pmap.c revision 208651
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 208651 2010-05-30 04:44:32Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/uma.h>
141
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifdef XBOX
152#include <machine/xbox.h>
153#endif
154
155#include <xen/interface/xen.h>
156#include <xen/hypervisor.h>
157#include <machine/xen/hypercall.h>
158#include <machine/xen/xenvar.h>
159#include <machine/xen/xenfunc.h>
160
161#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
162#define CPU_ENABLE_SSE
163#endif
164
165#ifndef PMAP_SHPGPERPROC
166#define PMAP_SHPGPERPROC 200
167#endif
168
169#define DIAGNOSTIC
170
171#if !defined(DIAGNOSTIC)
172#ifdef __GNUC_GNU_INLINE__
173#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
174#else
175#define PMAP_INLINE	extern inline
176#endif
177#else
178#define PMAP_INLINE
179#endif
180
181#define PV_STATS
182#ifdef PV_STATS
183#define PV_STAT(x)	do { x ; } while (0)
184#else
185#define PV_STAT(x)	do { } while (0)
186#endif
187
188#define	pa_index(pa)	((pa) >> PDRSHIFT)
189#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
190
191/*
192 * Get PDEs and PTEs for user/kernel address space
193 */
194#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
195#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
196
197#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
198#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
199#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
200#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
201#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
202
203#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204
205struct pmap kernel_pmap_store;
206LIST_HEAD(pmaplist, pmap);
207static struct pmaplist allpmaps;
208static struct mtx allpmaps_lock;
209
210vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
211vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
212int pgeflag = 0;		/* PG_G or-in */
213int pseflag = 0;		/* PG_PS or-in */
214
215int nkpt;
216vm_offset_t kernel_vm_end;
217extern u_int32_t KERNend;
218
219#ifdef PAE
220pt_entry_t pg_nx;
221#if !defined(XEN)
222static uma_zone_t pdptzone;
223#endif
224#endif
225
226static int pat_works;			/* Is page attribute table sane? */
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250static pt_entry_t *CMAP3;
251caddr_t ptvmmap = 0;
252static caddr_t CADDR3;
253struct msgbuf *msgbufp = 0;
254
255/*
256 * Crashdump maps.
257 */
258static caddr_t crashdumpmap;
259
260static pt_entry_t *PMAP1 = 0, *PMAP2;
261static pt_entry_t *PADDR1 = 0, *PADDR2;
262#ifdef SMP
263static int PMAP1cpu;
264static int PMAP1changedcpu;
265SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
266	   &PMAP1changedcpu, 0,
267	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
268#endif
269static int PMAP1changed;
270SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
271	   &PMAP1changed, 0,
272	   "Number of times pmap_pte_quick changed PMAP1");
273static int PMAP1unchanged;
274SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
275	   &PMAP1unchanged, 0,
276	   "Number of times pmap_pte_quick didn't change PMAP1");
277static struct mtx PMAP2mutex;
278
279SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
280static int pg_ps_enabled;
281SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
282    "Are large page mappings enabled?");
283
284SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
285	"Max number of PV entries");
286SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
287	"Page share factor per proc");
288SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
289    "2/4MB page mapping counters");
290
291static u_long pmap_pde_mappings;
292SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
293    &pmap_pde_mappings, 0, "2/4MB page mappings");
294
295static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
296static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
297static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
298static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
299		    vm_offset_t va);
300
301static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
302    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
303static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
304    vm_page_t *free);
305static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
306    vm_page_t *free);
307static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
308					vm_offset_t va);
309static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
310    vm_page_t m);
311
312static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
313
314static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
315static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
316static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
317static void pmap_pte_release(pt_entry_t *pte);
318static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
319static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
320static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
321static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
322
323static __inline void pagezero(void *page);
324
325#if defined(PAE) && !defined(XEN)
326static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
327#endif
328#ifndef XEN
329static void pmap_set_pg(void);
330#endif
331
332CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
333CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
334
335/*
336 * If you get an error here, then you set KVA_PAGES wrong! See the
337 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
338 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
339 */
340CTASSERT(KERNBASE % (1 << 24) == 0);
341
342
343
344void
345pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
346{
347	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
348
349	switch (type) {
350	case SH_PD_SET_VA:
351#if 0
352		xen_queue_pt_update(shadow_pdir_ma,
353				    xpmap_ptom(val & ~(PG_RW)));
354#endif
355		xen_queue_pt_update(pdir_ma,
356				    xpmap_ptom(val));
357		break;
358	case SH_PD_SET_VA_MA:
359#if 0
360		xen_queue_pt_update(shadow_pdir_ma,
361				    val & ~(PG_RW));
362#endif
363		xen_queue_pt_update(pdir_ma, val);
364		break;
365	case SH_PD_SET_VA_CLEAR:
366#if 0
367		xen_queue_pt_update(shadow_pdir_ma, 0);
368#endif
369		xen_queue_pt_update(pdir_ma, 0);
370		break;
371	}
372}
373
374/*
375 * Move the kernel virtual free pointer to the next
376 * 4MB.  This is used to help improve performance
377 * by using a large (4MB) page for much of the kernel
378 * (.text, .data, .bss)
379 */
380static vm_offset_t
381pmap_kmem_choose(vm_offset_t addr)
382{
383	vm_offset_t newaddr = addr;
384
385#ifndef DISABLE_PSE
386	if (cpu_feature & CPUID_PSE)
387		newaddr = (addr + PDRMASK) & ~PDRMASK;
388#endif
389	return newaddr;
390}
391
392/*
393 *	Bootstrap the system enough to run with virtual memory.
394 *
395 *	On the i386 this is called after mapping has already been enabled
396 *	and just syncs the pmap module with what has already been done.
397 *	[We can't call it easily with mapping off since the kernel is not
398 *	mapped with PA == VA, hence we would have to relocate every address
399 *	from the linked base (virtual) address "KERNBASE" to the actual
400 *	(physical) address starting relative to 0]
401 */
402void
403pmap_bootstrap(vm_paddr_t firstaddr)
404{
405	vm_offset_t va;
406	pt_entry_t *pte, *unused;
407	struct sysmaps *sysmaps;
408	int i;
409
410	/*
411	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
412	 * large. It should instead be correctly calculated in locore.s and
413	 * not based on 'first' (which is a physical address, not a virtual
414	 * address, for the start of unused physical memory). The kernel
415	 * page tables are NOT double mapped and thus should not be included
416	 * in this calculation.
417	 */
418	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
419	virtual_avail = pmap_kmem_choose(virtual_avail);
420
421	virtual_end = VM_MAX_KERNEL_ADDRESS;
422
423	/*
424	 * Initialize the kernel pmap (which is statically allocated).
425	 */
426	PMAP_LOCK_INIT(kernel_pmap);
427	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
428#ifdef PAE
429	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
430#endif
431	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
432	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
433	LIST_INIT(&allpmaps);
434	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
435	mtx_lock_spin(&allpmaps_lock);
436	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
437	mtx_unlock_spin(&allpmaps_lock);
438	if (nkpt == 0)
439		nkpt = NKPT;
440
441	/*
442	 * Reserve some special page table entries/VA space for temporary
443	 * mapping of pages.
444	 */
445#define	SYSMAP(c, p, v, n)	\
446	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
447
448	va = virtual_avail;
449	pte = vtopte(va);
450
451	/*
452	 * CMAP1/CMAP2 are used for zeroing and copying pages.
453	 * CMAP3 is used for the idle process page zeroing.
454	 */
455	for (i = 0; i < MAXCPU; i++) {
456		sysmaps = &sysmaps_pcpu[i];
457		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
458		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
459		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
460		PT_SET_MA(sysmaps->CADDR1, 0);
461		PT_SET_MA(sysmaps->CADDR2, 0);
462	}
463	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
464	PT_SET_MA(CADDR3, 0);
465
466	/*
467	 * Crashdump maps.
468	 */
469	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
470
471	/*
472	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
473	 */
474	SYSMAP(caddr_t, unused, ptvmmap, 1)
475
476	/*
477	 * msgbufp is used to map the system message buffer.
478	 */
479	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
480
481	/*
482	 * ptemap is used for pmap_pte_quick
483	 */
484	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
485	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
486
487	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
488
489	virtual_avail = va;
490
491	/*
492	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
493	 * physical memory region that is used by the ACPI wakeup code.  This
494	 * mapping must not have PG_G set.
495	 */
496#ifndef XEN
497	/*
498	 * leave here deliberately to show that this is not supported
499	 */
500#ifdef XBOX
501	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
502	 * an early stadium, we cannot yet neatly map video memory ... :-(
503	 * Better fixes are very welcome! */
504	if (!arch_i386_is_xbox)
505#endif
506	for (i = 1; i < NKPT; i++)
507		PTD[i] = 0;
508
509	/* Initialize the PAT MSR if present. */
510	pmap_init_pat();
511
512	/* Turn on PG_G on kernel page(s) */
513	pmap_set_pg();
514#endif
515}
516
517/*
518 * Setup the PAT MSR.
519 */
520void
521pmap_init_pat(void)
522{
523	uint64_t pat_msr;
524
525	/* Bail if this CPU doesn't implement PAT. */
526	if (!(cpu_feature & CPUID_PAT))
527		return;
528
529	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
530	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
531		/*
532		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
533		 * Program 4 and 5 as WP and WC.
534		 * Leave 6 and 7 as UC and UC-.
535		 */
536		pat_msr = rdmsr(MSR_PAT);
537		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
538		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
539		    PAT_VALUE(5, PAT_WRITE_COMBINING);
540		pat_works = 1;
541	} else {
542		/*
543		 * Due to some Intel errata, we can only safely use the lower 4
544		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
545		 * of UC-.
546		 *
547		 *   Intel Pentium III Processor Specification Update
548		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
549		 * or Mode C Paging)
550		 *
551		 *   Intel Pentium IV  Processor Specification Update
552		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
553		 */
554		pat_msr = rdmsr(MSR_PAT);
555		pat_msr &= ~PAT_MASK(2);
556		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
557		pat_works = 0;
558	}
559	wrmsr(MSR_PAT, pat_msr);
560}
561
562#ifndef XEN
563/*
564 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
565 */
566static void
567pmap_set_pg(void)
568{
569	pd_entry_t pdir;
570	pt_entry_t *pte;
571	vm_offset_t va, endva;
572	int i;
573
574	if (pgeflag == 0)
575		return;
576
577	i = KERNLOAD/NBPDR;
578	endva = KERNBASE + KERNend;
579
580	if (pseflag) {
581		va = KERNBASE + KERNLOAD;
582		while (va  < endva) {
583			pdir = kernel_pmap->pm_pdir[KPTDI+i];
584			pdir |= pgeflag;
585			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
586			invltlb();	/* Play it safe, invltlb() every time */
587			i++;
588			va += NBPDR;
589		}
590	} else {
591		va = (vm_offset_t)btext;
592		while (va < endva) {
593			pte = vtopte(va);
594			if (*pte & PG_V)
595				*pte |= pgeflag;
596			invltlb();	/* Play it safe, invltlb() every time */
597			va += PAGE_SIZE;
598		}
599	}
600}
601#endif
602
603/*
604 * Initialize a vm_page's machine-dependent fields.
605 */
606void
607pmap_page_init(vm_page_t m)
608{
609
610	TAILQ_INIT(&m->md.pv_list);
611	m->md.pat_mode = PAT_WRITE_BACK;
612}
613
614#if defined(PAE) && !defined(XEN)
615static void *
616pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
617{
618
619	/* Inform UMA that this allocator uses kernel_map/object. */
620	*flags = UMA_SLAB_KERNEL;
621	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
622	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
623}
624#endif
625
626/*
627 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
628 * Requirements:
629 *  - Must deal with pages in order to ensure that none of the PG_* bits
630 *    are ever set, PG_V in particular.
631 *  - Assumes we can write to ptes without pte_store() atomic ops, even
632 *    on PAE systems.  This should be ok.
633 *  - Assumes nothing will ever test these addresses for 0 to indicate
634 *    no mapping instead of correctly checking PG_V.
635 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
636 * Because PG_V is never set, there can be no mappings to invalidate.
637 */
638static int ptelist_count = 0;
639static vm_offset_t
640pmap_ptelist_alloc(vm_offset_t *head)
641{
642	vm_offset_t va;
643	vm_offset_t *phead = (vm_offset_t *)*head;
644
645	if (ptelist_count == 0) {
646		printf("out of memory!!!!!!\n");
647		return (0);	/* Out of memory */
648	}
649	ptelist_count--;
650	va = phead[ptelist_count];
651	return (va);
652}
653
654static void
655pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
656{
657	vm_offset_t *phead = (vm_offset_t *)*head;
658
659	phead[ptelist_count++] = va;
660}
661
662static void
663pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
664{
665	int i, nstackpages;
666	vm_offset_t va;
667	vm_page_t m;
668
669	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
670	for (i = 0; i < nstackpages; i++) {
671		va = (vm_offset_t)base + i * PAGE_SIZE;
672		m = vm_page_alloc(NULL, i,
673		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
674		    VM_ALLOC_ZERO);
675		pmap_qenter(va, &m, 1);
676	}
677
678	*head = (vm_offset_t)base;
679	for (i = npages - 1; i >= nstackpages; i--) {
680		va = (vm_offset_t)base + i * PAGE_SIZE;
681		pmap_ptelist_free(head, va);
682	}
683}
684
685
686/*
687 *	Initialize the pmap module.
688 *	Called by vm_init, to initialize any structures that the pmap
689 *	system needs to map virtual memory.
690 */
691void
692pmap_init(void)
693{
694	vm_page_t mpte;
695	vm_size_t s;
696	int i, pv_npg;
697
698	/*
699	 * Initialize the vm page array entries for the kernel pmap's
700	 * page table pages.
701	 */
702	for (i = 0; i < nkpt; i++) {
703		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
704		KASSERT(mpte >= vm_page_array &&
705		    mpte < &vm_page_array[vm_page_array_size],
706		    ("pmap_init: page table page is out of range"));
707		mpte->pindex = i + KPTDI;
708		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
709	}
710
711        /*
712	 * Initialize the address space (zone) for the pv entries.  Set a
713	 * high water mark so that the system can recover from excessive
714	 * numbers of pv entries.
715	 */
716	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
717	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
718	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
719	pv_entry_max = roundup(pv_entry_max, _NPCPV);
720	pv_entry_high_water = 9 * (pv_entry_max / 10);
721
722	/*
723	 * Are large page mappings enabled?
724	 */
725	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
726
727	/*
728	 * Calculate the size of the pv head table for superpages.
729	 */
730	for (i = 0; phys_avail[i + 1]; i += 2);
731	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
732
733	/*
734	 * Allocate memory for the pv head table for superpages.
735	 */
736	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
737	s = round_page(s);
738	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
739	for (i = 0; i < pv_npg; i++)
740		TAILQ_INIT(&pv_table[i].pv_list);
741
742	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
743	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
744	    PAGE_SIZE * pv_maxchunks);
745	if (pv_chunkbase == NULL)
746		panic("pmap_init: not enough kvm for pv chunks");
747	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
748#if defined(PAE) && !defined(XEN)
749	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
750	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
751	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
752	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
753#endif
754}
755
756
757/***************************************************
758 * Low level helper routines.....
759 ***************************************************/
760
761/*
762 * Determine the appropriate bits to set in a PTE or PDE for a specified
763 * caching mode.
764 */
765int
766pmap_cache_bits(int mode, boolean_t is_pde)
767{
768	int pat_flag, pat_index, cache_bits;
769
770	/* The PAT bit is different for PTE's and PDE's. */
771	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
772
773	/* If we don't support PAT, map extended modes to older ones. */
774	if (!(cpu_feature & CPUID_PAT)) {
775		switch (mode) {
776		case PAT_UNCACHEABLE:
777		case PAT_WRITE_THROUGH:
778		case PAT_WRITE_BACK:
779			break;
780		case PAT_UNCACHED:
781		case PAT_WRITE_COMBINING:
782		case PAT_WRITE_PROTECTED:
783			mode = PAT_UNCACHEABLE;
784			break;
785		}
786	}
787
788	/* Map the caching mode to a PAT index. */
789	if (pat_works) {
790		switch (mode) {
791			case PAT_UNCACHEABLE:
792				pat_index = 3;
793				break;
794			case PAT_WRITE_THROUGH:
795				pat_index = 1;
796				break;
797			case PAT_WRITE_BACK:
798				pat_index = 0;
799				break;
800			case PAT_UNCACHED:
801				pat_index = 2;
802				break;
803			case PAT_WRITE_COMBINING:
804				pat_index = 5;
805				break;
806			case PAT_WRITE_PROTECTED:
807				pat_index = 4;
808				break;
809			default:
810				panic("Unknown caching mode %d\n", mode);
811		}
812	} else {
813		switch (mode) {
814			case PAT_UNCACHED:
815			case PAT_UNCACHEABLE:
816			case PAT_WRITE_PROTECTED:
817				pat_index = 3;
818				break;
819			case PAT_WRITE_THROUGH:
820				pat_index = 1;
821				break;
822			case PAT_WRITE_BACK:
823				pat_index = 0;
824				break;
825			case PAT_WRITE_COMBINING:
826				pat_index = 2;
827				break;
828			default:
829				panic("Unknown caching mode %d\n", mode);
830		}
831	}
832
833	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
834	cache_bits = 0;
835	if (pat_index & 0x4)
836		cache_bits |= pat_flag;
837	if (pat_index & 0x2)
838		cache_bits |= PG_NC_PCD;
839	if (pat_index & 0x1)
840		cache_bits |= PG_NC_PWT;
841	return (cache_bits);
842}
843#ifdef SMP
844/*
845 * For SMP, these functions have to use the IPI mechanism for coherence.
846 *
847 * N.B.: Before calling any of the following TLB invalidation functions,
848 * the calling processor must ensure that all stores updating a non-
849 * kernel page table are globally performed.  Otherwise, another
850 * processor could cache an old, pre-update entry without being
851 * invalidated.  This can happen one of two ways: (1) The pmap becomes
852 * active on another processor after its pm_active field is checked by
853 * one of the following functions but before a store updating the page
854 * table is globally performed. (2) The pmap becomes active on another
855 * processor before its pm_active field is checked but due to
856 * speculative loads one of the following functions stills reads the
857 * pmap as inactive on the other processor.
858 *
859 * The kernel page table is exempt because its pm_active field is
860 * immutable.  The kernel page table is always active on every
861 * processor.
862 */
863void
864pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
865{
866	u_int cpumask;
867	u_int other_cpus;
868
869	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
870	    pmap, va);
871
872	sched_pin();
873	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
874		invlpg(va);
875		smp_invlpg(va);
876	} else {
877		cpumask = PCPU_GET(cpumask);
878		other_cpus = PCPU_GET(other_cpus);
879		if (pmap->pm_active & cpumask)
880			invlpg(va);
881		if (pmap->pm_active & other_cpus)
882			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
883	}
884	sched_unpin();
885	PT_UPDATES_FLUSH();
886}
887
888void
889pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
890{
891	u_int cpumask;
892	u_int other_cpus;
893	vm_offset_t addr;
894
895	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
896	    pmap, sva, eva);
897
898	sched_pin();
899	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
900		for (addr = sva; addr < eva; addr += PAGE_SIZE)
901			invlpg(addr);
902		smp_invlpg_range(sva, eva);
903	} else {
904		cpumask = PCPU_GET(cpumask);
905		other_cpus = PCPU_GET(other_cpus);
906		if (pmap->pm_active & cpumask)
907			for (addr = sva; addr < eva; addr += PAGE_SIZE)
908				invlpg(addr);
909		if (pmap->pm_active & other_cpus)
910			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
911			    sva, eva);
912	}
913	sched_unpin();
914	PT_UPDATES_FLUSH();
915}
916
917void
918pmap_invalidate_all(pmap_t pmap)
919{
920	u_int cpumask;
921	u_int other_cpus;
922
923	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
924
925	sched_pin();
926	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
927		invltlb();
928		smp_invltlb();
929	} else {
930		cpumask = PCPU_GET(cpumask);
931		other_cpus = PCPU_GET(other_cpus);
932		if (pmap->pm_active & cpumask)
933			invltlb();
934		if (pmap->pm_active & other_cpus)
935			smp_masked_invltlb(pmap->pm_active & other_cpus);
936	}
937	sched_unpin();
938}
939
940void
941pmap_invalidate_cache(void)
942{
943
944	sched_pin();
945	wbinvd();
946	smp_cache_flush();
947	sched_unpin();
948}
949#else /* !SMP */
950/*
951 * Normal, non-SMP, 486+ invalidation functions.
952 * We inline these within pmap.c for speed.
953 */
954PMAP_INLINE void
955pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
956{
957	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
958	    pmap, va);
959
960	if (pmap == kernel_pmap || pmap->pm_active)
961		invlpg(va);
962	PT_UPDATES_FLUSH();
963}
964
965PMAP_INLINE void
966pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
967{
968	vm_offset_t addr;
969
970	if (eva - sva > PAGE_SIZE)
971		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
972		    pmap, sva, eva);
973
974	if (pmap == kernel_pmap || pmap->pm_active)
975		for (addr = sva; addr < eva; addr += PAGE_SIZE)
976			invlpg(addr);
977	PT_UPDATES_FLUSH();
978}
979
980PMAP_INLINE void
981pmap_invalidate_all(pmap_t pmap)
982{
983
984	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
985
986	if (pmap == kernel_pmap || pmap->pm_active)
987		invltlb();
988}
989
990PMAP_INLINE void
991pmap_invalidate_cache(void)
992{
993
994	wbinvd();
995}
996#endif /* !SMP */
997
998void
999pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1000{
1001
1002	KASSERT((sva & PAGE_MASK) == 0,
1003	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1004	KASSERT((eva & PAGE_MASK) == 0,
1005	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1006
1007	if (cpu_feature & CPUID_SS)
1008		; /* If "Self Snoop" is supported, do nothing. */
1009	else if (cpu_feature & CPUID_CLFSH) {
1010
1011		/*
1012		 * Otherwise, do per-cache line flush.  Use the mfence
1013		 * instruction to insure that previous stores are
1014		 * included in the write-back.  The processor
1015		 * propagates flush to other processors in the cache
1016		 * coherence domain.
1017		 */
1018		mfence();
1019		for (; sva < eva; sva += cpu_clflush_line_size)
1020			clflush(sva);
1021		mfence();
1022	} else {
1023
1024		/*
1025		 * No targeted cache flush methods are supported by CPU,
1026		 * globally invalidate cache as a last resort.
1027		 */
1028		pmap_invalidate_cache();
1029	}
1030}
1031
1032/*
1033 * Are we current address space or kernel?  N.B. We return FALSE when
1034 * a pmap's page table is in use because a kernel thread is borrowing
1035 * it.  The borrowed page table can change spontaneously, making any
1036 * dependence on its continued use subject to a race condition.
1037 */
1038static __inline int
1039pmap_is_current(pmap_t pmap)
1040{
1041
1042	return (pmap == kernel_pmap ||
1043	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1044		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1045}
1046
1047/*
1048 * If the given pmap is not the current or kernel pmap, the returned pte must
1049 * be released by passing it to pmap_pte_release().
1050 */
1051pt_entry_t *
1052pmap_pte(pmap_t pmap, vm_offset_t va)
1053{
1054	pd_entry_t newpf;
1055	pd_entry_t *pde;
1056
1057	pde = pmap_pde(pmap, va);
1058	if (*pde & PG_PS)
1059		return (pde);
1060	if (*pde != 0) {
1061		/* are we current address space or kernel? */
1062		if (pmap_is_current(pmap))
1063			return (vtopte(va));
1064		mtx_lock(&PMAP2mutex);
1065		newpf = *pde & PG_FRAME;
1066		if ((*PMAP2 & PG_FRAME) != newpf) {
1067			vm_page_lock_queues();
1068			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1069			vm_page_unlock_queues();
1070			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1071			    pmap, va, (*PMAP2 & 0xffffffff));
1072		}
1073
1074		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1075	}
1076	return (0);
1077}
1078
1079/*
1080 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1081 * being NULL.
1082 */
1083static __inline void
1084pmap_pte_release(pt_entry_t *pte)
1085{
1086
1087	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1088		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1089		    *PMAP2);
1090		PT_SET_VA(PMAP2, 0, TRUE);
1091		mtx_unlock(&PMAP2mutex);
1092	}
1093}
1094
1095static __inline void
1096invlcaddr(void *caddr)
1097{
1098
1099	invlpg((u_int)caddr);
1100	PT_UPDATES_FLUSH();
1101}
1102
1103/*
1104 * Super fast pmap_pte routine best used when scanning
1105 * the pv lists.  This eliminates many coarse-grained
1106 * invltlb calls.  Note that many of the pv list
1107 * scans are across different pmaps.  It is very wasteful
1108 * to do an entire invltlb for checking a single mapping.
1109 *
1110 * If the given pmap is not the current pmap, vm_page_queue_mtx
1111 * must be held and curthread pinned to a CPU.
1112 */
1113static pt_entry_t *
1114pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1115{
1116	pd_entry_t newpf;
1117	pd_entry_t *pde;
1118
1119	pde = pmap_pde(pmap, va);
1120	if (*pde & PG_PS)
1121		return (pde);
1122	if (*pde != 0) {
1123		/* are we current address space or kernel? */
1124		if (pmap_is_current(pmap))
1125			return (vtopte(va));
1126		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1127		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1128		newpf = *pde & PG_FRAME;
1129		if ((*PMAP1 & PG_FRAME) != newpf) {
1130			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1131			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1132			    pmap, va, (u_long)*PMAP1);
1133
1134#ifdef SMP
1135			PMAP1cpu = PCPU_GET(cpuid);
1136#endif
1137			PMAP1changed++;
1138		} else
1139#ifdef SMP
1140		if (PMAP1cpu != PCPU_GET(cpuid)) {
1141			PMAP1cpu = PCPU_GET(cpuid);
1142			invlcaddr(PADDR1);
1143			PMAP1changedcpu++;
1144		} else
1145#endif
1146			PMAP1unchanged++;
1147		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1148	}
1149	return (0);
1150}
1151
1152/*
1153 *	Routine:	pmap_extract
1154 *	Function:
1155 *		Extract the physical page address associated
1156 *		with the given map/virtual_address pair.
1157 */
1158vm_paddr_t
1159pmap_extract(pmap_t pmap, vm_offset_t va)
1160{
1161	vm_paddr_t rtval;
1162	pt_entry_t *pte;
1163	pd_entry_t pde;
1164	pt_entry_t pteval;
1165
1166	rtval = 0;
1167	PMAP_LOCK(pmap);
1168	pde = pmap->pm_pdir[va >> PDRSHIFT];
1169	if (pde != 0) {
1170		if ((pde & PG_PS) != 0) {
1171			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1172			PMAP_UNLOCK(pmap);
1173			return rtval;
1174		}
1175		pte = pmap_pte(pmap, va);
1176		pteval = *pte ? xpmap_mtop(*pte) : 0;
1177		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1178		pmap_pte_release(pte);
1179	}
1180	PMAP_UNLOCK(pmap);
1181	return (rtval);
1182}
1183
1184/*
1185 *	Routine:	pmap_extract_ma
1186 *	Function:
1187 *		Like pmap_extract, but returns machine address
1188 */
1189vm_paddr_t
1190pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1191{
1192	vm_paddr_t rtval;
1193	pt_entry_t *pte;
1194	pd_entry_t pde;
1195
1196	rtval = 0;
1197	PMAP_LOCK(pmap);
1198	pde = pmap->pm_pdir[va >> PDRSHIFT];
1199	if (pde != 0) {
1200		if ((pde & PG_PS) != 0) {
1201			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1202			PMAP_UNLOCK(pmap);
1203			return rtval;
1204		}
1205		pte = pmap_pte(pmap, va);
1206		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1207		pmap_pte_release(pte);
1208	}
1209	PMAP_UNLOCK(pmap);
1210	return (rtval);
1211}
1212
1213/*
1214 *	Routine:	pmap_extract_and_hold
1215 *	Function:
1216 *		Atomically extract and hold the physical page
1217 *		with the given pmap and virtual address pair
1218 *		if that mapping permits the given protection.
1219 */
1220vm_page_t
1221pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1222{
1223	pd_entry_t pde;
1224	pt_entry_t pte;
1225	vm_page_t m;
1226	vm_paddr_t pa;
1227
1228	pa = 0;
1229	m = NULL;
1230	PMAP_LOCK(pmap);
1231retry:
1232	pde = PT_GET(pmap_pde(pmap, va));
1233	if (pde != 0) {
1234		if (pde & PG_PS) {
1235			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1236				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1237				       (va & PDRMASK), &pa))
1238					goto retry;
1239				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1240				    (va & PDRMASK));
1241				vm_page_hold(m);
1242			}
1243		} else {
1244			sched_pin();
1245			pte = PT_GET(pmap_pte_quick(pmap, va));
1246			if (*PMAP1)
1247				PT_SET_MA(PADDR1, 0);
1248			if ((pte & PG_V) &&
1249			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1250				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1251					goto retry;
1252				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1253				vm_page_hold(m);
1254			}
1255			sched_unpin();
1256		}
1257	}
1258	PA_UNLOCK_COND(pa);
1259	PMAP_UNLOCK(pmap);
1260	return (m);
1261}
1262
1263/***************************************************
1264 * Low level mapping routines.....
1265 ***************************************************/
1266
1267/*
1268 * Add a wired page to the kva.
1269 * Note: not SMP coherent.
1270 */
1271void
1272pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1273{
1274	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1275}
1276
1277void
1278pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1279{
1280	pt_entry_t *pte;
1281
1282	pte = vtopte(va);
1283	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1284}
1285
1286
1287static __inline void
1288pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1289{
1290	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1291}
1292
1293/*
1294 * Remove a page from the kernel pagetables.
1295 * Note: not SMP coherent.
1296 */
1297PMAP_INLINE void
1298pmap_kremove(vm_offset_t va)
1299{
1300	pt_entry_t *pte;
1301
1302	pte = vtopte(va);
1303	PT_CLEAR_VA(pte, FALSE);
1304}
1305
1306/*
1307 *	Used to map a range of physical addresses into kernel
1308 *	virtual address space.
1309 *
1310 *	The value passed in '*virt' is a suggested virtual address for
1311 *	the mapping. Architectures which can support a direct-mapped
1312 *	physical to virtual region can return the appropriate address
1313 *	within that region, leaving '*virt' unchanged. Other
1314 *	architectures should map the pages starting at '*virt' and
1315 *	update '*virt' with the first usable address after the mapped
1316 *	region.
1317 */
1318vm_offset_t
1319pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1320{
1321	vm_offset_t va, sva;
1322
1323	va = sva = *virt;
1324	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1325	    va, start, end, prot);
1326	while (start < end) {
1327		pmap_kenter(va, start);
1328		va += PAGE_SIZE;
1329		start += PAGE_SIZE;
1330	}
1331	pmap_invalidate_range(kernel_pmap, sva, va);
1332	*virt = va;
1333	return (sva);
1334}
1335
1336
1337/*
1338 * Add a list of wired pages to the kva
1339 * this routine is only used for temporary
1340 * kernel mappings that do not need to have
1341 * page modification or references recorded.
1342 * Note that old mappings are simply written
1343 * over.  The page *must* be wired.
1344 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1345 */
1346void
1347pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1348{
1349	pt_entry_t *endpte, *pte;
1350	vm_paddr_t pa;
1351	vm_offset_t va = sva;
1352	int mclcount = 0;
1353	multicall_entry_t mcl[16];
1354	multicall_entry_t *mclp = mcl;
1355	int error;
1356
1357	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1358	pte = vtopte(sva);
1359	endpte = pte + count;
1360	while (pte < endpte) {
1361		pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1362
1363		mclp->op = __HYPERVISOR_update_va_mapping;
1364		mclp->args[0] = va;
1365		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1366		mclp->args[2] = (uint32_t)(pa >> 32);
1367		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1368
1369		va += PAGE_SIZE;
1370		pte++;
1371		ma++;
1372		mclp++;
1373		mclcount++;
1374		if (mclcount == 16) {
1375			error = HYPERVISOR_multicall(mcl, mclcount);
1376			mclp = mcl;
1377			mclcount = 0;
1378			KASSERT(error == 0, ("bad multicall %d", error));
1379		}
1380	}
1381	if (mclcount) {
1382		error = HYPERVISOR_multicall(mcl, mclcount);
1383		KASSERT(error == 0, ("bad multicall %d", error));
1384	}
1385
1386#ifdef INVARIANTS
1387	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1388		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1389#endif
1390}
1391
1392
1393/*
1394 * This routine tears out page mappings from the
1395 * kernel -- it is meant only for temporary mappings.
1396 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1397 */
1398void
1399pmap_qremove(vm_offset_t sva, int count)
1400{
1401	vm_offset_t va;
1402
1403	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1404	va = sva;
1405	vm_page_lock_queues();
1406	critical_enter();
1407	while (count-- > 0) {
1408		pmap_kremove(va);
1409		va += PAGE_SIZE;
1410	}
1411	pmap_invalidate_range(kernel_pmap, sva, va);
1412	critical_exit();
1413	vm_page_unlock_queues();
1414}
1415
1416/***************************************************
1417 * Page table page management routines.....
1418 ***************************************************/
1419static __inline void
1420pmap_free_zero_pages(vm_page_t free)
1421{
1422	vm_page_t m;
1423
1424	while (free != NULL) {
1425		m = free;
1426		free = m->right;
1427		vm_page_free_zero(m);
1428	}
1429}
1430
1431/*
1432 * This routine unholds page table pages, and if the hold count
1433 * drops to zero, then it decrements the wire count.
1434 */
1435static __inline int
1436pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1437{
1438
1439	--m->wire_count;
1440	if (m->wire_count == 0)
1441		return _pmap_unwire_pte_hold(pmap, m, free);
1442	else
1443		return 0;
1444}
1445
1446static int
1447_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1448{
1449	vm_offset_t pteva;
1450
1451	PT_UPDATES_FLUSH();
1452	/*
1453	 * unmap the page table page
1454	 */
1455	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1456	/*
1457	 * page *might* contain residual mapping :-/
1458	 */
1459	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1460	pmap_zero_page(m);
1461	--pmap->pm_stats.resident_count;
1462
1463	/*
1464	 * This is a release store so that the ordinary store unmapping
1465	 * the page table page is globally performed before TLB shoot-
1466	 * down is begun.
1467	 */
1468	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1469
1470	/*
1471	 * Do an invltlb to make the invalidated mapping
1472	 * take effect immediately.
1473	 */
1474	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1475	pmap_invalidate_page(pmap, pteva);
1476
1477	/*
1478	 * Put page on a list so that it is released after
1479	 * *ALL* TLB shootdown is done
1480	 */
1481	m->right = *free;
1482	*free = m;
1483
1484	return 1;
1485}
1486
1487/*
1488 * After removing a page table entry, this routine is used to
1489 * conditionally free the page, and manage the hold/wire counts.
1490 */
1491static int
1492pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1493{
1494	pd_entry_t ptepde;
1495	vm_page_t mpte;
1496
1497	if (va >= VM_MAXUSER_ADDRESS)
1498		return 0;
1499	ptepde = PT_GET(pmap_pde(pmap, va));
1500	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1501	return pmap_unwire_pte_hold(pmap, mpte, free);
1502}
1503
1504void
1505pmap_pinit0(pmap_t pmap)
1506{
1507
1508	PMAP_LOCK_INIT(pmap);
1509	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1510#ifdef PAE
1511	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1512#endif
1513	pmap->pm_active = 0;
1514	PCPU_SET(curpmap, pmap);
1515	TAILQ_INIT(&pmap->pm_pvchunk);
1516	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1517	mtx_lock_spin(&allpmaps_lock);
1518	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1519	mtx_unlock_spin(&allpmaps_lock);
1520}
1521
1522/*
1523 * Initialize a preallocated and zeroed pmap structure,
1524 * such as one in a vmspace structure.
1525 */
1526int
1527pmap_pinit(pmap_t pmap)
1528{
1529	vm_page_t m, ptdpg[NPGPTD + 1];
1530	int npgptd = NPGPTD + 1;
1531	static int color;
1532	int i;
1533
1534	PMAP_LOCK_INIT(pmap);
1535
1536	/*
1537	 * No need to allocate page table space yet but we do need a valid
1538	 * page directory table.
1539	 */
1540	if (pmap->pm_pdir == NULL) {
1541		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1542		    NBPTD);
1543		if (pmap->pm_pdir == NULL) {
1544			PMAP_LOCK_DESTROY(pmap);
1545			return (0);
1546		}
1547#if defined(XEN) && defined(PAE)
1548		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1549#endif
1550
1551#if defined(PAE) && !defined(XEN)
1552		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1553		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1554		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1555		    ("pmap_pinit: pdpt misaligned"));
1556		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1557		    ("pmap_pinit: pdpt above 4g"));
1558#endif
1559	}
1560
1561	/*
1562	 * allocate the page directory page(s)
1563	 */
1564	for (i = 0; i < npgptd;) {
1565		m = vm_page_alloc(NULL, color++,
1566		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1567		    VM_ALLOC_ZERO);
1568		if (m == NULL)
1569			VM_WAIT;
1570		else {
1571			ptdpg[i++] = m;
1572		}
1573	}
1574	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1575	for (i = 0; i < NPGPTD; i++) {
1576		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1577			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1578	}
1579
1580	mtx_lock_spin(&allpmaps_lock);
1581	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1582	mtx_unlock_spin(&allpmaps_lock);
1583	/* Wire in kernel global address entries. */
1584
1585	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1586#ifdef PAE
1587#ifdef XEN
1588	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1589	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1590		bzero(pmap->pm_pdpt, PAGE_SIZE);
1591#endif
1592	for (i = 0; i < NPGPTD; i++) {
1593		vm_paddr_t ma;
1594
1595		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1596		pmap->pm_pdpt[i] = ma | PG_V;
1597
1598	}
1599#endif
1600#ifdef XEN
1601	for (i = 0; i < NPGPTD; i++) {
1602		pt_entry_t *pd;
1603		vm_paddr_t ma;
1604
1605		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1606		pd = pmap->pm_pdir + (i * NPDEPG);
1607		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1608#if 0
1609		xen_pgd_pin(ma);
1610#endif
1611	}
1612
1613#ifdef PAE
1614	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1615#endif
1616	vm_page_lock_queues();
1617	xen_flush_queue();
1618	xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
1619	for (i = 0; i < NPGPTD; i++) {
1620		vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1621		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1622	}
1623	xen_flush_queue();
1624	vm_page_unlock_queues();
1625#endif
1626	pmap->pm_active = 0;
1627	TAILQ_INIT(&pmap->pm_pvchunk);
1628	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1629
1630	return (1);
1631}
1632
1633/*
1634 * this routine is called if the page table page is not
1635 * mapped correctly.
1636 */
1637static vm_page_t
1638_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1639{
1640	vm_paddr_t ptema;
1641	vm_page_t m;
1642
1643	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1644	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1645	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1646
1647	/*
1648	 * Allocate a page table page.
1649	 */
1650	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1651	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1652		if (flags & M_WAITOK) {
1653			PMAP_UNLOCK(pmap);
1654			vm_page_unlock_queues();
1655			VM_WAIT;
1656			vm_page_lock_queues();
1657			PMAP_LOCK(pmap);
1658		}
1659
1660		/*
1661		 * Indicate the need to retry.  While waiting, the page table
1662		 * page may have been allocated.
1663		 */
1664		return (NULL);
1665	}
1666	if ((m->flags & PG_ZERO) == 0)
1667		pmap_zero_page(m);
1668
1669	/*
1670	 * Map the pagetable page into the process address space, if
1671	 * it isn't already there.
1672	 */
1673	pmap->pm_stats.resident_count++;
1674
1675	ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1676	xen_pt_pin(ptema);
1677	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1678		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1679
1680	KASSERT(pmap->pm_pdir[ptepindex],
1681	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1682	return (m);
1683}
1684
1685static vm_page_t
1686pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1687{
1688	unsigned ptepindex;
1689	pd_entry_t ptema;
1690	vm_page_t m;
1691
1692	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1693	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1694	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1695
1696	/*
1697	 * Calculate pagetable page index
1698	 */
1699	ptepindex = va >> PDRSHIFT;
1700retry:
1701	/*
1702	 * Get the page directory entry
1703	 */
1704	ptema = pmap->pm_pdir[ptepindex];
1705
1706	/*
1707	 * This supports switching from a 4MB page to a
1708	 * normal 4K page.
1709	 */
1710	if (ptema & PG_PS) {
1711		/*
1712		 * XXX
1713		 */
1714		pmap->pm_pdir[ptepindex] = 0;
1715		ptema = 0;
1716		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1717		pmap_invalidate_all(kernel_pmap);
1718	}
1719
1720	/*
1721	 * If the page table page is mapped, we just increment the
1722	 * hold count, and activate it.
1723	 */
1724	if (ptema & PG_V) {
1725		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1726		m->wire_count++;
1727	} else {
1728		/*
1729		 * Here if the pte page isn't mapped, or if it has
1730		 * been deallocated.
1731		 */
1732		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1733		    pmap, va, flags);
1734		m = _pmap_allocpte(pmap, ptepindex, flags);
1735		if (m == NULL && (flags & M_WAITOK))
1736			goto retry;
1737
1738		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1739	}
1740	return (m);
1741}
1742
1743
1744/***************************************************
1745* Pmap allocation/deallocation routines.
1746 ***************************************************/
1747
1748#ifdef SMP
1749/*
1750 * Deal with a SMP shootdown of other users of the pmap that we are
1751 * trying to dispose of.  This can be a bit hairy.
1752 */
1753static cpumask_t *lazymask;
1754static u_int lazyptd;
1755static volatile u_int lazywait;
1756
1757void pmap_lazyfix_action(void);
1758
1759void
1760pmap_lazyfix_action(void)
1761{
1762	cpumask_t mymask = PCPU_GET(cpumask);
1763
1764#ifdef COUNT_IPIS
1765	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1766#endif
1767	if (rcr3() == lazyptd)
1768		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1769	atomic_clear_int(lazymask, mymask);
1770	atomic_store_rel_int(&lazywait, 1);
1771}
1772
1773static void
1774pmap_lazyfix_self(cpumask_t mymask)
1775{
1776
1777	if (rcr3() == lazyptd)
1778		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1779	atomic_clear_int(lazymask, mymask);
1780}
1781
1782
1783static void
1784pmap_lazyfix(pmap_t pmap)
1785{
1786	cpumask_t mymask, mask;
1787	u_int spins;
1788
1789	while ((mask = pmap->pm_active) != 0) {
1790		spins = 50000000;
1791		mask = mask & -mask;	/* Find least significant set bit */
1792		mtx_lock_spin(&smp_ipi_mtx);
1793#ifdef PAE
1794		lazyptd = vtophys(pmap->pm_pdpt);
1795#else
1796		lazyptd = vtophys(pmap->pm_pdir);
1797#endif
1798		mymask = PCPU_GET(cpumask);
1799		if (mask == mymask) {
1800			lazymask = &pmap->pm_active;
1801			pmap_lazyfix_self(mymask);
1802		} else {
1803			atomic_store_rel_int((u_int *)&lazymask,
1804			    (u_int)&pmap->pm_active);
1805			atomic_store_rel_int(&lazywait, 0);
1806			ipi_selected(mask, IPI_LAZYPMAP);
1807			while (lazywait == 0) {
1808				ia32_pause();
1809				if (--spins == 0)
1810					break;
1811			}
1812		}
1813		mtx_unlock_spin(&smp_ipi_mtx);
1814		if (spins == 0)
1815			printf("pmap_lazyfix: spun for 50000000\n");
1816	}
1817}
1818
1819#else	/* SMP */
1820
1821/*
1822 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1823 * unlikely to have to even execute this code, including the fact
1824 * that the cleanup is deferred until the parent does a wait(2), which
1825 * means that another userland process has run.
1826 */
1827static void
1828pmap_lazyfix(pmap_t pmap)
1829{
1830	u_int cr3;
1831
1832	cr3 = vtophys(pmap->pm_pdir);
1833	if (cr3 == rcr3()) {
1834		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1835		pmap->pm_active &= ~(PCPU_GET(cpumask));
1836	}
1837}
1838#endif	/* SMP */
1839
1840/*
1841 * Release any resources held by the given physical map.
1842 * Called when a pmap initialized by pmap_pinit is being released.
1843 * Should only be called if the map contains no valid mappings.
1844 */
1845void
1846pmap_release(pmap_t pmap)
1847{
1848	vm_page_t m, ptdpg[2*NPGPTD+1];
1849	vm_paddr_t ma;
1850	int i;
1851#ifdef XEN
1852#ifdef PAE
1853	int npgptd = NPGPTD + 1;
1854#else
1855	int npgptd = NPGPTD;
1856#endif
1857#else
1858	int npgptd = NPGPTD;
1859#endif
1860	KASSERT(pmap->pm_stats.resident_count == 0,
1861	    ("pmap_release: pmap resident count %ld != 0",
1862	    pmap->pm_stats.resident_count));
1863	PT_UPDATES_FLUSH();
1864
1865	pmap_lazyfix(pmap);
1866	mtx_lock_spin(&allpmaps_lock);
1867	LIST_REMOVE(pmap, pm_list);
1868	mtx_unlock_spin(&allpmaps_lock);
1869
1870	for (i = 0; i < NPGPTD; i++)
1871		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1872	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1873#if defined(PAE) && defined(XEN)
1874	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1875#endif
1876
1877	for (i = 0; i < npgptd; i++) {
1878		m = ptdpg[i];
1879		ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1880		/* unpinning L1 and L2 treated the same */
1881                xen_pgd_unpin(ma);
1882#ifdef PAE
1883		KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
1884		    ("pmap_release: got wrong ptd page"));
1885#endif
1886		m->wire_count--;
1887		atomic_subtract_int(&cnt.v_wire_count, 1);
1888		vm_page_free(m);
1889	}
1890	PMAP_LOCK_DESTROY(pmap);
1891}
1892
1893static int
1894kvm_size(SYSCTL_HANDLER_ARGS)
1895{
1896	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1897
1898	return sysctl_handle_long(oidp, &ksize, 0, req);
1899}
1900SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1901    0, 0, kvm_size, "IU", "Size of KVM");
1902
1903static int
1904kvm_free(SYSCTL_HANDLER_ARGS)
1905{
1906	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1907
1908	return sysctl_handle_long(oidp, &kfree, 0, req);
1909}
1910SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1911    0, 0, kvm_free, "IU", "Amount of KVM free");
1912
1913/*
1914 * grow the number of kernel page table entries, if needed
1915 */
1916void
1917pmap_growkernel(vm_offset_t addr)
1918{
1919	struct pmap *pmap;
1920	vm_paddr_t ptppaddr;
1921	vm_page_t nkpg;
1922	pd_entry_t newpdir;
1923
1924	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1925	if (kernel_vm_end == 0) {
1926		kernel_vm_end = KERNBASE;
1927		nkpt = 0;
1928		while (pdir_pde(PTD, kernel_vm_end)) {
1929			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1930			nkpt++;
1931			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1932				kernel_vm_end = kernel_map->max_offset;
1933				break;
1934			}
1935		}
1936	}
1937	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1938	if (addr - 1 >= kernel_map->max_offset)
1939		addr = kernel_map->max_offset;
1940	while (kernel_vm_end < addr) {
1941		if (pdir_pde(PTD, kernel_vm_end)) {
1942			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1943			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1944				kernel_vm_end = kernel_map->max_offset;
1945				break;
1946			}
1947			continue;
1948		}
1949
1950		/*
1951		 * This index is bogus, but out of the way
1952		 */
1953		nkpg = vm_page_alloc(NULL, nkpt,
1954		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1955		if (!nkpg)
1956			panic("pmap_growkernel: no memory to grow kernel");
1957
1958		nkpt++;
1959
1960		pmap_zero_page(nkpg);
1961		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1962		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1963		vm_page_lock_queues();
1964		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1965		mtx_lock_spin(&allpmaps_lock);
1966		LIST_FOREACH(pmap, &allpmaps, pm_list)
1967			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1968
1969		mtx_unlock_spin(&allpmaps_lock);
1970		vm_page_unlock_queues();
1971
1972		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1973		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1974			kernel_vm_end = kernel_map->max_offset;
1975			break;
1976		}
1977	}
1978}
1979
1980
1981/***************************************************
1982 * page management routines.
1983 ***************************************************/
1984
1985CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1986CTASSERT(_NPCM == 11);
1987
1988static __inline struct pv_chunk *
1989pv_to_chunk(pv_entry_t pv)
1990{
1991
1992	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1993}
1994
1995#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1996
1997#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1998#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1999
2000static uint32_t pc_freemask[11] = {
2001	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2002	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2003	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2004	PC_FREE0_9, PC_FREE10
2005};
2006
2007SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2008	"Current number of pv entries");
2009
2010#ifdef PV_STATS
2011static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2012
2013SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2014	"Current number of pv entry chunks");
2015SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2016	"Current number of pv entry chunks allocated");
2017SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2018	"Current number of pv entry chunks frees");
2019SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2020	"Number of times tried to get a chunk page but failed.");
2021
2022static long pv_entry_frees, pv_entry_allocs;
2023static int pv_entry_spare;
2024
2025SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2026	"Current number of pv entry frees");
2027SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2028	"Current number of pv entry allocs");
2029SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2030	"Current number of spare pv entries");
2031
2032static int pmap_collect_inactive, pmap_collect_active;
2033
2034SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2035	"Current number times pmap_collect called on inactive queue");
2036SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2037	"Current number times pmap_collect called on active queue");
2038#endif
2039
2040/*
2041 * We are in a serious low memory condition.  Resort to
2042 * drastic measures to free some pages so we can allocate
2043 * another pv entry chunk.  This is normally called to
2044 * unmap inactive pages, and if necessary, active pages.
2045 */
2046static void
2047pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2048{
2049	pmap_t pmap;
2050	pt_entry_t *pte, tpte;
2051	pv_entry_t next_pv, pv;
2052	vm_offset_t va;
2053	vm_page_t m, free;
2054
2055	sched_pin();
2056	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2057		if (m->hold_count || m->busy)
2058			continue;
2059		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2060			va = pv->pv_va;
2061			pmap = PV_PMAP(pv);
2062			/* Avoid deadlock and lock recursion. */
2063			if (pmap > locked_pmap)
2064				PMAP_LOCK(pmap);
2065			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2066				continue;
2067			pmap->pm_stats.resident_count--;
2068			pte = pmap_pte_quick(pmap, va);
2069			tpte = pte_load_clear(pte);
2070			KASSERT((tpte & PG_W) == 0,
2071			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2072			if (tpte & PG_A)
2073				vm_page_flag_set(m, PG_REFERENCED);
2074			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2075				vm_page_dirty(m);
2076			free = NULL;
2077			pmap_unuse_pt(pmap, va, &free);
2078			pmap_invalidate_page(pmap, va);
2079			pmap_free_zero_pages(free);
2080			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2081			if (TAILQ_EMPTY(&m->md.pv_list))
2082				vm_page_flag_clear(m, PG_WRITEABLE);
2083			free_pv_entry(pmap, pv);
2084			if (pmap != locked_pmap)
2085				PMAP_UNLOCK(pmap);
2086		}
2087	}
2088	sched_unpin();
2089}
2090
2091
2092/*
2093 * free the pv_entry back to the free list
2094 */
2095static void
2096free_pv_entry(pmap_t pmap, pv_entry_t pv)
2097{
2098	vm_page_t m;
2099	struct pv_chunk *pc;
2100	int idx, field, bit;
2101
2102	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2103	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2104	PV_STAT(pv_entry_frees++);
2105	PV_STAT(pv_entry_spare++);
2106	pv_entry_count--;
2107	pc = pv_to_chunk(pv);
2108	idx = pv - &pc->pc_pventry[0];
2109	field = idx / 32;
2110	bit = idx % 32;
2111	pc->pc_map[field] |= 1ul << bit;
2112	/* move to head of list */
2113	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2114	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2115	for (idx = 0; idx < _NPCM; idx++)
2116		if (pc->pc_map[idx] != pc_freemask[idx])
2117			return;
2118	PV_STAT(pv_entry_spare -= _NPCPV);
2119	PV_STAT(pc_chunk_count--);
2120	PV_STAT(pc_chunk_frees++);
2121	/* entire chunk is free, return it */
2122	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2123	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2124	pmap_qremove((vm_offset_t)pc, 1);
2125	vm_page_unwire(m, 0);
2126	vm_page_free(m);
2127	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2128}
2129
2130/*
2131 * get a new pv_entry, allocating a block from the system
2132 * when needed.
2133 */
2134static pv_entry_t
2135get_pv_entry(pmap_t pmap, int try)
2136{
2137	static const struct timeval printinterval = { 60, 0 };
2138	static struct timeval lastprint;
2139	static vm_pindex_t colour;
2140	struct vpgqueues *pq;
2141	int bit, field;
2142	pv_entry_t pv;
2143	struct pv_chunk *pc;
2144	vm_page_t m;
2145
2146	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2147	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2148	PV_STAT(pv_entry_allocs++);
2149	pv_entry_count++;
2150	if (pv_entry_count > pv_entry_high_water)
2151		if (ratecheck(&lastprint, &printinterval))
2152			printf("Approaching the limit on PV entries, consider "
2153			    "increasing either the vm.pmap.shpgperproc or the "
2154			    "vm.pmap.pv_entry_max tunable.\n");
2155	pq = NULL;
2156retry:
2157	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2158	if (pc != NULL) {
2159		for (field = 0; field < _NPCM; field++) {
2160			if (pc->pc_map[field]) {
2161				bit = bsfl(pc->pc_map[field]);
2162				break;
2163			}
2164		}
2165		if (field < _NPCM) {
2166			pv = &pc->pc_pventry[field * 32 + bit];
2167			pc->pc_map[field] &= ~(1ul << bit);
2168			/* If this was the last item, move it to tail */
2169			for (field = 0; field < _NPCM; field++)
2170				if (pc->pc_map[field] != 0) {
2171					PV_STAT(pv_entry_spare--);
2172					return (pv);	/* not full, return */
2173				}
2174			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2175			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2176			PV_STAT(pv_entry_spare--);
2177			return (pv);
2178		}
2179	}
2180	/*
2181	 * Access to the ptelist "pv_vafree" is synchronized by the page
2182	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2183	 * remain non-empty until pmap_ptelist_alloc() completes.
2184	 */
2185	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2186	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2187	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2188		if (try) {
2189			pv_entry_count--;
2190			PV_STAT(pc_chunk_tryfail++);
2191			return (NULL);
2192		}
2193		/*
2194		 * Reclaim pv entries: At first, destroy mappings to
2195		 * inactive pages.  After that, if a pv chunk entry
2196		 * is still needed, destroy mappings to active pages.
2197		 */
2198		if (pq == NULL) {
2199			PV_STAT(pmap_collect_inactive++);
2200			pq = &vm_page_queues[PQ_INACTIVE];
2201		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2202			PV_STAT(pmap_collect_active++);
2203			pq = &vm_page_queues[PQ_ACTIVE];
2204		} else
2205			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2206		pmap_collect(pmap, pq);
2207		goto retry;
2208	}
2209	PV_STAT(pc_chunk_count++);
2210	PV_STAT(pc_chunk_allocs++);
2211	colour++;
2212	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2213	pmap_qenter((vm_offset_t)pc, &m, 1);
2214	if ((m->flags & PG_ZERO) == 0)
2215		pagezero(pc);
2216	pc->pc_pmap = pmap;
2217	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2218	for (field = 1; field < _NPCM; field++)
2219		pc->pc_map[field] = pc_freemask[field];
2220	pv = &pc->pc_pventry[0];
2221	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2222	PV_STAT(pv_entry_spare += _NPCPV - 1);
2223	return (pv);
2224}
2225
2226static __inline pv_entry_t
2227pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2228{
2229	pv_entry_t pv;
2230
2231	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2232	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2233		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2234			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2235			break;
2236		}
2237	}
2238	return (pv);
2239}
2240
2241static void
2242pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2243{
2244	pv_entry_t pv;
2245
2246	pv = pmap_pvh_remove(pvh, pmap, va);
2247	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2248	free_pv_entry(pmap, pv);
2249}
2250
2251static void
2252pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2253{
2254
2255	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2256	pmap_pvh_free(&m->md, pmap, va);
2257	if (TAILQ_EMPTY(&m->md.pv_list))
2258		vm_page_flag_clear(m, PG_WRITEABLE);
2259}
2260
2261/*
2262 * Conditionally create a pv entry.
2263 */
2264static boolean_t
2265pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2266{
2267	pv_entry_t pv;
2268
2269	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2270	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2271	if (pv_entry_count < pv_entry_high_water &&
2272	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2273		pv->pv_va = va;
2274		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2275		return (TRUE);
2276	} else
2277		return (FALSE);
2278}
2279
2280/*
2281 * pmap_remove_pte: do the things to unmap a page in a process
2282 */
2283static int
2284pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2285{
2286	pt_entry_t oldpte;
2287	vm_page_t m;
2288
2289	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2290	    pmap, (u_long)*ptq, va);
2291
2292	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2293	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2294	oldpte = *ptq;
2295	PT_SET_VA_MA(ptq, 0, TRUE);
2296	if (oldpte & PG_W)
2297		pmap->pm_stats.wired_count -= 1;
2298	/*
2299	 * Machines that don't support invlpg, also don't support
2300	 * PG_G.
2301	 */
2302	if (oldpte & PG_G)
2303		pmap_invalidate_page(kernel_pmap, va);
2304	pmap->pm_stats.resident_count -= 1;
2305	/*
2306	 * XXX This is not strictly correctly, but somewhere along the line
2307	 * we are losing the managed bit on some pages. It is unclear to me
2308	 * why, but I think the most likely explanation is that xen's writable
2309	 * page table implementation doesn't respect the unused bits.
2310	 */
2311	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2312		) {
2313		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2314
2315		if (!(oldpte & PG_MANAGED))
2316			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2317
2318		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2319			vm_page_dirty(m);
2320		if (oldpte & PG_A)
2321			vm_page_flag_set(m, PG_REFERENCED);
2322		pmap_remove_entry(pmap, m, va);
2323	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2324		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2325
2326	return (pmap_unuse_pt(pmap, va, free));
2327}
2328
2329/*
2330 * Remove a single page from a process address space
2331 */
2332static void
2333pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2334{
2335	pt_entry_t *pte;
2336
2337	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2338	    pmap, va);
2339
2340	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2341	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2342	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2343	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2344		return;
2345	pmap_remove_pte(pmap, pte, va, free);
2346	pmap_invalidate_page(pmap, va);
2347	if (*PMAP1)
2348		PT_SET_MA(PADDR1, 0);
2349
2350}
2351
2352/*
2353 *	Remove the given range of addresses from the specified map.
2354 *
2355 *	It is assumed that the start and end are properly
2356 *	rounded to the page size.
2357 */
2358void
2359pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2360{
2361	vm_offset_t pdnxt;
2362	pd_entry_t ptpaddr;
2363	pt_entry_t *pte;
2364	vm_page_t free = NULL;
2365	int anyvalid;
2366
2367	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2368	    pmap, sva, eva);
2369
2370	/*
2371	 * Perform an unsynchronized read.  This is, however, safe.
2372	 */
2373	if (pmap->pm_stats.resident_count == 0)
2374		return;
2375
2376	anyvalid = 0;
2377
2378	vm_page_lock_queues();
2379	sched_pin();
2380	PMAP_LOCK(pmap);
2381
2382	/*
2383	 * special handling of removing one page.  a very
2384	 * common operation and easy to short circuit some
2385	 * code.
2386	 */
2387	if ((sva + PAGE_SIZE == eva) &&
2388	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2389		pmap_remove_page(pmap, sva, &free);
2390		goto out;
2391	}
2392
2393	for (; sva < eva; sva = pdnxt) {
2394		unsigned pdirindex;
2395
2396		/*
2397		 * Calculate index for next page table.
2398		 */
2399		pdnxt = (sva + NBPDR) & ~PDRMASK;
2400		if (pmap->pm_stats.resident_count == 0)
2401			break;
2402
2403		pdirindex = sva >> PDRSHIFT;
2404		ptpaddr = pmap->pm_pdir[pdirindex];
2405
2406		/*
2407		 * Weed out invalid mappings. Note: we assume that the page
2408		 * directory table is always allocated, and in kernel virtual.
2409		 */
2410		if (ptpaddr == 0)
2411			continue;
2412
2413		/*
2414		 * Check for large page.
2415		 */
2416		if ((ptpaddr & PG_PS) != 0) {
2417			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2418			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2419			anyvalid = 1;
2420			continue;
2421		}
2422
2423		/*
2424		 * Limit our scan to either the end of the va represented
2425		 * by the current page table page, or to the end of the
2426		 * range being removed.
2427		 */
2428		if (pdnxt > eva)
2429			pdnxt = eva;
2430
2431		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2432		    sva += PAGE_SIZE) {
2433			if ((*pte & PG_V) == 0)
2434				continue;
2435
2436			/*
2437			 * The TLB entry for a PG_G mapping is invalidated
2438			 * by pmap_remove_pte().
2439			 */
2440			if ((*pte & PG_G) == 0)
2441				anyvalid = 1;
2442			if (pmap_remove_pte(pmap, pte, sva, &free))
2443				break;
2444		}
2445	}
2446	PT_UPDATES_FLUSH();
2447	if (*PMAP1)
2448		PT_SET_VA_MA(PMAP1, 0, TRUE);
2449out:
2450	if (anyvalid)
2451		pmap_invalidate_all(pmap);
2452	sched_unpin();
2453	vm_page_unlock_queues();
2454	PMAP_UNLOCK(pmap);
2455	pmap_free_zero_pages(free);
2456}
2457
2458/*
2459 *	Routine:	pmap_remove_all
2460 *	Function:
2461 *		Removes this physical page from
2462 *		all physical maps in which it resides.
2463 *		Reflects back modify bits to the pager.
2464 *
2465 *	Notes:
2466 *		Original versions of this routine were very
2467 *		inefficient because they iteratively called
2468 *		pmap_remove (slow...)
2469 */
2470
2471void
2472pmap_remove_all(vm_page_t m)
2473{
2474	pv_entry_t pv;
2475	pmap_t pmap;
2476	pt_entry_t *pte, tpte;
2477	vm_page_t free;
2478
2479	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2480	    ("pmap_remove_all: page %p is fictitious", m));
2481	free = NULL;
2482	vm_page_lock_queues();
2483	sched_pin();
2484	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2485		pmap = PV_PMAP(pv);
2486		PMAP_LOCK(pmap);
2487		pmap->pm_stats.resident_count--;
2488		pte = pmap_pte_quick(pmap, pv->pv_va);
2489
2490		tpte = *pte;
2491		PT_SET_VA_MA(pte, 0, TRUE);
2492		if (tpte & PG_W)
2493			pmap->pm_stats.wired_count--;
2494		if (tpte & PG_A)
2495			vm_page_flag_set(m, PG_REFERENCED);
2496
2497		/*
2498		 * Update the vm_page_t clean and reference bits.
2499		 */
2500		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2501			vm_page_dirty(m);
2502		pmap_unuse_pt(pmap, pv->pv_va, &free);
2503		pmap_invalidate_page(pmap, pv->pv_va);
2504		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2505		free_pv_entry(pmap, pv);
2506		PMAP_UNLOCK(pmap);
2507	}
2508	vm_page_flag_clear(m, PG_WRITEABLE);
2509	PT_UPDATES_FLUSH();
2510	if (*PMAP1)
2511		PT_SET_MA(PADDR1, 0);
2512	sched_unpin();
2513	vm_page_unlock_queues();
2514	pmap_free_zero_pages(free);
2515}
2516
2517/*
2518 *	Set the physical protection on the
2519 *	specified range of this map as requested.
2520 */
2521void
2522pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2523{
2524	vm_offset_t pdnxt;
2525	pd_entry_t ptpaddr;
2526	pt_entry_t *pte;
2527	int anychanged;
2528
2529	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2530	    pmap, sva, eva, prot);
2531
2532	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2533		pmap_remove(pmap, sva, eva);
2534		return;
2535	}
2536
2537#ifdef PAE
2538	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2539	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2540		return;
2541#else
2542	if (prot & VM_PROT_WRITE)
2543		return;
2544#endif
2545
2546	anychanged = 0;
2547
2548	vm_page_lock_queues();
2549	sched_pin();
2550	PMAP_LOCK(pmap);
2551	for (; sva < eva; sva = pdnxt) {
2552		pt_entry_t obits, pbits;
2553		unsigned pdirindex;
2554
2555		pdnxt = (sva + NBPDR) & ~PDRMASK;
2556
2557		pdirindex = sva >> PDRSHIFT;
2558		ptpaddr = pmap->pm_pdir[pdirindex];
2559
2560		/*
2561		 * Weed out invalid mappings. Note: we assume that the page
2562		 * directory table is always allocated, and in kernel virtual.
2563		 */
2564		if (ptpaddr == 0)
2565			continue;
2566
2567		/*
2568		 * Check for large page.
2569		 */
2570		if ((ptpaddr & PG_PS) != 0) {
2571			if ((prot & VM_PROT_WRITE) == 0)
2572				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2573#ifdef PAE
2574			if ((prot & VM_PROT_EXECUTE) == 0)
2575				pmap->pm_pdir[pdirindex] |= pg_nx;
2576#endif
2577			anychanged = 1;
2578			continue;
2579		}
2580
2581		if (pdnxt > eva)
2582			pdnxt = eva;
2583
2584		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2585		    sva += PAGE_SIZE) {
2586			vm_page_t m;
2587
2588retry:
2589			/*
2590			 * Regardless of whether a pte is 32 or 64 bits in
2591			 * size, PG_RW, PG_A, and PG_M are among the least
2592			 * significant 32 bits.
2593			 */
2594			obits = pbits = *pte;
2595			if ((pbits & PG_V) == 0)
2596				continue;
2597
2598			if ((prot & VM_PROT_WRITE) == 0) {
2599				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2600				    (PG_MANAGED | PG_M | PG_RW)) {
2601					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2602					    PG_FRAME);
2603					vm_page_dirty(m);
2604				}
2605				pbits &= ~(PG_RW | PG_M);
2606			}
2607#ifdef PAE
2608			if ((prot & VM_PROT_EXECUTE) == 0)
2609				pbits |= pg_nx;
2610#endif
2611
2612			if (pbits != obits) {
2613#ifdef XEN
2614				obits = *pte;
2615				PT_SET_VA_MA(pte, pbits, TRUE);
2616				if (*pte != pbits)
2617					goto retry;
2618#else
2619#ifdef PAE
2620				if (!atomic_cmpset_64(pte, obits, pbits))
2621					goto retry;
2622#else
2623				if (!atomic_cmpset_int((u_int *)pte, obits,
2624				    pbits))
2625					goto retry;
2626#endif
2627#endif
2628				if (obits & PG_G)
2629					pmap_invalidate_page(pmap, sva);
2630				else
2631					anychanged = 1;
2632			}
2633		}
2634	}
2635	PT_UPDATES_FLUSH();
2636	if (*PMAP1)
2637		PT_SET_VA_MA(PMAP1, 0, TRUE);
2638	if (anychanged)
2639		pmap_invalidate_all(pmap);
2640	sched_unpin();
2641	vm_page_unlock_queues();
2642	PMAP_UNLOCK(pmap);
2643}
2644
2645/*
2646 *	Insert the given physical page (p) at
2647 *	the specified virtual address (v) in the
2648 *	target physical map with the protection requested.
2649 *
2650 *	If specified, the page will be wired down, meaning
2651 *	that the related pte can not be reclaimed.
2652 *
2653 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2654 *	or lose information.  That is, this routine must actually
2655 *	insert this page into the given map NOW.
2656 */
2657void
2658pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2659    vm_prot_t prot, boolean_t wired)
2660{
2661	pd_entry_t *pde;
2662	pt_entry_t *pte;
2663	pt_entry_t newpte, origpte;
2664	pv_entry_t pv;
2665	vm_paddr_t opa, pa;
2666	vm_page_t mpte, om;
2667	boolean_t invlva;
2668
2669	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2670	    pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
2671	va = trunc_page(va);
2672	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2673	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2674	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2675	    va));
2676	KASSERT((m->oflags & VPO_BUSY) != 0,
2677	    ("pmap_enter: page %p is not busy", m));
2678
2679	mpte = NULL;
2680
2681	vm_page_lock_queues();
2682	PMAP_LOCK(pmap);
2683	sched_pin();
2684
2685	/*
2686	 * In the case that a page table page is not
2687	 * resident, we are creating it here.
2688	 */
2689	if (va < VM_MAXUSER_ADDRESS) {
2690		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2691	}
2692
2693	pde = pmap_pde(pmap, va);
2694	if ((*pde & PG_PS) != 0)
2695		panic("pmap_enter: attempted pmap_enter on 4MB page");
2696	pte = pmap_pte_quick(pmap, va);
2697
2698	/*
2699	 * Page Directory table entry not valid, we need a new PT page
2700	 */
2701	if (pte == NULL) {
2702		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2703			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2704	}
2705
2706	pa = VM_PAGE_TO_PHYS(m);
2707	om = NULL;
2708	opa = origpte = 0;
2709
2710#if 0
2711	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2712		pte, *pte));
2713#endif
2714	origpte = *pte;
2715	if (origpte)
2716		origpte = xpmap_mtop(origpte);
2717	opa = origpte & PG_FRAME;
2718
2719	/*
2720	 * Mapping has not changed, must be protection or wiring change.
2721	 */
2722	if (origpte && (opa == pa)) {
2723		/*
2724		 * Wiring change, just update stats. We don't worry about
2725		 * wiring PT pages as they remain resident as long as there
2726		 * are valid mappings in them. Hence, if a user page is wired,
2727		 * the PT page will be also.
2728		 */
2729		if (wired && ((origpte & PG_W) == 0))
2730			pmap->pm_stats.wired_count++;
2731		else if (!wired && (origpte & PG_W))
2732			pmap->pm_stats.wired_count--;
2733
2734		/*
2735		 * Remove extra pte reference
2736		 */
2737		if (mpte)
2738			mpte->wire_count--;
2739
2740		/*
2741		 * We might be turning off write access to the page,
2742		 * so we go ahead and sense modify status.
2743		 */
2744		if (origpte & PG_MANAGED) {
2745			om = m;
2746			pa |= PG_MANAGED;
2747		}
2748		goto validate;
2749	}
2750
2751	pv = NULL;
2752
2753	/*
2754	 * Mapping has changed, invalidate old range and fall through to
2755	 * handle validating new mapping.
2756	 */
2757	if (opa) {
2758		if (origpte & PG_W)
2759			pmap->pm_stats.wired_count--;
2760		if (origpte & PG_MANAGED) {
2761			om = PHYS_TO_VM_PAGE(opa);
2762			pv = pmap_pvh_remove(&om->md, pmap, va);
2763		} else if (va < VM_MAXUSER_ADDRESS)
2764			printf("va=0x%x is unmanaged :-( \n", va);
2765
2766		if (mpte != NULL) {
2767			mpte->wire_count--;
2768			KASSERT(mpte->wire_count > 0,
2769			    ("pmap_enter: missing reference to page table page,"
2770			     " va: 0x%x", va));
2771		}
2772	} else
2773		pmap->pm_stats.resident_count++;
2774
2775	/*
2776	 * Enter on the PV list if part of our managed memory.
2777	 */
2778	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2779		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2780		    ("pmap_enter: managed mapping within the clean submap"));
2781		if (pv == NULL)
2782			pv = get_pv_entry(pmap, FALSE);
2783		pv->pv_va = va;
2784		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2785		pa |= PG_MANAGED;
2786	} else if (pv != NULL)
2787		free_pv_entry(pmap, pv);
2788
2789	/*
2790	 * Increment counters
2791	 */
2792	if (wired)
2793		pmap->pm_stats.wired_count++;
2794
2795validate:
2796	/*
2797	 * Now validate mapping with desired protection/wiring.
2798	 */
2799	newpte = (pt_entry_t)(pa | PG_V);
2800	if ((prot & VM_PROT_WRITE) != 0) {
2801		newpte |= PG_RW;
2802		if ((newpte & PG_MANAGED) != 0)
2803			vm_page_flag_set(m, PG_WRITEABLE);
2804	}
2805#ifdef PAE
2806	if ((prot & VM_PROT_EXECUTE) == 0)
2807		newpte |= pg_nx;
2808#endif
2809	if (wired)
2810		newpte |= PG_W;
2811	if (va < VM_MAXUSER_ADDRESS)
2812		newpte |= PG_U;
2813	if (pmap == kernel_pmap)
2814		newpte |= pgeflag;
2815
2816	critical_enter();
2817	/*
2818	 * if the mapping or permission bits are different, we need
2819	 * to update the pte.
2820	 */
2821	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2822		if (origpte) {
2823			invlva = FALSE;
2824			origpte = *pte;
2825			PT_SET_VA(pte, newpte | PG_A, FALSE);
2826			if (origpte & PG_A) {
2827				if (origpte & PG_MANAGED)
2828					vm_page_flag_set(om, PG_REFERENCED);
2829				if (opa != VM_PAGE_TO_PHYS(m))
2830					invlva = TRUE;
2831#ifdef PAE
2832				if ((origpte & PG_NX) == 0 &&
2833				    (newpte & PG_NX) != 0)
2834					invlva = TRUE;
2835#endif
2836			}
2837			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2838				if ((origpte & PG_MANAGED) != 0)
2839					vm_page_dirty(om);
2840				if ((prot & VM_PROT_WRITE) == 0)
2841					invlva = TRUE;
2842			}
2843			if ((origpte & PG_MANAGED) != 0 &&
2844			    TAILQ_EMPTY(&om->md.pv_list))
2845				vm_page_flag_clear(om, PG_WRITEABLE);
2846			if (invlva)
2847				pmap_invalidate_page(pmap, va);
2848		} else{
2849			PT_SET_VA(pte, newpte | PG_A, FALSE);
2850		}
2851
2852	}
2853	PT_UPDATES_FLUSH();
2854	critical_exit();
2855	if (*PMAP1)
2856		PT_SET_VA_MA(PMAP1, 0, TRUE);
2857	sched_unpin();
2858	vm_page_unlock_queues();
2859	PMAP_UNLOCK(pmap);
2860}
2861
2862/*
2863 * Maps a sequence of resident pages belonging to the same object.
2864 * The sequence begins with the given page m_start.  This page is
2865 * mapped at the given virtual address start.  Each subsequent page is
2866 * mapped at a virtual address that is offset from start by the same
2867 * amount as the page is offset from m_start within the object.  The
2868 * last page in the sequence is the page with the largest offset from
2869 * m_start that can be mapped at a virtual address less than the given
2870 * virtual address end.  Not every virtual page between start and end
2871 * is mapped; only those for which a resident page exists with the
2872 * corresponding offset from m_start are mapped.
2873 */
2874void
2875pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2876    vm_page_t m_start, vm_prot_t prot)
2877{
2878	vm_page_t m, mpte;
2879	vm_pindex_t diff, psize;
2880	multicall_entry_t mcl[16];
2881	multicall_entry_t *mclp = mcl;
2882	int error, count = 0;
2883
2884	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2885	psize = atop(end - start);
2886
2887	mpte = NULL;
2888	m = m_start;
2889	vm_page_lock_queues();
2890	PMAP_LOCK(pmap);
2891	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2892		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2893		    prot, mpte);
2894		m = TAILQ_NEXT(m, listq);
2895		if (count == 16) {
2896			error = HYPERVISOR_multicall(mcl, count);
2897			KASSERT(error == 0, ("bad multicall %d", error));
2898			mclp = mcl;
2899			count = 0;
2900		}
2901	}
2902	if (count) {
2903		error = HYPERVISOR_multicall(mcl, count);
2904		KASSERT(error == 0, ("bad multicall %d", error));
2905	}
2906	vm_page_unlock_queues();
2907	PMAP_UNLOCK(pmap);
2908}
2909
2910/*
2911 * this code makes some *MAJOR* assumptions:
2912 * 1. Current pmap & pmap exists.
2913 * 2. Not wired.
2914 * 3. Read access.
2915 * 4. No page table pages.
2916 * but is *MUCH* faster than pmap_enter...
2917 */
2918
2919void
2920pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2921{
2922	multicall_entry_t mcl, *mclp;
2923	int count = 0;
2924	mclp = &mcl;
2925
2926	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2927	    pmap, va, m, prot);
2928
2929	vm_page_lock_queues();
2930	PMAP_LOCK(pmap);
2931	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2932	if (count)
2933		HYPERVISOR_multicall(&mcl, count);
2934	vm_page_unlock_queues();
2935	PMAP_UNLOCK(pmap);
2936}
2937
2938#ifdef notyet
2939void
2940pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2941{
2942	int i, error, index = 0;
2943	multicall_entry_t mcl[16];
2944	multicall_entry_t *mclp = mcl;
2945
2946	PMAP_LOCK(pmap);
2947	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2948		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2949			continue;
2950
2951		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2952		if (index == 16) {
2953			error = HYPERVISOR_multicall(mcl, index);
2954			mclp = mcl;
2955			index = 0;
2956			KASSERT(error == 0, ("bad multicall %d", error));
2957		}
2958	}
2959	if (index) {
2960		error = HYPERVISOR_multicall(mcl, index);
2961		KASSERT(error == 0, ("bad multicall %d", error));
2962	}
2963
2964	PMAP_UNLOCK(pmap);
2965}
2966#endif
2967
2968static vm_page_t
2969pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2970    vm_prot_t prot, vm_page_t mpte)
2971{
2972	pt_entry_t *pte;
2973	vm_paddr_t pa;
2974	vm_page_t free;
2975	multicall_entry_t *mcl = *mclpp;
2976
2977	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2978	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2979	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2980	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2981	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2982
2983	/*
2984	 * In the case that a page table page is not
2985	 * resident, we are creating it here.
2986	 */
2987	if (va < VM_MAXUSER_ADDRESS) {
2988		unsigned ptepindex;
2989		pd_entry_t ptema;
2990
2991		/*
2992		 * Calculate pagetable page index
2993		 */
2994		ptepindex = va >> PDRSHIFT;
2995		if (mpte && (mpte->pindex == ptepindex)) {
2996			mpte->wire_count++;
2997		} else {
2998			/*
2999			 * Get the page directory entry
3000			 */
3001			ptema = pmap->pm_pdir[ptepindex];
3002
3003			/*
3004			 * If the page table page is mapped, we just increment
3005			 * the hold count, and activate it.
3006			 */
3007			if (ptema & PG_V) {
3008				if (ptema & PG_PS)
3009					panic("pmap_enter_quick: unexpected mapping into 4MB page");
3010				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
3011				mpte->wire_count++;
3012			} else {
3013				mpte = _pmap_allocpte(pmap, ptepindex,
3014				    M_NOWAIT);
3015				if (mpte == NULL)
3016					return (mpte);
3017			}
3018		}
3019	} else {
3020		mpte = NULL;
3021	}
3022
3023	/*
3024	 * This call to vtopte makes the assumption that we are
3025	 * entering the page into the current pmap.  In order to support
3026	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3027	 * But that isn't as quick as vtopte.
3028	 */
3029	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3030	pte = vtopte(va);
3031	if (*pte & PG_V) {
3032		if (mpte != NULL) {
3033			mpte->wire_count--;
3034			mpte = NULL;
3035		}
3036		return (mpte);
3037	}
3038
3039	/*
3040	 * Enter on the PV list if part of our managed memory.
3041	 */
3042	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3043	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3044		if (mpte != NULL) {
3045			free = NULL;
3046			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3047				pmap_invalidate_page(pmap, va);
3048				pmap_free_zero_pages(free);
3049			}
3050
3051			mpte = NULL;
3052		}
3053		return (mpte);
3054	}
3055
3056	/*
3057	 * Increment counters
3058	 */
3059	pmap->pm_stats.resident_count++;
3060
3061	pa = VM_PAGE_TO_PHYS(m);
3062#ifdef PAE
3063	if ((prot & VM_PROT_EXECUTE) == 0)
3064		pa |= pg_nx;
3065#endif
3066
3067#if 0
3068	/*
3069	 * Now validate mapping with RO protection
3070	 */
3071	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3072		pte_store(pte, pa | PG_V | PG_U);
3073	else
3074		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3075#else
3076	/*
3077	 * Now validate mapping with RO protection
3078	 */
3079	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3080		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3081	else
3082		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3083
3084	mcl->op = __HYPERVISOR_update_va_mapping;
3085	mcl->args[0] = va;
3086	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3087	mcl->args[2] = (uint32_t)(pa >> 32);
3088	mcl->args[3] = 0;
3089	*mclpp = mcl + 1;
3090	*count = *count + 1;
3091#endif
3092	return mpte;
3093}
3094
3095/*
3096 * Make a temporary mapping for a physical address.  This is only intended
3097 * to be used for panic dumps.
3098 */
3099void *
3100pmap_kenter_temporary(vm_paddr_t pa, int i)
3101{
3102	vm_offset_t va;
3103	vm_paddr_t ma = xpmap_ptom(pa);
3104
3105	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3106	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3107	invlpg(va);
3108	return ((void *)crashdumpmap);
3109}
3110
3111/*
3112 * This code maps large physical mmap regions into the
3113 * processor address space.  Note that some shortcuts
3114 * are taken, but the code works.
3115 */
3116void
3117pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3118		    vm_object_t object, vm_pindex_t pindex,
3119		    vm_size_t size)
3120{
3121	pd_entry_t *pde;
3122	vm_paddr_t pa, ptepa;
3123	vm_page_t p;
3124	int pat_mode;
3125
3126	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3127	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3128	    ("pmap_object_init_pt: non-device object"));
3129	if (pseflag &&
3130	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3131		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3132			return;
3133		p = vm_page_lookup(object, pindex);
3134		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3135		    ("pmap_object_init_pt: invalid page %p", p));
3136		pat_mode = p->md.pat_mode;
3137		/*
3138		 * Abort the mapping if the first page is not physically
3139		 * aligned to a 2/4MB page boundary.
3140		 */
3141		ptepa = VM_PAGE_TO_PHYS(p);
3142		if (ptepa & (NBPDR - 1))
3143			return;
3144		/*
3145		 * Skip the first page.  Abort the mapping if the rest of
3146		 * the pages are not physically contiguous or have differing
3147		 * memory attributes.
3148		 */
3149		p = TAILQ_NEXT(p, listq);
3150		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3151		    pa += PAGE_SIZE) {
3152			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3153			    ("pmap_object_init_pt: invalid page %p", p));
3154			if (pa != VM_PAGE_TO_PHYS(p) ||
3155			    pat_mode != p->md.pat_mode)
3156				return;
3157			p = TAILQ_NEXT(p, listq);
3158		}
3159		/* Map using 2/4MB pages. */
3160		PMAP_LOCK(pmap);
3161		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3162		    size; pa += NBPDR) {
3163			pde = pmap_pde(pmap, addr);
3164			if (*pde == 0) {
3165				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3166				    PG_U | PG_RW | PG_V);
3167				pmap->pm_stats.resident_count += NBPDR /
3168				    PAGE_SIZE;
3169				pmap_pde_mappings++;
3170			}
3171			/* Else continue on if the PDE is already valid. */
3172			addr += NBPDR;
3173		}
3174		PMAP_UNLOCK(pmap);
3175	}
3176}
3177
3178/*
3179 *	Routine:	pmap_change_wiring
3180 *	Function:	Change the wiring attribute for a map/virtual-address
3181 *			pair.
3182 *	In/out conditions:
3183 *			The mapping must already exist in the pmap.
3184 */
3185void
3186pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3187{
3188	pt_entry_t *pte;
3189
3190	vm_page_lock_queues();
3191	PMAP_LOCK(pmap);
3192	pte = pmap_pte(pmap, va);
3193
3194	if (wired && !pmap_pte_w(pte)) {
3195		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3196		pmap->pm_stats.wired_count++;
3197	} else if (!wired && pmap_pte_w(pte)) {
3198		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3199		pmap->pm_stats.wired_count--;
3200	}
3201
3202	/*
3203	 * Wiring is not a hardware characteristic so there is no need to
3204	 * invalidate TLB.
3205	 */
3206	pmap_pte_release(pte);
3207	PMAP_UNLOCK(pmap);
3208	vm_page_unlock_queues();
3209}
3210
3211
3212
3213/*
3214 *	Copy the range specified by src_addr/len
3215 *	from the source map to the range dst_addr/len
3216 *	in the destination map.
3217 *
3218 *	This routine is only advisory and need not do anything.
3219 */
3220
3221void
3222pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3223	  vm_offset_t src_addr)
3224{
3225	vm_page_t   free;
3226	vm_offset_t addr;
3227	vm_offset_t end_addr = src_addr + len;
3228	vm_offset_t pdnxt;
3229
3230	if (dst_addr != src_addr)
3231		return;
3232
3233	if (!pmap_is_current(src_pmap)) {
3234		CTR2(KTR_PMAP,
3235		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3236		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3237
3238		return;
3239	}
3240	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3241	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3242
3243	vm_page_lock_queues();
3244	if (dst_pmap < src_pmap) {
3245		PMAP_LOCK(dst_pmap);
3246		PMAP_LOCK(src_pmap);
3247	} else {
3248		PMAP_LOCK(src_pmap);
3249		PMAP_LOCK(dst_pmap);
3250	}
3251	sched_pin();
3252	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3253		pt_entry_t *src_pte, *dst_pte;
3254		vm_page_t dstmpte, srcmpte;
3255		pd_entry_t srcptepaddr;
3256		unsigned ptepindex;
3257
3258		KASSERT(addr < UPT_MIN_ADDRESS,
3259		    ("pmap_copy: invalid to pmap_copy page tables"));
3260
3261		pdnxt = (addr + NBPDR) & ~PDRMASK;
3262		ptepindex = addr >> PDRSHIFT;
3263
3264		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3265		if (srcptepaddr == 0)
3266			continue;
3267
3268		if (srcptepaddr & PG_PS) {
3269			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3270				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3271				dst_pmap->pm_stats.resident_count +=
3272				    NBPDR / PAGE_SIZE;
3273			}
3274			continue;
3275		}
3276
3277		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3278		KASSERT(srcmpte->wire_count > 0,
3279		    ("pmap_copy: source page table page is unused"));
3280
3281		if (pdnxt > end_addr)
3282			pdnxt = end_addr;
3283
3284		src_pte = vtopte(addr);
3285		while (addr < pdnxt) {
3286			pt_entry_t ptetemp;
3287			ptetemp = *src_pte;
3288			/*
3289			 * we only virtual copy managed pages
3290			 */
3291			if ((ptetemp & PG_MANAGED) != 0) {
3292				dstmpte = pmap_allocpte(dst_pmap, addr,
3293				    M_NOWAIT);
3294				if (dstmpte == NULL)
3295					break;
3296				dst_pte = pmap_pte_quick(dst_pmap, addr);
3297				if (*dst_pte == 0 &&
3298				    pmap_try_insert_pv_entry(dst_pmap, addr,
3299				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3300					/*
3301					 * Clear the wired, modified, and
3302					 * accessed (referenced) bits
3303					 * during the copy.
3304					 */
3305					KASSERT(ptetemp != 0, ("src_pte not set"));
3306					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3307					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3308					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3309						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3310					dst_pmap->pm_stats.resident_count++;
3311	 			} else {
3312					free = NULL;
3313					if (pmap_unwire_pte_hold(dst_pmap,
3314					    dstmpte, &free)) {
3315						pmap_invalidate_page(dst_pmap,
3316						    addr);
3317						pmap_free_zero_pages(free);
3318					}
3319				}
3320				if (dstmpte->wire_count >= srcmpte->wire_count)
3321					break;
3322			}
3323			addr += PAGE_SIZE;
3324			src_pte++;
3325		}
3326	}
3327	PT_UPDATES_FLUSH();
3328	sched_unpin();
3329	vm_page_unlock_queues();
3330	PMAP_UNLOCK(src_pmap);
3331	PMAP_UNLOCK(dst_pmap);
3332}
3333
3334static __inline void
3335pagezero(void *page)
3336{
3337#if defined(I686_CPU)
3338	if (cpu_class == CPUCLASS_686) {
3339#if defined(CPU_ENABLE_SSE)
3340		if (cpu_feature & CPUID_SSE2)
3341			sse2_pagezero(page);
3342		else
3343#endif
3344			i686_pagezero(page);
3345	} else
3346#endif
3347		bzero(page, PAGE_SIZE);
3348}
3349
3350/*
3351 *	pmap_zero_page zeros the specified hardware page by mapping
3352 *	the page into KVM and using bzero to clear its contents.
3353 */
3354void
3355pmap_zero_page(vm_page_t m)
3356{
3357	struct sysmaps *sysmaps;
3358
3359	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3360	mtx_lock(&sysmaps->lock);
3361	if (*sysmaps->CMAP2)
3362		panic("pmap_zero_page: CMAP2 busy");
3363	sched_pin();
3364	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3365	pagezero(sysmaps->CADDR2);
3366	PT_SET_MA(sysmaps->CADDR2, 0);
3367	sched_unpin();
3368	mtx_unlock(&sysmaps->lock);
3369}
3370
3371/*
3372 *	pmap_zero_page_area zeros the specified hardware page by mapping
3373 *	the page into KVM and using bzero to clear its contents.
3374 *
3375 *	off and size may not cover an area beyond a single hardware page.
3376 */
3377void
3378pmap_zero_page_area(vm_page_t m, int off, int size)
3379{
3380	struct sysmaps *sysmaps;
3381
3382	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3383	mtx_lock(&sysmaps->lock);
3384	if (*sysmaps->CMAP2)
3385		panic("pmap_zero_page: CMAP2 busy");
3386	sched_pin();
3387	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3388
3389	if (off == 0 && size == PAGE_SIZE)
3390		pagezero(sysmaps->CADDR2);
3391	else
3392		bzero((char *)sysmaps->CADDR2 + off, size);
3393	PT_SET_MA(sysmaps->CADDR2, 0);
3394	sched_unpin();
3395	mtx_unlock(&sysmaps->lock);
3396}
3397
3398/*
3399 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3400 *	the page into KVM and using bzero to clear its contents.  This
3401 *	is intended to be called from the vm_pagezero process only and
3402 *	outside of Giant.
3403 */
3404void
3405pmap_zero_page_idle(vm_page_t m)
3406{
3407
3408	if (*CMAP3)
3409		panic("pmap_zero_page: CMAP3 busy");
3410	sched_pin();
3411	PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3412	pagezero(CADDR3);
3413	PT_SET_MA(CADDR3, 0);
3414	sched_unpin();
3415}
3416
3417/*
3418 *	pmap_copy_page copies the specified (machine independent)
3419 *	page by mapping the page into virtual memory and using
3420 *	bcopy to copy the page, one machine dependent page at a
3421 *	time.
3422 */
3423void
3424pmap_copy_page(vm_page_t src, vm_page_t dst)
3425{
3426	struct sysmaps *sysmaps;
3427
3428	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3429	mtx_lock(&sysmaps->lock);
3430	if (*sysmaps->CMAP1)
3431		panic("pmap_copy_page: CMAP1 busy");
3432	if (*sysmaps->CMAP2)
3433		panic("pmap_copy_page: CMAP2 busy");
3434	sched_pin();
3435	PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
3436	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
3437	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3438	PT_SET_MA(sysmaps->CADDR1, 0);
3439	PT_SET_MA(sysmaps->CADDR2, 0);
3440	sched_unpin();
3441	mtx_unlock(&sysmaps->lock);
3442}
3443
3444/*
3445 * Returns true if the pmap's pv is one of the first
3446 * 16 pvs linked to from this page.  This count may
3447 * be changed upwards or downwards in the future; it
3448 * is only necessary that true be returned for a small
3449 * subset of pmaps for proper page aging.
3450 */
3451boolean_t
3452pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3453{
3454	pv_entry_t pv;
3455	int loops = 0;
3456
3457	if (m->flags & PG_FICTITIOUS)
3458		return (FALSE);
3459
3460	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3461	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3462		if (PV_PMAP(pv) == pmap) {
3463			return TRUE;
3464		}
3465		loops++;
3466		if (loops >= 16)
3467			break;
3468	}
3469	return (FALSE);
3470}
3471
3472/*
3473 *	pmap_page_wired_mappings:
3474 *
3475 *	Return the number of managed mappings to the given physical page
3476 *	that are wired.
3477 */
3478int
3479pmap_page_wired_mappings(vm_page_t m)
3480{
3481	pv_entry_t pv;
3482	pt_entry_t *pte;
3483	pmap_t pmap;
3484	int count;
3485
3486	count = 0;
3487	if ((m->flags & PG_FICTITIOUS) != 0)
3488		return (count);
3489	vm_page_lock_queues();
3490	sched_pin();
3491	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3492		pmap = PV_PMAP(pv);
3493		PMAP_LOCK(pmap);
3494		pte = pmap_pte_quick(pmap, pv->pv_va);
3495		if ((*pte & PG_W) != 0)
3496			count++;
3497		PMAP_UNLOCK(pmap);
3498	}
3499	sched_unpin();
3500	vm_page_unlock_queues();
3501	return (count);
3502}
3503
3504/*
3505 * Returns TRUE if the given page is mapped individually or as part of
3506 * a 4mpage.  Otherwise, returns FALSE.
3507 */
3508boolean_t
3509pmap_page_is_mapped(vm_page_t m)
3510{
3511	boolean_t rv;
3512
3513	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3514		return (FALSE);
3515	vm_page_lock_queues();
3516	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3517	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3518	vm_page_unlock_queues();
3519	return (rv);
3520}
3521
3522/*
3523 * Remove all pages from specified address space
3524 * this aids process exit speeds.  Also, this code
3525 * is special cased for current process only, but
3526 * can have the more generic (and slightly slower)
3527 * mode enabled.  This is much faster than pmap_remove
3528 * in the case of running down an entire address space.
3529 */
3530void
3531pmap_remove_pages(pmap_t pmap)
3532{
3533	pt_entry_t *pte, tpte;
3534	vm_page_t m, free = NULL;
3535	pv_entry_t pv;
3536	struct pv_chunk *pc, *npc;
3537	int field, idx;
3538	int32_t bit;
3539	uint32_t inuse, bitmask;
3540	int allfree;
3541
3542	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3543
3544	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3545		printf("warning: pmap_remove_pages called with non-current pmap\n");
3546		return;
3547	}
3548	vm_page_lock_queues();
3549	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3550	PMAP_LOCK(pmap);
3551	sched_pin();
3552	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3553		allfree = 1;
3554		for (field = 0; field < _NPCM; field++) {
3555			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3556			while (inuse != 0) {
3557				bit = bsfl(inuse);
3558				bitmask = 1UL << bit;
3559				idx = field * 32 + bit;
3560				pv = &pc->pc_pventry[idx];
3561				inuse &= ~bitmask;
3562
3563				pte = vtopte(pv->pv_va);
3564				tpte = *pte ? xpmap_mtop(*pte) : 0;
3565
3566				if (tpte == 0) {
3567					printf(
3568					    "TPTE at %p  IS ZERO @ VA %08x\n",
3569					    pte, pv->pv_va);
3570					panic("bad pte");
3571				}
3572
3573/*
3574 * We cannot remove wired pages from a process' mapping at this time
3575 */
3576				if (tpte & PG_W) {
3577					allfree = 0;
3578					continue;
3579				}
3580
3581				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3582				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3583				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3584				    m, (uintmax_t)m->phys_addr,
3585				    (uintmax_t)tpte));
3586
3587				KASSERT(m < &vm_page_array[vm_page_array_size],
3588					("pmap_remove_pages: bad tpte %#jx",
3589					(uintmax_t)tpte));
3590
3591
3592				PT_CLEAR_VA(pte, FALSE);
3593
3594				/*
3595				 * Update the vm_page_t clean/reference bits.
3596				 */
3597				if (tpte & PG_M)
3598					vm_page_dirty(m);
3599
3600				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3601				if (TAILQ_EMPTY(&m->md.pv_list))
3602					vm_page_flag_clear(m, PG_WRITEABLE);
3603
3604				pmap_unuse_pt(pmap, pv->pv_va, &free);
3605
3606				/* Mark free */
3607				PV_STAT(pv_entry_frees++);
3608				PV_STAT(pv_entry_spare++);
3609				pv_entry_count--;
3610				pc->pc_map[field] |= bitmask;
3611				pmap->pm_stats.resident_count--;
3612			}
3613		}
3614		PT_UPDATES_FLUSH();
3615		if (allfree) {
3616			PV_STAT(pv_entry_spare -= _NPCPV);
3617			PV_STAT(pc_chunk_count--);
3618			PV_STAT(pc_chunk_frees++);
3619			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3620			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3621			pmap_qremove((vm_offset_t)pc, 1);
3622			vm_page_unwire(m, 0);
3623			vm_page_free(m);
3624			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3625		}
3626	}
3627	PT_UPDATES_FLUSH();
3628	if (*PMAP1)
3629		PT_SET_MA(PADDR1, 0);
3630
3631	sched_unpin();
3632	pmap_invalidate_all(pmap);
3633	vm_page_unlock_queues();
3634	PMAP_UNLOCK(pmap);
3635	pmap_free_zero_pages(free);
3636}
3637
3638/*
3639 *	pmap_is_modified:
3640 *
3641 *	Return whether or not the specified physical page was modified
3642 *	in any physical maps.
3643 */
3644boolean_t
3645pmap_is_modified(vm_page_t m)
3646{
3647	pv_entry_t pv;
3648	pt_entry_t *pte;
3649	pmap_t pmap;
3650	boolean_t rv;
3651
3652	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3653	    ("pmap_is_modified: page %p is not managed", m));
3654	rv = FALSE;
3655
3656	/*
3657	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
3658	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
3659	 * is clear, no PTEs can have PG_M set.
3660	 */
3661	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3662	if ((m->oflags & VPO_BUSY) == 0 &&
3663	    (m->flags & PG_WRITEABLE) == 0)
3664		return (rv);
3665	vm_page_lock_queues();
3666	sched_pin();
3667	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3668		pmap = PV_PMAP(pv);
3669		PMAP_LOCK(pmap);
3670		pte = pmap_pte_quick(pmap, pv->pv_va);
3671		rv = (*pte & PG_M) != 0;
3672		PMAP_UNLOCK(pmap);
3673		if (rv)
3674			break;
3675	}
3676	if (*PMAP1)
3677		PT_SET_MA(PADDR1, 0);
3678	sched_unpin();
3679	vm_page_unlock_queues();
3680	return (rv);
3681}
3682
3683/*
3684 *	pmap_is_prefaultable:
3685 *
3686 *	Return whether or not the specified virtual address is elgible
3687 *	for prefault.
3688 */
3689static boolean_t
3690pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3691{
3692	pt_entry_t *pte;
3693	boolean_t rv = FALSE;
3694
3695	return (rv);
3696
3697	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3698		pte = vtopte(addr);
3699		rv = (*pte == 0);
3700	}
3701	return (rv);
3702}
3703
3704boolean_t
3705pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3706{
3707	boolean_t rv;
3708
3709	PMAP_LOCK(pmap);
3710	rv = pmap_is_prefaultable_locked(pmap, addr);
3711	PMAP_UNLOCK(pmap);
3712	return (rv);
3713}
3714
3715boolean_t
3716pmap_is_referenced(vm_page_t m)
3717{
3718	pv_entry_t pv;
3719	pt_entry_t *pte;
3720	pmap_t pmap;
3721	boolean_t rv;
3722
3723	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3724	    ("pmap_is_referenced: page %p is not managed", m));
3725	rv = FALSE;
3726	vm_page_lock_queues();
3727	sched_pin();
3728	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3729		pmap = PV_PMAP(pv);
3730		PMAP_LOCK(pmap);
3731		pte = pmap_pte_quick(pmap, pv->pv_va);
3732		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3733		PMAP_UNLOCK(pmap);
3734		if (rv)
3735			break;
3736	}
3737	if (*PMAP1)
3738		PT_SET_MA(PADDR1, 0);
3739	sched_unpin();
3740	vm_page_unlock_queues();
3741	return (rv);
3742}
3743
3744void
3745pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3746{
3747	int i, npages = round_page(len) >> PAGE_SHIFT;
3748	for (i = 0; i < npages; i++) {
3749		pt_entry_t *pte;
3750		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3751		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3752		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3753		pmap_pte_release(pte);
3754	}
3755}
3756
3757void
3758pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3759{
3760	int i, npages = round_page(len) >> PAGE_SHIFT;
3761	for (i = 0; i < npages; i++) {
3762		pt_entry_t *pte;
3763		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3764		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3765		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3766		pmap_pte_release(pte);
3767	}
3768}
3769
3770/*
3771 * Clear the write and modified bits in each of the given page's mappings.
3772 */
3773void
3774pmap_remove_write(vm_page_t m)
3775{
3776	pv_entry_t pv;
3777	pmap_t pmap;
3778	pt_entry_t oldpte, *pte;
3779
3780	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3781	    ("pmap_remove_write: page %p is not managed", m));
3782
3783	/*
3784	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
3785	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
3786	 * is clear, no page table entries need updating.
3787	 */
3788	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3789	if ((m->oflags & VPO_BUSY) == 0 &&
3790	    (m->flags & PG_WRITEABLE) == 0)
3791		return;
3792	vm_page_lock_queues();
3793	sched_pin();
3794	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3795		pmap = PV_PMAP(pv);
3796		PMAP_LOCK(pmap);
3797		pte = pmap_pte_quick(pmap, pv->pv_va);
3798retry:
3799		oldpte = *pte;
3800		if ((oldpte & PG_RW) != 0) {
3801			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3802
3803			/*
3804			 * Regardless of whether a pte is 32 or 64 bits
3805			 * in size, PG_RW and PG_M are among the least
3806			 * significant 32 bits.
3807			 */
3808			PT_SET_VA_MA(pte, newpte, TRUE);
3809			if (*pte != newpte)
3810				goto retry;
3811
3812			if ((oldpte & PG_M) != 0)
3813				vm_page_dirty(m);
3814			pmap_invalidate_page(pmap, pv->pv_va);
3815		}
3816		PMAP_UNLOCK(pmap);
3817	}
3818	vm_page_flag_clear(m, PG_WRITEABLE);
3819	PT_UPDATES_FLUSH();
3820	if (*PMAP1)
3821		PT_SET_MA(PADDR1, 0);
3822	sched_unpin();
3823	vm_page_unlock_queues();
3824}
3825
3826/*
3827 *	pmap_ts_referenced:
3828 *
3829 *	Return a count of reference bits for a page, clearing those bits.
3830 *	It is not necessary for every reference bit to be cleared, but it
3831 *	is necessary that 0 only be returned when there are truly no
3832 *	reference bits set.
3833 *
3834 *	XXX: The exact number of bits to check and clear is a matter that
3835 *	should be tested and standardized at some point in the future for
3836 *	optimal aging of shared pages.
3837 */
3838int
3839pmap_ts_referenced(vm_page_t m)
3840{
3841	pv_entry_t pv, pvf, pvn;
3842	pmap_t pmap;
3843	pt_entry_t *pte;
3844	int rtval = 0;
3845
3846	if (m->flags & PG_FICTITIOUS)
3847		return (rtval);
3848	sched_pin();
3849	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3850	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3851		pvf = pv;
3852		do {
3853			pvn = TAILQ_NEXT(pv, pv_list);
3854			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3855			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3856			pmap = PV_PMAP(pv);
3857			PMAP_LOCK(pmap);
3858			pte = pmap_pte_quick(pmap, pv->pv_va);
3859			if ((*pte & PG_A) != 0) {
3860				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3861				pmap_invalidate_page(pmap, pv->pv_va);
3862				rtval++;
3863				if (rtval > 4)
3864					pvn = NULL;
3865			}
3866			PMAP_UNLOCK(pmap);
3867		} while ((pv = pvn) != NULL && pv != pvf);
3868	}
3869	PT_UPDATES_FLUSH();
3870	if (*PMAP1)
3871		PT_SET_MA(PADDR1, 0);
3872
3873	sched_unpin();
3874	return (rtval);
3875}
3876
3877/*
3878 *	Clear the modify bits on the specified physical page.
3879 */
3880void
3881pmap_clear_modify(vm_page_t m)
3882{
3883	pv_entry_t pv;
3884	pmap_t pmap;
3885	pt_entry_t *pte;
3886
3887	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3888	    ("pmap_clear_modify: page %p is not managed", m));
3889	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3890	KASSERT((m->oflags & VPO_BUSY) == 0,
3891	    ("pmap_clear_modify: page %p is busy", m));
3892
3893	/*
3894	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
3895	 * If the object containing the page is locked and the page is not
3896	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
3897	 */
3898	if ((m->flags & PG_WRITEABLE) == 0)
3899		return;
3900	vm_page_lock_queues();
3901	sched_pin();
3902	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3903		pmap = PV_PMAP(pv);
3904		PMAP_LOCK(pmap);
3905		pte = pmap_pte_quick(pmap, pv->pv_va);
3906		if ((*pte & PG_M) != 0) {
3907			/*
3908			 * Regardless of whether a pte is 32 or 64 bits
3909			 * in size, PG_M is among the least significant
3910			 * 32 bits.
3911			 */
3912			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3913			pmap_invalidate_page(pmap, pv->pv_va);
3914		}
3915		PMAP_UNLOCK(pmap);
3916	}
3917	sched_unpin();
3918	vm_page_unlock_queues();
3919}
3920
3921/*
3922 *	pmap_clear_reference:
3923 *
3924 *	Clear the reference bit on the specified physical page.
3925 */
3926void
3927pmap_clear_reference(vm_page_t m)
3928{
3929	pv_entry_t pv;
3930	pmap_t pmap;
3931	pt_entry_t *pte;
3932
3933	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3934	    ("pmap_clear_reference: page %p is not managed", m));
3935	vm_page_lock_queues();
3936	sched_pin();
3937	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3938		pmap = PV_PMAP(pv);
3939		PMAP_LOCK(pmap);
3940		pte = pmap_pte_quick(pmap, pv->pv_va);
3941		if ((*pte & PG_A) != 0) {
3942			/*
3943			 * Regardless of whether a pte is 32 or 64 bits
3944			 * in size, PG_A is among the least significant
3945			 * 32 bits.
3946			 */
3947			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3948			pmap_invalidate_page(pmap, pv->pv_va);
3949		}
3950		PMAP_UNLOCK(pmap);
3951	}
3952	sched_unpin();
3953	vm_page_unlock_queues();
3954}
3955
3956/*
3957 * Miscellaneous support routines follow
3958 */
3959
3960/*
3961 * Map a set of physical memory pages into the kernel virtual
3962 * address space. Return a pointer to where it is mapped. This
3963 * routine is intended to be used for mapping device memory,
3964 * NOT real memory.
3965 */
3966void *
3967pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3968{
3969	vm_offset_t va, offset;
3970	vm_size_t tmpsize;
3971
3972	offset = pa & PAGE_MASK;
3973	size = roundup(offset + size, PAGE_SIZE);
3974	pa = pa & PG_FRAME;
3975
3976	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3977		va = KERNBASE + pa;
3978	else
3979		va = kmem_alloc_nofault(kernel_map, size);
3980	if (!va)
3981		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3982
3983	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3984		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3985	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3986	pmap_invalidate_cache_range(va, va + size);
3987	return ((void *)(va + offset));
3988}
3989
3990void *
3991pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3992{
3993
3994	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3995}
3996
3997void *
3998pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3999{
4000
4001	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4002}
4003
4004void
4005pmap_unmapdev(vm_offset_t va, vm_size_t size)
4006{
4007	vm_offset_t base, offset, tmpva;
4008
4009	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4010		return;
4011	base = trunc_page(va);
4012	offset = va & PAGE_MASK;
4013	size = roundup(offset + size, PAGE_SIZE);
4014	critical_enter();
4015	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4016		pmap_kremove(tmpva);
4017	pmap_invalidate_range(kernel_pmap, va, tmpva);
4018	critical_exit();
4019	kmem_free(kernel_map, base, size);
4020}
4021
4022/*
4023 * Sets the memory attribute for the specified page.
4024 */
4025void
4026pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4027{
4028	struct sysmaps *sysmaps;
4029	vm_offset_t sva, eva;
4030
4031	m->md.pat_mode = ma;
4032	if ((m->flags & PG_FICTITIOUS) != 0)
4033		return;
4034
4035	/*
4036	 * If "m" is a normal page, flush it from the cache.
4037	 * See pmap_invalidate_cache_range().
4038	 *
4039	 * First, try to find an existing mapping of the page by sf
4040	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4041	 * flushes the cache.
4042	 */
4043	if (sf_buf_invalidate_cache(m))
4044		return;
4045
4046	/*
4047	 * If page is not mapped by sf buffer, but CPU does not
4048	 * support self snoop, map the page transient and do
4049	 * invalidation. In the worst case, whole cache is flushed by
4050	 * pmap_invalidate_cache_range().
4051	 */
4052	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4053		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4054		mtx_lock(&sysmaps->lock);
4055		if (*sysmaps->CMAP2)
4056			panic("pmap_page_set_memattr: CMAP2 busy");
4057		sched_pin();
4058		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4059		    xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M |
4060		    pmap_cache_bits(m->md.pat_mode, 0));
4061		invlcaddr(sysmaps->CADDR2);
4062		sva = (vm_offset_t)sysmaps->CADDR2;
4063		eva = sva + PAGE_SIZE;
4064	} else
4065		sva = eva = 0; /* gcc */
4066	pmap_invalidate_cache_range(sva, eva);
4067	if (sva != 0) {
4068		PT_SET_MA(sysmaps->CADDR2, 0);
4069		sched_unpin();
4070		mtx_unlock(&sysmaps->lock);
4071	}
4072}
4073
4074int
4075pmap_change_attr(va, size, mode)
4076	vm_offset_t va;
4077	vm_size_t size;
4078	int mode;
4079{
4080	vm_offset_t base, offset, tmpva;
4081	pt_entry_t *pte;
4082	u_int opte, npte;
4083	pd_entry_t *pde;
4084	boolean_t changed;
4085
4086	base = trunc_page(va);
4087	offset = va & PAGE_MASK;
4088	size = roundup(offset + size, PAGE_SIZE);
4089
4090	/* Only supported on kernel virtual addresses. */
4091	if (base <= VM_MAXUSER_ADDRESS)
4092		return (EINVAL);
4093
4094	/* 4MB pages and pages that aren't mapped aren't supported. */
4095	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4096		pde = pmap_pde(kernel_pmap, tmpva);
4097		if (*pde & PG_PS)
4098			return (EINVAL);
4099		if ((*pde & PG_V) == 0)
4100			return (EINVAL);
4101		pte = vtopte(va);
4102		if ((*pte & PG_V) == 0)
4103			return (EINVAL);
4104	}
4105
4106	changed = FALSE;
4107
4108	/*
4109	 * Ok, all the pages exist and are 4k, so run through them updating
4110	 * their cache mode.
4111	 */
4112	for (tmpva = base; size > 0; ) {
4113		pte = vtopte(tmpva);
4114
4115		/*
4116		 * The cache mode bits are all in the low 32-bits of the
4117		 * PTE, so we can just spin on updating the low 32-bits.
4118		 */
4119		do {
4120			opte = *(u_int *)pte;
4121			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4122			npte |= pmap_cache_bits(mode, 0);
4123			PT_SET_VA_MA(pte, npte, TRUE);
4124		} while (npte != opte && (*pte != npte));
4125		if (npte != opte)
4126			changed = TRUE;
4127		tmpva += PAGE_SIZE;
4128		size -= PAGE_SIZE;
4129	}
4130
4131	/*
4132	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4133	 * be, etc.
4134	 */
4135	if (changed) {
4136		pmap_invalidate_range(kernel_pmap, base, tmpva);
4137		pmap_invalidate_cache_range(base, tmpva);
4138	}
4139	return (0);
4140}
4141
4142/*
4143 * perform the pmap work for mincore
4144 */
4145int
4146pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4147{
4148	pt_entry_t *ptep, pte;
4149	vm_paddr_t pa;
4150	int val;
4151
4152	PMAP_LOCK(pmap);
4153retry:
4154	ptep = pmap_pte(pmap, addr);
4155	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4156	pmap_pte_release(ptep);
4157	val = 0;
4158	if ((pte & PG_V) != 0) {
4159		val |= MINCORE_INCORE;
4160		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4161			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4162		if ((pte & PG_A) != 0)
4163			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4164	}
4165	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4166	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4167	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4168		pa = pte & PG_FRAME;
4169		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4170		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4171			goto retry;
4172	} else
4173		PA_UNLOCK_COND(*locked_pa);
4174	PMAP_UNLOCK(pmap);
4175	return (val);
4176}
4177
4178void
4179pmap_activate(struct thread *td)
4180{
4181	pmap_t	pmap, oldpmap;
4182	u_int32_t  cr3;
4183
4184	critical_enter();
4185	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4186	oldpmap = PCPU_GET(curpmap);
4187#if defined(SMP)
4188	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4189	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4190#else
4191	oldpmap->pm_active &= ~1;
4192	pmap->pm_active |= 1;
4193#endif
4194#ifdef PAE
4195	cr3 = vtophys(pmap->pm_pdpt);
4196#else
4197	cr3 = vtophys(pmap->pm_pdir);
4198#endif
4199	/*
4200	 * pmap_activate is for the current thread on the current cpu
4201	 */
4202	td->td_pcb->pcb_cr3 = cr3;
4203	PT_UPDATES_FLUSH();
4204	load_cr3(cr3);
4205	PCPU_SET(curpmap, pmap);
4206	critical_exit();
4207}
4208
4209void
4210pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4211{
4212}
4213
4214/*
4215 *	Increase the starting virtual address of the given mapping if a
4216 *	different alignment might result in more superpage mappings.
4217 */
4218void
4219pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4220    vm_offset_t *addr, vm_size_t size)
4221{
4222	vm_offset_t superpage_offset;
4223
4224	if (size < NBPDR)
4225		return;
4226	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4227		offset += ptoa(object->pg_color);
4228	superpage_offset = offset & PDRMASK;
4229	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4230	    (*addr & PDRMASK) == superpage_offset)
4231		return;
4232	if ((*addr & PDRMASK) < superpage_offset)
4233		*addr = (*addr & ~PDRMASK) + superpage_offset;
4234	else
4235		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4236}
4237
4238#ifdef XEN
4239
4240void
4241pmap_suspend()
4242{
4243	pmap_t pmap;
4244	int i, pdir, offset;
4245	vm_paddr_t pdirma;
4246	mmu_update_t mu[4];
4247
4248	/*
4249	 * We need to remove the recursive mapping structure from all
4250	 * our pmaps so that Xen doesn't get confused when it restores
4251	 * the page tables. The recursive map lives at page directory
4252	 * index PTDPTDI. We assume that the suspend code has stopped
4253	 * the other vcpus (if any).
4254	 */
4255	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4256		for (i = 0; i < 4; i++) {
4257			/*
4258			 * Figure out which page directory (L2) page
4259			 * contains this bit of the recursive map and
4260			 * the offset within that page of the map
4261			 * entry
4262			 */
4263			pdir = (PTDPTDI + i) / NPDEPG;
4264			offset = (PTDPTDI + i) % NPDEPG;
4265			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4266			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4267			mu[i].val = 0;
4268		}
4269		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4270	}
4271}
4272
4273void
4274pmap_resume()
4275{
4276	pmap_t pmap;
4277	int i, pdir, offset;
4278	vm_paddr_t pdirma;
4279	mmu_update_t mu[4];
4280
4281	/*
4282	 * Restore the recursive map that we removed on suspend.
4283	 */
4284	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4285		for (i = 0; i < 4; i++) {
4286			/*
4287			 * Figure out which page directory (L2) page
4288			 * contains this bit of the recursive map and
4289			 * the offset within that page of the map
4290			 * entry
4291			 */
4292			pdir = (PTDPTDI + i) / NPDEPG;
4293			offset = (PTDPTDI + i) % NPDEPG;
4294			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4295			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4296			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4297		}
4298		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4299	}
4300}
4301
4302#endif
4303
4304#if defined(PMAP_DEBUG)
4305pmap_pid_dump(int pid)
4306{
4307	pmap_t pmap;
4308	struct proc *p;
4309	int npte = 0;
4310	int index;
4311
4312	sx_slock(&allproc_lock);
4313	FOREACH_PROC_IN_SYSTEM(p) {
4314		if (p->p_pid != pid)
4315			continue;
4316
4317		if (p->p_vmspace) {
4318			int i,j;
4319			index = 0;
4320			pmap = vmspace_pmap(p->p_vmspace);
4321			for (i = 0; i < NPDEPTD; i++) {
4322				pd_entry_t *pde;
4323				pt_entry_t *pte;
4324				vm_offset_t base = i << PDRSHIFT;
4325
4326				pde = &pmap->pm_pdir[i];
4327				if (pde && pmap_pde_v(pde)) {
4328					for (j = 0; j < NPTEPG; j++) {
4329						vm_offset_t va = base + (j << PAGE_SHIFT);
4330						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4331							if (index) {
4332								index = 0;
4333								printf("\n");
4334							}
4335							sx_sunlock(&allproc_lock);
4336							return npte;
4337						}
4338						pte = pmap_pte(pmap, va);
4339						if (pte && pmap_pte_v(pte)) {
4340							pt_entry_t pa;
4341							vm_page_t m;
4342							pa = PT_GET(pte);
4343							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4344							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4345								va, pa, m->hold_count, m->wire_count, m->flags);
4346							npte++;
4347							index++;
4348							if (index >= 2) {
4349								index = 0;
4350								printf("\n");
4351							} else {
4352								printf(" ");
4353							}
4354						}
4355					}
4356				}
4357			}
4358		}
4359	}
4360	sx_sunlock(&allproc_lock);
4361	return npte;
4362}
4363#endif
4364
4365#if defined(DEBUG)
4366
4367static void	pads(pmap_t pm);
4368void		pmap_pvdump(vm_paddr_t pa);
4369
4370/* print address space of pmap*/
4371static void
4372pads(pmap_t pm)
4373{
4374	int i, j;
4375	vm_paddr_t va;
4376	pt_entry_t *ptep;
4377
4378	if (pm == kernel_pmap)
4379		return;
4380	for (i = 0; i < NPDEPTD; i++)
4381		if (pm->pm_pdir[i])
4382			for (j = 0; j < NPTEPG; j++) {
4383				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4384				if (pm == kernel_pmap && va < KERNBASE)
4385					continue;
4386				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4387					continue;
4388				ptep = pmap_pte(pm, va);
4389				if (pmap_pte_v(ptep))
4390					printf("%x:%x ", va, *ptep);
4391			};
4392
4393}
4394
4395void
4396pmap_pvdump(vm_paddr_t pa)
4397{
4398	pv_entry_t pv;
4399	pmap_t pmap;
4400	vm_page_t m;
4401
4402	printf("pa %x", pa);
4403	m = PHYS_TO_VM_PAGE(pa);
4404	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4405		pmap = PV_PMAP(pv);
4406		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4407		pads(pmap);
4408	}
4409	printf(" ");
4410}
4411#endif
4412