEABLE);
2742			if (invlva)
2743				pmap_invalidate_page(pmap, va);
2744		} else{
2745			PT_SET_VA(pte, newpte | PG_A, FALSE);
2746		}
2747
2748	}
2749	PT_UPDATES_FLUSH();
2750	critical_exit();
2751	if (*PMAP1)
2752		PT_SET_VA_MA(PMAP1, 0, TRUE);
2753	sched_unpin();
2754	vm_page_unlock_queues();
2755	PMAP_UNLOCK(pmap);
2756}
2757
2758/*
2759 * Maps a sequence of resident pages belonging to the same object.
2760 * The sequence begins with the given page m_start.  This page is
2761 * mapped at the given virtual address start.  Each subsequent page is
2762 * mapped at a virtual address that is offset from start by the same
2763 * amount as the page is offset from m_start within the object.  The
2764 * last page in the sequence is the page with the largest offset from
2765 * m_start that can be mapped at a virtual address less than the given
2766 * virtual address end.  Not every virtual page between start and end
2767 * is mapped; only those for which a resident page exists with the
2768 * corresponding offset from m_start are mapped.
2769 */
2770void
2771pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2772    vm_page_t m_start, vm_prot_t prot)
2773{
2774	vm_page_t m, mpte;
2775	vm_pindex_t diff, psize;
2776	multicall_entry_t mcl[16];
2777	multicall_entry_t *mclp = mcl;
2778	int error, count = 0;
2779
2780	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2781	psize = atop(end - start);
2782
2783	mpte = NULL;
2784	m = m_start;
2785	vm_page_lock_queues();
2786	PMAP_LOCK(pmap);
2787	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2788		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2789		    prot, mpte);
2790		m = TAILQ_NEXT(m, listq);
2791		if (count == 16) {
2792			error = HYPERVISOR_multicall(mcl, count);
2793			KASSERT(error == 0, ("bad multicall %d", error));
2794			mclp = mcl;
2795			count = 0;
2796		}
2797	}
2798	if (count) {
2799		error = HYPERVISOR_multicall(mcl, count);
2800		KASSERT(error == 0, ("bad multicall %d", error));
2801	}
2802	vm_page_unlock_queues();
2803	PMAP_UNLOCK(pmap);
2804}
2805
2806/*
2807 * this code makes some *MAJOR* assumptions:
2808 * 1. Current pmap & pmap exists.
2809 * 2. Not wired.
2810 * 3. Read access.
2811 * 4. No page table pages.
2812 * but is *MUCH* faster than pmap_enter...
2813 */
2814
2815void
2816pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2817{
2818	multicall_entry_t mcl, *mclp;
2819	int count = 0;
2820	mclp = &mcl;
2821
2822	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2823	    pmap, va, m, prot);
2824
2825	vm_page_lock_queues();
2826	PMAP_LOCK(pmap);
2827	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2828	if (count)
2829		HYPERVISOR_multicall(&mcl, count);
2830	vm_page_unlock_queues();
2831	PMAP_UNLOCK(pmap);
2832}
2833
2834#ifdef notyet
2835void
2836pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2837{
2838	int i, error, index = 0;
2839	multicall_entry_t mcl[16];
2840	multicall_entry_t *mclp = mcl;
2841
2842	PMAP_LOCK(pmap);
2843	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2844		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2845			continue;
2846
2847		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2848		if (index == 16) {
2849			error = HYPERVISOR_multicall(mcl, index);
2850			mclp = mcl;
2851			index = 0;
2852			KASSERT(error == 0, ("bad multicall %d", error));
2853		}
2854	}
2855	if (index) {
2856		error = HYPERVISOR_multicall(mcl, index);
2857		KASSERT(error == 0, ("bad multicall %d", error));
2858	}
2859
2860	PMAP_UNLOCK(pmap);
2861}
2862#endif
2863
2864static vm_page_t
2865pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2866    vm_prot_t prot, vm_page_t mpte)
2867{
2868	pt_entry_t *pte;
2869	vm_paddr_t pa;
2870	vm_page_t free;
2871	multicall_entry_t *mcl = *mclpp;
2872
2873	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2874	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2875	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2876	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2877	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2878
2879	/*
2880	 * In the case that a page table page is not
2881	 * resident, we are creating it here.
2882	 */
2883	if (va < VM_MAXUSER_ADDRESS) {
2884		unsigned ptepindex;
2885		pd_entry_t ptema;
2886
2887		/*
2888		 * Calculate pagetable page index
2889		 */
2890		ptepindex = va >> PDRSHIFT;
2891		if (mpte && (mpte->pindex == ptepindex)) {
2892			mpte->wire_count++;
2893		} else {
2894			/*
2895			 * Get the page directory entry
2896			 */
2897			ptema = pmap->pm_pdir[ptepindex];
2898
2899			/*
2900			 * If the page table page is mapped, we just increment
2901			 * the hold count, and activate it.
2902			 */
2903			if (ptema & PG_V) {
2904				if (ptema & PG_PS)
2905					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2906				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2907				mpte->wire_count++;
2908			} else {
2909				mpte = _pmap_allocpte(pmap, ptepindex,
2910				    M_NOWAIT);
2911				if (mpte == NULL)
2912					return (mpte);
2913			}
2914		}
2915	} else {
2916		mpte = NULL;
2917	}
2918
2919	/*
2920	 * This call to vtopte makes the assumption that we are
2921	 * entering the page into the current pmap.  In order to support
2922	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2923	 * But that isn't as quick as vtopte.
2924	 */
2925	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2926	pte = vtopte(va);
2927	if (*pte & PG_V) {
2928		if (mpte != NULL) {
2929			mpte->wire_count--;
2930			mpte = NULL;
2931		}
2932		return (mpte);
2933	}
2934
2935	/*
2936	 * Enter on the PV list if part of our managed memory.
2937	 */
2938	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2939	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2940		if (mpte != NULL) {
2941			free = NULL;
2942			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2943				pmap_invalidate_page(pmap, va);
2944				pmap_free_zero_pages(free);
2945			}
2946
2947			mpte = NULL;
2948		}
2949		return (mpte);
2950	}
2951
2952	/*
2953	 * Increment counters
2954	 */
2955	pmap->pm_stats.resident_count++;
2956
2957	pa = VM_PAGE_TO_PHYS(m);
2958#ifdef PAE
2959	if ((prot & VM_PROT_EXECUTE) == 0)
2960		pa |= pg_nx;
2961#endif
2962
2963#if 0
2964	/*
2965	 * Now validate mapping with RO protection
2966	 */
2967	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2968		pte_store(pte, pa | PG_V | PG_U);
2969	else
2970		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2971#else
2972	/*
2973	 * Now validate mapping with RO protection
2974	 */
2975	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2976		pa = 	xpmap_ptom(pa | PG_V | PG_U);
2977	else
2978		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
2979
2980	mcl->op = __HYPERVISOR_update_va_mapping;
2981	mcl->args[0] = va;
2982	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
2983	mcl->args[2] = (uint32_t)(pa >> 32);
2984	mcl->args[3] = 0;
2985	*mclpp = mcl + 1;
2986	*count = *count + 1;
2987#endif
2988	return mpte;
2989}
2990
2991/*
2992 * Make a temporary mapping for a physical address.  This is only intended
2993 * to be used for panic dumps.
2994 */
2995void *
2996pmap_kenter_temporary(vm_paddr_t pa, int i)
2997{
2998	vm_offset_t va;
2999	vm_paddr_t ma = xpmap_ptom(pa);
3000
3001	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3002	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3003	invlpg(va);
3004	return ((void *)crashdumpmap);
3005}
3006
3007/*
3008 * This code maps large physical mmap regions into the
3009 * processor address space.  Note that some shortcuts
3010 * are taken, but the code works.
3011 */
3012void
3013pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3014		    vm_object_t object, vm_pindex_t pindex,
3015		    vm_size_t size)
3016{
3017	pd_entry_t *pde;
3018	vm_paddr_t pa, ptepa;
3019	vm_page_t p;
3020	int pat_mode;
3021
3022	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3023	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3024	    ("pmap_object_init_pt: non-device object"));
3025	if (pseflag &&
3026	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3027		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3028			return;
3029		p = vm_page_lookup(object, pindex);
3030		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3031		    ("pmap_object_init_pt: invalid page %p", p));
3032		pat_mode = p->md.pat_mode;
3033		/*
3034		 * Abort the mapping if the first page is not physically
3035		 * aligned to a 2/4MB page boundary.
3036		 */
3037		ptepa = VM_PAGE_TO_PHYS(p);
3038		if (ptepa & (NBPDR - 1))
3039			return;
3040		/*
3041		 * Skip the first page.  Abort the mapping if the rest of
3042		 * the pages are not physically contiguous or have differing
3043		 * memory attributes.
3044		 */
3045		p = TAILQ_NEXT(p, listq);
3046		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3047		    pa += PAGE_SIZE) {
3048			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3049			    ("pmap_object_init_pt: invalid page %p", p));
3050			if (pa != VM_PAGE_TO_PHYS(p) ||
3051			    pat_mode != p->md.pat_mode)
3052				return;
3053			p = TAILQ_NEXT(p, listq);
3054		}
3055		/* Map using 2/4MB pages. */
3056		PMAP_LOCK(pmap);
3057		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3058		    size; pa += NBPDR) {
3059			pde = pmap_pde(pmap, addr);
3060			if (*pde == 0) {
3061				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3062				    PG_U | PG_RW | PG_V);
3063				pmap->pm_stats.resident_count += NBPDR /
3064				    PAGE_SIZE;
3065				pmap_pde_mappings++;
3066			}
3067			/* Else continue on if the PDE is already valid. */
3068			addr += NBPDR;
3069		}
3070		PMAP_UNLOCK(pmap);
3071	}
3072}
3073
3074/*
3075 *	Routine:	pmap_change_wiring
3076 *	Function:	Change the wiring attribute for a map/virtual-address
3077 *			pair.
3078 *	In/out conditions:
3079 *			The mapping must already exist in the pmap.
3080 */
3081void
3082pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3083{
3084	pt_entry_t *pte;
3085
3086	vm_page_lock_queues();
3087	PMAP_LOCK(pmap);
3088	pte = pmap_pte(pmap, va);
3089
3090	if (wired && !pmap_pte_w(pte)) {
3091		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3092		pmap->pm_stats.wired_count++;
3093	} else if (!wired && pmap_pte_w(pte)) {
3094		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3095		pmap->pm_stats.wired_count--;
3096	}
3097
3098	/*
3099	 * Wiring is not a hardware characteristic so there is no need to
3100	 * invalidate TLB.
3101	 */
3102	pmap_pte_release(pte);
3103	PMAP_UNLOCK(pmap);
3104	vm_page_unlock_queues();
3105}
3106
3107
3108
3109/*
3110 *	Copy the range specified by src_addr/len
3111 *	from the source map to the range dst_addr/len
3112 *	in the destination map.
3113 *
3114 *	This routine is only advisory and need not do anything.
3115 */
3116
3117void
3118pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3119	  vm_offset_t src_addr)
3120{
3121	vm_page_t   free;
3122	vm_offset_t addr;
3123	vm_offset_t end_addr = src_addr + len;
3124	vm_offset_t pdnxt;
3125
3126	if (dst_addr != src_addr)
3127		return;
3128
3129	if (!pmap_is_current(src_pmap)) {
3130		CTR2(KTR_PMAP,
3131		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3132		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3133
3134		return;
3135	}
3136	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3137	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3138
3139	vm_page_lock_queues();
3140	if (dst_pmap < src_pmap) {
3141		PMAP_LOCK(dst_pmap);
3142		PMAP_LOCK(src_pmap);
3143	} else {
3144		PMAP_LOCK(src_pmap);
3145		PMAP_LOCK(dst_pmap);
3146	}
3147	sched_pin();
3148	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3149		pt_entry_t *src_pte, *dst_pte;
3150		vm_page_t dstmpte, srcmpte;
3151		pd_entry_t srcptepaddr;
3152		unsigned ptepindex;
3153
3154		KASSERT(addr < UPT_MIN_ADDRESS,
3155		    ("pmap_copy: invalid to pmap_copy page tables"));
3156
3157		pdnxt = (addr + NBPDR) & ~PDRMASK;
3158		ptepindex = addr >> PDRSHIFT;
3159
3160		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3161		if (srcptepaddr == 0)
3162			continue;
3163
3164		if (srcptepaddr & PG_PS) {
3165			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3166				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3167				dst_pmap->pm_stats.resident_count +=
3168				    NBPDR / PAGE_SIZE;
3169			}
3170			continue;
3171		}
3172
3173		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3174		KASSERT(srcmpte->wire_count > 0,
3175		    ("pmap_copy: source page table page is unused"));
3176
3177		if (pdnxt > end_addr)
3178			pdnxt = end_addr;
3179
3180		src_pte = vtopte(addr);
3181		while (addr < pdnxt) {
3182			pt_entry_t ptetemp;
3183			ptetemp = *src_pte;
3184			/*
3185			 * we only virtual copy managed pages
3186			 */
3187			if ((ptetemp & PG_MANAGED) != 0) {
3188				dstmpte = pmap_allocpte(dst_pmap, addr,
3189				    M_NOWAIT);
3190				if (dstmpte == NULL)
3191					break;
3192				dst_pte = pmap_pte_quick(dst_pmap, addr);
3193				if (*dst_pte == 0 &&
3194				    pmap_try_insert_pv_entry(dst_pmap, addr,
3195				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3196					/*
3197					 * Clear the wired, modified, and
3198					 * accessed (referenced) bits
3199					 * during the copy.
3200					 */
3201					KASSERT(ptetemp != 0, ("src_pte not set"));
3202					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3203					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3204					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3205						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3206					dst_pmap->pm_stats.resident_count++;
3207	 			} else {
3208					free = NULL;
3209					if (pmap_unwire_pte_hold(dst_pmap,
3210					    dstmpte, &free)) {
3211						pmap_invalidate_page(dst_pmap,
3212						    addr);
3213						pmap_free_zero_pages(free);
3214					}
3215				}
3216				if (dstmpte->wire_count >= srcmpte->wire_count)
3217					break;
3218			}
3219			addr += PAGE_SIZE;
3220			src_pte++;
3221		}
3222	}
3223	PT_UPDATES_FLUSH();
3224	sched_unpin();
3225	vm_page_unlock_queues();
3226	PMAP_UNLOCK(src_pmap);
3227	PMAP_UNLOCK(dst_pmap);
3228}
3229
3230static __inline void
3231pagezero(void *page)
3232{
3233#if defined(I686_CPU)
3234	if (cpu_class == CPUCLASS_686) {
3235#if defined(CPU_ENABLE_SSE)
3236		if (cpu_feature & CPUID_SSE2)
3237			sse2_pagezero(page);
3238		else
3239#endif
3240			i686_pagezero(page);
3241	} else
3242#endif
3243		bzero(page, PAGE_SIZE);
3244}
3245
3246/*
3247 *	pmap_zero_page zeros the specified hardware page by mapping
3248 *	the page into KVM and using bzero to clear its contents.
3249 */
3250void
3251pmap_zero_page(vm_page_t m)
3252{
3253	struct sysmaps *sysmaps;
3254
3255	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3256	mtx_lock(&sysmaps->lock);
3257	if (*sysmaps->CMAP2)
3258		panic("pmap_zero_page: CMAP2 busy");
3259	sched_pin();
3260	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3261	pagezero(sysmaps->CADDR2);
3262	PT_SET_MA(sysmaps->CADDR2, 0);
3263	sched_unpin();
3264	mtx_unlock(&sysmaps->lock);
3265}
3266
3267/*
3268 *	pmap_zero_page_area zeros the specified hardware page by mapping
3269 *	the page into KVM and using bzero to clear its contents.
3270 *
3271 *	off and size may not cover an area beyond a single hardware page.
3272 */
3273void
3274pmap_zero_page_area(vm_page_t m, int off, int size)
3275{
3276	struct sysmaps *sysmaps;
3277
3278	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3279	mtx_lock(&sysmaps->lock);
3280	if (*sysmaps->CMAP2)
3281		panic("pmap_zero_page: CMAP2 busy");
3282	sched_pin();
3283	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3284
3285	if (off == 0 && size == PAGE_SIZE)
3286		pagezero(sysmaps->CADDR2);
3287	else
3288		bzero((char *)sysmaps->CADDR2 + off, size);
3289	PT_SET_MA(sysmaps->CADDR2, 0);
3290	sched_unpin();
3291	mtx_unlock(&sysmaps->lock);
3292}
3293
3294/*
3295 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3296 *	the page into KVM and using bzero to clear its contents.  This
3297 *	is intended to be called from the vm_pagezero process only and
3298 *	outside of Giant.
3299 */
3300void
3301pmap_zero_page_idle(vm_page_t m)
3302{
3303
3304	if (*CMAP3)
3305		panic("pmap_zero_page: CMAP3 busy");
3306	sched_pin();
3307	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3308	pagezero(CADDR3);
3309	PT_SET_MA(CADDR3, 0);
3310	sched_unpin();
3311}
3312
3313/*
3314 *	pmap_copy_page copies the specified (machine independent)
3315 *	page by mapping the page into virtual memory and using
3316 *	bcopy to copy the page, one machine dependent page at a
3317 *	time.
3318 */
3319void
3320pmap_copy_page(vm_page_t src, vm_page_t dst)
3321{
3322	struct sysmaps *sysmaps;
3323
3324	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3325	mtx_lock(&sysmaps->lock);
3326	if (*sysmaps->CMAP1)
3327		panic("pmap_copy_page: CMAP1 busy");
3328	if (*sysmaps->CMAP2)
3329		panic("pmap_copy_page: CMAP2 busy");
3330	sched_pin();
3331	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3332	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3333	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3334	PT_SET_MA(sysmaps->CADDR1, 0);
3335	PT_SET_MA(sysmaps->CADDR2, 0);
3336	sched_unpin();
3337	mtx_unlock(&sysmaps->lock);
3338}
3339
3340/*
3341 * Returns true if the pmap's pv is one of the first
3342 * 16 pvs linked to from this page.  This count may
3343 * be changed upwards or downwards in the future; it
3344 * is only necessary that true be returned for a small
3345 * subset of pmaps for proper page aging.
3346 */
3347boolean_t
3348pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3349{
3350	pv_entry_t pv;
3351	int loops = 0;
3352	boolean_t rv;
3353
3354	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3355	    ("pmap_page_exists_quick: page %p is not managed", m));
3356	rv = FALSE;
3357	vm_page_lock_queues();
3358	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3359		if (PV_PMAP(pv) == pmap) {
3360			rv = TRUE;
3361			break;
3362		}
3363		loops++;
3364		if (loops >= 16)
3365			break;
3366	}
3367	vm_page_unlock_queues();
3368	return (rv);
3369}
3370
3371/*
3372 *	pmap_page_wired_mappings:
3373 *
3374 *	Return the number of managed mappings to the given physical page
3375 *	that are wired.
3376 */
3377int
3378pmap_page_wired_mappings(vm_page_t m)
3379{
3380	pv_entry_t pv;
3381	pt_entry_t *pte;
3382	pmap_t pmap;
3383	int count;
3384
3385	count = 0;
3386	if ((m->flags & PG_FICTITIOUS) != 0)
3387		return (count);
3388	vm_page_lock_queues();
3389	sched_pin();
3390	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3391		pmap = PV_PMAP(pv);
3392		PMAP_LOCK(pmap);
3393		pte = pmap_pte_quick(pmap, pv->pv_va);
3394		if ((*pte & PG_W) != 0)
3395			count++;
3396		PMAP_UNLOCK(pmap);
3397	}
3398	sched_unpin();
3399	vm_page_unlock_queues();
3400	return (count);
3401}
3402
3403/*
3404 * Returns TRUE if the given page is mapped individually or as part of
3405 * a 4mpage.  Otherwise, returns FALSE.
3406 */
3407boolean_t
3408pmap_page_is_mapped(vm_page_t m)
3409{
3410	boolean_t rv;
3411
3412	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3413		return (FALSE);
3414	vm_page_lock_queues();
3415	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3416	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3417	vm_page_unlock_queues();
3418	return (rv);
3419}
3420
3421/*
3422 * Remove all pages from specified address space
3423 * this aids process exit speeds.  Also, this code
3424 * is special cased for current process only, but
3425 * can have the more generic (and slightly slower)
3426 * mode enabled.  This is much faster than pmap_remove
3427 * in the case of running down an entire address space.
3428 */
3429void
3430pmap_remove_pages(pmap_t pmap)
3431{
3432	pt_entry_t *pte, tpte;
3433	vm_page_t m, free = NULL;
3434	pv_entry_t pv;
3435	struct pv_chunk *pc, *npc;
3436	int field, idx;
3437	int32_t bit;
3438	uint32_t inuse, bitmask;
3439	int allfree;
3440
3441	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3442
3443	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3444		printf("warning: pmap_remove_pages called with non-current pmap\n");
3445		return;
3446	}
3447	vm_page_lock_queues();
3448	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3449	PMAP_LOCK(pmap);
3450	sched_pin();
3451	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3452		allfree = 1;
3453		for (field = 0; field < _NPCM; field++) {
3454			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3455			while (inuse != 0) {
3456				bit = bsfl(inuse);
3457				bitmask = 1UL << bit;
3458				idx = field * 32 + bit;
3459				pv = &pc->pc_pventry[idx];
3460				inuse &= ~bitmask;
3461
3462				pte = vtopte(pv->pv_va);
3463				tpte = *pte ? xpmap_mtop(*pte) : 0;
3464
3465				if (tpte == 0) {
3466					printf(
3467					    "TPTE at %p  IS ZERO @ VA %08x\n",
3468					    pte, pv->pv_va);
3469					panic("bad pte");
3470				}
3471
3472/*
3473 * We cannot remove wired pages from a process' mapping at this time
3474 */
3475				if (tpte & PG_W) {
3476					allfree = 0;
3477					continue;
3478				}
3479
3480				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3481				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3482				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3483				    m, (uintmax_t)m->phys_addr,
3484				    (uintmax_t)tpte));
3485
3486				KASSERT(m < &vm_page_array[vm_page_array_size],
3487					("pmap_remove_pages: bad tpte %#jx",
3488					(uintmax_t)tpte));
3489
3490
3491				PT_CLEAR_VA(pte, FALSE);
3492
3493				/*
3494				 * Update the vm_page_t clean/reference bits.
3495				 */
3496				if (tpte & PG_M)
3497					vm_page_dirty(m);
3498
3499				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3500				if (TAILQ_EMPTY(&m->md.pv_list))
3501					vm_page_flag_clear(m, PG_WRITEABLE);
3502
3503				pmap_unuse_pt(pmap, pv->pv_va, &free);
3504
3505				/* Mark free */
3506				PV_STAT(pv_entry_frees++);
3507				PV_STAT(pv_entry_spare++);
3508				pv_entry_count--;
3509				pc->pc_map[field] |= bitmask;
3510				pmap->pm_stats.resident_count--;
3511			}
3512		}
3513		PT_UPDATES_FLUSH();
3514		if (allfree) {
3515			PV_STAT(pv_entry_spare -= _NPCPV);
3516			PV_STAT(pc_chunk_count--);
3517			PV_STAT(pc_chunk_frees++);
3518			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3519			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3520			pmap_qremove((vm_offset_t)pc, 1);
3521			vm_page_unwire(m, 0);
3522			vm_page_free(m);
3523			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3524		}
3525	}
3526	PT_UPDATES_FLUSH();
3527	if (*PMAP1)
3528		PT_SET_MA(PADDR1, 0);
3529
3530	sched_unpin();
3531	pmap_invalidate_all(pmap);
3532	vm_page_unlock_queues();
3533	PMAP_UNLOCK(pmap);
3534	pmap_free_zero_pages(free);
3535}
3536
3537/*
3538 *	pmap_is_modified:
3539 *
3540 *	Return whether or not the specified physical page was modified
3541 *	in any physical maps.
3542 */
3543boolean_t
3544pmap_is_modified(vm_page_t m)
3545{
3546	pv_entry_t pv;
3547	pt_entry_t *pte;
3548	pmap_t pmap;
3549	boolean_t rv;
3550
3551	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3552	    ("pmap_is_modified: page %p is not managed", m));
3553	rv = FALSE;
3554
3555	/*
3556	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
3557	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
3558	 * is clear, no PTEs can have PG_M set.
3559	 */
3560	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3561	if ((m->oflags & VPO_BUSY) == 0 &&
3562	    (m->flags & PG_WRITEABLE) == 0)
3563		return (rv);
3564	vm_page_lock_queues();
3565	sched_pin();
3566	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3567		pmap = PV_PMAP(pv);
3568		PMAP_LOCK(pmap);
3569		pte = pmap_pte_quick(pmap, pv->pv_va);
3570		rv = (*pte & PG_M) != 0;
3571		PMAP_UNLOCK(pmap);
3572		if (rv)
3573			break;
3574	}
3575	if (*PMAP1)
3576		PT_SET_MA(PADDR1, 0);
3577	sched_unpin();
3578	vm_page_unlock_queues();
3579	return (rv);
3580}
3581
3582/*
3583 *	pmap_is_prefaultable:
3584 *
3585 *	Return whether or not the specified virtual address is elgible
3586 *	for prefault.
3587 */
3588static boolean_t
3589pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3590{
3591	pt_entry_t *pte;
3592	boolean_t rv = FALSE;
3593
3594	return (rv);
3595
3596	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3597		pte = vtopte(addr);
3598		rv = (*pte == 0);
3599	}
3600	return (rv);
3601}
3602
3603boolean_t
3604pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3605{
3606	boolean_t rv;
3607
3608	PMAP_LOCK(pmap);
3609	rv = pmap_is_prefaultable_locked(pmap, addr);
3610	PMAP_UNLOCK(pmap);
3611	return (rv);
3612}
3613
3614boolean_t
3615pmap_is_referenced(vm_page_t m)
3616{
3617	pv_entry_t pv;
3618	pt_entry_t *pte;
3619	pmap_t pmap;
3620	boolean_t rv;
3621
3622	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3623	    ("pmap_is_referenced: page %p is not managed", m));
3624	rv = FALSE;
3625	vm_page_lock_queues();
3626	sched_pin();
3627	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3628		pmap = PV_PMAP(pv);
3629		PMAP_LOCK(pmap);
3630		pte = pmap_pte_quick(pmap, pv->pv_va);
3631		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3632		PMAP_UNLOCK(pmap);
3633		if (rv)
3634			break;
3635	}
3636	if (*PMAP1)
3637		PT_SET_MA(PADDR1, 0);
3638	sched_unpin();
3639	vm_page_unlock_queues();
3640	return (rv);
3641}
3642
3643void
3644pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3645{
3646	int i, npages = round_page(len) >> PAGE_SHIFT;
3647	for (i = 0; i < npages; i++) {
3648		pt_entry_t *pte;
3649		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3650		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3651		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3652		pmap_pte_release(pte);
3653	}
3654}
3655
3656void
3657pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3658{
3659	int i, npages = round_page(len) >> PAGE_SHIFT;
3660	for (i = 0; i < npages; i++) {
3661		pt_entry_t *pte;
3662		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3663		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3664		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3665		pmap_pte_release(pte);
3666	}
3667}
3668
3669/*
3670 * Clear the write and modified bits in each of the given page's mappings.
3671 */
3672void
3673pmap_remove_write(vm_page_t m)
3674{
3675	pv_entry_t pv;
3676	pmap_t pmap;
3677	pt_entry_t oldpte, *pte;
3678
3679	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3680	    ("pmap_remove_write: page %p is not managed", m));
3681
3682	/*
3683	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
3684	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
3685	 * is clear, no page table entries need updating.
3686	 */
3687	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3688	if ((m->oflags & VPO_BUSY) == 0 &&
3689	    (m->flags & PG_WRITEABLE) == 0)
3690		return;
3691	vm_page_lock_queues();
3692	sched_pin();
3693	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3694		pmap = PV_PMAP(pv);
3695		PMAP_LOCK(pmap);
3696		pte = pmap_pte_quick(pmap, pv->pv_va);
3697retry:
3698		oldpte = *pte;
3699		if ((oldpte & PG_RW) != 0) {
3700			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3701
3702			/*
3703			 * Regardless of whether a pte is 32 or 64 bits
3704			 * in size, PG_RW and PG_M are among the least
3705			 * significant 32 bits.
3706			 */
3707			PT_SET_VA_MA(pte, newpte, TRUE);
3708			if (*pte != newpte)
3709				goto retry;
3710
3711			if ((oldpte & PG_M) != 0)
3712				vm_page_dirty(m);
3713			pmap_invalidate_page(pmap, pv->pv_va);
3714		}
3715		PMAP_UNLOCK(pmap);
3716	}
3717	vm_page_flag_clear(m, PG_WRITEABLE);
3718	PT_UPDATES_FLUSH();
3719	if (*PMAP1)
3720		PT_SET_MA(PADDR1, 0);
3721	sched_unpin();
3722	vm_page_unlock_queues();
3723}
3724
3725/*
3726 *	pmap_ts_referenced:
3727 *
3728 *	Return a count of reference bits for a page, clearing those bits.
3729 *	It is not necessary for every reference bit to be cleared, but it
3730 *	is necessary that 0 only be returned when there are truly no
3731 *	reference bits set.
3732 *
3733 *	XXX: The exact number of bits to check and clear is a matter that
3734 *	should be tested and standardized at some point in the future for
3735 *	optimal aging of shared pages.
3736 */
3737int
3738pmap_ts_referenced(vm_page_t m)
3739{
3740	pv_entry_t pv, pvf, pvn;
3741	pmap_t pmap;
3742	pt_entry_t *pte;
3743	int rtval = 0;
3744
3745	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3746	    ("pmap_ts_referenced: page %p is not managed", m));
3747	vm_page_lock_queues();
3748	sched_pin();
3749	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3750		pvf = pv;
3751		do {
3752			pvn = TAILQ_NEXT(pv, pv_list);
3753			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3754			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3755			pmap = PV_PMAP(pv);
3756			PMAP_LOCK(pmap);
3757			pte = pmap_pte_quick(pmap, pv->pv_va);
3758			if ((*pte & PG_A) != 0) {
3759				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3760				pmap_invalidate_page(pmap, pv->pv_va);
3761				rtval++;
3762				if (rtval > 4)
3763					pvn = NULL;
3764			}
3765			PMAP_UNLOCK(pmap);
3766		} while ((pv = pvn) != NULL && pv != pvf);
3767	}
3768	PT_UPDATES_FLUSH();
3769	if (*PMAP1)
3770		PT_SET_MA(PADDR1, 0);
3771
3772	sched_unpin();
3773	vm_page_unlock_queues();
3774	return (rtval);
3775}
3776
3777/*
3778 *	Clear the modify bits on the specified physical page.
3779 */
3780void
3781pmap_clear_modify(vm_page_t m)
3782{
3783	pv_entry_t pv;
3784	pmap_t pmap;
3785	pt_entry_t *pte;
3786
3787	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3788	    ("pmap_clear_modify: page %p is not managed", m));
3789	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3790	KASSERT((m->oflags & VPO_BUSY) == 0,
3791	    ("pmap_clear_modify: page %p is busy", m));
3792
3793	/*
3794	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
3795	 * If the object containing the page is locked and the page is not
3796	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
3797	 */
3798	if ((m->flags & PG_WRITEABLE) == 0)
3799		return;
3800	vm_page_lock_queues();
3801	sched_pin();
3802	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3803		pmap = PV_PMAP(pv);
3804		PMAP_LOCK(pmap);
3805		pte = pmap_pte_quick(pmap, pv->pv_va);
3806		if ((*pte & PG_M) != 0) {
3807			/*
3808			 * Regardless of whether a pte is 32 or 64 bits
3809			 * in size, PG_M is among the least significant
3810			 * 32 bits.
3811			 */
3812			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3813			pmap_invalidate_page(pmap, pv->pv_va);
3814		}
3815		PMAP_UNLOCK(pmap);
3816	}
3817	sched_unpin();
3818	vm_page_unlock_queues();
3819}
3820
3821/*
3822 *	pmap_clear_reference:
3823 *
3824 *	Clear the reference bit on the specified physical page.
3825 */
3826void
3827pmap_clear_reference(vm_page_t m)
3828{
3829	pv_entry_t pv;
3830	pmap_t pmap;
3831	pt_entry_t *pte;
3832
3833	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3834	    ("pmap_clear_reference: page %p is not managed", m));
3835	vm_page_lock_queues();
3836	sched_pin();
3837	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3838		pmap = PV_PMAP(pv);
3839		PMAP_LOCK(pmap);
3840		pte = pmap_pte_quick(pmap, pv->pv_va);
3841		if ((*pte & PG_A) != 0) {
3842			/*
3843			 * Regardless of whether a pte is 32 or 64 bits
3844			 * in size, PG_A is among the least significant
3845			 * 32 bits.
3846			 */
3847			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3848			pmap_invalidate_page(pmap, pv->pv_va);
3849		}
3850		PMAP_UNLOCK(pmap);
3851	}
3852	sched_unpin();
3853	vm_page_unlock_queues();
3854}
3855
3856/*
3857 * Miscellaneous support routines follow
3858 */
3859
3860/*
3861 * Map a set of physical memory pages into the kernel virtual
3862 * address space. Return a pointer to where it is mapped. This
3863 * routine is intended to be used for mapping device memory,
3864 * NOT real memory.
3865 */
3866void *
3867pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3868{
3869	vm_offset_t va, offset;
3870	vm_size_t tmpsize;
3871
3872	offset = pa & PAGE_MASK;
3873	size = roundup(offset + size, PAGE_SIZE);
3874	pa = pa & PG_FRAME;
3875
3876	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3877		va = KERNBASE + pa;
3878	else
3879		va = kmem_alloc_nofault(kernel_map, size);
3880	if (!va)
3881		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3882
3883	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3884		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3885	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3886	pmap_invalidate_cache_range(va, va + size);
3887	return ((void *)(va + offset));
3888}
3889
3890void *
3891pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3892{
3893
3894	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3895}
3896
3897void *
3898pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3899{
3900
3901	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3902}
3903
3904void
3905pmap_unmapdev(vm_offset_t va, vm_size_t size)
3906{
3907	vm_offset_t base, offset, tmpva;
3908
3909	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3910		return;
3911	base = trunc_page(va);
3912	offset = va & PAGE_MASK;
3913	size = roundup(offset + size, PAGE_SIZE);
3914	critical_enter();
3915	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3916		pmap_kremove(tmpva);
3917	pmap_invalidate_range(kernel_pmap, va, tmpva);
3918	critical_exit();
3919	kmem_free(kernel_map, base, size);
3920}
3921
3922/*
3923 * Sets the memory attribute for the specified page.
3924 */
3925void
3926pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3927{
3928	struct sysmaps *sysmaps;
3929	vm_offset_t sva, eva;
3930
3931	m->md.pat_mode = ma;
3932	if ((m->flags & PG_FICTITIOUS) != 0)
3933		return;
3934
3935	/*
3936	 * If "m" is a normal page, flush it from the cache.
3937	 * See pmap_invalidate_cache_range().
3938	 *
3939	 * First, try to find an existing mapping of the page by sf
3940	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3941	 * flushes the cache.
3942	 */
3943	if (sf_buf_invalidate_cache(m))
3944		return;
3945
3946	/*
3947	 * If page is not mapped by sf buffer, but CPU does not
3948	 * support self snoop, map the page transient and do
3949	 * invalidation. In the worst case, whole cache is flushed by
3950	 * pmap_invalidate_cache_range().
3951	 */
3952	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
3953		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3954		mtx_lock(&sysmaps->lock);
3955		if (*sysmaps->CMAP2)
3956			panic("pmap_page_set_memattr: CMAP2 busy");
3957		sched_pin();
3958		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3959		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
3960		    pmap_cache_bits(m->md.pat_mode, 0));
3961		invlcaddr(sysmaps->CADDR2);
3962		sva = (vm_offset_t)sysmaps->CADDR2;
3963		eva = sva + PAGE_SIZE;
3964	} else
3965		sva = eva = 0; /* gcc */
3966	pmap_invalidate_cache_range(sva, eva);
3967	if (sva != 0) {
3968		PT_SET_MA(sysmaps->CADDR2, 0);
3969		sched_unpin();
3970		mtx_unlock(&sysmaps->lock);
3971	}
3972}
3973
3974int
3975pmap_change_attr(va, size, mode)
3976	vm_offset_t va;
3977	vm_size_t size;
3978	int mode;
3979{
3980	vm_offset_t base, offset, tmpva;
3981	pt_entry_t *pte;
3982	u_int opte, npte;
3983	pd_entry_t *pde;
3984	boolean_t changed;
3985
3986	base = trunc_page(va);
3987	offset = va & PAGE_MASK;
3988	size = roundup(offset + size, PAGE_SIZE);
3989
3990	/* Only supported on kernel virtual addresses. */
3991	if (base <= VM_MAXUSER_ADDRESS)
3992		return (EINVAL);
3993
3994	/* 4MB pages and pages that aren't mapped aren't supported. */
3995	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3996		pde = pmap_pde(kernel_pmap, tmpva);
3997		if (*pde & PG_PS)
3998			return (EINVAL);
3999		if ((*pde & PG_V) == 0)
4000			return (EINVAL);
4001		pte = vtopte(va);
4002		if ((*pte & PG_V) == 0)
4003			return (EINVAL);
4004	}
4005
4006	changed = FALSE;
4007
4008	/*
4009	 * Ok, all the pages exist and are 4k, so run through them updating
4010	 * their cache mode.
4011	 */
4012	for (tmpva = base; size > 0; ) {
4013		pte = vtopte(tmpva);
4014
4015		/*
4016		 * The cache mode bits are all in the low 32-bits of the
4017		 * PTE, so we can just spin on updating the low 32-bits.
4018		 */
4019		do {
4020			opte = *(u_int *)pte;
4021			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4022			npte |= pmap_cache_bits(mode, 0);
4023			PT_SET_VA_MA(pte, npte, TRUE);
4024		} while (npte != opte && (*pte != npte));
4025		if (npte != opte)
4026			changed = TRUE;
4027		tmpva += PAGE_SIZE;
4028		size -= PAGE_SIZE;
4029	}
4030
4031	/*
4032	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4033	 * be, etc.
4034	 */
4035	if (changed) {
4036		pmap_invalidate_range(kernel_pmap, base, tmpva);
4037		pmap_invalidate_cache_range(base, tmpva);
4038	}
4039	return (0);
4040}
4041
4042/*
4043 * perform the pmap work for mincore
4044 */
4045int
4046pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4047{
4048	pt_entry_t *ptep, pte;
4049	vm_paddr_t pa;
4050	int val;
4051
4052	PMAP_LOCK(pmap);
4053retry:
4054	ptep = pmap_pte(pmap, addr);
4055	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4056	pmap_pte_release(ptep);
4057	val = 0;
4058	if ((pte & PG_V) != 0) {
4059		val |= MINCORE_INCORE;
4060		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4061			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4062		if ((pte & PG_A) != 0)
4063			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4064	}
4065	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4066	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4067	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4068		pa = pte & PG_FRAME;
4069		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4070		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4071			goto retry;
4072	} else
4073		PA_UNLOCK_COND(*locked_pa);
4074	PMAP_UNLOCK(pmap);
4075	return (val);
4076}
4077
4078void
4079pmap_activate(struct thread *td)
4080{
4081	pmap_t	pmap, oldpmap;
4082	u_int32_t  cr3;
4083
4084	critical_enter();
4085	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4086	oldpmap = PCPU_GET(curpmap);
4087#if defined(SMP)
4088	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4089	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4090#else
4091	oldpmap->pm_active &= ~1;
4092	pmap->pm_active |= 1;
4093#endif
4094#ifdef PAE
4095	cr3 = vtophys(pmap->pm_pdpt);
4096#else
4097	cr3 = vtophys(pmap->pm_pdir);
4098#endif
4099	/*
4100	 * pmap_activate is for the current thread on the current cpu
4101	 */
4102	td->td_pcb->pcb_cr3 = cr3;
4103	PT_UPDATES_FLUSH();
4104	load_cr3(cr3);
4105	PCPU_SET(curpmap, pmap);
4106	critical_exit();
4107}
4108
4109void
4110pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4111{
4112}
4113
4114/*
4115 *	Increase the starting virtual address of the given mapping if a
4116 *	different alignment might result in more superpage mappings.
4117 */
4118void
4119pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4120    vm_offset_t *addr, vm_size_t size)
4121{
4122	vm_offset_t superpage_offset;
4123
4124	if (size < NBPDR)
4125		return;
4126	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4127		offset += ptoa(object->pg_color);
4128	superpage_offset = offset & PDRMASK;
4129	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4130	    (*addr & PDRMASK) == superpage_offset)
4131		return;
4132	if ((*addr & PDRMASK) < superpage_offset)
4133		*addr = (*addr & ~PDRMASK) + superpage_offset;
4134	else
4135		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4136}
4137
4138void
4139pmap_suspend()
4140{
4141	pmap_t pmap;
4142	int i, pdir, offset;
4143	vm_paddr_t pdirma;
4144	mmu_update_t mu[4];
4145
4146	/*
4147	 * We need to remove the recursive mapping structure from all
4148	 * our pmaps so that Xen doesn't get confused when it restores
4149	 * the page tables. The recursive map lives at page directory
4150	 * index PTDPTDI. We assume that the suspend code has stopped
4151	 * the other vcpus (if any).
4152	 */
4153	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4154		for (i = 0; i < 4; i++) {
4155			/*
4156			 * Figure out which page directory (L2) page
4157			 * contains this bit of the recursive map and
4158			 * the offset within that page of the map
4159			 * entry
4160			 */
4161			pdir = (PTDPTDI + i) / NPDEPG;
4162			offset = (PTDPTDI + i) % NPDEPG;
4163			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4164			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4165			mu[i].val = 0;
4166		}
4167		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4168	}
4169}
4170
4171void
4172pmap_resume()
4173{
4174	pmap_t pmap;
4175	int i, pdir, offset;
4176	vm_paddr_t pdirma;
4177	mmu_update_t mu[4];
4178
4179	/*
4180	 * Restore the recursive map that we removed on suspend.
4181	 */
4182	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4183		for (i = 0; i < 4; i++) {
4184			/*
4185			 * Figure out which page directory (L2) page
4186			 * contains this bit of the recursive map and
4187			 * the offset within that page of the map
4188			 * entry
4189			 */
4190			pdir = (PTDPTDI + i) / NPDEPG;
4191			offset = (PTDPTDI + i) % NPDEPG;
4192			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4193			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4194			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4195		}
4196		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4197	}
4198}
4199
4200#if defined(PMAP_DEBUG)
4201pmap_pid_dump(int pid)
4202{
4203	pmap_t pmap;
4204	struct proc *p;
4205	int npte = 0;
4206	int index;
4207
4208	sx_slock(&allproc_lock);
4209	FOREACH_PROC_IN_SYSTEM(p) {
4210		if (p->p_pid != pid)
4211			continue;
4212
4213		if (p->p_vmspace) {
4214			int i,j;
4215			index = 0;
4216			pmap = vmspace_pmap(p->p_vmspace);
4217			for (i = 0; i < NPDEPTD; i++) {
4218				pd_entry_t *pde;
4219				pt_entry_t *pte;
4220				vm_offset_t base = i << PDRSHIFT;
4221
4222				pde = &pmap->pm_pdir[i];
4223				if (pde && pmap_pde_v(pde)) {
4224					for (j = 0; j < NPTEPG; j++) {
4225						vm_offset_t va = base + (j << PAGE_SHIFT);
4226						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4227							if (index) {
4228								index = 0;
4229								printf("\n");
4230							}
4231							sx_sunlock(&allproc_lock);
4232							return npte;
4233						}
4234						pte = pmap_pte(pmap, va);
4235						if (pte && pmap_pte_v(pte)) {
4236							pt_entry_t pa;
4237							vm_page_t m;
4238							pa = PT_GET(pte);
4239							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4240							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4241								va, pa, m->hold_count, m->wire_count, m->flags);
4242							npte++;
4243							index++;
4244							if (index >= 2) {
4245								index = 0;
4246								printf("\n");
4247							} else {
4248								printf(" ");
4249							}
4250						}
4251					}
4252				}
4253			}
4254		}
4255	}
4256	sx_sunlock(&allproc_lock);
4257	return npte;
4258}
4259#endif
4260
4261#if defined(DEBUG)
4262
4263static void	pads(pmap_t pm);
4264void		pmap_pvdump(vm_paddr_t pa);
4265
4266/* print address space of pmap*/
4267static void
4268pads(pmap_t pm)
4269{
4270	int i, j;
4271	vm_paddr_t va;
4272	pt_entry_t *ptep;
4273
4274	if (pm == kernel_pmap)
4275		return;
4276	for (i = 0; i < NPDEPTD; i++)
4277		if (pm->pm_pdir[i])
4278			for (j = 0; j < NPTEPG; j++) {
4279				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4280				if (pm == kernel_pmap && va < KERNBASE)
4281					continue;
4282				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4283					continue;
4284				ptep = pmap_pte(pm, va);
4285				if (pmap_pte_v(ptep))
4286					printf("%x:%x ", va, *ptep);
4287			};
4288
4289}
4290
4291void
4292pmap_pvdump(vm_paddr_t pa)
4293{
4294	pv_entry_t pv;
4295	pmap_t pmap;
4296	vm_page_t m;
4297
4298	printf("pa %x", pa);
4299	m = PHYS_TO_VM_PAGE(pa);
4300	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4301		pmap = PV_PMAP(pv);
4302		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4303		pads(pmap);
4304	}
4305	printf(" ");
4306}
4307#endif
4308