pmap.c revision 215819
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 215819 2010-11-25 15:41:34Z cperciva $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/uma.h>
141
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifdef XBOX
152#include <machine/xbox.h>
153#endif
154
155#include <xen/interface/xen.h>
156#include <xen/hypervisor.h>
157#include <machine/xen/hypercall.h>
158#include <machine/xen/xenvar.h>
159#include <machine/xen/xenfunc.h>
160
161#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
162#define CPU_ENABLE_SSE
163#endif
164
165#ifndef PMAP_SHPGPERPROC
166#define PMAP_SHPGPERPROC 200
167#endif
168
169#define DIAGNOSTIC
170
171#if !defined(DIAGNOSTIC)
172#ifdef __GNUC_GNU_INLINE__
173#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
174#else
175#define PMAP_INLINE	extern inline
176#endif
177#else
178#define PMAP_INLINE
179#endif
180
181#define PV_STATS
182#ifdef PV_STATS
183#define PV_STAT(x)	do { x ; } while (0)
184#else
185#define PV_STAT(x)	do { } while (0)
186#endif
187
188#define	pa_index(pa)	((pa) >> PDRSHIFT)
189#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
190
191/*
192 * Get PDEs and PTEs for user/kernel address space
193 */
194#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
195#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
196
197#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
198#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
199#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
200#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
201#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
202
203#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204
205struct pmap kernel_pmap_store;
206LIST_HEAD(pmaplist, pmap);
207static struct pmaplist allpmaps;
208static struct mtx allpmaps_lock;
209
210vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
211vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
212int pgeflag = 0;		/* PG_G or-in */
213int pseflag = 0;		/* PG_PS or-in */
214
215int nkpt;
216vm_offset_t kernel_vm_end;
217extern u_int32_t KERNend;
218
219#ifdef PAE
220pt_entry_t pg_nx;
221#endif
222
223static int pat_works;			/* Is page attribute table sane? */
224
225/*
226 * Data for the pv entry allocation mechanism
227 */
228static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
229static struct md_page *pv_table;
230static int shpgperproc = PMAP_SHPGPERPROC;
231
232struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
233int pv_maxchunks;			/* How many chunks we have KVA for */
234vm_offset_t pv_vafree;			/* freelist stored in the PTE */
235
236/*
237 * All those kernel PT submaps that BSD is so fond of
238 */
239struct sysmaps {
240	struct	mtx lock;
241	pt_entry_t *CMAP1;
242	pt_entry_t *CMAP2;
243	caddr_t	CADDR1;
244	caddr_t	CADDR2;
245};
246static struct sysmaps sysmaps_pcpu[MAXCPU];
247static pt_entry_t *CMAP3;
248caddr_t ptvmmap = 0;
249static caddr_t CADDR3;
250struct msgbuf *msgbufp = 0;
251
252/*
253 * Crashdump maps.
254 */
255static caddr_t crashdumpmap;
256
257static pt_entry_t *PMAP1 = 0, *PMAP2;
258static pt_entry_t *PADDR1 = 0, *PADDR2;
259#ifdef SMP
260static int PMAP1cpu;
261static int PMAP1changedcpu;
262SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
263	   &PMAP1changedcpu, 0,
264	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
265#endif
266static int PMAP1changed;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
268	   &PMAP1changed, 0,
269	   "Number of times pmap_pte_quick changed PMAP1");
270static int PMAP1unchanged;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
272	   &PMAP1unchanged, 0,
273	   "Number of times pmap_pte_quick didn't change PMAP1");
274static struct mtx PMAP2mutex;
275
276SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
277static int pg_ps_enabled;
278SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
279    "Are large page mappings enabled?");
280
281SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
282	"Max number of PV entries");
283SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
284	"Page share factor per proc");
285SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
286    "2/4MB page mapping counters");
287
288static u_long pmap_pde_mappings;
289SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
290    &pmap_pde_mappings, 0, "2/4MB page mappings");
291
292static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
293static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
294static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
295static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
296		    vm_offset_t va);
297
298static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
299    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
300static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
301    vm_page_t *free);
302static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
303    vm_page_t *free);
304static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
305					vm_offset_t va);
306static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
307    vm_page_t m);
308
309static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
310
311static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
312static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
313static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
314static void pmap_pte_release(pt_entry_t *pte);
315static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
316static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
317static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
318static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
319
320static __inline void pagezero(void *page);
321
322CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
323CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
324
325/*
326 * If you get an error here, then you set KVA_PAGES wrong! See the
327 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
328 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
329 */
330CTASSERT(KERNBASE % (1 << 24) == 0);
331
332
333
334void
335pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
336{
337	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
338
339	switch (type) {
340	case SH_PD_SET_VA:
341#if 0
342		xen_queue_pt_update(shadow_pdir_ma,
343				    xpmap_ptom(val & ~(PG_RW)));
344#endif
345		xen_queue_pt_update(pdir_ma,
346				    xpmap_ptom(val));
347		break;
348	case SH_PD_SET_VA_MA:
349#if 0
350		xen_queue_pt_update(shadow_pdir_ma,
351				    val & ~(PG_RW));
352#endif
353		xen_queue_pt_update(pdir_ma, val);
354		break;
355	case SH_PD_SET_VA_CLEAR:
356#if 0
357		xen_queue_pt_update(shadow_pdir_ma, 0);
358#endif
359		xen_queue_pt_update(pdir_ma, 0);
360		break;
361	}
362}
363
364/*
365 * Move the kernel virtual free pointer to the next
366 * 4MB.  This is used to help improve performance
367 * by using a large (4MB) page for much of the kernel
368 * (.text, .data, .bss)
369 */
370static vm_offset_t
371pmap_kmem_choose(vm_offset_t addr)
372{
373	vm_offset_t newaddr = addr;
374
375#ifndef DISABLE_PSE
376	if (cpu_feature & CPUID_PSE)
377		newaddr = (addr + PDRMASK) & ~PDRMASK;
378#endif
379	return newaddr;
380}
381
382/*
383 *	Bootstrap the system enough to run with virtual memory.
384 *
385 *	On the i386 this is called after mapping has already been enabled
386 *	and just syncs the pmap module with what has already been done.
387 *	[We can't call it easily with mapping off since the kernel is not
388 *	mapped with PA == VA, hence we would have to relocate every address
389 *	from the linked base (virtual) address "KERNBASE" to the actual
390 *	(physical) address starting relative to 0]
391 */
392void
393pmap_bootstrap(vm_paddr_t firstaddr)
394{
395	vm_offset_t va;
396	pt_entry_t *pte, *unused;
397	struct sysmaps *sysmaps;
398	int i;
399
400	/*
401	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
402	 * large. It should instead be correctly calculated in locore.s and
403	 * not based on 'first' (which is a physical address, not a virtual
404	 * address, for the start of unused physical memory). The kernel
405	 * page tables are NOT double mapped and thus should not be included
406	 * in this calculation.
407	 */
408	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
409	virtual_avail = pmap_kmem_choose(virtual_avail);
410
411	virtual_end = VM_MAX_KERNEL_ADDRESS;
412
413	/*
414	 * Initialize the kernel pmap (which is statically allocated).
415	 */
416	PMAP_LOCK_INIT(kernel_pmap);
417	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
418#ifdef PAE
419	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
420#endif
421	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
422	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
423	LIST_INIT(&allpmaps);
424	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
425	mtx_lock_spin(&allpmaps_lock);
426	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
427	mtx_unlock_spin(&allpmaps_lock);
428	if (nkpt == 0)
429		nkpt = NKPT;
430
431	/*
432	 * Reserve some special page table entries/VA space for temporary
433	 * mapping of pages.
434	 */
435#define	SYSMAP(c, p, v, n)	\
436	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
437
438	va = virtual_avail;
439	pte = vtopte(va);
440
441	/*
442	 * CMAP1/CMAP2 are used for zeroing and copying pages.
443	 * CMAP3 is used for the idle process page zeroing.
444	 */
445	for (i = 0; i < MAXCPU; i++) {
446		sysmaps = &sysmaps_pcpu[i];
447		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
448		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
449		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
450		PT_SET_MA(sysmaps->CADDR1, 0);
451		PT_SET_MA(sysmaps->CADDR2, 0);
452	}
453	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
454	PT_SET_MA(CADDR3, 0);
455
456	/*
457	 * Crashdump maps.
458	 */
459	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
460
461	/*
462	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
463	 */
464	SYSMAP(caddr_t, unused, ptvmmap, 1)
465
466	/*
467	 * msgbufp is used to map the system message buffer.
468	 */
469	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
470
471	/*
472	 * ptemap is used for pmap_pte_quick
473	 */
474	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
475	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
476
477	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
478
479	virtual_avail = va;
480
481	/*
482	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
483	 * physical memory region that is used by the ACPI wakeup code.  This
484	 * mapping must not have PG_G set.
485	 */
486#ifndef XEN
487	/*
488	 * leave here deliberately to show that this is not supported
489	 */
490#ifdef XBOX
491	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
492	 * an early stadium, we cannot yet neatly map video memory ... :-(
493	 * Better fixes are very welcome! */
494	if (!arch_i386_is_xbox)
495#endif
496	for (i = 1; i < NKPT; i++)
497		PTD[i] = 0;
498
499	/* Initialize the PAT MSR if present. */
500	pmap_init_pat();
501
502	/* Turn on PG_G on kernel page(s) */
503	pmap_set_pg();
504#endif
505}
506
507/*
508 * Setup the PAT MSR.
509 */
510void
511pmap_init_pat(void)
512{
513	uint64_t pat_msr;
514
515	/* Bail if this CPU doesn't implement PAT. */
516	if (!(cpu_feature & CPUID_PAT))
517		return;
518
519	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
520	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
521		/*
522		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
523		 * Program 4 and 5 as WP and WC.
524		 * Leave 6 and 7 as UC and UC-.
525		 */
526		pat_msr = rdmsr(MSR_PAT);
527		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
528		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
529		    PAT_VALUE(5, PAT_WRITE_COMBINING);
530		pat_works = 1;
531	} else {
532		/*
533		 * Due to some Intel errata, we can only safely use the lower 4
534		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
535		 * of UC-.
536		 *
537		 *   Intel Pentium III Processor Specification Update
538		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
539		 * or Mode C Paging)
540		 *
541		 *   Intel Pentium IV  Processor Specification Update
542		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
543		 */
544		pat_msr = rdmsr(MSR_PAT);
545		pat_msr &= ~PAT_MASK(2);
546		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
547		pat_works = 0;
548	}
549	wrmsr(MSR_PAT, pat_msr);
550}
551
552/*
553 * Initialize a vm_page's machine-dependent fields.
554 */
555void
556pmap_page_init(vm_page_t m)
557{
558
559	TAILQ_INIT(&m->md.pv_list);
560	m->md.pat_mode = PAT_WRITE_BACK;
561}
562
563/*
564 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
565 * Requirements:
566 *  - Must deal with pages in order to ensure that none of the PG_* bits
567 *    are ever set, PG_V in particular.
568 *  - Assumes we can write to ptes without pte_store() atomic ops, even
569 *    on PAE systems.  This should be ok.
570 *  - Assumes nothing will ever test these addresses for 0 to indicate
571 *    no mapping instead of correctly checking PG_V.
572 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
573 * Because PG_V is never set, there can be no mappings to invalidate.
574 */
575static int ptelist_count = 0;
576static vm_offset_t
577pmap_ptelist_alloc(vm_offset_t *head)
578{
579	vm_offset_t va;
580	vm_offset_t *phead = (vm_offset_t *)*head;
581
582	if (ptelist_count == 0) {
583		printf("out of memory!!!!!!\n");
584		return (0);	/* Out of memory */
585	}
586	ptelist_count--;
587	va = phead[ptelist_count];
588	return (va);
589}
590
591static void
592pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
593{
594	vm_offset_t *phead = (vm_offset_t *)*head;
595
596	phead[ptelist_count++] = va;
597}
598
599static void
600pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
601{
602	int i, nstackpages;
603	vm_offset_t va;
604	vm_page_t m;
605
606	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
607	for (i = 0; i < nstackpages; i++) {
608		va = (vm_offset_t)base + i * PAGE_SIZE;
609		m = vm_page_alloc(NULL, i,
610		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
611		    VM_ALLOC_ZERO);
612		pmap_qenter(va, &m, 1);
613	}
614
615	*head = (vm_offset_t)base;
616	for (i = npages - 1; i >= nstackpages; i--) {
617		va = (vm_offset_t)base + i * PAGE_SIZE;
618		pmap_ptelist_free(head, va);
619	}
620}
621
622
623/*
624 *	Initialize the pmap module.
625 *	Called by vm_init, to initialize any structures that the pmap
626 *	system needs to map virtual memory.
627 */
628void
629pmap_init(void)
630{
631	vm_page_t mpte;
632	vm_size_t s;
633	int i, pv_npg;
634
635	/*
636	 * Initialize the vm page array entries for the kernel pmap's
637	 * page table pages.
638	 */
639	for (i = 0; i < nkpt; i++) {
640		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
641		KASSERT(mpte >= vm_page_array &&
642		    mpte < &vm_page_array[vm_page_array_size],
643		    ("pmap_init: page table page is out of range"));
644		mpte->pindex = i + KPTDI;
645		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
646	}
647
648        /*
649	 * Initialize the address space (zone) for the pv entries.  Set a
650	 * high water mark so that the system can recover from excessive
651	 * numbers of pv entries.
652	 */
653	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
654	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
655	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
656	pv_entry_max = roundup(pv_entry_max, _NPCPV);
657	pv_entry_high_water = 9 * (pv_entry_max / 10);
658
659	/*
660	 * Are large page mappings enabled?
661	 */
662	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
663
664	/*
665	 * Calculate the size of the pv head table for superpages.
666	 */
667	for (i = 0; phys_avail[i + 1]; i += 2);
668	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
669
670	/*
671	 * Allocate memory for the pv head table for superpages.
672	 */
673	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
674	s = round_page(s);
675	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
676	for (i = 0; i < pv_npg; i++)
677		TAILQ_INIT(&pv_table[i].pv_list);
678
679	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
680	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
681	    PAGE_SIZE * pv_maxchunks);
682	if (pv_chunkbase == NULL)
683		panic("pmap_init: not enough kvm for pv chunks");
684	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
685}
686
687
688/***************************************************
689 * Low level helper routines.....
690 ***************************************************/
691
692/*
693 * Determine the appropriate bits to set in a PTE or PDE for a specified
694 * caching mode.
695 */
696int
697pmap_cache_bits(int mode, boolean_t is_pde)
698{
699	int pat_flag, pat_index, cache_bits;
700
701	/* The PAT bit is different for PTE's and PDE's. */
702	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
703
704	/* If we don't support PAT, map extended modes to older ones. */
705	if (!(cpu_feature & CPUID_PAT)) {
706		switch (mode) {
707		case PAT_UNCACHEABLE:
708		case PAT_WRITE_THROUGH:
709		case PAT_WRITE_BACK:
710			break;
711		case PAT_UNCACHED:
712		case PAT_WRITE_COMBINING:
713		case PAT_WRITE_PROTECTED:
714			mode = PAT_UNCACHEABLE;
715			break;
716		}
717	}
718
719	/* Map the caching mode to a PAT index. */
720	if (pat_works) {
721		switch (mode) {
722			case PAT_UNCACHEABLE:
723				pat_index = 3;
724				break;
725			case PAT_WRITE_THROUGH:
726				pat_index = 1;
727				break;
728			case PAT_WRITE_BACK:
729				pat_index = 0;
730				break;
731			case PAT_UNCACHED:
732				pat_index = 2;
733				break;
734			case PAT_WRITE_COMBINING:
735				pat_index = 5;
736				break;
737			case PAT_WRITE_PROTECTED:
738				pat_index = 4;
739				break;
740			default:
741				panic("Unknown caching mode %d\n", mode);
742		}
743	} else {
744		switch (mode) {
745			case PAT_UNCACHED:
746			case PAT_UNCACHEABLE:
747			case PAT_WRITE_PROTECTED:
748				pat_index = 3;
749				break;
750			case PAT_WRITE_THROUGH:
751				pat_index = 1;
752				break;
753			case PAT_WRITE_BACK:
754				pat_index = 0;
755				break;
756			case PAT_WRITE_COMBINING:
757				pat_index = 2;
758				break;
759			default:
760				panic("Unknown caching mode %d\n", mode);
761		}
762	}
763
764	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
765	cache_bits = 0;
766	if (pat_index & 0x4)
767		cache_bits |= pat_flag;
768	if (pat_index & 0x2)
769		cache_bits |= PG_NC_PCD;
770	if (pat_index & 0x1)
771		cache_bits |= PG_NC_PWT;
772	return (cache_bits);
773}
774#ifdef SMP
775/*
776 * For SMP, these functions have to use the IPI mechanism for coherence.
777 *
778 * N.B.: Before calling any of the following TLB invalidation functions,
779 * the calling processor must ensure that all stores updating a non-
780 * kernel page table are globally performed.  Otherwise, another
781 * processor could cache an old, pre-update entry without being
782 * invalidated.  This can happen one of two ways: (1) The pmap becomes
783 * active on another processor after its pm_active field is checked by
784 * one of the following functions but before a store updating the page
785 * table is globally performed. (2) The pmap becomes active on another
786 * processor before its pm_active field is checked but due to
787 * speculative loads one of the following functions stills reads the
788 * pmap as inactive on the other processor.
789 *
790 * The kernel page table is exempt because its pm_active field is
791 * immutable.  The kernel page table is always active on every
792 * processor.
793 */
794void
795pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
796{
797	cpumask_t cpumask, other_cpus;
798
799	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
800	    pmap, va);
801
802	sched_pin();
803	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
804		invlpg(va);
805		smp_invlpg(va);
806	} else {
807		cpumask = PCPU_GET(cpumask);
808		other_cpus = PCPU_GET(other_cpus);
809		if (pmap->pm_active & cpumask)
810			invlpg(va);
811		if (pmap->pm_active & other_cpus)
812			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
813	}
814	sched_unpin();
815	PT_UPDATES_FLUSH();
816}
817
818void
819pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
820{
821	cpumask_t cpumask, other_cpus;
822	vm_offset_t addr;
823
824	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
825	    pmap, sva, eva);
826
827	sched_pin();
828	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
829		for (addr = sva; addr < eva; addr += PAGE_SIZE)
830			invlpg(addr);
831		smp_invlpg_range(sva, eva);
832	} else {
833		cpumask = PCPU_GET(cpumask);
834		other_cpus = PCPU_GET(other_cpus);
835		if (pmap->pm_active & cpumask)
836			for (addr = sva; addr < eva; addr += PAGE_SIZE)
837				invlpg(addr);
838		if (pmap->pm_active & other_cpus)
839			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
840			    sva, eva);
841	}
842	sched_unpin();
843	PT_UPDATES_FLUSH();
844}
845
846void
847pmap_invalidate_all(pmap_t pmap)
848{
849	cpumask_t cpumask, other_cpus;
850
851	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
852
853	sched_pin();
854	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
855		invltlb();
856		smp_invltlb();
857	} else {
858		cpumask = PCPU_GET(cpumask);
859		other_cpus = PCPU_GET(other_cpus);
860		if (pmap->pm_active & cpumask)
861			invltlb();
862		if (pmap->pm_active & other_cpus)
863			smp_masked_invltlb(pmap->pm_active & other_cpus);
864	}
865	sched_unpin();
866}
867
868void
869pmap_invalidate_cache(void)
870{
871
872	sched_pin();
873	wbinvd();
874	smp_cache_flush();
875	sched_unpin();
876}
877#else /* !SMP */
878/*
879 * Normal, non-SMP, 486+ invalidation functions.
880 * We inline these within pmap.c for speed.
881 */
882PMAP_INLINE void
883pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
884{
885	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
886	    pmap, va);
887
888	if (pmap == kernel_pmap || pmap->pm_active)
889		invlpg(va);
890	PT_UPDATES_FLUSH();
891}
892
893PMAP_INLINE void
894pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
895{
896	vm_offset_t addr;
897
898	if (eva - sva > PAGE_SIZE)
899		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
900		    pmap, sva, eva);
901
902	if (pmap == kernel_pmap || pmap->pm_active)
903		for (addr = sva; addr < eva; addr += PAGE_SIZE)
904			invlpg(addr);
905	PT_UPDATES_FLUSH();
906}
907
908PMAP_INLINE void
909pmap_invalidate_all(pmap_t pmap)
910{
911
912	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
913
914	if (pmap == kernel_pmap || pmap->pm_active)
915		invltlb();
916}
917
918PMAP_INLINE void
919pmap_invalidate_cache(void)
920{
921
922	wbinvd();
923}
924#endif /* !SMP */
925
926void
927pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
928{
929
930	KASSERT((sva & PAGE_MASK) == 0,
931	    ("pmap_invalidate_cache_range: sva not page-aligned"));
932	KASSERT((eva & PAGE_MASK) == 0,
933	    ("pmap_invalidate_cache_range: eva not page-aligned"));
934
935	if (cpu_feature & CPUID_SS)
936		; /* If "Self Snoop" is supported, do nothing. */
937	else if (cpu_feature & CPUID_CLFSH) {
938
939		/*
940		 * Otherwise, do per-cache line flush.  Use the mfence
941		 * instruction to insure that previous stores are
942		 * included in the write-back.  The processor
943		 * propagates flush to other processors in the cache
944		 * coherence domain.
945		 */
946		mfence();
947		for (; sva < eva; sva += cpu_clflush_line_size)
948			clflush(sva);
949		mfence();
950	} else {
951
952		/*
953		 * No targeted cache flush methods are supported by CPU,
954		 * globally invalidate cache as a last resort.
955		 */
956		pmap_invalidate_cache();
957	}
958}
959
960/*
961 * Are we current address space or kernel?  N.B. We return FALSE when
962 * a pmap's page table is in use because a kernel thread is borrowing
963 * it.  The borrowed page table can change spontaneously, making any
964 * dependence on its continued use subject to a race condition.
965 */
966static __inline int
967pmap_is_current(pmap_t pmap)
968{
969
970	return (pmap == kernel_pmap ||
971	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
972		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
973}
974
975/*
976 * If the given pmap is not the current or kernel pmap, the returned pte must
977 * be released by passing it to pmap_pte_release().
978 */
979pt_entry_t *
980pmap_pte(pmap_t pmap, vm_offset_t va)
981{
982	pd_entry_t newpf;
983	pd_entry_t *pde;
984
985	pde = pmap_pde(pmap, va);
986	if (*pde & PG_PS)
987		return (pde);
988	if (*pde != 0) {
989		/* are we current address space or kernel? */
990		if (pmap_is_current(pmap))
991			return (vtopte(va));
992		mtx_lock(&PMAP2mutex);
993		newpf = *pde & PG_FRAME;
994		if ((*PMAP2 & PG_FRAME) != newpf) {
995			vm_page_lock_queues();
996			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
997			vm_page_unlock_queues();
998			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
999			    pmap, va, (*PMAP2 & 0xffffffff));
1000		}
1001
1002		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1003	}
1004	return (0);
1005}
1006
1007/*
1008 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1009 * being NULL.
1010 */
1011static __inline void
1012pmap_pte_release(pt_entry_t *pte)
1013{
1014
1015	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1016		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1017		    *PMAP2);
1018		PT_SET_VA(PMAP2, 0, TRUE);
1019		mtx_unlock(&PMAP2mutex);
1020	}
1021}
1022
1023static __inline void
1024invlcaddr(void *caddr)
1025{
1026
1027	invlpg((u_int)caddr);
1028	PT_UPDATES_FLUSH();
1029}
1030
1031/*
1032 * Super fast pmap_pte routine best used when scanning
1033 * the pv lists.  This eliminates many coarse-grained
1034 * invltlb calls.  Note that many of the pv list
1035 * scans are across different pmaps.  It is very wasteful
1036 * to do an entire invltlb for checking a single mapping.
1037 *
1038 * If the given pmap is not the current pmap, vm_page_queue_mtx
1039 * must be held and curthread pinned to a CPU.
1040 */
1041static pt_entry_t *
1042pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1043{
1044	pd_entry_t newpf;
1045	pd_entry_t *pde;
1046
1047	pde = pmap_pde(pmap, va);
1048	if (*pde & PG_PS)
1049		return (pde);
1050	if (*pde != 0) {
1051		/* are we current address space or kernel? */
1052		if (pmap_is_current(pmap))
1053			return (vtopte(va));
1054		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1055		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1056		newpf = *pde & PG_FRAME;
1057		if ((*PMAP1 & PG_FRAME) != newpf) {
1058			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1059			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1060			    pmap, va, (u_long)*PMAP1);
1061
1062#ifdef SMP
1063			PMAP1cpu = PCPU_GET(cpuid);
1064#endif
1065			PMAP1changed++;
1066		} else
1067#ifdef SMP
1068		if (PMAP1cpu != PCPU_GET(cpuid)) {
1069			PMAP1cpu = PCPU_GET(cpuid);
1070			invlcaddr(PADDR1);
1071			PMAP1changedcpu++;
1072		} else
1073#endif
1074			PMAP1unchanged++;
1075		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1076	}
1077	return (0);
1078}
1079
1080/*
1081 *	Routine:	pmap_extract
1082 *	Function:
1083 *		Extract the physical page address associated
1084 *		with the given map/virtual_address pair.
1085 */
1086vm_paddr_t
1087pmap_extract(pmap_t pmap, vm_offset_t va)
1088{
1089	vm_paddr_t rtval;
1090	pt_entry_t *pte;
1091	pd_entry_t pde;
1092	pt_entry_t pteval;
1093
1094	rtval = 0;
1095	PMAP_LOCK(pmap);
1096	pde = pmap->pm_pdir[va >> PDRSHIFT];
1097	if (pde != 0) {
1098		if ((pde & PG_PS) != 0) {
1099			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1100			PMAP_UNLOCK(pmap);
1101			return rtval;
1102		}
1103		pte = pmap_pte(pmap, va);
1104		pteval = *pte ? xpmap_mtop(*pte) : 0;
1105		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1106		pmap_pte_release(pte);
1107	}
1108	PMAP_UNLOCK(pmap);
1109	return (rtval);
1110}
1111
1112/*
1113 *	Routine:	pmap_extract_ma
1114 *	Function:
1115 *		Like pmap_extract, but returns machine address
1116 */
1117vm_paddr_t
1118pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1119{
1120	vm_paddr_t rtval;
1121	pt_entry_t *pte;
1122	pd_entry_t pde;
1123
1124	rtval = 0;
1125	PMAP_LOCK(pmap);
1126	pde = pmap->pm_pdir[va >> PDRSHIFT];
1127	if (pde != 0) {
1128		if ((pde & PG_PS) != 0) {
1129			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1130			PMAP_UNLOCK(pmap);
1131			return rtval;
1132		}
1133		pte = pmap_pte(pmap, va);
1134		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1135		pmap_pte_release(pte);
1136	}
1137	PMAP_UNLOCK(pmap);
1138	return (rtval);
1139}
1140
1141/*
1142 *	Routine:	pmap_extract_and_hold
1143 *	Function:
1144 *		Atomically extract and hold the physical page
1145 *		with the given pmap and virtual address pair
1146 *		if that mapping permits the given protection.
1147 */
1148vm_page_t
1149pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1150{
1151	pd_entry_t pde;
1152	pt_entry_t pte;
1153	vm_page_t m;
1154	vm_paddr_t pa;
1155
1156	pa = 0;
1157	m = NULL;
1158	PMAP_LOCK(pmap);
1159retry:
1160	pde = PT_GET(pmap_pde(pmap, va));
1161	if (pde != 0) {
1162		if (pde & PG_PS) {
1163			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1164				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1165				       (va & PDRMASK), &pa))
1166					goto retry;
1167				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1168				    (va & PDRMASK));
1169				vm_page_hold(m);
1170			}
1171		} else {
1172			sched_pin();
1173			pte = PT_GET(pmap_pte_quick(pmap, va));
1174			if (*PMAP1)
1175				PT_SET_MA(PADDR1, 0);
1176			if ((pte & PG_V) &&
1177			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1178				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1179					goto retry;
1180				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1181				vm_page_hold(m);
1182			}
1183			sched_unpin();
1184		}
1185	}
1186	PA_UNLOCK_COND(pa);
1187	PMAP_UNLOCK(pmap);
1188	return (m);
1189}
1190
1191/***************************************************
1192 * Low level mapping routines.....
1193 ***************************************************/
1194
1195/*
1196 * Add a wired page to the kva.
1197 * Note: not SMP coherent.
1198 */
1199void
1200pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1201{
1202	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1203}
1204
1205void
1206pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1207{
1208	pt_entry_t *pte;
1209
1210	pte = vtopte(va);
1211	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1212}
1213
1214
1215static __inline void
1216pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1217{
1218	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1219}
1220
1221/*
1222 * Remove a page from the kernel pagetables.
1223 * Note: not SMP coherent.
1224 */
1225PMAP_INLINE void
1226pmap_kremove(vm_offset_t va)
1227{
1228	pt_entry_t *pte;
1229
1230	pte = vtopte(va);
1231	PT_CLEAR_VA(pte, FALSE);
1232}
1233
1234/*
1235 *	Used to map a range of physical addresses into kernel
1236 *	virtual address space.
1237 *
1238 *	The value passed in '*virt' is a suggested virtual address for
1239 *	the mapping. Architectures which can support a direct-mapped
1240 *	physical to virtual region can return the appropriate address
1241 *	within that region, leaving '*virt' unchanged. Other
1242 *	architectures should map the pages starting at '*virt' and
1243 *	update '*virt' with the first usable address after the mapped
1244 *	region.
1245 */
1246vm_offset_t
1247pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1248{
1249	vm_offset_t va, sva;
1250
1251	va = sva = *virt;
1252	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1253	    va, start, end, prot);
1254	while (start < end) {
1255		pmap_kenter(va, start);
1256		va += PAGE_SIZE;
1257		start += PAGE_SIZE;
1258	}
1259	pmap_invalidate_range(kernel_pmap, sva, va);
1260	*virt = va;
1261	return (sva);
1262}
1263
1264
1265/*
1266 * Add a list of wired pages to the kva
1267 * this routine is only used for temporary
1268 * kernel mappings that do not need to have
1269 * page modification or references recorded.
1270 * Note that old mappings are simply written
1271 * over.  The page *must* be wired.
1272 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1273 */
1274void
1275pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1276{
1277	pt_entry_t *endpte, *pte;
1278	vm_paddr_t pa;
1279	vm_offset_t va = sva;
1280	int mclcount = 0;
1281	multicall_entry_t mcl[16];
1282	multicall_entry_t *mclp = mcl;
1283	int error;
1284
1285	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1286	pte = vtopte(sva);
1287	endpte = pte + count;
1288	while (pte < endpte) {
1289		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1290
1291		mclp->op = __HYPERVISOR_update_va_mapping;
1292		mclp->args[0] = va;
1293		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1294		mclp->args[2] = (uint32_t)(pa >> 32);
1295#if 0
1296		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1297#else
1298		/*
1299		 * Somehow we seem to be ending up with pages which are in
1300		 * the TLB in spite of not having PG_V set, resulting in
1301		 * pages newly loaded into the bufcache not showing up
1302		 * immediately (i.e., accessing them provides the old data).
1303		 * As a workaround, always perform a TLB flush, even if the
1304		 * old page didn't have PG_V.
1305		 */
1306		mclp->args[3] = UVMF_INVLPG|UVMF_ALL;
1307#endif
1308
1309		va += PAGE_SIZE;
1310		pte++;
1311		ma++;
1312		mclp++;
1313		mclcount++;
1314		if (mclcount == 16) {
1315			error = HYPERVISOR_multicall(mcl, mclcount);
1316			mclp = mcl;
1317			mclcount = 0;
1318			KASSERT(error == 0, ("bad multicall %d", error));
1319		}
1320	}
1321	if (mclcount) {
1322		error = HYPERVISOR_multicall(mcl, mclcount);
1323		KASSERT(error == 0, ("bad multicall %d", error));
1324	}
1325
1326#ifdef INVARIANTS
1327	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1328		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1329#endif
1330}
1331
1332
1333/*
1334 * This routine tears out page mappings from the
1335 * kernel -- it is meant only for temporary mappings.
1336 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1337 */
1338void
1339pmap_qremove(vm_offset_t sva, int count)
1340{
1341	vm_offset_t va;
1342
1343	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1344	va = sva;
1345	vm_page_lock_queues();
1346	critical_enter();
1347	while (count-- > 0) {
1348		pmap_kremove(va);
1349		va += PAGE_SIZE;
1350	}
1351	pmap_invalidate_range(kernel_pmap, sva, va);
1352	critical_exit();
1353	vm_page_unlock_queues();
1354}
1355
1356/***************************************************
1357 * Page table page management routines.....
1358 ***************************************************/
1359static __inline void
1360pmap_free_zero_pages(vm_page_t free)
1361{
1362	vm_page_t m;
1363
1364	while (free != NULL) {
1365		m = free;
1366		free = m->right;
1367		vm_page_free_zero(m);
1368	}
1369}
1370
1371/*
1372 * This routine unholds page table pages, and if the hold count
1373 * drops to zero, then it decrements the wire count.
1374 */
1375static __inline int
1376pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1377{
1378
1379	--m->wire_count;
1380	if (m->wire_count == 0)
1381		return _pmap_unwire_pte_hold(pmap, m, free);
1382	else
1383		return 0;
1384}
1385
1386static int
1387_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1388{
1389	vm_offset_t pteva;
1390
1391	PT_UPDATES_FLUSH();
1392	/*
1393	 * unmap the page table page
1394	 */
1395	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1396	/*
1397	 * page *might* contain residual mapping :-/
1398	 */
1399	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1400	pmap_zero_page(m);
1401	--pmap->pm_stats.resident_count;
1402
1403	/*
1404	 * This is a release store so that the ordinary store unmapping
1405	 * the page table page is globally performed before TLB shoot-
1406	 * down is begun.
1407	 */
1408	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1409
1410	/*
1411	 * Do an invltlb to make the invalidated mapping
1412	 * take effect immediately.
1413	 */
1414	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1415	pmap_invalidate_page(pmap, pteva);
1416
1417	/*
1418	 * Put page on a list so that it is released after
1419	 * *ALL* TLB shootdown is done
1420	 */
1421	m->right = *free;
1422	*free = m;
1423
1424	return 1;
1425}
1426
1427/*
1428 * After removing a page table entry, this routine is used to
1429 * conditionally free the page, and manage the hold/wire counts.
1430 */
1431static int
1432pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1433{
1434	pd_entry_t ptepde;
1435	vm_page_t mpte;
1436
1437	if (va >= VM_MAXUSER_ADDRESS)
1438		return 0;
1439	ptepde = PT_GET(pmap_pde(pmap, va));
1440	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1441	return pmap_unwire_pte_hold(pmap, mpte, free);
1442}
1443
1444void
1445pmap_pinit0(pmap_t pmap)
1446{
1447
1448	PMAP_LOCK_INIT(pmap);
1449	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1450#ifdef PAE
1451	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1452#endif
1453	pmap->pm_active = 0;
1454	PCPU_SET(curpmap, pmap);
1455	TAILQ_INIT(&pmap->pm_pvchunk);
1456	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1457	mtx_lock_spin(&allpmaps_lock);
1458	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1459	mtx_unlock_spin(&allpmaps_lock);
1460}
1461
1462/*
1463 * Initialize a preallocated and zeroed pmap structure,
1464 * such as one in a vmspace structure.
1465 */
1466int
1467pmap_pinit(pmap_t pmap)
1468{
1469	vm_page_t m, ptdpg[NPGPTD + 1];
1470	int npgptd = NPGPTD + 1;
1471	static int color;
1472	int i;
1473
1474	PMAP_LOCK_INIT(pmap);
1475
1476	/*
1477	 * No need to allocate page table space yet but we do need a valid
1478	 * page directory table.
1479	 */
1480	if (pmap->pm_pdir == NULL) {
1481		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1482		    NBPTD);
1483		if (pmap->pm_pdir == NULL) {
1484			PMAP_LOCK_DESTROY(pmap);
1485			return (0);
1486		}
1487#ifdef PAE
1488		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1489#endif
1490	}
1491
1492	/*
1493	 * allocate the page directory page(s)
1494	 */
1495	for (i = 0; i < npgptd;) {
1496		m = vm_page_alloc(NULL, color++,
1497		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1498		    VM_ALLOC_ZERO);
1499		if (m == NULL)
1500			VM_WAIT;
1501		else {
1502			ptdpg[i++] = m;
1503		}
1504	}
1505	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1506	for (i = 0; i < NPGPTD; i++) {
1507		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1508			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1509	}
1510
1511	mtx_lock_spin(&allpmaps_lock);
1512	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1513	mtx_unlock_spin(&allpmaps_lock);
1514	/* Wire in kernel global address entries. */
1515
1516	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1517#ifdef PAE
1518	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1519	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1520		bzero(pmap->pm_pdpt, PAGE_SIZE);
1521	for (i = 0; i < NPGPTD; i++) {
1522		vm_paddr_t ma;
1523
1524		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1525		pmap->pm_pdpt[i] = ma | PG_V;
1526
1527	}
1528#endif
1529	for (i = 0; i < NPGPTD; i++) {
1530		pt_entry_t *pd;
1531		vm_paddr_t ma;
1532
1533		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1534		pd = pmap->pm_pdir + (i * NPDEPG);
1535		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1536#if 0
1537		xen_pgd_pin(ma);
1538#endif
1539	}
1540
1541#ifdef PAE
1542	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1543#endif
1544	vm_page_lock_queues();
1545	xen_flush_queue();
1546	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1547	for (i = 0; i < NPGPTD; i++) {
1548		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1549		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1550	}
1551	xen_flush_queue();
1552	vm_page_unlock_queues();
1553	pmap->pm_active = 0;
1554	TAILQ_INIT(&pmap->pm_pvchunk);
1555	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1556
1557	return (1);
1558}
1559
1560/*
1561 * this routine is called if the page table page is not
1562 * mapped correctly.
1563 */
1564static vm_page_t
1565_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1566{
1567	vm_paddr_t ptema;
1568	vm_page_t m;
1569
1570	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1571	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1572	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1573
1574	/*
1575	 * Allocate a page table page.
1576	 */
1577	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1578	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1579		if (flags & M_WAITOK) {
1580			PMAP_UNLOCK(pmap);
1581			vm_page_unlock_queues();
1582			VM_WAIT;
1583			vm_page_lock_queues();
1584			PMAP_LOCK(pmap);
1585		}
1586
1587		/*
1588		 * Indicate the need to retry.  While waiting, the page table
1589		 * page may have been allocated.
1590		 */
1591		return (NULL);
1592	}
1593	if ((m->flags & PG_ZERO) == 0)
1594		pmap_zero_page(m);
1595
1596	/*
1597	 * Map the pagetable page into the process address space, if
1598	 * it isn't already there.
1599	 */
1600	pmap->pm_stats.resident_count++;
1601
1602	ptema = VM_PAGE_TO_MACH(m);
1603	xen_pt_pin(ptema);
1604	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1605		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1606
1607	KASSERT(pmap->pm_pdir[ptepindex],
1608	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1609	return (m);
1610}
1611
1612static vm_page_t
1613pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1614{
1615	unsigned ptepindex;
1616	pd_entry_t ptema;
1617	vm_page_t m;
1618
1619	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1620	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1621	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1622
1623	/*
1624	 * Calculate pagetable page index
1625	 */
1626	ptepindex = va >> PDRSHIFT;
1627retry:
1628	/*
1629	 * Get the page directory entry
1630	 */
1631	ptema = pmap->pm_pdir[ptepindex];
1632
1633	/*
1634	 * This supports switching from a 4MB page to a
1635	 * normal 4K page.
1636	 */
1637	if (ptema & PG_PS) {
1638		/*
1639		 * XXX
1640		 */
1641		pmap->pm_pdir[ptepindex] = 0;
1642		ptema = 0;
1643		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1644		pmap_invalidate_all(kernel_pmap);
1645	}
1646
1647	/*
1648	 * If the page table page is mapped, we just increment the
1649	 * hold count, and activate it.
1650	 */
1651	if (ptema & PG_V) {
1652		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1653		m->wire_count++;
1654	} else {
1655		/*
1656		 * Here if the pte page isn't mapped, or if it has
1657		 * been deallocated.
1658		 */
1659		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1660		    pmap, va, flags);
1661		m = _pmap_allocpte(pmap, ptepindex, flags);
1662		if (m == NULL && (flags & M_WAITOK))
1663			goto retry;
1664
1665		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1666	}
1667	return (m);
1668}
1669
1670
1671/***************************************************
1672* Pmap allocation/deallocation routines.
1673 ***************************************************/
1674
1675#ifdef SMP
1676/*
1677 * Deal with a SMP shootdown of other users of the pmap that we are
1678 * trying to dispose of.  This can be a bit hairy.
1679 */
1680static cpumask_t *lazymask;
1681static u_int lazyptd;
1682static volatile u_int lazywait;
1683
1684void pmap_lazyfix_action(void);
1685
1686void
1687pmap_lazyfix_action(void)
1688{
1689	cpumask_t mymask = PCPU_GET(cpumask);
1690
1691#ifdef COUNT_IPIS
1692	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1693#endif
1694	if (rcr3() == lazyptd)
1695		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1696	atomic_clear_int(lazymask, mymask);
1697	atomic_store_rel_int(&lazywait, 1);
1698}
1699
1700static void
1701pmap_lazyfix_self(cpumask_t mymask)
1702{
1703
1704	if (rcr3() == lazyptd)
1705		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1706	atomic_clear_int(lazymask, mymask);
1707}
1708
1709
1710static void
1711pmap_lazyfix(pmap_t pmap)
1712{
1713	cpumask_t mymask, mask;
1714	u_int spins;
1715
1716	while ((mask = pmap->pm_active) != 0) {
1717		spins = 50000000;
1718		mask = mask & -mask;	/* Find least significant set bit */
1719		mtx_lock_spin(&smp_ipi_mtx);
1720#ifdef PAE
1721		lazyptd = vtophys(pmap->pm_pdpt);
1722#else
1723		lazyptd = vtophys(pmap->pm_pdir);
1724#endif
1725		mymask = PCPU_GET(cpumask);
1726		if (mask == mymask) {
1727			lazymask = &pmap->pm_active;
1728			pmap_lazyfix_self(mymask);
1729		} else {
1730			atomic_store_rel_int((u_int *)&lazymask,
1731			    (u_int)&pmap->pm_active);
1732			atomic_store_rel_int(&lazywait, 0);
1733			ipi_selected(mask, IPI_LAZYPMAP);
1734			while (lazywait == 0) {
1735				ia32_pause();
1736				if (--spins == 0)
1737					break;
1738			}
1739		}
1740		mtx_unlock_spin(&smp_ipi_mtx);
1741		if (spins == 0)
1742			printf("pmap_lazyfix: spun for 50000000\n");
1743	}
1744}
1745
1746#else	/* SMP */
1747
1748/*
1749 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1750 * unlikely to have to even execute this code, including the fact
1751 * that the cleanup is deferred until the parent does a wait(2), which
1752 * means that another userland process has run.
1753 */
1754static void
1755pmap_lazyfix(pmap_t pmap)
1756{
1757	u_int cr3;
1758
1759	cr3 = vtophys(pmap->pm_pdir);
1760	if (cr3 == rcr3()) {
1761		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1762		pmap->pm_active &= ~(PCPU_GET(cpumask));
1763	}
1764}
1765#endif	/* SMP */
1766
1767/*
1768 * Release any resources held by the given physical map.
1769 * Called when a pmap initialized by pmap_pinit is being released.
1770 * Should only be called if the map contains no valid mappings.
1771 */
1772void
1773pmap_release(pmap_t pmap)
1774{
1775	vm_page_t m, ptdpg[2*NPGPTD+1];
1776	vm_paddr_t ma;
1777	int i;
1778#ifdef PAE
1779	int npgptd = NPGPTD + 1;
1780#else
1781	int npgptd = NPGPTD;
1782#endif
1783	KASSERT(pmap->pm_stats.resident_count == 0,
1784	    ("pmap_release: pmap resident count %ld != 0",
1785	    pmap->pm_stats.resident_count));
1786	PT_UPDATES_FLUSH();
1787
1788	pmap_lazyfix(pmap);
1789	mtx_lock_spin(&allpmaps_lock);
1790	LIST_REMOVE(pmap, pm_list);
1791	mtx_unlock_spin(&allpmaps_lock);
1792
1793	for (i = 0; i < NPGPTD; i++)
1794		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1795	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1796#ifdef PAE
1797	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1798#endif
1799
1800	for (i = 0; i < npgptd; i++) {
1801		m = ptdpg[i];
1802		ma = VM_PAGE_TO_MACH(m);
1803		/* unpinning L1 and L2 treated the same */
1804#if 0
1805                xen_pgd_unpin(ma);
1806#else
1807		if (i == NPGPTD)
1808	                xen_pgd_unpin(ma);
1809#endif
1810#ifdef PAE
1811		if (i < NPGPTD)
1812			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1813			    ("pmap_release: got wrong ptd page"));
1814#endif
1815		m->wire_count--;
1816		atomic_subtract_int(&cnt.v_wire_count, 1);
1817		vm_page_free(m);
1818	}
1819#ifdef PAE
1820	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1821#endif
1822	PMAP_LOCK_DESTROY(pmap);
1823}
1824
1825static int
1826kvm_size(SYSCTL_HANDLER_ARGS)
1827{
1828	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1829
1830	return sysctl_handle_long(oidp, &ksize, 0, req);
1831}
1832SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1833    0, 0, kvm_size, "IU", "Size of KVM");
1834
1835static int
1836kvm_free(SYSCTL_HANDLER_ARGS)
1837{
1838	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1839
1840	return sysctl_handle_long(oidp, &kfree, 0, req);
1841}
1842SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1843    0, 0, kvm_free, "IU", "Amount of KVM free");
1844
1845/*
1846 * grow the number of kernel page table entries, if needed
1847 */
1848void
1849pmap_growkernel(vm_offset_t addr)
1850{
1851	struct pmap *pmap;
1852	vm_paddr_t ptppaddr;
1853	vm_page_t nkpg;
1854	pd_entry_t newpdir;
1855
1856	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1857	if (kernel_vm_end == 0) {
1858		kernel_vm_end = KERNBASE;
1859		nkpt = 0;
1860		while (pdir_pde(PTD, kernel_vm_end)) {
1861			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1862			nkpt++;
1863			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1864				kernel_vm_end = kernel_map->max_offset;
1865				break;
1866			}
1867		}
1868	}
1869	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1870	if (addr - 1 >= kernel_map->max_offset)
1871		addr = kernel_map->max_offset;
1872	while (kernel_vm_end < addr) {
1873		if (pdir_pde(PTD, kernel_vm_end)) {
1874			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1875			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1876				kernel_vm_end = kernel_map->max_offset;
1877				break;
1878			}
1879			continue;
1880		}
1881
1882		/*
1883		 * This index is bogus, but out of the way
1884		 */
1885		nkpg = vm_page_alloc(NULL, nkpt,
1886		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1887		if (!nkpg)
1888			panic("pmap_growkernel: no memory to grow kernel");
1889
1890		nkpt++;
1891
1892		pmap_zero_page(nkpg);
1893		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1894		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1895		vm_page_lock_queues();
1896		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1897		mtx_lock_spin(&allpmaps_lock);
1898		LIST_FOREACH(pmap, &allpmaps, pm_list)
1899			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1900
1901		mtx_unlock_spin(&allpmaps_lock);
1902		vm_page_unlock_queues();
1903
1904		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1905		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1906			kernel_vm_end = kernel_map->max_offset;
1907			break;
1908		}
1909	}
1910}
1911
1912
1913/***************************************************
1914 * page management routines.
1915 ***************************************************/
1916
1917CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1918CTASSERT(_NPCM == 11);
1919
1920static __inline struct pv_chunk *
1921pv_to_chunk(pv_entry_t pv)
1922{
1923
1924	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1925}
1926
1927#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1928
1929#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1930#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1931
1932static uint32_t pc_freemask[11] = {
1933	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1934	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1935	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1936	PC_FREE0_9, PC_FREE10
1937};
1938
1939SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1940	"Current number of pv entries");
1941
1942#ifdef PV_STATS
1943static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1944
1945SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1946	"Current number of pv entry chunks");
1947SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1948	"Current number of pv entry chunks allocated");
1949SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1950	"Current number of pv entry chunks frees");
1951SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1952	"Number of times tried to get a chunk page but failed.");
1953
1954static long pv_entry_frees, pv_entry_allocs;
1955static int pv_entry_spare;
1956
1957SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1958	"Current number of pv entry frees");
1959SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1960	"Current number of pv entry allocs");
1961SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1962	"Current number of spare pv entries");
1963
1964static int pmap_collect_inactive, pmap_collect_active;
1965
1966SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1967	"Current number times pmap_collect called on inactive queue");
1968SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1969	"Current number times pmap_collect called on active queue");
1970#endif
1971
1972/*
1973 * We are in a serious low memory condition.  Resort to
1974 * drastic measures to free some pages so we can allocate
1975 * another pv entry chunk.  This is normally called to
1976 * unmap inactive pages, and if necessary, active pages.
1977 */
1978static void
1979pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1980{
1981	pmap_t pmap;
1982	pt_entry_t *pte, tpte;
1983	pv_entry_t next_pv, pv;
1984	vm_offset_t va;
1985	vm_page_t m, free;
1986
1987	sched_pin();
1988	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1989		if (m->hold_count || m->busy)
1990			continue;
1991		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1992			va = pv->pv_va;
1993			pmap = PV_PMAP(pv);
1994			/* Avoid deadlock and lock recursion. */
1995			if (pmap > locked_pmap)
1996				PMAP_LOCK(pmap);
1997			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1998				continue;
1999			pmap->pm_stats.resident_count--;
2000			pte = pmap_pte_quick(pmap, va);
2001			tpte = pte_load_clear(pte);
2002			KASSERT((tpte & PG_W) == 0,
2003			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2004			if (tpte & PG_A)
2005				vm_page_flag_set(m, PG_REFERENCED);
2006			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2007				vm_page_dirty(m);
2008			free = NULL;
2009			pmap_unuse_pt(pmap, va, &free);
2010			pmap_invalidate_page(pmap, va);
2011			pmap_free_zero_pages(free);
2012			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2013			free_pv_entry(pmap, pv);
2014			if (pmap != locked_pmap)
2015				PMAP_UNLOCK(pmap);
2016		}
2017		if (TAILQ_EMPTY(&m->md.pv_list))
2018			vm_page_flag_clear(m, PG_WRITEABLE);
2019	}
2020	sched_unpin();
2021}
2022
2023
2024/*
2025 * free the pv_entry back to the free list
2026 */
2027static void
2028free_pv_entry(pmap_t pmap, pv_entry_t pv)
2029{
2030	vm_page_t m;
2031	struct pv_chunk *pc;
2032	int idx, field, bit;
2033
2034	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2035	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2036	PV_STAT(pv_entry_frees++);
2037	PV_STAT(pv_entry_spare++);
2038	pv_entry_count--;
2039	pc = pv_to_chunk(pv);
2040	idx = pv - &pc->pc_pventry[0];
2041	field = idx / 32;
2042	bit = idx % 32;
2043	pc->pc_map[field] |= 1ul << bit;
2044	/* move to head of list */
2045	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2046	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2047	for (idx = 0; idx < _NPCM; idx++)
2048		if (pc->pc_map[idx] != pc_freemask[idx])
2049			return;
2050	PV_STAT(pv_entry_spare -= _NPCPV);
2051	PV_STAT(pc_chunk_count--);
2052	PV_STAT(pc_chunk_frees++);
2053	/* entire chunk is free, return it */
2054	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2055	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2056	pmap_qremove((vm_offset_t)pc, 1);
2057	vm_page_unwire(m, 0);
2058	vm_page_free(m);
2059	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2060}
2061
2062/*
2063 * get a new pv_entry, allocating a block from the system
2064 * when needed.
2065 */
2066static pv_entry_t
2067get_pv_entry(pmap_t pmap, int try)
2068{
2069	static const struct timeval printinterval = { 60, 0 };
2070	static struct timeval lastprint;
2071	static vm_pindex_t colour;
2072	struct vpgqueues *pq;
2073	int bit, field;
2074	pv_entry_t pv;
2075	struct pv_chunk *pc;
2076	vm_page_t m;
2077
2078	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2079	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2080	PV_STAT(pv_entry_allocs++);
2081	pv_entry_count++;
2082	if (pv_entry_count > pv_entry_high_water)
2083		if (ratecheck(&lastprint, &printinterval))
2084			printf("Approaching the limit on PV entries, consider "
2085			    "increasing either the vm.pmap.shpgperproc or the "
2086			    "vm.pmap.pv_entry_max tunable.\n");
2087	pq = NULL;
2088retry:
2089	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2090	if (pc != NULL) {
2091		for (field = 0; field < _NPCM; field++) {
2092			if (pc->pc_map[field]) {
2093				bit = bsfl(pc->pc_map[field]);
2094				break;
2095			}
2096		}
2097		if (field < _NPCM) {
2098			pv = &pc->pc_pventry[field * 32 + bit];
2099			pc->pc_map[field] &= ~(1ul << bit);
2100			/* If this was the last item, move it to tail */
2101			for (field = 0; field < _NPCM; field++)
2102				if (pc->pc_map[field] != 0) {
2103					PV_STAT(pv_entry_spare--);
2104					return (pv);	/* not full, return */
2105				}
2106			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2107			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2108			PV_STAT(pv_entry_spare--);
2109			return (pv);
2110		}
2111	}
2112	/*
2113	 * Access to the ptelist "pv_vafree" is synchronized by the page
2114	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2115	 * remain non-empty until pmap_ptelist_alloc() completes.
2116	 */
2117	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2118	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2119	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2120		if (try) {
2121			pv_entry_count--;
2122			PV_STAT(pc_chunk_tryfail++);
2123			return (NULL);
2124		}
2125		/*
2126		 * Reclaim pv entries: At first, destroy mappings to
2127		 * inactive pages.  After that, if a pv chunk entry
2128		 * is still needed, destroy mappings to active pages.
2129		 */
2130		if (pq == NULL) {
2131			PV_STAT(pmap_collect_inactive++);
2132			pq = &vm_page_queues[PQ_INACTIVE];
2133		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2134			PV_STAT(pmap_collect_active++);
2135			pq = &vm_page_queues[PQ_ACTIVE];
2136		} else
2137			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2138		pmap_collect(pmap, pq);
2139		goto retry;
2140	}
2141	PV_STAT(pc_chunk_count++);
2142	PV_STAT(pc_chunk_allocs++);
2143	colour++;
2144	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2145	pmap_qenter((vm_offset_t)pc, &m, 1);
2146	if ((m->flags & PG_ZERO) == 0)
2147		pagezero(pc);
2148	pc->pc_pmap = pmap;
2149	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2150	for (field = 1; field < _NPCM; field++)
2151		pc->pc_map[field] = pc_freemask[field];
2152	pv = &pc->pc_pventry[0];
2153	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2154	PV_STAT(pv_entry_spare += _NPCPV - 1);
2155	return (pv);
2156}
2157
2158static __inline pv_entry_t
2159pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2160{
2161	pv_entry_t pv;
2162
2163	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2164	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2165		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2166			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2167			break;
2168		}
2169	}
2170	return (pv);
2171}
2172
2173static void
2174pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2175{
2176	pv_entry_t pv;
2177
2178	pv = pmap_pvh_remove(pvh, pmap, va);
2179	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2180	free_pv_entry(pmap, pv);
2181}
2182
2183static void
2184pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2185{
2186
2187	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2188	pmap_pvh_free(&m->md, pmap, va);
2189	if (TAILQ_EMPTY(&m->md.pv_list))
2190		vm_page_flag_clear(m, PG_WRITEABLE);
2191}
2192
2193/*
2194 * Conditionally create a pv entry.
2195 */
2196static boolean_t
2197pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2198{
2199	pv_entry_t pv;
2200
2201	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2202	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2203	if (pv_entry_count < pv_entry_high_water &&
2204	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2205		pv->pv_va = va;
2206		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2207		return (TRUE);
2208	} else
2209		return (FALSE);
2210}
2211
2212/*
2213 * pmap_remove_pte: do the things to unmap a page in a process
2214 */
2215static int
2216pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2217{
2218	pt_entry_t oldpte;
2219	vm_page_t m;
2220
2221	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2222	    pmap, (u_long)*ptq, va);
2223
2224	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2225	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2226	oldpte = *ptq;
2227	PT_SET_VA_MA(ptq, 0, TRUE);
2228	if (oldpte & PG_W)
2229		pmap->pm_stats.wired_count -= 1;
2230	/*
2231	 * Machines that don't support invlpg, also don't support
2232	 * PG_G.
2233	 */
2234	if (oldpte & PG_G)
2235		pmap_invalidate_page(kernel_pmap, va);
2236	pmap->pm_stats.resident_count -= 1;
2237	/*
2238	 * XXX This is not strictly correctly, but somewhere along the line
2239	 * we are losing the managed bit on some pages. It is unclear to me
2240	 * why, but I think the most likely explanation is that xen's writable
2241	 * page table implementation doesn't respect the unused bits.
2242	 */
2243	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2244		) {
2245		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2246
2247		if (!(oldpte & PG_MANAGED))
2248			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2249
2250		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2251			vm_page_dirty(m);
2252		if (oldpte & PG_A)
2253			vm_page_flag_set(m, PG_REFERENCED);
2254		pmap_remove_entry(pmap, m, va);
2255	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2256		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2257
2258	return (pmap_unuse_pt(pmap, va, free));
2259}
2260
2261/*
2262 * Remove a single page from a process address space
2263 */
2264static void
2265pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2266{
2267	pt_entry_t *pte;
2268
2269	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2270	    pmap, va);
2271
2272	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2273	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2274	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2275	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2276		return;
2277	pmap_remove_pte(pmap, pte, va, free);
2278	pmap_invalidate_page(pmap, va);
2279	if (*PMAP1)
2280		PT_SET_MA(PADDR1, 0);
2281
2282}
2283
2284/*
2285 *	Remove the given range of addresses from the specified map.
2286 *
2287 *	It is assumed that the start and end are properly
2288 *	rounded to the page size.
2289 */
2290void
2291pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2292{
2293	vm_offset_t pdnxt;
2294	pd_entry_t ptpaddr;
2295	pt_entry_t *pte;
2296	vm_page_t free = NULL;
2297	int anyvalid;
2298
2299	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2300	    pmap, sva, eva);
2301
2302	/*
2303	 * Perform an unsynchronized read.  This is, however, safe.
2304	 */
2305	if (pmap->pm_stats.resident_count == 0)
2306		return;
2307
2308	anyvalid = 0;
2309
2310	vm_page_lock_queues();
2311	sched_pin();
2312	PMAP_LOCK(pmap);
2313
2314	/*
2315	 * special handling of removing one page.  a very
2316	 * common operation and easy to short circuit some
2317	 * code.
2318	 */
2319	if ((sva + PAGE_SIZE == eva) &&
2320	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2321		pmap_remove_page(pmap, sva, &free);
2322		goto out;
2323	}
2324
2325	for (; sva < eva; sva = pdnxt) {
2326		unsigned pdirindex;
2327
2328		/*
2329		 * Calculate index for next page table.
2330		 */
2331		pdnxt = (sva + NBPDR) & ~PDRMASK;
2332		if (pmap->pm_stats.resident_count == 0)
2333			break;
2334
2335		pdirindex = sva >> PDRSHIFT;
2336		ptpaddr = pmap->pm_pdir[pdirindex];
2337
2338		/*
2339		 * Weed out invalid mappings. Note: we assume that the page
2340		 * directory table is always allocated, and in kernel virtual.
2341		 */
2342		if (ptpaddr == 0)
2343			continue;
2344
2345		/*
2346		 * Check for large page.
2347		 */
2348		if ((ptpaddr & PG_PS) != 0) {
2349			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2350			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2351			anyvalid = 1;
2352			continue;
2353		}
2354
2355		/*
2356		 * Limit our scan to either the end of the va represented
2357		 * by the current page table page, or to the end of the
2358		 * range being removed.
2359		 */
2360		if (pdnxt > eva)
2361			pdnxt = eva;
2362
2363		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2364		    sva += PAGE_SIZE) {
2365			if ((*pte & PG_V) == 0)
2366				continue;
2367
2368			/*
2369			 * The TLB entry for a PG_G mapping is invalidated
2370			 * by pmap_remove_pte().
2371			 */
2372			if ((*pte & PG_G) == 0)
2373				anyvalid = 1;
2374			if (pmap_remove_pte(pmap, pte, sva, &free))
2375				break;
2376		}
2377	}
2378	PT_UPDATES_FLUSH();
2379	if (*PMAP1)
2380		PT_SET_VA_MA(PMAP1, 0, TRUE);
2381out:
2382	if (anyvalid)
2383		pmap_invalidate_all(pmap);
2384	sched_unpin();
2385	vm_page_unlock_queues();
2386	PMAP_UNLOCK(pmap);
2387	pmap_free_zero_pages(free);
2388}
2389
2390/*
2391 *	Routine:	pmap_remove_all
2392 *	Function:
2393 *		Removes this physical page from
2394 *		all physical maps in which it resides.
2395 *		Reflects back modify bits to the pager.
2396 *
2397 *	Notes:
2398 *		Original versions of this routine were very
2399 *		inefficient because they iteratively called
2400 *		pmap_remove (slow...)
2401 */
2402
2403void
2404pmap_remove_all(vm_page_t m)
2405{
2406	pv_entry_t pv;
2407	pmap_t pmap;
2408	pt_entry_t *pte, tpte;
2409	vm_page_t free;
2410
2411	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2412	    ("pmap_remove_all: page %p is fictitious", m));
2413	free = NULL;
2414	vm_page_lock_queues();
2415	sched_pin();
2416	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2417		pmap = PV_PMAP(pv);
2418		PMAP_LOCK(pmap);
2419		pmap->pm_stats.resident_count--;
2420		pte = pmap_pte_quick(pmap, pv->pv_va);
2421
2422		tpte = *pte;
2423		PT_SET_VA_MA(pte, 0, TRUE);
2424		if (tpte & PG_W)
2425			pmap->pm_stats.wired_count--;
2426		if (tpte & PG_A)
2427			vm_page_flag_set(m, PG_REFERENCED);
2428
2429		/*
2430		 * Update the vm_page_t clean and reference bits.
2431		 */
2432		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2433			vm_page_dirty(m);
2434		pmap_unuse_pt(pmap, pv->pv_va, &free);
2435		pmap_invalidate_page(pmap, pv->pv_va);
2436		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2437		free_pv_entry(pmap, pv);
2438		PMAP_UNLOCK(pmap);
2439	}
2440	vm_page_flag_clear(m, PG_WRITEABLE);
2441	PT_UPDATES_FLUSH();
2442	if (*PMAP1)
2443		PT_SET_MA(PADDR1, 0);
2444	sched_unpin();
2445	vm_page_unlock_queues();
2446	pmap_free_zero_pages(free);
2447}
2448
2449/*
2450 *	Set the physical protection on the
2451 *	specified range of this map as requested.
2452 */
2453void
2454pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2455{
2456	vm_offset_t pdnxt;
2457	pd_entry_t ptpaddr;
2458	pt_entry_t *pte;
2459	int anychanged;
2460
2461	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2462	    pmap, sva, eva, prot);
2463
2464	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2465		pmap_remove(pmap, sva, eva);
2466		return;
2467	}
2468
2469#ifdef PAE
2470	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2471	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2472		return;
2473#else
2474	if (prot & VM_PROT_WRITE)
2475		return;
2476#endif
2477
2478	anychanged = 0;
2479
2480	vm_page_lock_queues();
2481	sched_pin();
2482	PMAP_LOCK(pmap);
2483	for (; sva < eva; sva = pdnxt) {
2484		pt_entry_t obits, pbits;
2485		unsigned pdirindex;
2486
2487		pdnxt = (sva + NBPDR) & ~PDRMASK;
2488
2489		pdirindex = sva >> PDRSHIFT;
2490		ptpaddr = pmap->pm_pdir[pdirindex];
2491
2492		/*
2493		 * Weed out invalid mappings. Note: we assume that the page
2494		 * directory table is always allocated, and in kernel virtual.
2495		 */
2496		if (ptpaddr == 0)
2497			continue;
2498
2499		/*
2500		 * Check for large page.
2501		 */
2502		if ((ptpaddr & PG_PS) != 0) {
2503			if ((prot & VM_PROT_WRITE) == 0)
2504				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2505#ifdef PAE
2506			if ((prot & VM_PROT_EXECUTE) == 0)
2507				pmap->pm_pdir[pdirindex] |= pg_nx;
2508#endif
2509			anychanged = 1;
2510			continue;
2511		}
2512
2513		if (pdnxt > eva)
2514			pdnxt = eva;
2515
2516		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2517		    sva += PAGE_SIZE) {
2518			vm_page_t m;
2519
2520retry:
2521			/*
2522			 * Regardless of whether a pte is 32 or 64 bits in
2523			 * size, PG_RW, PG_A, and PG_M are among the least
2524			 * significant 32 bits.
2525			 */
2526			obits = pbits = *pte;
2527			if ((pbits & PG_V) == 0)
2528				continue;
2529
2530			if ((prot & VM_PROT_WRITE) == 0) {
2531				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2532				    (PG_MANAGED | PG_M | PG_RW)) {
2533					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2534					    PG_FRAME);
2535					vm_page_dirty(m);
2536				}
2537				pbits &= ~(PG_RW | PG_M);
2538			}
2539#ifdef PAE
2540			if ((prot & VM_PROT_EXECUTE) == 0)
2541				pbits |= pg_nx;
2542#endif
2543
2544			if (pbits != obits) {
2545				obits = *pte;
2546				PT_SET_VA_MA(pte, pbits, TRUE);
2547				if (*pte != pbits)
2548					goto retry;
2549				if (obits & PG_G)
2550					pmap_invalidate_page(pmap, sva);
2551				else
2552					anychanged = 1;
2553			}
2554		}
2555	}
2556	PT_UPDATES_FLUSH();
2557	if (*PMAP1)
2558		PT_SET_VA_MA(PMAP1, 0, TRUE);
2559	if (anychanged)
2560		pmap_invalidate_all(pmap);
2561	sched_unpin();
2562	vm_page_unlock_queues();
2563	PMAP_UNLOCK(pmap);
2564}
2565
2566/*
2567 *	Insert the given physical page (p) at
2568 *	the specified virtual address (v) in the
2569 *	target physical map with the protection requested.
2570 *
2571 *	If specified, the page will be wired down, meaning
2572 *	that the related pte can not be reclaimed.
2573 *
2574 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2575 *	or lose information.  That is, this routine must actually
2576 *	insert this page into the given map NOW.
2577 */
2578void
2579pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2580    vm_prot_t prot, boolean_t wired)
2581{
2582	pd_entry_t *pde;
2583	pt_entry_t *pte;
2584	pt_entry_t newpte, origpte;
2585	pv_entry_t pv;
2586	vm_paddr_t opa, pa;
2587	vm_page_t mpte, om;
2588	boolean_t invlva;
2589
2590	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2591	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2592	va = trunc_page(va);
2593	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2594	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2595	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2596	    va));
2597	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2598	    (m->oflags & VPO_BUSY) != 0,
2599	    ("pmap_enter: page %p is not busy", m));
2600
2601	mpte = NULL;
2602
2603	vm_page_lock_queues();
2604	PMAP_LOCK(pmap);
2605	sched_pin();
2606
2607	/*
2608	 * In the case that a page table page is not
2609	 * resident, we are creating it here.
2610	 */
2611	if (va < VM_MAXUSER_ADDRESS) {
2612		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2613	}
2614
2615	pde = pmap_pde(pmap, va);
2616	if ((*pde & PG_PS) != 0)
2617		panic("pmap_enter: attempted pmap_enter on 4MB page");
2618	pte = pmap_pte_quick(pmap, va);
2619
2620	/*
2621	 * Page Directory table entry not valid, we need a new PT page
2622	 */
2623	if (pte == NULL) {
2624		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2625			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2626	}
2627
2628	pa = VM_PAGE_TO_PHYS(m);
2629	om = NULL;
2630	opa = origpte = 0;
2631
2632#if 0
2633	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2634		pte, *pte));
2635#endif
2636	origpte = *pte;
2637	if (origpte)
2638		origpte = xpmap_mtop(origpte);
2639	opa = origpte & PG_FRAME;
2640
2641	/*
2642	 * Mapping has not changed, must be protection or wiring change.
2643	 */
2644	if (origpte && (opa == pa)) {
2645		/*
2646		 * Wiring change, just update stats. We don't worry about
2647		 * wiring PT pages as they remain resident as long as there
2648		 * are valid mappings in them. Hence, if a user page is wired,
2649		 * the PT page will be also.
2650		 */
2651		if (wired && ((origpte & PG_W) == 0))
2652			pmap->pm_stats.wired_count++;
2653		else if (!wired && (origpte & PG_W))
2654			pmap->pm_stats.wired_count--;
2655
2656		/*
2657		 * Remove extra pte reference
2658		 */
2659		if (mpte)
2660			mpte->wire_count--;
2661
2662		if (origpte & PG_MANAGED) {
2663			om = m;
2664			pa |= PG_MANAGED;
2665		}
2666		goto validate;
2667	}
2668
2669	pv = NULL;
2670
2671	/*
2672	 * Mapping has changed, invalidate old range and fall through to
2673	 * handle validating new mapping.
2674	 */
2675	if (opa) {
2676		if (origpte & PG_W)
2677			pmap->pm_stats.wired_count--;
2678		if (origpte & PG_MANAGED) {
2679			om = PHYS_TO_VM_PAGE(opa);
2680			pv = pmap_pvh_remove(&om->md, pmap, va);
2681		} else if (va < VM_MAXUSER_ADDRESS)
2682			printf("va=0x%x is unmanaged :-( \n", va);
2683
2684		if (mpte != NULL) {
2685			mpte->wire_count--;
2686			KASSERT(mpte->wire_count > 0,
2687			    ("pmap_enter: missing reference to page table page,"
2688			     " va: 0x%x", va));
2689		}
2690	} else
2691		pmap->pm_stats.resident_count++;
2692
2693	/*
2694	 * Enter on the PV list if part of our managed memory.
2695	 */
2696	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2697		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2698		    ("pmap_enter: managed mapping within the clean submap"));
2699		if (pv == NULL)
2700			pv = get_pv_entry(pmap, FALSE);
2701		pv->pv_va = va;
2702		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2703		pa |= PG_MANAGED;
2704	} else if (pv != NULL)
2705		free_pv_entry(pmap, pv);
2706
2707	/*
2708	 * Increment counters
2709	 */
2710	if (wired)
2711		pmap->pm_stats.wired_count++;
2712
2713validate:
2714	/*
2715	 * Now validate mapping with desired protection/wiring.
2716	 */
2717	newpte = (pt_entry_t)(pa | PG_V);
2718	if ((prot & VM_PROT_WRITE) != 0) {
2719		newpte |= PG_RW;
2720		if ((newpte & PG_MANAGED) != 0)
2721			vm_page_flag_set(m, PG_WRITEABLE);
2722	}
2723#ifdef PAE
2724	if ((prot & VM_PROT_EXECUTE) == 0)
2725		newpte |= pg_nx;
2726#endif
2727	if (wired)
2728		newpte |= PG_W;
2729	if (va < VM_MAXUSER_ADDRESS)
2730		newpte |= PG_U;
2731	if (pmap == kernel_pmap)
2732		newpte |= pgeflag;
2733
2734	critical_enter();
2735	/*
2736	 * if the mapping or permission bits are different, we need
2737	 * to update the pte.
2738	 */
2739	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2740		if (origpte) {
2741			invlva = FALSE;
2742			origpte = *pte;
2743			PT_SET_VA(pte, newpte | PG_A, FALSE);
2744			if (origpte & PG_A) {
2745				if (origpte & PG_MANAGED)
2746					vm_page_flag_set(om, PG_REFERENCED);
2747				if (opa != VM_PAGE_TO_PHYS(m))
2748					invlva = TRUE;
2749#ifdef PAE
2750				if ((origpte & PG_NX) == 0 &&
2751				    (newpte & PG_NX) != 0)
2752					invlva = TRUE;
2753#endif
2754			}
2755			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2756				if ((origpte & PG_MANAGED) != 0)
2757					vm_page_dirty(om);
2758				if ((prot & VM_PROT_WRITE) == 0)
2759					invlva = TRUE;
2760			}
2761			if ((origpte & PG_MANAGED) != 0 &&
2762			    TAILQ_EMPTY(&om->md.pv_list))
2763				vm_page_flag_clear(om, PG_WRITEABLE);
2764			if (invlva)
2765				pmap_invalidate_page(pmap, va);
2766		} else{
2767			PT_SET_VA(pte, newpte | PG_A, FALSE);
2768		}
2769
2770	}
2771	PT_UPDATES_FLUSH();
2772	critical_exit();
2773	if (*PMAP1)
2774		PT_SET_VA_MA(PMAP1, 0, TRUE);
2775	sched_unpin();
2776	vm_page_unlock_queues();
2777	PMAP_UNLOCK(pmap);
2778}
2779
2780/*
2781 * Maps a sequence of resident pages belonging to the same object.
2782 * The sequence begins with the given page m_start.  This page is
2783 * mapped at the given virtual address start.  Each subsequent page is
2784 * mapped at a virtual address that is offset from start by the same
2785 * amount as the page is offset from m_start within the object.  The
2786 * last page in the sequence is the page with the largest offset from
2787 * m_start that can be mapped at a virtual address less than the given
2788 * virtual address end.  Not every virtual page between start and end
2789 * is mapped; only those for which a resident page exists with the
2790 * corresponding offset from m_start are mapped.
2791 */
2792void
2793pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2794    vm_page_t m_start, vm_prot_t prot)
2795{
2796	vm_page_t m, mpte;
2797	vm_pindex_t diff, psize;
2798	multicall_entry_t mcl[16];
2799	multicall_entry_t *mclp = mcl;
2800	int error, count = 0;
2801
2802	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2803	psize = atop(end - start);
2804
2805	mpte = NULL;
2806	m = m_start;
2807	vm_page_lock_queues();
2808	PMAP_LOCK(pmap);
2809	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2810		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2811		    prot, mpte);
2812		m = TAILQ_NEXT(m, listq);
2813		if (count == 16) {
2814			error = HYPERVISOR_multicall(mcl, count);
2815			KASSERT(error == 0, ("bad multicall %d", error));
2816			mclp = mcl;
2817			count = 0;
2818		}
2819	}
2820	if (count) {
2821		error = HYPERVISOR_multicall(mcl, count);
2822		KASSERT(error == 0, ("bad multicall %d", error));
2823	}
2824	vm_page_unlock_queues();
2825	PMAP_UNLOCK(pmap);
2826}
2827
2828/*
2829 * this code makes some *MAJOR* assumptions:
2830 * 1. Current pmap & pmap exists.
2831 * 2. Not wired.
2832 * 3. Read access.
2833 * 4. No page table pages.
2834 * but is *MUCH* faster than pmap_enter...
2835 */
2836
2837void
2838pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2839{
2840	multicall_entry_t mcl, *mclp;
2841	int count = 0;
2842	mclp = &mcl;
2843
2844	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2845	    pmap, va, m, prot);
2846
2847	vm_page_lock_queues();
2848	PMAP_LOCK(pmap);
2849	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2850	if (count)
2851		HYPERVISOR_multicall(&mcl, count);
2852	vm_page_unlock_queues();
2853	PMAP_UNLOCK(pmap);
2854}
2855
2856#ifdef notyet
2857void
2858pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2859{
2860	int i, error, index = 0;
2861	multicall_entry_t mcl[16];
2862	multicall_entry_t *mclp = mcl;
2863
2864	PMAP_LOCK(pmap);
2865	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2866		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2867			continue;
2868
2869		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2870		if (index == 16) {
2871			error = HYPERVISOR_multicall(mcl, index);
2872			mclp = mcl;
2873			index = 0;
2874			KASSERT(error == 0, ("bad multicall %d", error));
2875		}
2876	}
2877	if (index) {
2878		error = HYPERVISOR_multicall(mcl, index);
2879		KASSERT(error == 0, ("bad multicall %d", error));
2880	}
2881
2882	PMAP_UNLOCK(pmap);
2883}
2884#endif
2885
2886static vm_page_t
2887pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2888    vm_prot_t prot, vm_page_t mpte)
2889{
2890	pt_entry_t *pte;
2891	vm_paddr_t pa;
2892	vm_page_t free;
2893	multicall_entry_t *mcl = *mclpp;
2894
2895	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2896	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2897	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2898	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2899	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2900
2901	/*
2902	 * In the case that a page table page is not
2903	 * resident, we are creating it here.
2904	 */
2905	if (va < VM_MAXUSER_ADDRESS) {
2906		unsigned ptepindex;
2907		pd_entry_t ptema;
2908
2909		/*
2910		 * Calculate pagetable page index
2911		 */
2912		ptepindex = va >> PDRSHIFT;
2913		if (mpte && (mpte->pindex == ptepindex)) {
2914			mpte->wire_count++;
2915		} else {
2916			/*
2917			 * Get the page directory entry
2918			 */
2919			ptema = pmap->pm_pdir[ptepindex];
2920
2921			/*
2922			 * If the page table page is mapped, we just increment
2923			 * the hold count, and activate it.
2924			 */
2925			if (ptema & PG_V) {
2926				if (ptema & PG_PS)
2927					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2928				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2929				mpte->wire_count++;
2930			} else {
2931				mpte = _pmap_allocpte(pmap, ptepindex,
2932				    M_NOWAIT);
2933				if (mpte == NULL)
2934					return (mpte);
2935			}
2936		}
2937	} else {
2938		mpte = NULL;
2939	}
2940
2941	/*
2942	 * This call to vtopte makes the assumption that we are
2943	 * entering the page into the current pmap.  In order to support
2944	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2945	 * But that isn't as quick as vtopte.
2946	 */
2947	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2948	pte = vtopte(va);
2949	if (*pte & PG_V) {
2950		if (mpte != NULL) {
2951			mpte->wire_count--;
2952			mpte = NULL;
2953		}
2954		return (mpte);
2955	}
2956
2957	/*
2958	 * Enter on the PV list if part of our managed memory.
2959	 */
2960	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2961	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2962		if (mpte != NULL) {
2963			free = NULL;
2964			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2965				pmap_invalidate_page(pmap, va);
2966				pmap_free_zero_pages(free);
2967			}
2968
2969			mpte = NULL;
2970		}
2971		return (mpte);
2972	}
2973
2974	/*
2975	 * Increment counters
2976	 */
2977	pmap->pm_stats.resident_count++;
2978
2979	pa = VM_PAGE_TO_PHYS(m);
2980#ifdef PAE
2981	if ((prot & VM_PROT_EXECUTE) == 0)
2982		pa |= pg_nx;
2983#endif
2984
2985#if 0
2986	/*
2987	 * Now validate mapping with RO protection
2988	 */
2989	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2990		pte_store(pte, pa | PG_V | PG_U);
2991	else
2992		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2993#else
2994	/*
2995	 * Now validate mapping with RO protection
2996	 */
2997	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2998		pa = 	xpmap_ptom(pa | PG_V | PG_U);
2999	else
3000		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3001
3002	mcl->op = __HYPERVISOR_update_va_mapping;
3003	mcl->args[0] = va;
3004	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3005	mcl->args[2] = (uint32_t)(pa >> 32);
3006	mcl->args[3] = 0;
3007	*mclpp = mcl + 1;
3008	*count = *count + 1;
3009#endif
3010	return mpte;
3011}
3012
3013/*
3014 * Make a temporary mapping for a physical address.  This is only intended
3015 * to be used for panic dumps.
3016 */
3017void *
3018pmap_kenter_temporary(vm_paddr_t pa, int i)
3019{
3020	vm_offset_t va;
3021	vm_paddr_t ma = xpmap_ptom(pa);
3022
3023	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3024	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3025	invlpg(va);
3026	return ((void *)crashdumpmap);
3027}
3028
3029/*
3030 * This code maps large physical mmap regions into the
3031 * processor address space.  Note that some shortcuts
3032 * are taken, but the code works.
3033 */
3034void
3035pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3036		    vm_object_t object, vm_pindex_t pindex,
3037		    vm_size_t size)
3038{
3039	pd_entry_t *pde;
3040	vm_paddr_t pa, ptepa;
3041	vm_page_t p;
3042	int pat_mode;
3043
3044	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3045	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3046	    ("pmap_object_init_pt: non-device object"));
3047	if (pseflag &&
3048	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3049		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3050			return;
3051		p = vm_page_lookup(object, pindex);
3052		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3053		    ("pmap_object_init_pt: invalid page %p", p));
3054		pat_mode = p->md.pat_mode;
3055		/*
3056		 * Abort the mapping if the first page is not physically
3057		 * aligned to a 2/4MB page boundary.
3058		 */
3059		ptepa = VM_PAGE_TO_PHYS(p);
3060		if (ptepa & (NBPDR - 1))
3061			return;
3062		/*
3063		 * Skip the first page.  Abort the mapping if the rest of
3064		 * the pages are not physically contiguous or have differing
3065		 * memory attributes.
3066		 */
3067		p = TAILQ_NEXT(p, listq);
3068		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3069		    pa += PAGE_SIZE) {
3070			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3071			    ("pmap_object_init_pt: invalid page %p", p));
3072			if (pa != VM_PAGE_TO_PHYS(p) ||
3073			    pat_mode != p->md.pat_mode)
3074				return;
3075			p = TAILQ_NEXT(p, listq);
3076		}
3077		/* Map using 2/4MB pages. */
3078		PMAP_LOCK(pmap);
3079		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3080		    size; pa += NBPDR) {
3081			pde = pmap_pde(pmap, addr);
3082			if (*pde == 0) {
3083				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3084				    PG_U | PG_RW | PG_V);
3085				pmap->pm_stats.resident_count += NBPDR /
3086				    PAGE_SIZE;
3087				pmap_pde_mappings++;
3088			}
3089			/* Else continue on if the PDE is already valid. */
3090			addr += NBPDR;
3091		}
3092		PMAP_UNLOCK(pmap);
3093	}
3094}
3095
3096/*
3097 *	Routine:	pmap_change_wiring
3098 *	Function:	Change the wiring attribute for a map/virtual-address
3099 *			pair.
3100 *	In/out conditions:
3101 *			The mapping must already exist in the pmap.
3102 */
3103void
3104pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3105{
3106	pt_entry_t *pte;
3107
3108	vm_page_lock_queues();
3109	PMAP_LOCK(pmap);
3110	pte = pmap_pte(pmap, va);
3111
3112	if (wired && !pmap_pte_w(pte)) {
3113		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3114		pmap->pm_stats.wired_count++;
3115	} else if (!wired && pmap_pte_w(pte)) {
3116		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3117		pmap->pm_stats.wired_count--;
3118	}
3119
3120	/*
3121	 * Wiring is not a hardware characteristic so there is no need to
3122	 * invalidate TLB.
3123	 */
3124	pmap_pte_release(pte);
3125	PMAP_UNLOCK(pmap);
3126	vm_page_unlock_queues();
3127}
3128
3129
3130
3131/*
3132 *	Copy the range specified by src_addr/len
3133 *	from the source map to the range dst_addr/len
3134 *	in the destination map.
3135 *
3136 *	This routine is only advisory and need not do anything.
3137 */
3138
3139void
3140pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3141	  vm_offset_t src_addr)
3142{
3143	vm_page_t   free;
3144	vm_offset_t addr;
3145	vm_offset_t end_addr = src_addr + len;
3146	vm_offset_t pdnxt;
3147
3148	if (dst_addr != src_addr)
3149		return;
3150
3151	if (!pmap_is_current(src_pmap)) {
3152		CTR2(KTR_PMAP,
3153		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3154		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3155
3156		return;
3157	}
3158	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3159	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3160
3161	vm_page_lock_queues();
3162	if (dst_pmap < src_pmap) {
3163		PMAP_LOCK(dst_pmap);
3164		PMAP_LOCK(src_pmap);
3165	} else {
3166		PMAP_LOCK(src_pmap);
3167		PMAP_LOCK(dst_pmap);
3168	}
3169	sched_pin();
3170	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3171		pt_entry_t *src_pte, *dst_pte;
3172		vm_page_t dstmpte, srcmpte;
3173		pd_entry_t srcptepaddr;
3174		unsigned ptepindex;
3175
3176		KASSERT(addr < UPT_MIN_ADDRESS,
3177		    ("pmap_copy: invalid to pmap_copy page tables"));
3178
3179		pdnxt = (addr + NBPDR) & ~PDRMASK;
3180		ptepindex = addr >> PDRSHIFT;
3181
3182		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3183		if (srcptepaddr == 0)
3184			continue;
3185
3186		if (srcptepaddr & PG_PS) {
3187			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3188				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3189				dst_pmap->pm_stats.resident_count +=
3190				    NBPDR / PAGE_SIZE;
3191			}
3192			continue;
3193		}
3194
3195		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3196		KASSERT(srcmpte->wire_count > 0,
3197		    ("pmap_copy: source page table page is unused"));
3198
3199		if (pdnxt > end_addr)
3200			pdnxt = end_addr;
3201
3202		src_pte = vtopte(addr);
3203		while (addr < pdnxt) {
3204			pt_entry_t ptetemp;
3205			ptetemp = *src_pte;
3206			/*
3207			 * we only virtual copy managed pages
3208			 */
3209			if ((ptetemp & PG_MANAGED) != 0) {
3210				dstmpte = pmap_allocpte(dst_pmap, addr,
3211				    M_NOWAIT);
3212				if (dstmpte == NULL)
3213					break;
3214				dst_pte = pmap_pte_quick(dst_pmap, addr);
3215				if (*dst_pte == 0 &&
3216				    pmap_try_insert_pv_entry(dst_pmap, addr,
3217				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3218					/*
3219					 * Clear the wired, modified, and
3220					 * accessed (referenced) bits
3221					 * during the copy.
3222					 */
3223					KASSERT(ptetemp != 0, ("src_pte not set"));
3224					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3225					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3226					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3227						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3228					dst_pmap->pm_stats.resident_count++;
3229	 			} else {
3230					free = NULL;
3231					if (pmap_unwire_pte_hold(dst_pmap,
3232					    dstmpte, &free)) {
3233						pmap_invalidate_page(dst_pmap,
3234						    addr);
3235						pmap_free_zero_pages(free);
3236					}
3237				}
3238				if (dstmpte->wire_count >= srcmpte->wire_count)
3239					break;
3240			}
3241			addr += PAGE_SIZE;
3242			src_pte++;
3243		}
3244	}
3245	PT_UPDATES_FLUSH();
3246	sched_unpin();
3247	vm_page_unlock_queues();
3248	PMAP_UNLOCK(src_pmap);
3249	PMAP_UNLOCK(dst_pmap);
3250}
3251
3252static __inline void
3253pagezero(void *page)
3254{
3255#if defined(I686_CPU)
3256	if (cpu_class == CPUCLASS_686) {
3257#if defined(CPU_ENABLE_SSE)
3258		if (cpu_feature & CPUID_SSE2)
3259			sse2_pagezero(page);
3260		else
3261#endif
3262			i686_pagezero(page);
3263	} else
3264#endif
3265		bzero(page, PAGE_SIZE);
3266}
3267
3268/*
3269 *	pmap_zero_page zeros the specified hardware page by mapping
3270 *	the page into KVM and using bzero to clear its contents.
3271 */
3272void
3273pmap_zero_page(vm_page_t m)
3274{
3275	struct sysmaps *sysmaps;
3276
3277	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3278	mtx_lock(&sysmaps->lock);
3279	if (*sysmaps->CMAP2)
3280		panic("pmap_zero_page: CMAP2 busy");
3281	sched_pin();
3282	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3283	pagezero(sysmaps->CADDR2);
3284	PT_SET_MA(sysmaps->CADDR2, 0);
3285	sched_unpin();
3286	mtx_unlock(&sysmaps->lock);
3287}
3288
3289/*
3290 *	pmap_zero_page_area zeros the specified hardware page by mapping
3291 *	the page into KVM and using bzero to clear its contents.
3292 *
3293 *	off and size may not cover an area beyond a single hardware page.
3294 */
3295void
3296pmap_zero_page_area(vm_page_t m, int off, int size)
3297{
3298	struct sysmaps *sysmaps;
3299
3300	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3301	mtx_lock(&sysmaps->lock);
3302	if (*sysmaps->CMAP2)
3303		panic("pmap_zero_page: CMAP2 busy");
3304	sched_pin();
3305	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3306
3307	if (off == 0 && size == PAGE_SIZE)
3308		pagezero(sysmaps->CADDR2);
3309	else
3310		bzero((char *)sysmaps->CADDR2 + off, size);
3311	PT_SET_MA(sysmaps->CADDR2, 0);
3312	sched_unpin();
3313	mtx_unlock(&sysmaps->lock);
3314}
3315
3316/*
3317 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3318 *	the page into KVM and using bzero to clear its contents.  This
3319 *	is intended to be called from the vm_pagezero process only and
3320 *	outside of Giant.
3321 */
3322void
3323pmap_zero_page_idle(vm_page_t m)
3324{
3325
3326	if (*CMAP3)
3327		panic("pmap_zero_page: CMAP3 busy");
3328	sched_pin();
3329	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3330	pagezero(CADDR3);
3331	PT_SET_MA(CADDR3, 0);
3332	sched_unpin();
3333}
3334
3335/*
3336 *	pmap_copy_page copies the specified (machine independent)
3337 *	page by mapping the page into virtual memory and using
3338 *	bcopy to copy the page, one machine dependent page at a
3339 *	time.
3340 */
3341void
3342pmap_copy_page(vm_page_t src, vm_page_t dst)
3343{
3344	struct sysmaps *sysmaps;
3345
3346	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3347	mtx_lock(&sysmaps->lock);
3348	if (*sysmaps->CMAP1)
3349		panic("pmap_copy_page: CMAP1 busy");
3350	if (*sysmaps->CMAP2)
3351		panic("pmap_copy_page: CMAP2 busy");
3352	sched_pin();
3353	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3354	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3355	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3356	PT_SET_MA(sysmaps->CADDR1, 0);
3357	PT_SET_MA(sysmaps->CADDR2, 0);
3358	sched_unpin();
3359	mtx_unlock(&sysmaps->lock);
3360}
3361
3362/*
3363 * Returns true if the pmap's pv is one of the first
3364 * 16 pvs linked to from this page.  This count may
3365 * be changed upwards or downwards in the future; it
3366 * is only necessary that true be returned for a small
3367 * subset of pmaps for proper page aging.
3368 */
3369boolean_t
3370pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3371{
3372	pv_entry_t pv;
3373	int loops = 0;
3374	boolean_t rv;
3375
3376	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3377	    ("pmap_page_exists_quick: page %p is not managed", m));
3378	rv = FALSE;
3379	vm_page_lock_queues();
3380	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3381		if (PV_PMAP(pv) == pmap) {
3382			rv = TRUE;
3383			break;
3384		}
3385		loops++;
3386		if (loops >= 16)
3387			break;
3388	}
3389	vm_page_unlock_queues();
3390	return (rv);
3391}
3392
3393/*
3394 *	pmap_page_wired_mappings:
3395 *
3396 *	Return the number of managed mappings to the given physical page
3397 *	that are wired.
3398 */
3399int
3400pmap_page_wired_mappings(vm_page_t m)
3401{
3402	pv_entry_t pv;
3403	pt_entry_t *pte;
3404	pmap_t pmap;
3405	int count;
3406
3407	count = 0;
3408	if ((m->flags & PG_FICTITIOUS) != 0)
3409		return (count);
3410	vm_page_lock_queues();
3411	sched_pin();
3412	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3413		pmap = PV_PMAP(pv);
3414		PMAP_LOCK(pmap);
3415		pte = pmap_pte_quick(pmap, pv->pv_va);
3416		if ((*pte & PG_W) != 0)
3417			count++;
3418		PMAP_UNLOCK(pmap);
3419	}
3420	sched_unpin();
3421	vm_page_unlock_queues();
3422	return (count);
3423}
3424
3425/*
3426 * Returns TRUE if the given page is mapped individually or as part of
3427 * a 4mpage.  Otherwise, returns FALSE.
3428 */
3429boolean_t
3430pmap_page_is_mapped(vm_page_t m)
3431{
3432	boolean_t rv;
3433
3434	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3435		return (FALSE);
3436	vm_page_lock_queues();
3437	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3438	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3439	vm_page_unlock_queues();
3440	return (rv);
3441}
3442
3443/*
3444 * Remove all pages from specified address space
3445 * this aids process exit speeds.  Also, this code
3446 * is special cased for current process only, but
3447 * can have the more generic (and slightly slower)
3448 * mode enabled.  This is much faster than pmap_remove
3449 * in the case of running down an entire address space.
3450 */
3451void
3452pmap_remove_pages(pmap_t pmap)
3453{
3454	pt_entry_t *pte, tpte;
3455	vm_page_t m, free = NULL;
3456	pv_entry_t pv;
3457	struct pv_chunk *pc, *npc;
3458	int field, idx;
3459	int32_t bit;
3460	uint32_t inuse, bitmask;
3461	int allfree;
3462
3463	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3464
3465	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3466		printf("warning: pmap_remove_pages called with non-current pmap\n");
3467		return;
3468	}
3469	vm_page_lock_queues();
3470	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3471	PMAP_LOCK(pmap);
3472	sched_pin();
3473	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3474		allfree = 1;
3475		for (field = 0; field < _NPCM; field++) {
3476			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3477			while (inuse != 0) {
3478				bit = bsfl(inuse);
3479				bitmask = 1UL << bit;
3480				idx = field * 32 + bit;
3481				pv = &pc->pc_pventry[idx];
3482				inuse &= ~bitmask;
3483
3484				pte = vtopte(pv->pv_va);
3485				tpte = *pte ? xpmap_mtop(*pte) : 0;
3486
3487				if (tpte == 0) {
3488					printf(
3489					    "TPTE at %p  IS ZERO @ VA %08x\n",
3490					    pte, pv->pv_va);
3491					panic("bad pte");
3492				}
3493
3494/*
3495 * We cannot remove wired pages from a process' mapping at this time
3496 */
3497				if (tpte & PG_W) {
3498					allfree = 0;
3499					continue;
3500				}
3501
3502				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3503				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3504				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3505				    m, (uintmax_t)m->phys_addr,
3506				    (uintmax_t)tpte));
3507
3508				KASSERT(m < &vm_page_array[vm_page_array_size],
3509					("pmap_remove_pages: bad tpte %#jx",
3510					(uintmax_t)tpte));
3511
3512
3513				PT_CLEAR_VA(pte, FALSE);
3514
3515				/*
3516				 * Update the vm_page_t clean/reference bits.
3517				 */
3518				if (tpte & PG_M)
3519					vm_page_dirty(m);
3520
3521				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3522				if (TAILQ_EMPTY(&m->md.pv_list))
3523					vm_page_flag_clear(m, PG_WRITEABLE);
3524
3525				pmap_unuse_pt(pmap, pv->pv_va, &free);
3526
3527				/* Mark free */
3528				PV_STAT(pv_entry_frees++);
3529				PV_STAT(pv_entry_spare++);
3530				pv_entry_count--;
3531				pc->pc_map[field] |= bitmask;
3532				pmap->pm_stats.resident_count--;
3533			}
3534		}
3535		PT_UPDATES_FLUSH();
3536		if (allfree) {
3537			PV_STAT(pv_entry_spare -= _NPCPV);
3538			PV_STAT(pc_chunk_count--);
3539			PV_STAT(pc_chunk_frees++);
3540			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3541			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3542			pmap_qremove((vm_offset_t)pc, 1);
3543			vm_page_unwire(m, 0);
3544			vm_page_free(m);
3545			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3546		}
3547	}
3548	PT_UPDATES_FLUSH();
3549	if (*PMAP1)
3550		PT_SET_MA(PADDR1, 0);
3551
3552	sched_unpin();
3553	pmap_invalidate_all(pmap);
3554	vm_page_unlock_queues();
3555	PMAP_UNLOCK(pmap);
3556	pmap_free_zero_pages(free);
3557}
3558
3559/*
3560 *	pmap_is_modified:
3561 *
3562 *	Return whether or not the specified physical page was modified
3563 *	in any physical maps.
3564 */
3565boolean_t
3566pmap_is_modified(vm_page_t m)
3567{
3568	pv_entry_t pv;
3569	pt_entry_t *pte;
3570	pmap_t pmap;
3571	boolean_t rv;
3572
3573	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3574	    ("pmap_is_modified: page %p is not managed", m));
3575	rv = FALSE;
3576
3577	/*
3578	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
3579	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
3580	 * is clear, no PTEs can have PG_M set.
3581	 */
3582	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3583	if ((m->oflags & VPO_BUSY) == 0 &&
3584	    (m->flags & PG_WRITEABLE) == 0)
3585		return (rv);
3586	vm_page_lock_queues();
3587	sched_pin();
3588	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3589		pmap = PV_PMAP(pv);
3590		PMAP_LOCK(pmap);
3591		pte = pmap_pte_quick(pmap, pv->pv_va);
3592		rv = (*pte & PG_M) != 0;
3593		PMAP_UNLOCK(pmap);
3594		if (rv)
3595			break;
3596	}
3597	if (*PMAP1)
3598		PT_SET_MA(PADDR1, 0);
3599	sched_unpin();
3600	vm_page_unlock_queues();
3601	return (rv);
3602}
3603
3604/*
3605 *	pmap_is_prefaultable:
3606 *
3607 *	Return whether or not the specified virtual address is elgible
3608 *	for prefault.
3609 */
3610static boolean_t
3611pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3612{
3613	pt_entry_t *pte;
3614	boolean_t rv = FALSE;
3615
3616	return (rv);
3617
3618	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3619		pte = vtopte(addr);
3620		rv = (*pte == 0);
3621	}
3622	return (rv);
3623}
3624
3625boolean_t
3626pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3627{
3628	boolean_t rv;
3629
3630	PMAP_LOCK(pmap);
3631	rv = pmap_is_prefaultable_locked(pmap, addr);
3632	PMAP_UNLOCK(pmap);
3633	return (rv);
3634}
3635
3636boolean_t
3637pmap_is_referenced(vm_page_t m)
3638{
3639	pv_entry_t pv;
3640	pt_entry_t *pte;
3641	pmap_t pmap;
3642	boolean_t rv;
3643
3644	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3645	    ("pmap_is_referenced: page %p is not managed", m));
3646	rv = FALSE;
3647	vm_page_lock_queues();
3648	sched_pin();
3649	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3650		pmap = PV_PMAP(pv);
3651		PMAP_LOCK(pmap);
3652		pte = pmap_pte_quick(pmap, pv->pv_va);
3653		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3654		PMAP_UNLOCK(pmap);
3655		if (rv)
3656			break;
3657	}
3658	if (*PMAP1)
3659		PT_SET_MA(PADDR1, 0);
3660	sched_unpin();
3661	vm_page_unlock_queues();
3662	return (rv);
3663}
3664
3665void
3666pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3667{
3668	int i, npages = round_page(len) >> PAGE_SHIFT;
3669	for (i = 0; i < npages; i++) {
3670		pt_entry_t *pte;
3671		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3672		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3673		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3674		pmap_pte_release(pte);
3675	}
3676}
3677
3678void
3679pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3680{
3681	int i, npages = round_page(len) >> PAGE_SHIFT;
3682	for (i = 0; i < npages; i++) {
3683		pt_entry_t *pte;
3684		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3685		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3686		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3687		pmap_pte_release(pte);
3688	}
3689}
3690
3691/*
3692 * Clear the write and modified bits in each of the given page's mappings.
3693 */
3694void
3695pmap_remove_write(vm_page_t m)
3696{
3697	pv_entry_t pv;
3698	pmap_t pmap;
3699	pt_entry_t oldpte, *pte;
3700
3701	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3702	    ("pmap_remove_write: page %p is not managed", m));
3703
3704	/*
3705	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
3706	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
3707	 * is clear, no page table entries need updating.
3708	 */
3709	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3710	if ((m->oflags & VPO_BUSY) == 0 &&
3711	    (m->flags & PG_WRITEABLE) == 0)
3712		return;
3713	vm_page_lock_queues();
3714	sched_pin();
3715	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3716		pmap = PV_PMAP(pv);
3717		PMAP_LOCK(pmap);
3718		pte = pmap_pte_quick(pmap, pv->pv_va);
3719retry:
3720		oldpte = *pte;
3721		if ((oldpte & PG_RW) != 0) {
3722			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3723
3724			/*
3725			 * Regardless of whether a pte is 32 or 64 bits
3726			 * in size, PG_RW and PG_M are among the least
3727			 * significant 32 bits.
3728			 */
3729			PT_SET_VA_MA(pte, newpte, TRUE);
3730			if (*pte != newpte)
3731				goto retry;
3732
3733			if ((oldpte & PG_M) != 0)
3734				vm_page_dirty(m);
3735			pmap_invalidate_page(pmap, pv->pv_va);
3736		}
3737		PMAP_UNLOCK(pmap);
3738	}
3739	vm_page_flag_clear(m, PG_WRITEABLE);
3740	PT_UPDATES_FLUSH();
3741	if (*PMAP1)
3742		PT_SET_MA(PADDR1, 0);
3743	sched_unpin();
3744	vm_page_unlock_queues();
3745}
3746
3747/*
3748 *	pmap_ts_referenced:
3749 *
3750 *	Return a count of reference bits for a page, clearing those bits.
3751 *	It is not necessary for every reference bit to be cleared, but it
3752 *	is necessary that 0 only be returned when there are truly no
3753 *	reference bits set.
3754 *
3755 *	XXX: The exact number of bits to check and clear is a matter that
3756 *	should be tested and standardized at some point in the future for
3757 *	optimal aging of shared pages.
3758 */
3759int
3760pmap_ts_referenced(vm_page_t m)
3761{
3762	pv_entry_t pv, pvf, pvn;
3763	pmap_t pmap;
3764	pt_entry_t *pte;
3765	int rtval = 0;
3766
3767	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3768	    ("pmap_ts_referenced: page %p is not managed", m));
3769	vm_page_lock_queues();
3770	sched_pin();
3771	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3772		pvf = pv;
3773		do {
3774			pvn = TAILQ_NEXT(pv, pv_list);
3775			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3776			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3777			pmap = PV_PMAP(pv);
3778			PMAP_LOCK(pmap);
3779			pte = pmap_pte_quick(pmap, pv->pv_va);
3780			if ((*pte & PG_A) != 0) {
3781				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3782				pmap_invalidate_page(pmap, pv->pv_va);
3783				rtval++;
3784				if (rtval > 4)
3785					pvn = NULL;
3786			}
3787			PMAP_UNLOCK(pmap);
3788		} while ((pv = pvn) != NULL && pv != pvf);
3789	}
3790	PT_UPDATES_FLUSH();
3791	if (*PMAP1)
3792		PT_SET_MA(PADDR1, 0);
3793
3794	sched_unpin();
3795	vm_page_unlock_queues();
3796	return (rtval);
3797}
3798
3799/*
3800 *	Clear the modify bits on the specified physical page.
3801 */
3802void
3803pmap_clear_modify(vm_page_t m)
3804{
3805	pv_entry_t pv;
3806	pmap_t pmap;
3807	pt_entry_t *pte;
3808
3809	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3810	    ("pmap_clear_modify: page %p is not managed", m));
3811	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3812	KASSERT((m->oflags & VPO_BUSY) == 0,
3813	    ("pmap_clear_modify: page %p is busy", m));
3814
3815	/*
3816	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
3817	 * If the object containing the page is locked and the page is not
3818	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
3819	 */
3820	if ((m->flags & PG_WRITEABLE) == 0)
3821		return;
3822	vm_page_lock_queues();
3823	sched_pin();
3824	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3825		pmap = PV_PMAP(pv);
3826		PMAP_LOCK(pmap);
3827		pte = pmap_pte_quick(pmap, pv->pv_va);
3828		if ((*pte & PG_M) != 0) {
3829			/*
3830			 * Regardless of whether a pte is 32 or 64 bits
3831			 * in size, PG_M is among the least significant
3832			 * 32 bits.
3833			 */
3834			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3835			pmap_invalidate_page(pmap, pv->pv_va);
3836		}
3837		PMAP_UNLOCK(pmap);
3838	}
3839	sched_unpin();
3840	vm_page_unlock_queues();
3841}
3842
3843/*
3844 *	pmap_clear_reference:
3845 *
3846 *	Clear the reference bit on the specified physical page.
3847 */
3848void
3849pmap_clear_reference(vm_page_t m)
3850{
3851	pv_entry_t pv;
3852	pmap_t pmap;
3853	pt_entry_t *pte;
3854
3855	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3856	    ("pmap_clear_reference: page %p is not managed", m));
3857	vm_page_lock_queues();
3858	sched_pin();
3859	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3860		pmap = PV_PMAP(pv);
3861		PMAP_LOCK(pmap);
3862		pte = pmap_pte_quick(pmap, pv->pv_va);
3863		if ((*pte & PG_A) != 0) {
3864			/*
3865			 * Regardless of whether a pte is 32 or 64 bits
3866			 * in size, PG_A is among the least significant
3867			 * 32 bits.
3868			 */
3869			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3870			pmap_invalidate_page(pmap, pv->pv_va);
3871		}
3872		PMAP_UNLOCK(pmap);
3873	}
3874	sched_unpin();
3875	vm_page_unlock_queues();
3876}
3877
3878/*
3879 * Miscellaneous support routines follow
3880 */
3881
3882/*
3883 * Map a set of physical memory pages into the kernel virtual
3884 * address space. Return a pointer to where it is mapped. This
3885 * routine is intended to be used for mapping device memory,
3886 * NOT real memory.
3887 */
3888void *
3889pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3890{
3891	vm_offset_t va, offset;
3892	vm_size_t tmpsize;
3893
3894	offset = pa & PAGE_MASK;
3895	size = roundup(offset + size, PAGE_SIZE);
3896	pa = pa & PG_FRAME;
3897
3898	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3899		va = KERNBASE + pa;
3900	else
3901		va = kmem_alloc_nofault(kernel_map, size);
3902	if (!va)
3903		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3904
3905	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3906		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3907	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3908	pmap_invalidate_cache_range(va, va + size);
3909	return ((void *)(va + offset));
3910}
3911
3912void *
3913pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3914{
3915
3916	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3917}
3918
3919void *
3920pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3921{
3922
3923	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3924}
3925
3926void
3927pmap_unmapdev(vm_offset_t va, vm_size_t size)
3928{
3929	vm_offset_t base, offset, tmpva;
3930
3931	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3932		return;
3933	base = trunc_page(va);
3934	offset = va & PAGE_MASK;
3935	size = roundup(offset + size, PAGE_SIZE);
3936	critical_enter();
3937	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3938		pmap_kremove(tmpva);
3939	pmap_invalidate_range(kernel_pmap, va, tmpva);
3940	critical_exit();
3941	kmem_free(kernel_map, base, size);
3942}
3943
3944/*
3945 * Sets the memory attribute for the specified page.
3946 */
3947void
3948pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3949{
3950	struct sysmaps *sysmaps;
3951	vm_offset_t sva, eva;
3952
3953	m->md.pat_mode = ma;
3954	if ((m->flags & PG_FICTITIOUS) != 0)
3955		return;
3956
3957	/*
3958	 * If "m" is a normal page, flush it from the cache.
3959	 * See pmap_invalidate_cache_range().
3960	 *
3961	 * First, try to find an existing mapping of the page by sf
3962	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3963	 * flushes the cache.
3964	 */
3965	if (sf_buf_invalidate_cache(m))
3966		return;
3967
3968	/*
3969	 * If page is not mapped by sf buffer, but CPU does not
3970	 * support self snoop, map the page transient and do
3971	 * invalidation. In the worst case, whole cache is flushed by
3972	 * pmap_invalidate_cache_range().
3973	 */
3974	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
3975		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3976		mtx_lock(&sysmaps->lock);
3977		if (*sysmaps->CMAP2)
3978			panic("pmap_page_set_memattr: CMAP2 busy");
3979		sched_pin();
3980		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3981		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
3982		    pmap_cache_bits(m->md.pat_mode, 0));
3983		invlcaddr(sysmaps->CADDR2);
3984		sva = (vm_offset_t)sysmaps->CADDR2;
3985		eva = sva + PAGE_SIZE;
3986	} else
3987		sva = eva = 0; /* gcc */
3988	pmap_invalidate_cache_range(sva, eva);
3989	if (sva != 0) {
3990		PT_SET_MA(sysmaps->CADDR2, 0);
3991		sched_unpin();
3992		mtx_unlock(&sysmaps->lock);
3993	}
3994}
3995
3996int
3997pmap_change_attr(va, size, mode)
3998	vm_offset_t va;
3999	vm_size_t size;
4000	int mode;
4001{
4002	vm_offset_t base, offset, tmpva;
4003	pt_entry_t *pte;
4004	u_int opte, npte;
4005	pd_entry_t *pde;
4006	boolean_t changed;
4007
4008	base = trunc_page(va);
4009	offset = va & PAGE_MASK;
4010	size = roundup(offset + size, PAGE_SIZE);
4011
4012	/* Only supported on kernel virtual addresses. */
4013	if (base <= VM_MAXUSER_ADDRESS)
4014		return (EINVAL);
4015
4016	/* 4MB pages and pages that aren't mapped aren't supported. */
4017	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4018		pde = pmap_pde(kernel_pmap, tmpva);
4019		if (*pde & PG_PS)
4020			return (EINVAL);
4021		if ((*pde & PG_V) == 0)
4022			return (EINVAL);
4023		pte = vtopte(va);
4024		if ((*pte & PG_V) == 0)
4025			return (EINVAL);
4026	}
4027
4028	changed = FALSE;
4029
4030	/*
4031	 * Ok, all the pages exist and are 4k, so run through them updating
4032	 * their cache mode.
4033	 */
4034	for (tmpva = base; size > 0; ) {
4035		pte = vtopte(tmpva);
4036
4037		/*
4038		 * The cache mode bits are all in the low 32-bits of the
4039		 * PTE, so we can just spin on updating the low 32-bits.
4040		 */
4041		do {
4042			opte = *(u_int *)pte;
4043			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4044			npte |= pmap_cache_bits(mode, 0);
4045			PT_SET_VA_MA(pte, npte, TRUE);
4046		} while (npte != opte && (*pte != npte));
4047		if (npte != opte)
4048			changed = TRUE;
4049		tmpva += PAGE_SIZE;
4050		size -= PAGE_SIZE;
4051	}
4052
4053	/*
4054	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4055	 * be, etc.
4056	 */
4057	if (changed) {
4058		pmap_invalidate_range(kernel_pmap, base, tmpva);
4059		pmap_invalidate_cache_range(base, tmpva);
4060	}
4061	return (0);
4062}
4063
4064/*
4065 * perform the pmap work for mincore
4066 */
4067int
4068pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4069{
4070	pt_entry_t *ptep, pte;
4071	vm_paddr_t pa;
4072	int val;
4073
4074	PMAP_LOCK(pmap);
4075retry:
4076	ptep = pmap_pte(pmap, addr);
4077	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4078	pmap_pte_release(ptep);
4079	val = 0;
4080	if ((pte & PG_V) != 0) {
4081		val |= MINCORE_INCORE;
4082		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4083			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4084		if ((pte & PG_A) != 0)
4085			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4086	}
4087	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4088	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4089	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4090		pa = pte & PG_FRAME;
4091		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4092		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4093			goto retry;
4094	} else
4095		PA_UNLOCK_COND(*locked_pa);
4096	PMAP_UNLOCK(pmap);
4097	return (val);
4098}
4099
4100void
4101pmap_activate(struct thread *td)
4102{
4103	pmap_t	pmap, oldpmap;
4104	u_int32_t  cr3;
4105
4106	critical_enter();
4107	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4108	oldpmap = PCPU_GET(curpmap);
4109#if defined(SMP)
4110	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4111	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4112#else
4113	oldpmap->pm_active &= ~1;
4114	pmap->pm_active |= 1;
4115#endif
4116#ifdef PAE
4117	cr3 = vtophys(pmap->pm_pdpt);
4118#else
4119	cr3 = vtophys(pmap->pm_pdir);
4120#endif
4121	/*
4122	 * pmap_activate is for the current thread on the current cpu
4123	 */
4124	td->td_pcb->pcb_cr3 = cr3;
4125	PT_UPDATES_FLUSH();
4126	load_cr3(cr3);
4127	PCPU_SET(curpmap, pmap);
4128	critical_exit();
4129}
4130
4131void
4132pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4133{
4134}
4135
4136/*
4137 *	Increase the starting virtual address of the given mapping if a
4138 *	different alignment might result in more superpage mappings.
4139 */
4140void
4141pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4142    vm_offset_t *addr, vm_size_t size)
4143{
4144	vm_offset_t superpage_offset;
4145
4146	if (size < NBPDR)
4147		return;
4148	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4149		offset += ptoa(object->pg_color);
4150	superpage_offset = offset & PDRMASK;
4151	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4152	    (*addr & PDRMASK) == superpage_offset)
4153		return;
4154	if ((*addr & PDRMASK) < superpage_offset)
4155		*addr = (*addr & ~PDRMASK) + superpage_offset;
4156	else
4157		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4158}
4159
4160void
4161pmap_suspend()
4162{
4163	pmap_t pmap;
4164	int i, pdir, offset;
4165	vm_paddr_t pdirma;
4166	mmu_update_t mu[4];
4167
4168	/*
4169	 * We need to remove the recursive mapping structure from all
4170	 * our pmaps so that Xen doesn't get confused when it restores
4171	 * the page tables. The recursive map lives at page directory
4172	 * index PTDPTDI. We assume that the suspend code has stopped
4173	 * the other vcpus (if any).
4174	 */
4175	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4176		for (i = 0; i < 4; i++) {
4177			/*
4178			 * Figure out which page directory (L2) page
4179			 * contains this bit of the recursive map and
4180			 * the offset within that page of the map
4181			 * entry
4182			 */
4183			pdir = (PTDPTDI + i) / NPDEPG;
4184			offset = (PTDPTDI + i) % NPDEPG;
4185			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4186			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4187			mu[i].val = 0;
4188		}
4189		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4190	}
4191}
4192
4193void
4194pmap_resume()
4195{
4196	pmap_t pmap;
4197	int i, pdir, offset;
4198	vm_paddr_t pdirma;
4199	mmu_update_t mu[4];
4200
4201	/*
4202	 * Restore the recursive map that we removed on suspend.
4203	 */
4204	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4205		for (i = 0; i < 4; i++) {
4206			/*
4207			 * Figure out which page directory (L2) page
4208			 * contains this bit of the recursive map and
4209			 * the offset within that page of the map
4210			 * entry
4211			 */
4212			pdir = (PTDPTDI + i) / NPDEPG;
4213			offset = (PTDPTDI + i) % NPDEPG;
4214			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4215			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4216			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4217		}
4218		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4219	}
4220}
4221
4222#if defined(PMAP_DEBUG)
4223pmap_pid_dump(int pid)
4224{
4225	pmap_t pmap;
4226	struct proc *p;
4227	int npte = 0;
4228	int index;
4229
4230	sx_slock(&allproc_lock);
4231	FOREACH_PROC_IN_SYSTEM(p) {
4232		if (p->p_pid != pid)
4233			continue;
4234
4235		if (p->p_vmspace) {
4236			int i,j;
4237			index = 0;
4238			pmap = vmspace_pmap(p->p_vmspace);
4239			for (i = 0; i < NPDEPTD; i++) {
4240				pd_entry_t *pde;
4241				pt_entry_t *pte;
4242				vm_offset_t base = i << PDRSHIFT;
4243
4244				pde = &pmap->pm_pdir[i];
4245				if (pde && pmap_pde_v(pde)) {
4246					for (j = 0; j < NPTEPG; j++) {
4247						vm_offset_t va = base + (j << PAGE_SHIFT);
4248						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4249							if (index) {
4250								index = 0;
4251								printf("\n");
4252							}
4253							sx_sunlock(&allproc_lock);
4254							return npte;
4255						}
4256						pte = pmap_pte(pmap, va);
4257						if (pte && pmap_pte_v(pte)) {
4258							pt_entry_t pa;
4259							vm_page_t m;
4260							pa = PT_GET(pte);
4261							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4262							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4263								va, pa, m->hold_count, m->wire_count, m->flags);
4264							npte++;
4265							index++;
4266							if (index >= 2) {
4267								index = 0;
4268								printf("\n");
4269							} else {
4270								printf(" ");
4271							}
4272						}
4273					}
4274				}
4275			}
4276		}
4277	}
4278	sx_sunlock(&allproc_lock);
4279	return npte;
4280}
4281#endif
4282
4283#if defined(DEBUG)
4284
4285static void	pads(pmap_t pm);
4286void		pmap_pvdump(vm_paddr_t pa);
4287
4288/* print address space of pmap*/
4289static void
4290pads(pmap_t pm)
4291{
4292	int i, j;
4293	vm_paddr_t va;
4294	pt_entry_t *ptep;
4295
4296	if (pm == kernel_pmap)
4297		return;
4298	for (i = 0; i < NPDEPTD; i++)
4299		if (pm->pm_pdir[i])
4300			for (j = 0; j < NPTEPG; j++) {
4301				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4302				if (pm == kernel_pmap && va < KERNBASE)
4303					continue;
4304				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4305					continue;
4306				ptep = pmap_pte(pm, va);
4307				if (pmap_pte_v(ptep))
4308					printf("%x:%x ", va, *ptep);
4309			};
4310
4311}
4312
4313void
4314pmap_pvdump(vm_paddr_t pa)
4315{
4316	pv_entry_t pv;
4317	pmap_t pmap;
4318	vm_page_t m;
4319
4320	printf("pa %x", pa);
4321	m = PHYS_TO_VM_PAGE(pa);
4322	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4323		pmap = PV_PMAP(pv);
4324		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4325		pads(pmap);
4326	}
4327	printf(" ");
4328}
4329#endif
4330