pmap.c revision 199184
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 199184 2009-11-11 14:21:31Z avg $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#define PMAP_DIAGNOSTIC
107
108#include "opt_cpu.h"
109#include "opt_pmap.h"
110#include "opt_msgbuf.h"
111#include "opt_smp.h"
112#include "opt_xbox.h"
113
114#include <sys/param.h>
115#include <sys/systm.h>
116#include <sys/kernel.h>
117#include <sys/ktr.h>
118#include <sys/lock.h>
119#include <sys/malloc.h>
120#include <sys/mman.h>
121#include <sys/msgbuf.h>
122#include <sys/mutex.h>
123#include <sys/proc.h>
124#include <sys/sf_buf.h>
125#include <sys/sx.h>
126#include <sys/vmmeter.h>
127#include <sys/sched.h>
128#include <sys/sysctl.h>
129#ifdef SMP
130#include <sys/smp.h>
131#endif
132
133#include <vm/vm.h>
134#include <vm/vm_param.h>
135#include <vm/vm_kern.h>
136#include <vm/vm_page.h>
137#include <vm/vm_map.h>
138#include <vm/vm_object.h>
139#include <vm/vm_extern.h>
140#include <vm/vm_pageout.h>
141#include <vm/vm_pager.h>
142#include <vm/uma.h>
143
144#include <machine/cpu.h>
145#include <machine/cputypes.h>
146#include <machine/md_var.h>
147#include <machine/pcb.h>
148#include <machine/specialreg.h>
149#ifdef SMP
150#include <machine/smp.h>
151#endif
152
153#ifdef XBOX
154#include <machine/xbox.h>
155#endif
156
157#include <xen/interface/xen.h>
158#include <xen/hypervisor.h>
159#include <machine/xen/hypercall.h>
160#include <machine/xen/xenvar.h>
161#include <machine/xen/xenfunc.h>
162
163#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
164#define CPU_ENABLE_SSE
165#endif
166
167#ifndef PMAP_SHPGPERPROC
168#define PMAP_SHPGPERPROC 200
169#endif
170
171#if defined(DIAGNOSTIC)
172#define PMAP_DIAGNOSTIC
173#endif
174
175#if !defined(PMAP_DIAGNOSTIC)
176#define PMAP_INLINE	__gnu89_inline
177#else
178#define PMAP_INLINE
179#endif
180
181#define PV_STATS
182#ifdef PV_STATS
183#define PV_STAT(x)	do { x ; } while (0)
184#else
185#define PV_STAT(x)	do { } while (0)
186#endif
187
188#define	pa_index(pa)	((pa) >> PDRSHIFT)
189#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
190
191/*
192 * Get PDEs and PTEs for user/kernel address space
193 */
194#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
195#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
196
197#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
198#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
199#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
200#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
201#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
202
203#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204
205struct pmap kernel_pmap_store;
206LIST_HEAD(pmaplist, pmap);
207static struct pmaplist allpmaps;
208static struct mtx allpmaps_lock;
209
210vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
211vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
212int pgeflag = 0;		/* PG_G or-in */
213int pseflag = 0;		/* PG_PS or-in */
214
215int nkpt;
216vm_offset_t kernel_vm_end;
217extern u_int32_t KERNend;
218
219#ifdef PAE
220pt_entry_t pg_nx;
221#if !defined(XEN)
222static uma_zone_t pdptzone;
223#endif
224#endif
225
226static int pat_works;			/* Is page attribute table sane? */
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250pt_entry_t *CMAP1 = 0;
251static pt_entry_t *CMAP3;
252caddr_t CADDR1 = 0, ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
281static int pg_ps_enabled;
282SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
283    "Are large page mappings enabled?");
284
285SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
286	"Max number of PV entries");
287SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
288	"Page share factor per proc");
289
290static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
291static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
292
293static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
294    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
295static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
296    vm_page_t *free);
297static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
298    vm_page_t *free);
299static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
300					vm_offset_t va);
301static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
302static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
303    vm_page_t m);
304
305static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
306
307static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
308static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
309static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
310static void pmap_pte_release(pt_entry_t *pte);
311static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
312static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
313static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
314static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
315
316static __inline void pagezero(void *page);
317
318#if defined(PAE) && !defined(XEN)
319static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
320#endif
321
322CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
323CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
324
325/*
326 * If you get an error here, then you set KVA_PAGES wrong! See the
327 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
328 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
329 */
330CTASSERT(KERNBASE % (1 << 24) == 0);
331
332
333
334void
335pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
336{
337	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
338
339	switch (type) {
340	case SH_PD_SET_VA:
341#if 0
342		xen_queue_pt_update(shadow_pdir_ma,
343				    xpmap_ptom(val & ~(PG_RW)));
344#endif
345		xen_queue_pt_update(pdir_ma,
346				    xpmap_ptom(val));
347		break;
348	case SH_PD_SET_VA_MA:
349#if 0
350		xen_queue_pt_update(shadow_pdir_ma,
351				    val & ~(PG_RW));
352#endif
353		xen_queue_pt_update(pdir_ma, val);
354		break;
355	case SH_PD_SET_VA_CLEAR:
356#if 0
357		xen_queue_pt_update(shadow_pdir_ma, 0);
358#endif
359		xen_queue_pt_update(pdir_ma, 0);
360		break;
361	}
362}
363
364/*
365 * Move the kernel virtual free pointer to the next
366 * 4MB.  This is used to help improve performance
367 * by using a large (4MB) page for much of the kernel
368 * (.text, .data, .bss)
369 */
370static vm_offset_t
371pmap_kmem_choose(vm_offset_t addr)
372{
373	vm_offset_t newaddr = addr;
374
375#ifndef DISABLE_PSE
376	if (cpu_feature & CPUID_PSE)
377		newaddr = (addr + PDRMASK) & ~PDRMASK;
378#endif
379	return newaddr;
380}
381
382/*
383 *	Bootstrap the system enough to run with virtual memory.
384 *
385 *	On the i386 this is called after mapping has already been enabled
386 *	and just syncs the pmap module with what has already been done.
387 *	[We can't call it easily with mapping off since the kernel is not
388 *	mapped with PA == VA, hence we would have to relocate every address
389 *	from the linked base (virtual) address "KERNBASE" to the actual
390 *	(physical) address starting relative to 0]
391 */
392void
393pmap_bootstrap(vm_paddr_t firstaddr)
394{
395	vm_offset_t va;
396	pt_entry_t *pte, *unused;
397	struct sysmaps *sysmaps;
398	int i;
399
400	/*
401	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
402	 * large. It should instead be correctly calculated in locore.s and
403	 * not based on 'first' (which is a physical address, not a virtual
404	 * address, for the start of unused physical memory). The kernel
405	 * page tables are NOT double mapped and thus should not be included
406	 * in this calculation.
407	 */
408	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
409	virtual_avail = pmap_kmem_choose(virtual_avail);
410
411	virtual_end = VM_MAX_KERNEL_ADDRESS;
412
413	/*
414	 * Initialize the kernel pmap (which is statically allocated).
415	 */
416	PMAP_LOCK_INIT(kernel_pmap);
417	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
418#ifdef PAE
419	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
420#endif
421	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
422	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
423	LIST_INIT(&allpmaps);
424	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
425	mtx_lock_spin(&allpmaps_lock);
426	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
427	mtx_unlock_spin(&allpmaps_lock);
428	if (nkpt == 0)
429		nkpt = NKPT;
430
431	/*
432	 * Reserve some special page table entries/VA space for temporary
433	 * mapping of pages.
434	 */
435#define	SYSMAP(c, p, v, n)	\
436	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
437
438	va = virtual_avail;
439	pte = vtopte(va);
440
441	/*
442	 * CMAP1/CMAP2 are used for zeroing and copying pages.
443	 * CMAP3 is used for the idle process page zeroing.
444	 */
445	for (i = 0; i < MAXCPU; i++) {
446		sysmaps = &sysmaps_pcpu[i];
447		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
448		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
449		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
450	}
451	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
452	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
453	PT_SET_MA(CADDR3, 0);
454
455	/*
456	 * Crashdump maps.
457	 */
458	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
459
460	/*
461	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
462	 */
463	SYSMAP(caddr_t, unused, ptvmmap, 1)
464
465	/*
466	 * msgbufp is used to map the system message buffer.
467	 */
468	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
469
470	/*
471	 * ptemap is used for pmap_pte_quick
472	 */
473	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
474	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
475
476	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
477
478	virtual_avail = va;
479	PT_SET_MA(CADDR1, 0);
480
481	/*
482	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
483	 * physical memory region that is used by the ACPI wakeup code.  This
484	 * mapping must not have PG_G set.
485	 */
486#ifndef XEN
487	/*
488	 * leave here deliberately to show that this is not supported
489	 */
490#ifdef XBOX
491	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
492	 * an early stadium, we cannot yet neatly map video memory ... :-(
493	 * Better fixes are very welcome! */
494	if (!arch_i386_is_xbox)
495#endif
496	for (i = 1; i < NKPT; i++)
497		PTD[i] = 0;
498
499	/* Initialize the PAT MSR if present. */
500	pmap_init_pat();
501
502	/* Turn on PG_G on kernel page(s) */
503	pmap_set_pg();
504#endif
505}
506
507/*
508 * Setup the PAT MSR.
509 */
510void
511pmap_init_pat(void)
512{
513	uint64_t pat_msr;
514
515	/* Bail if this CPU doesn't implement PAT. */
516	if (!(cpu_feature & CPUID_PAT))
517		return;
518
519	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
520	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
521		/*
522		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
523		 * Program 4 and 5 as WP and WC.
524		 * Leave 6 and 7 as UC and UC-.
525		 */
526		pat_msr = rdmsr(MSR_PAT);
527		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
528		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
529		    PAT_VALUE(5, PAT_WRITE_COMBINING);
530		pat_works = 1;
531	} else {
532		/*
533		 * Due to some Intel errata, we can only safely use the lower 4
534		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
535		 * of UC-.
536		 *
537		 *   Intel Pentium III Processor Specification Update
538		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
539		 * or Mode C Paging)
540		 *
541		 *   Intel Pentium IV  Processor Specification Update
542		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
543		 */
544		pat_msr = rdmsr(MSR_PAT);
545		pat_msr &= ~PAT_MASK(2);
546		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
547		pat_works = 0;
548	}
549	wrmsr(MSR_PAT, pat_msr);
550}
551
552/*
553 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
554 */
555void
556pmap_set_pg(void)
557{
558	pd_entry_t pdir;
559	pt_entry_t *pte;
560	vm_offset_t va, endva;
561	int i;
562
563	if (pgeflag == 0)
564		return;
565
566	i = KERNLOAD/NBPDR;
567	endva = KERNBASE + KERNend;
568
569	if (pseflag) {
570		va = KERNBASE + KERNLOAD;
571		while (va  < endva) {
572			pdir = kernel_pmap->pm_pdir[KPTDI+i];
573			pdir |= pgeflag;
574			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
575			invltlb();	/* Play it safe, invltlb() every time */
576			i++;
577			va += NBPDR;
578		}
579	} else {
580		va = (vm_offset_t)btext;
581		while (va < endva) {
582			pte = vtopte(va);
583			if (*pte & PG_V)
584				*pte |= pgeflag;
585			invltlb();	/* Play it safe, invltlb() every time */
586			va += PAGE_SIZE;
587		}
588	}
589}
590
591/*
592 * Initialize a vm_page's machine-dependent fields.
593 */
594void
595pmap_page_init(vm_page_t m)
596{
597
598	TAILQ_INIT(&m->md.pv_list);
599	m->md.pat_mode = PAT_WRITE_BACK;
600}
601
602#if defined(PAE) && !defined(XEN)
603static void *
604pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
605{
606
607	/* Inform UMA that this allocator uses kernel_map/object. */
608	*flags = UMA_SLAB_KERNEL;
609	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
610	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
611}
612#endif
613
614/*
615 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
616 * Requirements:
617 *  - Must deal with pages in order to ensure that none of the PG_* bits
618 *    are ever set, PG_V in particular.
619 *  - Assumes we can write to ptes without pte_store() atomic ops, even
620 *    on PAE systems.  This should be ok.
621 *  - Assumes nothing will ever test these addresses for 0 to indicate
622 *    no mapping instead of correctly checking PG_V.
623 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
624 * Because PG_V is never set, there can be no mappings to invalidate.
625 */
626static int ptelist_count = 0;
627static vm_offset_t
628pmap_ptelist_alloc(vm_offset_t *head)
629{
630	vm_offset_t va;
631	vm_offset_t *phead = (vm_offset_t *)*head;
632
633	if (ptelist_count == 0) {
634		printf("out of memory!!!!!!\n");
635		return (0);	/* Out of memory */
636	}
637	ptelist_count--;
638	va = phead[ptelist_count];
639	return (va);
640}
641
642static void
643pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
644{
645	vm_offset_t *phead = (vm_offset_t *)*head;
646
647	phead[ptelist_count++] = va;
648}
649
650static void
651pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
652{
653	int i, nstackpages;
654	vm_offset_t va;
655	vm_page_t m;
656
657	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
658	for (i = 0; i < nstackpages; i++) {
659		va = (vm_offset_t)base + i * PAGE_SIZE;
660		m = vm_page_alloc(NULL, i,
661		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
662		    VM_ALLOC_ZERO);
663		pmap_qenter(va, &m, 1);
664	}
665
666	*head = (vm_offset_t)base;
667	for (i = npages - 1; i >= nstackpages; i--) {
668		va = (vm_offset_t)base + i * PAGE_SIZE;
669		pmap_ptelist_free(head, va);
670	}
671}
672
673
674/*
675 *	Initialize the pmap module.
676 *	Called by vm_init, to initialize any structures that the pmap
677 *	system needs to map virtual memory.
678 */
679void
680pmap_init(void)
681{
682	vm_page_t mpte;
683	vm_size_t s;
684	int i, pv_npg;
685
686	/*
687	 * Initialize the vm page array entries for the kernel pmap's
688	 * page table pages.
689	 */
690	for (i = 0; i < nkpt; i++) {
691		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
692		KASSERT(mpte >= vm_page_array &&
693		    mpte < &vm_page_array[vm_page_array_size],
694		    ("pmap_init: page table page is out of range"));
695		mpte->pindex = i + KPTDI;
696		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
697	}
698
699        /*
700	 * Initialize the address space (zone) for the pv entries.  Set a
701	 * high water mark so that the system can recover from excessive
702	 * numbers of pv entries.
703	 */
704	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
705	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
706	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
707	pv_entry_max = roundup(pv_entry_max, _NPCPV);
708	pv_entry_high_water = 9 * (pv_entry_max / 10);
709
710	/*
711	 * Are large page mappings enabled?
712	 */
713	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
714
715	/*
716	 * Calculate the size of the pv head table for superpages.
717	 */
718	for (i = 0; phys_avail[i + 1]; i += 2);
719	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
720
721	/*
722	 * Allocate memory for the pv head table for superpages.
723	 */
724	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
725	s = round_page(s);
726	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
727	for (i = 0; i < pv_npg; i++)
728		TAILQ_INIT(&pv_table[i].pv_list);
729
730	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
731	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
732	    PAGE_SIZE * pv_maxchunks);
733	if (pv_chunkbase == NULL)
734		panic("pmap_init: not enough kvm for pv chunks");
735	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
736#if defined(PAE) && !defined(XEN)
737	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
738	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
739	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
740	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
741#endif
742}
743
744
745/***************************************************
746 * Low level helper routines.....
747 ***************************************************/
748
749/*
750 * Determine the appropriate bits to set in a PTE or PDE for a specified
751 * caching mode.
752 */
753int
754pmap_cache_bits(int mode, boolean_t is_pde)
755{
756	int pat_flag, pat_index, cache_bits;
757
758	/* The PAT bit is different for PTE's and PDE's. */
759	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
760
761	/* If we don't support PAT, map extended modes to older ones. */
762	if (!(cpu_feature & CPUID_PAT)) {
763		switch (mode) {
764		case PAT_UNCACHEABLE:
765		case PAT_WRITE_THROUGH:
766		case PAT_WRITE_BACK:
767			break;
768		case PAT_UNCACHED:
769		case PAT_WRITE_COMBINING:
770		case PAT_WRITE_PROTECTED:
771			mode = PAT_UNCACHEABLE;
772			break;
773		}
774	}
775
776	/* Map the caching mode to a PAT index. */
777	if (pat_works) {
778		switch (mode) {
779			case PAT_UNCACHEABLE:
780				pat_index = 3;
781				break;
782			case PAT_WRITE_THROUGH:
783				pat_index = 1;
784				break;
785			case PAT_WRITE_BACK:
786				pat_index = 0;
787				break;
788			case PAT_UNCACHED:
789				pat_index = 2;
790				break;
791			case PAT_WRITE_COMBINING:
792				pat_index = 5;
793				break;
794			case PAT_WRITE_PROTECTED:
795				pat_index = 4;
796				break;
797			default:
798				panic("Unknown caching mode %d\n", mode);
799		}
800	} else {
801		switch (mode) {
802			case PAT_UNCACHED:
803			case PAT_UNCACHEABLE:
804			case PAT_WRITE_PROTECTED:
805				pat_index = 3;
806				break;
807			case PAT_WRITE_THROUGH:
808				pat_index = 1;
809				break;
810			case PAT_WRITE_BACK:
811				pat_index = 0;
812				break;
813			case PAT_WRITE_COMBINING:
814				pat_index = 2;
815				break;
816			default:
817				panic("Unknown caching mode %d\n", mode);
818		}
819	}
820
821	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
822	cache_bits = 0;
823	if (pat_index & 0x4)
824		cache_bits |= pat_flag;
825	if (pat_index & 0x2)
826		cache_bits |= PG_NC_PCD;
827	if (pat_index & 0x1)
828		cache_bits |= PG_NC_PWT;
829	return (cache_bits);
830}
831#ifdef SMP
832/*
833 * For SMP, these functions have to use the IPI mechanism for coherence.
834 *
835 * N.B.: Before calling any of the following TLB invalidation functions,
836 * the calling processor must ensure that all stores updating a non-
837 * kernel page table are globally performed.  Otherwise, another
838 * processor could cache an old, pre-update entry without being
839 * invalidated.  This can happen one of two ways: (1) The pmap becomes
840 * active on another processor after its pm_active field is checked by
841 * one of the following functions but before a store updating the page
842 * table is globally performed. (2) The pmap becomes active on another
843 * processor before its pm_active field is checked but due to
844 * speculative loads one of the following functions stills reads the
845 * pmap as inactive on the other processor.
846 *
847 * The kernel page table is exempt because its pm_active field is
848 * immutable.  The kernel page table is always active on every
849 * processor.
850 */
851void
852pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
853{
854	u_int cpumask;
855	u_int other_cpus;
856
857	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
858	    pmap, va);
859
860	sched_pin();
861	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
862		invlpg(va);
863		smp_invlpg(va);
864	} else {
865		cpumask = PCPU_GET(cpumask);
866		other_cpus = PCPU_GET(other_cpus);
867		if (pmap->pm_active & cpumask)
868			invlpg(va);
869		if (pmap->pm_active & other_cpus)
870			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
871	}
872	sched_unpin();
873	PT_UPDATES_FLUSH();
874}
875
876void
877pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
878{
879	u_int cpumask;
880	u_int other_cpus;
881	vm_offset_t addr;
882
883	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
884	    pmap, sva, eva);
885
886	sched_pin();
887	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
888		for (addr = sva; addr < eva; addr += PAGE_SIZE)
889			invlpg(addr);
890		smp_invlpg_range(sva, eva);
891	} else {
892		cpumask = PCPU_GET(cpumask);
893		other_cpus = PCPU_GET(other_cpus);
894		if (pmap->pm_active & cpumask)
895			for (addr = sva; addr < eva; addr += PAGE_SIZE)
896				invlpg(addr);
897		if (pmap->pm_active & other_cpus)
898			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
899			    sva, eva);
900	}
901	sched_unpin();
902	PT_UPDATES_FLUSH();
903}
904
905void
906pmap_invalidate_all(pmap_t pmap)
907{
908	u_int cpumask;
909	u_int other_cpus;
910
911	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
912
913	sched_pin();
914	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
915		invltlb();
916		smp_invltlb();
917	} else {
918		cpumask = PCPU_GET(cpumask);
919		other_cpus = PCPU_GET(other_cpus);
920		if (pmap->pm_active & cpumask)
921			invltlb();
922		if (pmap->pm_active & other_cpus)
923			smp_masked_invltlb(pmap->pm_active & other_cpus);
924	}
925	sched_unpin();
926}
927
928void
929pmap_invalidate_cache(void)
930{
931
932	sched_pin();
933	wbinvd();
934	smp_cache_flush();
935	sched_unpin();
936}
937#else /* !SMP */
938/*
939 * Normal, non-SMP, 486+ invalidation functions.
940 * We inline these within pmap.c for speed.
941 */
942PMAP_INLINE void
943pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
944{
945	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
946	    pmap, va);
947
948	if (pmap == kernel_pmap || pmap->pm_active)
949		invlpg(va);
950	PT_UPDATES_FLUSH();
951}
952
953PMAP_INLINE void
954pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
955{
956	vm_offset_t addr;
957
958	if (eva - sva > PAGE_SIZE)
959		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
960		    pmap, sva, eva);
961
962	if (pmap == kernel_pmap || pmap->pm_active)
963		for (addr = sva; addr < eva; addr += PAGE_SIZE)
964			invlpg(addr);
965	PT_UPDATES_FLUSH();
966}
967
968PMAP_INLINE void
969pmap_invalidate_all(pmap_t pmap)
970{
971
972	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
973
974	if (pmap == kernel_pmap || pmap->pm_active)
975		invltlb();
976}
977
978PMAP_INLINE void
979pmap_invalidate_cache(void)
980{
981
982	wbinvd();
983}
984#endif /* !SMP */
985
986void
987pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
988{
989
990	KASSERT((sva & PAGE_MASK) == 0,
991	    ("pmap_invalidate_cache_range: sva not page-aligned"));
992	KASSERT((eva & PAGE_MASK) == 0,
993	    ("pmap_invalidate_cache_range: eva not page-aligned"));
994
995	if (cpu_feature & CPUID_SS)
996		; /* If "Self Snoop" is supported, do nothing. */
997	else if (cpu_feature & CPUID_CLFSH) {
998
999		/*
1000		 * Otherwise, do per-cache line flush.  Use the mfence
1001		 * instruction to insure that previous stores are
1002		 * included in the write-back.  The processor
1003		 * propagates flush to other processors in the cache
1004		 * coherence domain.
1005		 */
1006		mfence();
1007		for (; sva < eva; sva += cpu_clflush_line_size)
1008			clflush(sva);
1009		mfence();
1010	} else {
1011
1012		/*
1013		 * No targeted cache flush methods are supported by CPU,
1014		 * globally invalidate cache as a last resort.
1015		 */
1016		pmap_invalidate_cache();
1017	}
1018}
1019
1020/*
1021 * Are we current address space or kernel?  N.B. We return FALSE when
1022 * a pmap's page table is in use because a kernel thread is borrowing
1023 * it.  The borrowed page table can change spontaneously, making any
1024 * dependence on its continued use subject to a race condition.
1025 */
1026static __inline int
1027pmap_is_current(pmap_t pmap)
1028{
1029
1030	return (pmap == kernel_pmap ||
1031	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1032		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1033}
1034
1035/*
1036 * If the given pmap is not the current or kernel pmap, the returned pte must
1037 * be released by passing it to pmap_pte_release().
1038 */
1039pt_entry_t *
1040pmap_pte(pmap_t pmap, vm_offset_t va)
1041{
1042	pd_entry_t newpf;
1043	pd_entry_t *pde;
1044
1045	pde = pmap_pde(pmap, va);
1046	if (*pde & PG_PS)
1047		return (pde);
1048	if (*pde != 0) {
1049		/* are we current address space or kernel? */
1050		if (pmap_is_current(pmap))
1051			return (vtopte(va));
1052		mtx_lock(&PMAP2mutex);
1053		newpf = *pde & PG_FRAME;
1054		if ((*PMAP2 & PG_FRAME) != newpf) {
1055			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1056			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1057			    pmap, va, (*PMAP2 & 0xffffffff));
1058		}
1059
1060		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1061	}
1062	return (0);
1063}
1064
1065/*
1066 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1067 * being NULL.
1068 */
1069static __inline void
1070pmap_pte_release(pt_entry_t *pte)
1071{
1072
1073	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1074		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1075		    *PMAP2);
1076		PT_SET_VA(PMAP2, 0, TRUE);
1077		mtx_unlock(&PMAP2mutex);
1078	}
1079}
1080
1081static __inline void
1082invlcaddr(void *caddr)
1083{
1084
1085	invlpg((u_int)caddr);
1086	PT_UPDATES_FLUSH();
1087}
1088
1089/*
1090 * Super fast pmap_pte routine best used when scanning
1091 * the pv lists.  This eliminates many coarse-grained
1092 * invltlb calls.  Note that many of the pv list
1093 * scans are across different pmaps.  It is very wasteful
1094 * to do an entire invltlb for checking a single mapping.
1095 *
1096 * If the given pmap is not the current pmap, vm_page_queue_mtx
1097 * must be held and curthread pinned to a CPU.
1098 */
1099static pt_entry_t *
1100pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1101{
1102	pd_entry_t newpf;
1103	pd_entry_t *pde;
1104
1105	pde = pmap_pde(pmap, va);
1106	if (*pde & PG_PS)
1107		return (pde);
1108	if (*pde != 0) {
1109		/* are we current address space or kernel? */
1110		if (pmap_is_current(pmap))
1111			return (vtopte(va));
1112		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1113		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1114		newpf = *pde & PG_FRAME;
1115		if ((*PMAP1 & PG_FRAME) != newpf) {
1116			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1117			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1118			    pmap, va, (u_long)*PMAP1);
1119
1120#ifdef SMP
1121			PMAP1cpu = PCPU_GET(cpuid);
1122#endif
1123			PMAP1changed++;
1124		} else
1125#ifdef SMP
1126		if (PMAP1cpu != PCPU_GET(cpuid)) {
1127			PMAP1cpu = PCPU_GET(cpuid);
1128			invlcaddr(PADDR1);
1129			PMAP1changedcpu++;
1130		} else
1131#endif
1132			PMAP1unchanged++;
1133		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1134	}
1135	return (0);
1136}
1137
1138/*
1139 *	Routine:	pmap_extract
1140 *	Function:
1141 *		Extract the physical page address associated
1142 *		with the given map/virtual_address pair.
1143 */
1144vm_paddr_t
1145pmap_extract(pmap_t pmap, vm_offset_t va)
1146{
1147	vm_paddr_t rtval;
1148	pt_entry_t *pte;
1149	pd_entry_t pde;
1150	pt_entry_t pteval;
1151
1152	rtval = 0;
1153	PMAP_LOCK(pmap);
1154	pde = pmap->pm_pdir[va >> PDRSHIFT];
1155	if (pde != 0) {
1156		if ((pde & PG_PS) != 0) {
1157			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1158			PMAP_UNLOCK(pmap);
1159			return rtval;
1160		}
1161		pte = pmap_pte(pmap, va);
1162		pteval = *pte ? xpmap_mtop(*pte) : 0;
1163		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1164		pmap_pte_release(pte);
1165	}
1166	PMAP_UNLOCK(pmap);
1167	return (rtval);
1168}
1169
1170/*
1171 *	Routine:	pmap_extract_ma
1172 *	Function:
1173 *		Like pmap_extract, but returns machine address
1174 */
1175vm_paddr_t
1176pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1177{
1178	vm_paddr_t rtval;
1179	pt_entry_t *pte;
1180	pd_entry_t pde;
1181
1182	rtval = 0;
1183	PMAP_LOCK(pmap);
1184	pde = pmap->pm_pdir[va >> PDRSHIFT];
1185	if (pde != 0) {
1186		if ((pde & PG_PS) != 0) {
1187			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1188			PMAP_UNLOCK(pmap);
1189			return rtval;
1190		}
1191		pte = pmap_pte(pmap, va);
1192		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1193		pmap_pte_release(pte);
1194	}
1195	PMAP_UNLOCK(pmap);
1196	return (rtval);
1197}
1198
1199/*
1200 *	Routine:	pmap_extract_and_hold
1201 *	Function:
1202 *		Atomically extract and hold the physical page
1203 *		with the given pmap and virtual address pair
1204 *		if that mapping permits the given protection.
1205 */
1206vm_page_t
1207pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1208{
1209	pd_entry_t pde;
1210	pt_entry_t pte;
1211	vm_page_t m;
1212
1213	m = NULL;
1214	vm_page_lock_queues();
1215	PMAP_LOCK(pmap);
1216	pde = PT_GET(pmap_pde(pmap, va));
1217	if (pde != 0) {
1218		if (pde & PG_PS) {
1219			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1220				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1221				    (va & PDRMASK));
1222				vm_page_hold(m);
1223			}
1224		} else {
1225			sched_pin();
1226			pte = PT_GET(pmap_pte_quick(pmap, va));
1227			if (*PMAP1)
1228				PT_SET_MA(PADDR1, 0);
1229			if ((pte & PG_V) &&
1230			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1231				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1232				vm_page_hold(m);
1233			}
1234			sched_unpin();
1235		}
1236	}
1237	vm_page_unlock_queues();
1238	PMAP_UNLOCK(pmap);
1239	return (m);
1240}
1241
1242/***************************************************
1243 * Low level mapping routines.....
1244 ***************************************************/
1245
1246/*
1247 * Add a wired page to the kva.
1248 * Note: not SMP coherent.
1249 */
1250void
1251pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1252{
1253	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1254}
1255
1256void
1257pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1258{
1259	pt_entry_t *pte;
1260
1261	pte = vtopte(va);
1262	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1263}
1264
1265
1266static __inline void
1267pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1268{
1269	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1270}
1271
1272/*
1273 * Remove a page from the kernel pagetables.
1274 * Note: not SMP coherent.
1275 */
1276PMAP_INLINE void
1277pmap_kremove(vm_offset_t va)
1278{
1279	pt_entry_t *pte;
1280
1281	pte = vtopte(va);
1282	PT_CLEAR_VA(pte, FALSE);
1283}
1284
1285/*
1286 *	Used to map a range of physical addresses into kernel
1287 *	virtual address space.
1288 *
1289 *	The value passed in '*virt' is a suggested virtual address for
1290 *	the mapping. Architectures which can support a direct-mapped
1291 *	physical to virtual region can return the appropriate address
1292 *	within that region, leaving '*virt' unchanged. Other
1293 *	architectures should map the pages starting at '*virt' and
1294 *	update '*virt' with the first usable address after the mapped
1295 *	region.
1296 */
1297vm_offset_t
1298pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1299{
1300	vm_offset_t va, sva;
1301
1302	va = sva = *virt;
1303	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1304	    va, start, end, prot);
1305	while (start < end) {
1306		pmap_kenter(va, start);
1307		va += PAGE_SIZE;
1308		start += PAGE_SIZE;
1309	}
1310	pmap_invalidate_range(kernel_pmap, sva, va);
1311	*virt = va;
1312	return (sva);
1313}
1314
1315
1316/*
1317 * Add a list of wired pages to the kva
1318 * this routine is only used for temporary
1319 * kernel mappings that do not need to have
1320 * page modification or references recorded.
1321 * Note that old mappings are simply written
1322 * over.  The page *must* be wired.
1323 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1324 */
1325void
1326pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1327{
1328	pt_entry_t *endpte, *pte;
1329	vm_paddr_t pa;
1330	vm_offset_t va = sva;
1331	int mclcount = 0;
1332	multicall_entry_t mcl[16];
1333	multicall_entry_t *mclp = mcl;
1334	int error;
1335
1336	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1337	pte = vtopte(sva);
1338	endpte = pte + count;
1339	while (pte < endpte) {
1340		pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1341
1342		mclp->op = __HYPERVISOR_update_va_mapping;
1343		mclp->args[0] = va;
1344		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1345		mclp->args[2] = (uint32_t)(pa >> 32);
1346		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1347
1348		va += PAGE_SIZE;
1349		pte++;
1350		ma++;
1351		mclp++;
1352		mclcount++;
1353		if (mclcount == 16) {
1354			error = HYPERVISOR_multicall(mcl, mclcount);
1355			mclp = mcl;
1356			mclcount = 0;
1357			KASSERT(error == 0, ("bad multicall %d", error));
1358		}
1359	}
1360	if (mclcount) {
1361		error = HYPERVISOR_multicall(mcl, mclcount);
1362		KASSERT(error == 0, ("bad multicall %d", error));
1363	}
1364
1365#ifdef INVARIANTS
1366	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1367		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1368#endif
1369}
1370
1371
1372/*
1373 * This routine tears out page mappings from the
1374 * kernel -- it is meant only for temporary mappings.
1375 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1376 */
1377void
1378pmap_qremove(vm_offset_t sva, int count)
1379{
1380	vm_offset_t va;
1381
1382	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1383	va = sva;
1384	vm_page_lock_queues();
1385	critical_enter();
1386	while (count-- > 0) {
1387		pmap_kremove(va);
1388		va += PAGE_SIZE;
1389	}
1390	pmap_invalidate_range(kernel_pmap, sva, va);
1391	critical_exit();
1392	vm_page_unlock_queues();
1393}
1394
1395/***************************************************
1396 * Page table page management routines.....
1397 ***************************************************/
1398static __inline void
1399pmap_free_zero_pages(vm_page_t free)
1400{
1401	vm_page_t m;
1402
1403	while (free != NULL) {
1404		m = free;
1405		free = m->right;
1406		vm_page_free_zero(m);
1407	}
1408}
1409
1410/*
1411 * This routine unholds page table pages, and if the hold count
1412 * drops to zero, then it decrements the wire count.
1413 */
1414static __inline int
1415pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1416{
1417
1418	--m->wire_count;
1419	if (m->wire_count == 0)
1420		return _pmap_unwire_pte_hold(pmap, m, free);
1421	else
1422		return 0;
1423}
1424
1425static int
1426_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1427{
1428	vm_offset_t pteva;
1429
1430	PT_UPDATES_FLUSH();
1431	/*
1432	 * unmap the page table page
1433	 */
1434	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1435	/*
1436	 * page *might* contain residual mapping :-/
1437	 */
1438	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1439	pmap_zero_page(m);
1440	--pmap->pm_stats.resident_count;
1441
1442	/*
1443	 * This is a release store so that the ordinary store unmapping
1444	 * the page table page is globally performed before TLB shoot-
1445	 * down is begun.
1446	 */
1447	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1448
1449	/*
1450	 * Do an invltlb to make the invalidated mapping
1451	 * take effect immediately.
1452	 */
1453	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1454	pmap_invalidate_page(pmap, pteva);
1455
1456	/*
1457	 * Put page on a list so that it is released after
1458	 * *ALL* TLB shootdown is done
1459	 */
1460	m->right = *free;
1461	*free = m;
1462
1463	return 1;
1464}
1465
1466/*
1467 * After removing a page table entry, this routine is used to
1468 * conditionally free the page, and manage the hold/wire counts.
1469 */
1470static int
1471pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1472{
1473	pd_entry_t ptepde;
1474	vm_page_t mpte;
1475
1476	if (va >= VM_MAXUSER_ADDRESS)
1477		return 0;
1478	ptepde = PT_GET(pmap_pde(pmap, va));
1479	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1480	return pmap_unwire_pte_hold(pmap, mpte, free);
1481}
1482
1483void
1484pmap_pinit0(pmap_t pmap)
1485{
1486
1487	PMAP_LOCK_INIT(pmap);
1488	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1489#ifdef PAE
1490	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1491#endif
1492	pmap->pm_active = 0;
1493	PCPU_SET(curpmap, pmap);
1494	TAILQ_INIT(&pmap->pm_pvchunk);
1495	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1496	mtx_lock_spin(&allpmaps_lock);
1497	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1498	mtx_unlock_spin(&allpmaps_lock);
1499}
1500
1501/*
1502 * Initialize a preallocated and zeroed pmap structure,
1503 * such as one in a vmspace structure.
1504 */
1505int
1506pmap_pinit(pmap_t pmap)
1507{
1508	vm_page_t m, ptdpg[NPGPTD + 1];
1509	int npgptd = NPGPTD + 1;
1510	static int color;
1511	int i;
1512
1513	PMAP_LOCK_INIT(pmap);
1514
1515	/*
1516	 * No need to allocate page table space yet but we do need a valid
1517	 * page directory table.
1518	 */
1519	if (pmap->pm_pdir == NULL) {
1520		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1521		    NBPTD);
1522		if (pmap->pm_pdir == NULL) {
1523			PMAP_LOCK_DESTROY(pmap);
1524			return (0);
1525		}
1526#if defined(XEN) && defined(PAE)
1527		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1528#endif
1529
1530#if defined(PAE) && !defined(XEN)
1531		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1532		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1533		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1534		    ("pmap_pinit: pdpt misaligned"));
1535		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1536		    ("pmap_pinit: pdpt above 4g"));
1537#endif
1538	}
1539
1540	/*
1541	 * allocate the page directory page(s)
1542	 */
1543	for (i = 0; i < npgptd;) {
1544		m = vm_page_alloc(NULL, color++,
1545		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1546		    VM_ALLOC_ZERO);
1547		if (m == NULL)
1548			VM_WAIT;
1549		else {
1550			ptdpg[i++] = m;
1551		}
1552	}
1553	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1554	for (i = 0; i < NPGPTD; i++) {
1555		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1556			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1557	}
1558
1559	mtx_lock_spin(&allpmaps_lock);
1560	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1561	mtx_unlock_spin(&allpmaps_lock);
1562	/* Wire in kernel global address entries. */
1563
1564	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1565#ifdef PAE
1566#ifdef XEN
1567	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1568	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1569		bzero(pmap->pm_pdpt, PAGE_SIZE);
1570#endif
1571	for (i = 0; i < NPGPTD; i++) {
1572		vm_paddr_t ma;
1573
1574		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1575		pmap->pm_pdpt[i] = ma | PG_V;
1576
1577	}
1578#endif
1579#ifdef XEN
1580	for (i = 0; i < NPGPTD; i++) {
1581		pt_entry_t *pd;
1582		vm_paddr_t ma;
1583
1584		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1585		pd = pmap->pm_pdir + (i * NPDEPG);
1586		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1587#if 0
1588		xen_pgd_pin(ma);
1589#endif
1590	}
1591
1592#ifdef PAE
1593	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1594#endif
1595	vm_page_lock_queues();
1596	xen_flush_queue();
1597	xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
1598	for (i = 0; i < NPGPTD; i++) {
1599		vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1600		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1601	}
1602	xen_flush_queue();
1603	vm_page_unlock_queues();
1604#endif
1605	pmap->pm_active = 0;
1606	TAILQ_INIT(&pmap->pm_pvchunk);
1607	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1608
1609	return (1);
1610}
1611
1612/*
1613 * this routine is called if the page table page is not
1614 * mapped correctly.
1615 */
1616static vm_page_t
1617_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1618{
1619	vm_paddr_t ptema;
1620	vm_page_t m;
1621
1622	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1623	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1624	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1625
1626	/*
1627	 * Allocate a page table page.
1628	 */
1629	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1630	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1631		if (flags & M_WAITOK) {
1632			PMAP_UNLOCK(pmap);
1633			vm_page_unlock_queues();
1634			VM_WAIT;
1635			vm_page_lock_queues();
1636			PMAP_LOCK(pmap);
1637		}
1638
1639		/*
1640		 * Indicate the need to retry.  While waiting, the page table
1641		 * page may have been allocated.
1642		 */
1643		return (NULL);
1644	}
1645	if ((m->flags & PG_ZERO) == 0)
1646		pmap_zero_page(m);
1647
1648	/*
1649	 * Map the pagetable page into the process address space, if
1650	 * it isn't already there.
1651	 */
1652	pmap->pm_stats.resident_count++;
1653
1654	ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1655	xen_pt_pin(ptema);
1656	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1657		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1658
1659	KASSERT(pmap->pm_pdir[ptepindex],
1660	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1661	return (m);
1662}
1663
1664static vm_page_t
1665pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1666{
1667	unsigned ptepindex;
1668	pd_entry_t ptema;
1669	vm_page_t m;
1670
1671	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1672	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1673	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1674
1675	/*
1676	 * Calculate pagetable page index
1677	 */
1678	ptepindex = va >> PDRSHIFT;
1679retry:
1680	/*
1681	 * Get the page directory entry
1682	 */
1683	ptema = pmap->pm_pdir[ptepindex];
1684
1685	/*
1686	 * This supports switching from a 4MB page to a
1687	 * normal 4K page.
1688	 */
1689	if (ptema & PG_PS) {
1690		/*
1691		 * XXX
1692		 */
1693		pmap->pm_pdir[ptepindex] = 0;
1694		ptema = 0;
1695		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1696		pmap_invalidate_all(kernel_pmap);
1697	}
1698
1699	/*
1700	 * If the page table page is mapped, we just increment the
1701	 * hold count, and activate it.
1702	 */
1703	if (ptema & PG_V) {
1704		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1705		m->wire_count++;
1706	} else {
1707		/*
1708		 * Here if the pte page isn't mapped, or if it has
1709		 * been deallocated.
1710		 */
1711		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1712		    pmap, va, flags);
1713		m = _pmap_allocpte(pmap, ptepindex, flags);
1714		if (m == NULL && (flags & M_WAITOK))
1715			goto retry;
1716
1717		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1718	}
1719	return (m);
1720}
1721
1722
1723/***************************************************
1724* Pmap allocation/deallocation routines.
1725 ***************************************************/
1726
1727#ifdef SMP
1728/*
1729 * Deal with a SMP shootdown of other users of the pmap that we are
1730 * trying to dispose of.  This can be a bit hairy.
1731 */
1732static cpumask_t *lazymask;
1733static u_int lazyptd;
1734static volatile u_int lazywait;
1735
1736void pmap_lazyfix_action(void);
1737
1738void
1739pmap_lazyfix_action(void)
1740{
1741	cpumask_t mymask = PCPU_GET(cpumask);
1742
1743#ifdef COUNT_IPIS
1744	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1745#endif
1746	if (rcr3() == lazyptd)
1747		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1748	atomic_clear_int(lazymask, mymask);
1749	atomic_store_rel_int(&lazywait, 1);
1750}
1751
1752static void
1753pmap_lazyfix_self(cpumask_t mymask)
1754{
1755
1756	if (rcr3() == lazyptd)
1757		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1758	atomic_clear_int(lazymask, mymask);
1759}
1760
1761
1762static void
1763pmap_lazyfix(pmap_t pmap)
1764{
1765	cpumask_t mymask, mask;
1766	u_int spins;
1767
1768	while ((mask = pmap->pm_active) != 0) {
1769		spins = 50000000;
1770		mask = mask & -mask;	/* Find least significant set bit */
1771		mtx_lock_spin(&smp_ipi_mtx);
1772#ifdef PAE
1773		lazyptd = vtophys(pmap->pm_pdpt);
1774#else
1775		lazyptd = vtophys(pmap->pm_pdir);
1776#endif
1777		mymask = PCPU_GET(cpumask);
1778		if (mask == mymask) {
1779			lazymask = &pmap->pm_active;
1780			pmap_lazyfix_self(mymask);
1781		} else {
1782			atomic_store_rel_int((u_int *)&lazymask,
1783			    (u_int)&pmap->pm_active);
1784			atomic_store_rel_int(&lazywait, 0);
1785			ipi_selected(mask, IPI_LAZYPMAP);
1786			while (lazywait == 0) {
1787				ia32_pause();
1788				if (--spins == 0)
1789					break;
1790			}
1791		}
1792		mtx_unlock_spin(&smp_ipi_mtx);
1793		if (spins == 0)
1794			printf("pmap_lazyfix: spun for 50000000\n");
1795	}
1796}
1797
1798#else	/* SMP */
1799
1800/*
1801 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1802 * unlikely to have to even execute this code, including the fact
1803 * that the cleanup is deferred until the parent does a wait(2), which
1804 * means that another userland process has run.
1805 */
1806static void
1807pmap_lazyfix(pmap_t pmap)
1808{
1809	u_int cr3;
1810
1811	cr3 = vtophys(pmap->pm_pdir);
1812	if (cr3 == rcr3()) {
1813		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1814		pmap->pm_active &= ~(PCPU_GET(cpumask));
1815	}
1816}
1817#endif	/* SMP */
1818
1819/*
1820 * Release any resources held by the given physical map.
1821 * Called when a pmap initialized by pmap_pinit is being released.
1822 * Should only be called if the map contains no valid mappings.
1823 */
1824void
1825pmap_release(pmap_t pmap)
1826{
1827	vm_page_t m, ptdpg[2*NPGPTD+1];
1828	vm_paddr_t ma;
1829	int i;
1830#ifdef XEN
1831#ifdef PAE
1832	int npgptd = NPGPTD + 1;
1833#else
1834	int npgptd = NPGPTD;
1835#endif
1836#else
1837	int npgptd = NPGPTD;
1838#endif
1839	KASSERT(pmap->pm_stats.resident_count == 0,
1840	    ("pmap_release: pmap resident count %ld != 0",
1841	    pmap->pm_stats.resident_count));
1842	PT_UPDATES_FLUSH();
1843
1844	pmap_lazyfix(pmap);
1845	mtx_lock_spin(&allpmaps_lock);
1846	LIST_REMOVE(pmap, pm_list);
1847	mtx_unlock_spin(&allpmaps_lock);
1848
1849	for (i = 0; i < NPGPTD; i++)
1850		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1851	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1852#if defined(PAE) && defined(XEN)
1853	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1854#endif
1855
1856	for (i = 0; i < npgptd; i++) {
1857		m = ptdpg[i];
1858		ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1859		/* unpinning L1 and L2 treated the same */
1860                xen_pgd_unpin(ma);
1861#ifdef PAE
1862		KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
1863		    ("pmap_release: got wrong ptd page"));
1864#endif
1865		m->wire_count--;
1866		atomic_subtract_int(&cnt.v_wire_count, 1);
1867		vm_page_free(m);
1868	}
1869	PMAP_LOCK_DESTROY(pmap);
1870}
1871
1872static int
1873kvm_size(SYSCTL_HANDLER_ARGS)
1874{
1875	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1876
1877	return sysctl_handle_long(oidp, &ksize, 0, req);
1878}
1879SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1880    0, 0, kvm_size, "IU", "Size of KVM");
1881
1882static int
1883kvm_free(SYSCTL_HANDLER_ARGS)
1884{
1885	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1886
1887	return sysctl_handle_long(oidp, &kfree, 0, req);
1888}
1889SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1890    0, 0, kvm_free, "IU", "Amount of KVM free");
1891
1892/*
1893 * grow the number of kernel page table entries, if needed
1894 */
1895void
1896pmap_growkernel(vm_offset_t addr)
1897{
1898	struct pmap *pmap;
1899	vm_paddr_t ptppaddr;
1900	vm_page_t nkpg;
1901	pd_entry_t newpdir;
1902
1903	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1904	if (kernel_vm_end == 0) {
1905		kernel_vm_end = KERNBASE;
1906		nkpt = 0;
1907		while (pdir_pde(PTD, kernel_vm_end)) {
1908			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1909			nkpt++;
1910			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1911				kernel_vm_end = kernel_map->max_offset;
1912				break;
1913			}
1914		}
1915	}
1916	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1917	if (addr - 1 >= kernel_map->max_offset)
1918		addr = kernel_map->max_offset;
1919	while (kernel_vm_end < addr) {
1920		if (pdir_pde(PTD, kernel_vm_end)) {
1921			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1922			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1923				kernel_vm_end = kernel_map->max_offset;
1924				break;
1925			}
1926			continue;
1927		}
1928
1929		/*
1930		 * This index is bogus, but out of the way
1931		 */
1932		nkpg = vm_page_alloc(NULL, nkpt,
1933		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1934		if (!nkpg)
1935			panic("pmap_growkernel: no memory to grow kernel");
1936
1937		nkpt++;
1938
1939		pmap_zero_page(nkpg);
1940		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1941		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1942		vm_page_lock_queues();
1943		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1944		mtx_lock_spin(&allpmaps_lock);
1945		LIST_FOREACH(pmap, &allpmaps, pm_list)
1946			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1947
1948		mtx_unlock_spin(&allpmaps_lock);
1949		vm_page_unlock_queues();
1950
1951		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1952		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1953			kernel_vm_end = kernel_map->max_offset;
1954			break;
1955		}
1956	}
1957}
1958
1959
1960/***************************************************
1961 * page management routines.
1962 ***************************************************/
1963
1964CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1965CTASSERT(_NPCM == 11);
1966
1967static __inline struct pv_chunk *
1968pv_to_chunk(pv_entry_t pv)
1969{
1970
1971	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1972}
1973
1974#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1975
1976#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1977#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1978
1979static uint32_t pc_freemask[11] = {
1980	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1981	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1982	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1983	PC_FREE0_9, PC_FREE10
1984};
1985
1986SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1987	"Current number of pv entries");
1988
1989#ifdef PV_STATS
1990static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1991
1992SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1993	"Current number of pv entry chunks");
1994SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1995	"Current number of pv entry chunks allocated");
1996SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1997	"Current number of pv entry chunks frees");
1998SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1999	"Number of times tried to get a chunk page but failed.");
2000
2001static long pv_entry_frees, pv_entry_allocs;
2002static int pv_entry_spare;
2003
2004SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2005	"Current number of pv entry frees");
2006SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2007	"Current number of pv entry allocs");
2008SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2009	"Current number of spare pv entries");
2010
2011static int pmap_collect_inactive, pmap_collect_active;
2012
2013SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2014	"Current number times pmap_collect called on inactive queue");
2015SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2016	"Current number times pmap_collect called on active queue");
2017#endif
2018
2019/*
2020 * We are in a serious low memory condition.  Resort to
2021 * drastic measures to free some pages so we can allocate
2022 * another pv entry chunk.  This is normally called to
2023 * unmap inactive pages, and if necessary, active pages.
2024 */
2025static void
2026pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2027{
2028	pmap_t pmap;
2029	pt_entry_t *pte, tpte;
2030	pv_entry_t next_pv, pv;
2031	vm_offset_t va;
2032	vm_page_t m, free;
2033
2034	sched_pin();
2035	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2036		if (m->hold_count || m->busy)
2037			continue;
2038		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2039			va = pv->pv_va;
2040			pmap = PV_PMAP(pv);
2041			/* Avoid deadlock and lock recursion. */
2042			if (pmap > locked_pmap)
2043				PMAP_LOCK(pmap);
2044			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2045				continue;
2046			pmap->pm_stats.resident_count--;
2047			pte = pmap_pte_quick(pmap, va);
2048			tpte = pte_load_clear(pte);
2049			KASSERT((tpte & PG_W) == 0,
2050			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2051			if (tpte & PG_A)
2052				vm_page_flag_set(m, PG_REFERENCED);
2053			if (tpte & PG_M) {
2054				KASSERT((tpte & PG_RW),
2055	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
2056				    va, (uintmax_t)tpte));
2057				vm_page_dirty(m);
2058			}
2059			free = NULL;
2060			pmap_unuse_pt(pmap, va, &free);
2061			pmap_invalidate_page(pmap, va);
2062			pmap_free_zero_pages(free);
2063			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2064			if (TAILQ_EMPTY(&m->md.pv_list))
2065				vm_page_flag_clear(m, PG_WRITEABLE);
2066			free_pv_entry(pmap, pv);
2067			if (pmap != locked_pmap)
2068				PMAP_UNLOCK(pmap);
2069		}
2070	}
2071	sched_unpin();
2072}
2073
2074
2075/*
2076 * free the pv_entry back to the free list
2077 */
2078static void
2079free_pv_entry(pmap_t pmap, pv_entry_t pv)
2080{
2081	vm_page_t m;
2082	struct pv_chunk *pc;
2083	int idx, field, bit;
2084
2085	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2086	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2087	PV_STAT(pv_entry_frees++);
2088	PV_STAT(pv_entry_spare++);
2089	pv_entry_count--;
2090	pc = pv_to_chunk(pv);
2091	idx = pv - &pc->pc_pventry[0];
2092	field = idx / 32;
2093	bit = idx % 32;
2094	pc->pc_map[field] |= 1ul << bit;
2095	/* move to head of list */
2096	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2097	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2098	for (idx = 0; idx < _NPCM; idx++)
2099		if (pc->pc_map[idx] != pc_freemask[idx])
2100			return;
2101	PV_STAT(pv_entry_spare -= _NPCPV);
2102	PV_STAT(pc_chunk_count--);
2103	PV_STAT(pc_chunk_frees++);
2104	/* entire chunk is free, return it */
2105	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2106	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2107	pmap_qremove((vm_offset_t)pc, 1);
2108	vm_page_unwire(m, 0);
2109	vm_page_free(m);
2110	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2111}
2112
2113/*
2114 * get a new pv_entry, allocating a block from the system
2115 * when needed.
2116 */
2117static pv_entry_t
2118get_pv_entry(pmap_t pmap, int try)
2119{
2120	static const struct timeval printinterval = { 60, 0 };
2121	static struct timeval lastprint;
2122	static vm_pindex_t colour;
2123	struct vpgqueues *pq;
2124	int bit, field;
2125	pv_entry_t pv;
2126	struct pv_chunk *pc;
2127	vm_page_t m;
2128
2129	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2130	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2131	PV_STAT(pv_entry_allocs++);
2132	pv_entry_count++;
2133	if (pv_entry_count > pv_entry_high_water)
2134		if (ratecheck(&lastprint, &printinterval))
2135			printf("Approaching the limit on PV entries, consider "
2136			    "increasing either the vm.pmap.shpgperproc or the "
2137			    "vm.pmap.pv_entry_max tunable.\n");
2138	pq = NULL;
2139retry:
2140	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2141	if (pc != NULL) {
2142		for (field = 0; field < _NPCM; field++) {
2143			if (pc->pc_map[field]) {
2144				bit = bsfl(pc->pc_map[field]);
2145				break;
2146			}
2147		}
2148		if (field < _NPCM) {
2149			pv = &pc->pc_pventry[field * 32 + bit];
2150			pc->pc_map[field] &= ~(1ul << bit);
2151			/* If this was the last item, move it to tail */
2152			for (field = 0; field < _NPCM; field++)
2153				if (pc->pc_map[field] != 0) {
2154					PV_STAT(pv_entry_spare--);
2155					return (pv);	/* not full, return */
2156				}
2157			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2158			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2159			PV_STAT(pv_entry_spare--);
2160			return (pv);
2161		}
2162	}
2163	/*
2164	 * Access to the ptelist "pv_vafree" is synchronized by the page
2165	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2166	 * remain non-empty until pmap_ptelist_alloc() completes.
2167	 */
2168	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2169	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2170	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2171		if (try) {
2172			pv_entry_count--;
2173			PV_STAT(pc_chunk_tryfail++);
2174			return (NULL);
2175		}
2176		/*
2177		 * Reclaim pv entries: At first, destroy mappings to
2178		 * inactive pages.  After that, if a pv chunk entry
2179		 * is still needed, destroy mappings to active pages.
2180		 */
2181		if (pq == NULL) {
2182			PV_STAT(pmap_collect_inactive++);
2183			pq = &vm_page_queues[PQ_INACTIVE];
2184		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2185			PV_STAT(pmap_collect_active++);
2186			pq = &vm_page_queues[PQ_ACTIVE];
2187		} else
2188			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2189		pmap_collect(pmap, pq);
2190		goto retry;
2191	}
2192	PV_STAT(pc_chunk_count++);
2193	PV_STAT(pc_chunk_allocs++);
2194	colour++;
2195	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2196	pmap_qenter((vm_offset_t)pc, &m, 1);
2197	if ((m->flags & PG_ZERO) == 0)
2198		pagezero(pc);
2199	pc->pc_pmap = pmap;
2200	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2201	for (field = 1; field < _NPCM; field++)
2202		pc->pc_map[field] = pc_freemask[field];
2203	pv = &pc->pc_pventry[0];
2204	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2205	PV_STAT(pv_entry_spare += _NPCPV - 1);
2206	return (pv);
2207}
2208
2209static void
2210pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2211{
2212	pv_entry_t pv;
2213
2214	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2215	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2216	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2217		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
2218			break;
2219	}
2220	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
2221	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2222	if (TAILQ_EMPTY(&m->md.pv_list))
2223		vm_page_flag_clear(m, PG_WRITEABLE);
2224	free_pv_entry(pmap, pv);
2225}
2226
2227/*
2228 * Create a pv entry for page at pa for
2229 * (pmap, va).
2230 */
2231static void
2232pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2233{
2234	pv_entry_t pv;
2235
2236	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2237	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2238	pv = get_pv_entry(pmap, FALSE);
2239	pv->pv_va = va;
2240	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2241}
2242
2243/*
2244 * Conditionally create a pv entry.
2245 */
2246static boolean_t
2247pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2248{
2249	pv_entry_t pv;
2250
2251	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2252	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2253	if (pv_entry_count < pv_entry_high_water &&
2254	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2255		pv->pv_va = va;
2256		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2257		return (TRUE);
2258	} else
2259		return (FALSE);
2260}
2261
2262/*
2263 * pmap_remove_pte: do the things to unmap a page in a process
2264 */
2265static int
2266pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2267{
2268	pt_entry_t oldpte;
2269	vm_page_t m;
2270
2271	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2272	    pmap, (u_long)*ptq, va);
2273
2274	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2275	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2276	oldpte = *ptq;
2277	PT_SET_VA_MA(ptq, 0, TRUE);
2278	if (oldpte & PG_W)
2279		pmap->pm_stats.wired_count -= 1;
2280	/*
2281	 * Machines that don't support invlpg, also don't support
2282	 * PG_G.
2283	 */
2284	if (oldpte & PG_G)
2285		pmap_invalidate_page(kernel_pmap, va);
2286	pmap->pm_stats.resident_count -= 1;
2287	/*
2288	 * XXX This is not strictly correctly, but somewhere along the line
2289	 * we are losing the managed bit on some pages. It is unclear to me
2290	 * why, but I think the most likely explanation is that xen's writable
2291	 * page table implementation doesn't respect the unused bits.
2292	 */
2293	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2294		) {
2295		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2296
2297		if (!(oldpte & PG_MANAGED))
2298			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2299
2300		if (oldpte & PG_M) {
2301			KASSERT((oldpte & PG_RW),
2302	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
2303			    va, (uintmax_t)oldpte));
2304			vm_page_dirty(m);
2305		}
2306		if (oldpte & PG_A)
2307			vm_page_flag_set(m, PG_REFERENCED);
2308		pmap_remove_entry(pmap, m, va);
2309	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2310		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2311
2312	return (pmap_unuse_pt(pmap, va, free));
2313}
2314
2315/*
2316 * Remove a single page from a process address space
2317 */
2318static void
2319pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2320{
2321	pt_entry_t *pte;
2322
2323	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2324	    pmap, va);
2325
2326	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2327	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2328	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2329	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2330		return;
2331	pmap_remove_pte(pmap, pte, va, free);
2332	pmap_invalidate_page(pmap, va);
2333	if (*PMAP1)
2334		PT_SET_MA(PADDR1, 0);
2335
2336}
2337
2338/*
2339 *	Remove the given range of addresses from the specified map.
2340 *
2341 *	It is assumed that the start and end are properly
2342 *	rounded to the page size.
2343 */
2344void
2345pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2346{
2347	vm_offset_t pdnxt;
2348	pd_entry_t ptpaddr;
2349	pt_entry_t *pte;
2350	vm_page_t free = NULL;
2351	int anyvalid;
2352
2353	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2354	    pmap, sva, eva);
2355
2356	/*
2357	 * Perform an unsynchronized read.  This is, however, safe.
2358	 */
2359	if (pmap->pm_stats.resident_count == 0)
2360		return;
2361
2362	anyvalid = 0;
2363
2364	vm_page_lock_queues();
2365	sched_pin();
2366	PMAP_LOCK(pmap);
2367
2368	/*
2369	 * special handling of removing one page.  a very
2370	 * common operation and easy to short circuit some
2371	 * code.
2372	 */
2373	if ((sva + PAGE_SIZE == eva) &&
2374	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2375		pmap_remove_page(pmap, sva, &free);
2376		goto out;
2377	}
2378
2379	for (; sva < eva; sva = pdnxt) {
2380		unsigned pdirindex;
2381
2382		/*
2383		 * Calculate index for next page table.
2384		 */
2385		pdnxt = (sva + NBPDR) & ~PDRMASK;
2386		if (pmap->pm_stats.resident_count == 0)
2387			break;
2388
2389		pdirindex = sva >> PDRSHIFT;
2390		ptpaddr = pmap->pm_pdir[pdirindex];
2391
2392		/*
2393		 * Weed out invalid mappings. Note: we assume that the page
2394		 * directory table is always allocated, and in kernel virtual.
2395		 */
2396		if (ptpaddr == 0)
2397			continue;
2398
2399		/*
2400		 * Check for large page.
2401		 */
2402		if ((ptpaddr & PG_PS) != 0) {
2403			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2404			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2405			anyvalid = 1;
2406			continue;
2407		}
2408
2409		/*
2410		 * Limit our scan to either the end of the va represented
2411		 * by the current page table page, or to the end of the
2412		 * range being removed.
2413		 */
2414		if (pdnxt > eva)
2415			pdnxt = eva;
2416
2417		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2418		    sva += PAGE_SIZE) {
2419			if ((*pte & PG_V) == 0)
2420				continue;
2421
2422			/*
2423			 * The TLB entry for a PG_G mapping is invalidated
2424			 * by pmap_remove_pte().
2425			 */
2426			if ((*pte & PG_G) == 0)
2427				anyvalid = 1;
2428			if (pmap_remove_pte(pmap, pte, sva, &free))
2429				break;
2430		}
2431	}
2432	PT_UPDATES_FLUSH();
2433	if (*PMAP1)
2434		PT_SET_VA_MA(PMAP1, 0, TRUE);
2435out:
2436	if (anyvalid)
2437		pmap_invalidate_all(pmap);
2438	sched_unpin();
2439	vm_page_unlock_queues();
2440	PMAP_UNLOCK(pmap);
2441	pmap_free_zero_pages(free);
2442}
2443
2444/*
2445 *	Routine:	pmap_remove_all
2446 *	Function:
2447 *		Removes this physical page from
2448 *		all physical maps in which it resides.
2449 *		Reflects back modify bits to the pager.
2450 *
2451 *	Notes:
2452 *		Original versions of this routine were very
2453 *		inefficient because they iteratively called
2454 *		pmap_remove (slow...)
2455 */
2456
2457void
2458pmap_remove_all(vm_page_t m)
2459{
2460	pv_entry_t pv;
2461	pmap_t pmap;
2462	pt_entry_t *pte, tpte;
2463	vm_page_t free;
2464
2465#if defined(PMAP_DIAGNOSTIC)
2466	/*
2467	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2468	 */
2469	if (m->flags & PG_FICTITIOUS) {
2470		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%jx",
2471		    VM_PAGE_TO_PHYS(m) & 0xffffffff);
2472	}
2473#endif
2474	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2475	sched_pin();
2476	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2477		pmap = PV_PMAP(pv);
2478		PMAP_LOCK(pmap);
2479		pmap->pm_stats.resident_count--;
2480		pte = pmap_pte_quick(pmap, pv->pv_va);
2481
2482		tpte = *pte;
2483		PT_SET_VA_MA(pte, 0, TRUE);
2484		if (tpte & PG_W)
2485			pmap->pm_stats.wired_count--;
2486		if (tpte & PG_A)
2487			vm_page_flag_set(m, PG_REFERENCED);
2488
2489		/*
2490		 * Update the vm_page_t clean and reference bits.
2491		 */
2492		if (tpte & PG_M) {
2493			KASSERT((tpte & PG_RW),
2494	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2495			    pv->pv_va, (uintmax_t)tpte));
2496			vm_page_dirty(m);
2497		}
2498		free = NULL;
2499		pmap_unuse_pt(pmap, pv->pv_va, &free);
2500		pmap_invalidate_page(pmap, pv->pv_va);
2501		pmap_free_zero_pages(free);
2502		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2503		free_pv_entry(pmap, pv);
2504		PMAP_UNLOCK(pmap);
2505	}
2506	vm_page_flag_clear(m, PG_WRITEABLE);
2507	PT_UPDATES_FLUSH();
2508	if (*PMAP1)
2509		PT_SET_MA(PADDR1, 0);
2510	sched_unpin();
2511}
2512
2513/*
2514 *	Set the physical protection on the
2515 *	specified range of this map as requested.
2516 */
2517void
2518pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2519{
2520	vm_offset_t pdnxt;
2521	pd_entry_t ptpaddr;
2522	pt_entry_t *pte;
2523	int anychanged;
2524
2525	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2526	    pmap, sva, eva, prot);
2527
2528	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2529		pmap_remove(pmap, sva, eva);
2530		return;
2531	}
2532
2533#ifdef PAE
2534	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2535	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2536		return;
2537#else
2538	if (prot & VM_PROT_WRITE)
2539		return;
2540#endif
2541
2542	anychanged = 0;
2543
2544	vm_page_lock_queues();
2545	sched_pin();
2546	PMAP_LOCK(pmap);
2547	for (; sva < eva; sva = pdnxt) {
2548		pt_entry_t obits, pbits;
2549		unsigned pdirindex;
2550
2551		pdnxt = (sva + NBPDR) & ~PDRMASK;
2552
2553		pdirindex = sva >> PDRSHIFT;
2554		ptpaddr = pmap->pm_pdir[pdirindex];
2555
2556		/*
2557		 * Weed out invalid mappings. Note: we assume that the page
2558		 * directory table is always allocated, and in kernel virtual.
2559		 */
2560		if (ptpaddr == 0)
2561			continue;
2562
2563		/*
2564		 * Check for large page.
2565		 */
2566		if ((ptpaddr & PG_PS) != 0) {
2567			if ((prot & VM_PROT_WRITE) == 0)
2568				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2569#ifdef PAE
2570			if ((prot & VM_PROT_EXECUTE) == 0)
2571				pmap->pm_pdir[pdirindex] |= pg_nx;
2572#endif
2573			anychanged = 1;
2574			continue;
2575		}
2576
2577		if (pdnxt > eva)
2578			pdnxt = eva;
2579
2580		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2581		    sva += PAGE_SIZE) {
2582			vm_page_t m;
2583
2584retry:
2585			/*
2586			 * Regardless of whether a pte is 32 or 64 bits in
2587			 * size, PG_RW, PG_A, and PG_M are among the least
2588			 * significant 32 bits.
2589			 */
2590			obits = pbits = *pte;
2591			if ((pbits & PG_V) == 0)
2592				continue;
2593			if (pbits & PG_MANAGED) {
2594				m = NULL;
2595				if (pbits & PG_A) {
2596					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
2597					vm_page_flag_set(m, PG_REFERENCED);
2598					pbits &= ~PG_A;
2599				}
2600				if ((pbits & PG_M) != 0) {
2601					if (m == NULL)
2602						m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
2603					vm_page_dirty(m);
2604				}
2605			}
2606
2607			if ((prot & VM_PROT_WRITE) == 0)
2608				pbits &= ~(PG_RW | PG_M);
2609#ifdef PAE
2610			if ((prot & VM_PROT_EXECUTE) == 0)
2611				pbits |= pg_nx;
2612#endif
2613
2614			if (pbits != obits) {
2615#ifdef XEN
2616				obits = *pte;
2617				PT_SET_VA_MA(pte, pbits, TRUE);
2618				if (*pte != pbits)
2619					goto retry;
2620#else
2621#ifdef PAE
2622				if (!atomic_cmpset_64(pte, obits, pbits))
2623					goto retry;
2624#else
2625				if (!atomic_cmpset_int((u_int *)pte, obits,
2626				    pbits))
2627					goto retry;
2628#endif
2629#endif
2630				if (obits & PG_G)
2631					pmap_invalidate_page(pmap, sva);
2632				else
2633					anychanged = 1;
2634			}
2635		}
2636	}
2637	PT_UPDATES_FLUSH();
2638	if (*PMAP1)
2639		PT_SET_VA_MA(PMAP1, 0, TRUE);
2640	if (anychanged)
2641		pmap_invalidate_all(pmap);
2642	sched_unpin();
2643	vm_page_unlock_queues();
2644	PMAP_UNLOCK(pmap);
2645}
2646
2647/*
2648 *	Insert the given physical page (p) at
2649 *	the specified virtual address (v) in the
2650 *	target physical map with the protection requested.
2651 *
2652 *	If specified, the page will be wired down, meaning
2653 *	that the related pte can not be reclaimed.
2654 *
2655 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2656 *	or lose information.  That is, this routine must actually
2657 *	insert this page into the given map NOW.
2658 */
2659void
2660pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2661    vm_prot_t prot, boolean_t wired)
2662{
2663	vm_paddr_t pa;
2664	pd_entry_t *pde;
2665	pt_entry_t *pte;
2666	vm_paddr_t opa;
2667	pt_entry_t origpte, newpte;
2668	vm_page_t mpte, om;
2669	boolean_t invlva;
2670
2671	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2672	    pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
2673	va = trunc_page(va);
2674#ifdef PMAP_DIAGNOSTIC
2675	if (va > VM_MAX_KERNEL_ADDRESS)
2676		panic("pmap_enter: toobig");
2677	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2678		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2679#endif
2680
2681	mpte = NULL;
2682
2683	vm_page_lock_queues();
2684	PMAP_LOCK(pmap);
2685	sched_pin();
2686
2687	/*
2688	 * In the case that a page table page is not
2689	 * resident, we are creating it here.
2690	 */
2691	if (va < VM_MAXUSER_ADDRESS) {
2692		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2693	}
2694#if 0 && defined(PMAP_DIAGNOSTIC)
2695	else {
2696		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2697		origpte = *pdeaddr;
2698		if ((origpte & PG_V) == 0) {
2699			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2700				pmap->pm_pdir[PTDPTDI], origpte, va);
2701		}
2702	}
2703#endif
2704
2705	pde = pmap_pde(pmap, va);
2706	if ((*pde & PG_PS) != 0)
2707		panic("pmap_enter: attempted pmap_enter on 4MB page");
2708	pte = pmap_pte_quick(pmap, va);
2709
2710	/*
2711	 * Page Directory table entry not valid, we need a new PT page
2712	 */
2713	if (pte == NULL) {
2714		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2715			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2716	}
2717
2718	pa = VM_PAGE_TO_PHYS(m);
2719	om = NULL;
2720	opa = origpte = 0;
2721
2722#if 0
2723	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2724		pte, *pte));
2725#endif
2726	origpte = *pte;
2727	if (origpte)
2728		origpte = xpmap_mtop(origpte);
2729	opa = origpte & PG_FRAME;
2730
2731	/*
2732	 * Mapping has not changed, must be protection or wiring change.
2733	 */
2734	if (origpte && (opa == pa)) {
2735		/*
2736		 * Wiring change, just update stats. We don't worry about
2737		 * wiring PT pages as they remain resident as long as there
2738		 * are valid mappings in them. Hence, if a user page is wired,
2739		 * the PT page will be also.
2740		 */
2741		if (wired && ((origpte & PG_W) == 0))
2742			pmap->pm_stats.wired_count++;
2743		else if (!wired && (origpte & PG_W))
2744			pmap->pm_stats.wired_count--;
2745
2746		/*
2747		 * Remove extra pte reference
2748		 */
2749		if (mpte)
2750			mpte->wire_count--;
2751
2752		/*
2753		 * We might be turning off write access to the page,
2754		 * so we go ahead and sense modify status.
2755		 */
2756		if (origpte & PG_MANAGED) {
2757			om = m;
2758			pa |= PG_MANAGED;
2759		}
2760		goto validate;
2761	}
2762	/*
2763	 * Mapping has changed, invalidate old range and fall through to
2764	 * handle validating new mapping.
2765	 */
2766	if (opa) {
2767		if (origpte & PG_W)
2768			pmap->pm_stats.wired_count--;
2769		if (origpte & PG_MANAGED) {
2770			om = PHYS_TO_VM_PAGE(opa);
2771			pmap_remove_entry(pmap, om, va);
2772		} else if (va < VM_MAXUSER_ADDRESS)
2773			printf("va=0x%x is unmanaged :-( \n", va);
2774
2775		if (mpte != NULL) {
2776			mpte->wire_count--;
2777			KASSERT(mpte->wire_count > 0,
2778			    ("pmap_enter: missing reference to page table page,"
2779			     " va: 0x%x", va));
2780		}
2781	} else
2782		pmap->pm_stats.resident_count++;
2783
2784	/*
2785	 * Enter on the PV list if part of our managed memory.
2786	 */
2787	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2788		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2789		    ("pmap_enter: managed mapping within the clean submap"));
2790		pmap_insert_entry(pmap, va, m);
2791		pa |= PG_MANAGED;
2792	}
2793
2794	/*
2795	 * Increment counters
2796	 */
2797	if (wired)
2798		pmap->pm_stats.wired_count++;
2799
2800validate:
2801	/*
2802	 * Now validate mapping with desired protection/wiring.
2803	 */
2804	newpte = (pt_entry_t)(pa | PG_V);
2805	if ((prot & VM_PROT_WRITE) != 0) {
2806		newpte |= PG_RW;
2807		vm_page_flag_set(m, PG_WRITEABLE);
2808	}
2809#ifdef PAE
2810	if ((prot & VM_PROT_EXECUTE) == 0)
2811		newpte |= pg_nx;
2812#endif
2813	if (wired)
2814		newpte |= PG_W;
2815	if (va < VM_MAXUSER_ADDRESS)
2816		newpte |= PG_U;
2817	if (pmap == kernel_pmap)
2818		newpte |= pgeflag;
2819
2820	critical_enter();
2821	/*
2822	 * if the mapping or permission bits are different, we need
2823	 * to update the pte.
2824	 */
2825	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2826		if (origpte) {
2827			invlva = FALSE;
2828			origpte = *pte;
2829			PT_SET_VA(pte, newpte | PG_A, FALSE);
2830			if (origpte & PG_A) {
2831				if (origpte & PG_MANAGED)
2832					vm_page_flag_set(om, PG_REFERENCED);
2833				if (opa != VM_PAGE_TO_PHYS(m))
2834					invlva = TRUE;
2835#ifdef PAE
2836				if ((origpte & PG_NX) == 0 &&
2837				    (newpte & PG_NX) != 0)
2838					invlva = TRUE;
2839#endif
2840			}
2841			if (origpte & PG_M) {
2842				KASSERT((origpte & PG_RW),
2843	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2844				    va, (uintmax_t)origpte));
2845				if ((origpte & PG_MANAGED) != 0)
2846					vm_page_dirty(om);
2847				if ((prot & VM_PROT_WRITE) == 0)
2848					invlva = TRUE;
2849			}
2850			if (invlva)
2851				pmap_invalidate_page(pmap, va);
2852		} else{
2853			PT_SET_VA(pte, newpte | PG_A, FALSE);
2854		}
2855
2856	}
2857	PT_UPDATES_FLUSH();
2858	critical_exit();
2859	if (*PMAP1)
2860		PT_SET_VA_MA(PMAP1, 0, TRUE);
2861	sched_unpin();
2862	vm_page_unlock_queues();
2863	PMAP_UNLOCK(pmap);
2864}
2865
2866/*
2867 * Maps a sequence of resident pages belonging to the same object.
2868 * The sequence begins with the given page m_start.  This page is
2869 * mapped at the given virtual address start.  Each subsequent page is
2870 * mapped at a virtual address that is offset from start by the same
2871 * amount as the page is offset from m_start within the object.  The
2872 * last page in the sequence is the page with the largest offset from
2873 * m_start that can be mapped at a virtual address less than the given
2874 * virtual address end.  Not every virtual page between start and end
2875 * is mapped; only those for which a resident page exists with the
2876 * corresponding offset from m_start are mapped.
2877 */
2878void
2879pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2880    vm_page_t m_start, vm_prot_t prot)
2881{
2882	vm_page_t m, mpte;
2883	vm_pindex_t diff, psize;
2884	multicall_entry_t mcl[16];
2885	multicall_entry_t *mclp = mcl;
2886	int error, count = 0;
2887
2888	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2889	psize = atop(end - start);
2890
2891	mpte = NULL;
2892	m = m_start;
2893	PMAP_LOCK(pmap);
2894	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2895		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2896		    prot, mpte);
2897		m = TAILQ_NEXT(m, listq);
2898		if (count == 16) {
2899			error = HYPERVISOR_multicall(mcl, count);
2900			KASSERT(error == 0, ("bad multicall %d", error));
2901			mclp = mcl;
2902			count = 0;
2903		}
2904	}
2905	if (count) {
2906		error = HYPERVISOR_multicall(mcl, count);
2907		KASSERT(error == 0, ("bad multicall %d", error));
2908	}
2909
2910	PMAP_UNLOCK(pmap);
2911}
2912
2913/*
2914 * this code makes some *MAJOR* assumptions:
2915 * 1. Current pmap & pmap exists.
2916 * 2. Not wired.
2917 * 3. Read access.
2918 * 4. No page table pages.
2919 * but is *MUCH* faster than pmap_enter...
2920 */
2921
2922void
2923pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2924{
2925	multicall_entry_t mcl, *mclp;
2926	int count = 0;
2927	mclp = &mcl;
2928
2929	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2930	    pmap, va, m, prot);
2931
2932	PMAP_LOCK(pmap);
2933	(void) pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2934	if (count)
2935		HYPERVISOR_multicall(&mcl, count);
2936	PMAP_UNLOCK(pmap);
2937}
2938
2939#ifdef notyet
2940void
2941pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2942{
2943	int i, error, index = 0;
2944	multicall_entry_t mcl[16];
2945	multicall_entry_t *mclp = mcl;
2946
2947	PMAP_LOCK(pmap);
2948	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2949		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2950			continue;
2951
2952		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2953		if (index == 16) {
2954			error = HYPERVISOR_multicall(mcl, index);
2955			mclp = mcl;
2956			index = 0;
2957			KASSERT(error == 0, ("bad multicall %d", error));
2958		}
2959	}
2960	if (index) {
2961		error = HYPERVISOR_multicall(mcl, index);
2962		KASSERT(error == 0, ("bad multicall %d", error));
2963	}
2964
2965	PMAP_UNLOCK(pmap);
2966}
2967#endif
2968
2969static vm_page_t
2970pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2971    vm_prot_t prot, vm_page_t mpte)
2972{
2973	pt_entry_t *pte;
2974	vm_paddr_t pa;
2975	vm_page_t free;
2976	multicall_entry_t *mcl = *mclpp;
2977
2978	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2979	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2980	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2981	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2982	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2983
2984	/*
2985	 * In the case that a page table page is not
2986	 * resident, we are creating it here.
2987	 */
2988	if (va < VM_MAXUSER_ADDRESS) {
2989		unsigned ptepindex;
2990		pd_entry_t ptema;
2991
2992		/*
2993		 * Calculate pagetable page index
2994		 */
2995		ptepindex = va >> PDRSHIFT;
2996		if (mpte && (mpte->pindex == ptepindex)) {
2997			mpte->wire_count++;
2998		} else {
2999			/*
3000			 * Get the page directory entry
3001			 */
3002			ptema = pmap->pm_pdir[ptepindex];
3003
3004			/*
3005			 * If the page table page is mapped, we just increment
3006			 * the hold count, and activate it.
3007			 */
3008			if (ptema & PG_V) {
3009				if (ptema & PG_PS)
3010					panic("pmap_enter_quick: unexpected mapping into 4MB page");
3011				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
3012				mpte->wire_count++;
3013			} else {
3014				mpte = _pmap_allocpte(pmap, ptepindex,
3015				    M_NOWAIT);
3016				if (mpte == NULL)
3017					return (mpte);
3018			}
3019		}
3020	} else {
3021		mpte = NULL;
3022	}
3023
3024	/*
3025	 * This call to vtopte makes the assumption that we are
3026	 * entering the page into the current pmap.  In order to support
3027	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3028	 * But that isn't as quick as vtopte.
3029	 */
3030	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3031	pte = vtopte(va);
3032	if (*pte & PG_V) {
3033		if (mpte != NULL) {
3034			mpte->wire_count--;
3035			mpte = NULL;
3036		}
3037		return (mpte);
3038	}
3039
3040	/*
3041	 * Enter on the PV list if part of our managed memory.
3042	 */
3043	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3044	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3045		if (mpte != NULL) {
3046			free = NULL;
3047			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3048				pmap_invalidate_page(pmap, va);
3049				pmap_free_zero_pages(free);
3050			}
3051
3052			mpte = NULL;
3053		}
3054		return (mpte);
3055	}
3056
3057	/*
3058	 * Increment counters
3059	 */
3060	pmap->pm_stats.resident_count++;
3061
3062	pa = VM_PAGE_TO_PHYS(m);
3063#ifdef PAE
3064	if ((prot & VM_PROT_EXECUTE) == 0)
3065		pa |= pg_nx;
3066#endif
3067
3068#if 0
3069	/*
3070	 * Now validate mapping with RO protection
3071	 */
3072	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3073		pte_store(pte, pa | PG_V | PG_U);
3074	else
3075		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3076#else
3077	/*
3078	 * Now validate mapping with RO protection
3079	 */
3080	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3081		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3082	else
3083		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3084
3085	mcl->op = __HYPERVISOR_update_va_mapping;
3086	mcl->args[0] = va;
3087	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3088	mcl->args[2] = (uint32_t)(pa >> 32);
3089	mcl->args[3] = 0;
3090	*mclpp = mcl + 1;
3091	*count = *count + 1;
3092#endif
3093	return mpte;
3094}
3095
3096/*
3097 * Make a temporary mapping for a physical address.  This is only intended
3098 * to be used for panic dumps.
3099 */
3100void *
3101pmap_kenter_temporary(vm_paddr_t pa, int i)
3102{
3103	vm_offset_t va;
3104
3105	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3106	pmap_kenter(va, pa);
3107	invlpg(va);
3108	return ((void *)crashdumpmap);
3109}
3110
3111/*
3112 * This code maps large physical mmap regions into the
3113 * processor address space.  Note that some shortcuts
3114 * are taken, but the code works.
3115 */
3116void
3117pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3118		    vm_object_t object, vm_pindex_t pindex,
3119		    vm_size_t size)
3120{
3121	vm_page_t p;
3122
3123	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3124	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3125	    ("pmap_object_init_pt: non-device object"));
3126	if (pseflag &&
3127	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3128		int i;
3129		vm_page_t m[1];
3130		unsigned int ptepindex;
3131		int npdes;
3132		pd_entry_t ptepa;
3133
3134		PMAP_LOCK(pmap);
3135		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
3136			goto out;
3137		PMAP_UNLOCK(pmap);
3138retry:
3139		p = vm_page_lookup(object, pindex);
3140		if (p != NULL) {
3141			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3142				goto retry;
3143		} else {
3144			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3145			if (p == NULL)
3146				return;
3147			m[0] = p;
3148
3149			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3150				vm_page_lock_queues();
3151				vm_page_free(p);
3152				vm_page_unlock_queues();
3153				return;
3154			}
3155
3156			p = vm_page_lookup(object, pindex);
3157			vm_page_wakeup(p);
3158		}
3159
3160		ptepa = VM_PAGE_TO_PHYS(p);
3161		if (ptepa & (NBPDR - 1))
3162			return;
3163
3164		p->valid = VM_PAGE_BITS_ALL;
3165
3166		PMAP_LOCK(pmap);
3167		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
3168		npdes = size >> PDRSHIFT;
3169		critical_enter();
3170		for(i = 0; i < npdes; i++) {
3171			PD_SET_VA(pmap, ptepindex,
3172			    ptepa | PG_U | PG_M | PG_RW | PG_V | PG_PS, FALSE);
3173			ptepa += NBPDR;
3174			ptepindex += 1;
3175		}
3176		pmap_invalidate_all(pmap);
3177		critical_exit();
3178out:
3179		PMAP_UNLOCK(pmap);
3180	}
3181}
3182
3183/*
3184 *	Routine:	pmap_change_wiring
3185 *	Function:	Change the wiring attribute for a map/virtual-address
3186 *			pair.
3187 *	In/out conditions:
3188 *			The mapping must already exist in the pmap.
3189 */
3190void
3191pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3192{
3193	pt_entry_t *pte;
3194
3195	vm_page_lock_queues();
3196	PMAP_LOCK(pmap);
3197	pte = pmap_pte(pmap, va);
3198
3199	if (wired && !pmap_pte_w(pte)) {
3200		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3201		pmap->pm_stats.wired_count++;
3202	} else if (!wired && pmap_pte_w(pte)) {
3203		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3204		pmap->pm_stats.wired_count--;
3205	}
3206
3207	/*
3208	 * Wiring is not a hardware characteristic so there is no need to
3209	 * invalidate TLB.
3210	 */
3211	pmap_pte_release(pte);
3212	PMAP_UNLOCK(pmap);
3213	vm_page_unlock_queues();
3214}
3215
3216
3217
3218/*
3219 *	Copy the range specified by src_addr/len
3220 *	from the source map to the range dst_addr/len
3221 *	in the destination map.
3222 *
3223 *	This routine is only advisory and need not do anything.
3224 */
3225
3226void
3227pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3228	  vm_offset_t src_addr)
3229{
3230	vm_page_t   free;
3231	vm_offset_t addr;
3232	vm_offset_t end_addr = src_addr + len;
3233	vm_offset_t pdnxt;
3234
3235	if (dst_addr != src_addr)
3236		return;
3237
3238	if (!pmap_is_current(src_pmap)) {
3239		CTR2(KTR_PMAP,
3240		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3241		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3242
3243		return;
3244	}
3245	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3246	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3247
3248	vm_page_lock_queues();
3249	if (dst_pmap < src_pmap) {
3250		PMAP_LOCK(dst_pmap);
3251		PMAP_LOCK(src_pmap);
3252	} else {
3253		PMAP_LOCK(src_pmap);
3254		PMAP_LOCK(dst_pmap);
3255	}
3256	sched_pin();
3257	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3258		pt_entry_t *src_pte, *dst_pte;
3259		vm_page_t dstmpte, srcmpte;
3260		pd_entry_t srcptepaddr;
3261		unsigned ptepindex;
3262
3263		if (addr >= UPT_MIN_ADDRESS)
3264			panic("pmap_copy: invalid to pmap_copy page tables");
3265
3266		pdnxt = (addr + NBPDR) & ~PDRMASK;
3267		ptepindex = addr >> PDRSHIFT;
3268
3269		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3270		if (srcptepaddr == 0)
3271			continue;
3272
3273		if (srcptepaddr & PG_PS) {
3274			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3275				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3276				dst_pmap->pm_stats.resident_count +=
3277				    NBPDR / PAGE_SIZE;
3278			}
3279			continue;
3280		}
3281
3282		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3283		if (srcmpte->wire_count == 0)
3284			panic("pmap_copy: source page table page is unused");
3285
3286		if (pdnxt > end_addr)
3287			pdnxt = end_addr;
3288
3289		src_pte = vtopte(addr);
3290		while (addr < pdnxt) {
3291			pt_entry_t ptetemp;
3292			ptetemp = *src_pte;
3293			/*
3294			 * we only virtual copy managed pages
3295			 */
3296			if ((ptetemp & PG_MANAGED) != 0) {
3297				dstmpte = pmap_allocpte(dst_pmap, addr,
3298				    M_NOWAIT);
3299				if (dstmpte == NULL)
3300					break;
3301				dst_pte = pmap_pte_quick(dst_pmap, addr);
3302				if (*dst_pte == 0 &&
3303				    pmap_try_insert_pv_entry(dst_pmap, addr,
3304				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3305					/*
3306					 * Clear the wired, modified, and
3307					 * accessed (referenced) bits
3308					 * during the copy.
3309					 */
3310					KASSERT(ptetemp != 0, ("src_pte not set"));
3311					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3312					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3313					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3314						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3315					dst_pmap->pm_stats.resident_count++;
3316	 			} else {
3317					free = NULL;
3318					if (pmap_unwire_pte_hold(dst_pmap,
3319					    dstmpte, &free)) {
3320						pmap_invalidate_page(dst_pmap,
3321						    addr);
3322						pmap_free_zero_pages(free);
3323					}
3324				}
3325				if (dstmpte->wire_count >= srcmpte->wire_count)
3326					break;
3327			}
3328			addr += PAGE_SIZE;
3329			src_pte++;
3330		}
3331	}
3332	PT_UPDATES_FLUSH();
3333	sched_unpin();
3334	vm_page_unlock_queues();
3335	PMAP_UNLOCK(src_pmap);
3336	PMAP_UNLOCK(dst_pmap);
3337}
3338
3339static __inline void
3340pagezero(void *page)
3341{
3342#if defined(I686_CPU)
3343	if (cpu_class == CPUCLASS_686) {
3344#if defined(CPU_ENABLE_SSE)
3345		if (cpu_feature & CPUID_SSE2)
3346			sse2_pagezero(page);
3347		else
3348#endif
3349			i686_pagezero(page);
3350	} else
3351#endif
3352		bzero(page, PAGE_SIZE);
3353}
3354
3355/*
3356 *	pmap_zero_page zeros the specified hardware page by mapping
3357 *	the page into KVM and using bzero to clear its contents.
3358 */
3359void
3360pmap_zero_page(vm_page_t m)
3361{
3362	struct sysmaps *sysmaps;
3363
3364	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3365	mtx_lock(&sysmaps->lock);
3366	if (*sysmaps->CMAP2)
3367		panic("pmap_zero_page: CMAP2 busy");
3368	sched_pin();
3369	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3370	pagezero(sysmaps->CADDR2);
3371	PT_SET_MA(sysmaps->CADDR2, 0);
3372	sched_unpin();
3373	mtx_unlock(&sysmaps->lock);
3374}
3375
3376/*
3377 *	pmap_zero_page_area zeros the specified hardware page by mapping
3378 *	the page into KVM and using bzero to clear its contents.
3379 *
3380 *	off and size may not cover an area beyond a single hardware page.
3381 */
3382void
3383pmap_zero_page_area(vm_page_t m, int off, int size)
3384{
3385	struct sysmaps *sysmaps;
3386
3387	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3388	mtx_lock(&sysmaps->lock);
3389	if (*sysmaps->CMAP2)
3390		panic("pmap_zero_page: CMAP2 busy");
3391	sched_pin();
3392	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3393
3394	if (off == 0 && size == PAGE_SIZE)
3395		pagezero(sysmaps->CADDR2);
3396	else
3397		bzero((char *)sysmaps->CADDR2 + off, size);
3398	PT_SET_MA(sysmaps->CADDR2, 0);
3399	sched_unpin();
3400	mtx_unlock(&sysmaps->lock);
3401}
3402
3403/*
3404 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3405 *	the page into KVM and using bzero to clear its contents.  This
3406 *	is intended to be called from the vm_pagezero process only and
3407 *	outside of Giant.
3408 */
3409void
3410pmap_zero_page_idle(vm_page_t m)
3411{
3412
3413	if (*CMAP3)
3414		panic("pmap_zero_page: CMAP3 busy");
3415	sched_pin();
3416	PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3417	pagezero(CADDR3);
3418	PT_SET_MA(CADDR3, 0);
3419	sched_unpin();
3420}
3421
3422/*
3423 *	pmap_copy_page copies the specified (machine independent)
3424 *	page by mapping the page into virtual memory and using
3425 *	bcopy to copy the page, one machine dependent page at a
3426 *	time.
3427 */
3428void
3429pmap_copy_page(vm_page_t src, vm_page_t dst)
3430{
3431	struct sysmaps *sysmaps;
3432
3433	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3434	mtx_lock(&sysmaps->lock);
3435	if (*sysmaps->CMAP1)
3436		panic("pmap_copy_page: CMAP1 busy");
3437	if (*sysmaps->CMAP2)
3438		panic("pmap_copy_page: CMAP2 busy");
3439	sched_pin();
3440	PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
3441	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
3442	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3443	PT_SET_MA(sysmaps->CADDR1, 0);
3444	PT_SET_MA(sysmaps->CADDR2, 0);
3445	sched_unpin();
3446	mtx_unlock(&sysmaps->lock);
3447}
3448
3449/*
3450 * Returns true if the pmap's pv is one of the first
3451 * 16 pvs linked to from this page.  This count may
3452 * be changed upwards or downwards in the future; it
3453 * is only necessary that true be returned for a small
3454 * subset of pmaps for proper page aging.
3455 */
3456boolean_t
3457pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3458{
3459	pv_entry_t pv;
3460	int loops = 0;
3461
3462	if (m->flags & PG_FICTITIOUS)
3463		return (FALSE);
3464
3465	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3466	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3467		if (PV_PMAP(pv) == pmap) {
3468			return TRUE;
3469		}
3470		loops++;
3471		if (loops >= 16)
3472			break;
3473	}
3474	return (FALSE);
3475}
3476
3477/*
3478 *	pmap_page_wired_mappings:
3479 *
3480 *	Return the number of managed mappings to the given physical page
3481 *	that are wired.
3482 */
3483int
3484pmap_page_wired_mappings(vm_page_t m)
3485{
3486	pv_entry_t pv;
3487	pt_entry_t *pte;
3488	pmap_t pmap;
3489	int count;
3490
3491	count = 0;
3492	if ((m->flags & PG_FICTITIOUS) != 0)
3493		return (count);
3494	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3495	sched_pin();
3496	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3497		pmap = PV_PMAP(pv);
3498		PMAP_LOCK(pmap);
3499		pte = pmap_pte_quick(pmap, pv->pv_va);
3500		if ((*pte & PG_W) != 0)
3501			count++;
3502		PMAP_UNLOCK(pmap);
3503	}
3504	sched_unpin();
3505	return (count);
3506}
3507
3508/*
3509 * Returns TRUE if the given page is mapped individually or as part of
3510 * a 4mpage.  Otherwise, returns FALSE.
3511 */
3512boolean_t
3513pmap_page_is_mapped(vm_page_t m)
3514{
3515	struct md_page *pvh;
3516
3517	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3518		return (FALSE);
3519	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3520	if (TAILQ_EMPTY(&m->md.pv_list)) {
3521		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3522		return (!TAILQ_EMPTY(&pvh->pv_list));
3523	} else
3524		return (TRUE);
3525}
3526
3527/*
3528 * Remove all pages from specified address space
3529 * this aids process exit speeds.  Also, this code
3530 * is special cased for current process only, but
3531 * can have the more generic (and slightly slower)
3532 * mode enabled.  This is much faster than pmap_remove
3533 * in the case of running down an entire address space.
3534 */
3535void
3536pmap_remove_pages(pmap_t pmap)
3537{
3538	pt_entry_t *pte, tpte;
3539	vm_page_t m, free = NULL;
3540	pv_entry_t pv;
3541	struct pv_chunk *pc, *npc;
3542	int field, idx;
3543	int32_t bit;
3544	uint32_t inuse, bitmask;
3545	int allfree;
3546
3547	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3548
3549	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3550		printf("warning: pmap_remove_pages called with non-current pmap\n");
3551		return;
3552	}
3553	vm_page_lock_queues();
3554	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3555	PMAP_LOCK(pmap);
3556	sched_pin();
3557	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3558		allfree = 1;
3559		for (field = 0; field < _NPCM; field++) {
3560			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3561			while (inuse != 0) {
3562				bit = bsfl(inuse);
3563				bitmask = 1UL << bit;
3564				idx = field * 32 + bit;
3565				pv = &pc->pc_pventry[idx];
3566				inuse &= ~bitmask;
3567
3568				pte = vtopte(pv->pv_va);
3569				tpte = *pte ? xpmap_mtop(*pte) : 0;
3570
3571				if (tpte == 0) {
3572					printf(
3573					    "TPTE at %p  IS ZERO @ VA %08x\n",
3574					    pte, pv->pv_va);
3575					panic("bad pte");
3576				}
3577
3578/*
3579 * We cannot remove wired pages from a process' mapping at this time
3580 */
3581				if (tpte & PG_W) {
3582					allfree = 0;
3583					continue;
3584				}
3585
3586				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3587				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3588				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3589				    m, (uintmax_t)m->phys_addr,
3590				    (uintmax_t)tpte));
3591
3592				KASSERT(m < &vm_page_array[vm_page_array_size],
3593					("pmap_remove_pages: bad tpte %#jx",
3594					(uintmax_t)tpte));
3595
3596
3597				PT_CLEAR_VA(pte, FALSE);
3598
3599				/*
3600				 * Update the vm_page_t clean/reference bits.
3601				 */
3602				if (tpte & PG_M)
3603					vm_page_dirty(m);
3604
3605				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3606				if (TAILQ_EMPTY(&m->md.pv_list))
3607					vm_page_flag_clear(m, PG_WRITEABLE);
3608
3609				pmap_unuse_pt(pmap, pv->pv_va, &free);
3610
3611				/* Mark free */
3612				PV_STAT(pv_entry_frees++);
3613				PV_STAT(pv_entry_spare++);
3614				pv_entry_count--;
3615				pc->pc_map[field] |= bitmask;
3616				pmap->pm_stats.resident_count--;
3617			}
3618		}
3619		PT_UPDATES_FLUSH();
3620		if (allfree) {
3621			PV_STAT(pv_entry_spare -= _NPCPV);
3622			PV_STAT(pc_chunk_count--);
3623			PV_STAT(pc_chunk_frees++);
3624			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3625			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3626			pmap_qremove((vm_offset_t)pc, 1);
3627			vm_page_unwire(m, 0);
3628			vm_page_free(m);
3629			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3630		}
3631	}
3632	PT_UPDATES_FLUSH();
3633	if (*PMAP1)
3634		PT_SET_MA(PADDR1, 0);
3635
3636	sched_unpin();
3637	pmap_invalidate_all(pmap);
3638	vm_page_unlock_queues();
3639	PMAP_UNLOCK(pmap);
3640	pmap_free_zero_pages(free);
3641}
3642
3643/*
3644 *	pmap_is_modified:
3645 *
3646 *	Return whether or not the specified physical page was modified
3647 *	in any physical maps.
3648 */
3649boolean_t
3650pmap_is_modified(vm_page_t m)
3651{
3652	pv_entry_t pv;
3653	pt_entry_t *pte;
3654	pmap_t pmap;
3655	boolean_t rv;
3656
3657	rv = FALSE;
3658	if (m->flags & PG_FICTITIOUS)
3659		return (rv);
3660
3661	sched_pin();
3662	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3663	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3664		pmap = PV_PMAP(pv);
3665		PMAP_LOCK(pmap);
3666		pte = pmap_pte_quick(pmap, pv->pv_va);
3667		rv = (*pte & PG_M) != 0;
3668		PMAP_UNLOCK(pmap);
3669		if (rv)
3670			break;
3671	}
3672	if (*PMAP1)
3673		PT_SET_MA(PADDR1, 0);
3674	sched_unpin();
3675	return (rv);
3676}
3677
3678/*
3679 *	pmap_is_prefaultable:
3680 *
3681 *	Return whether or not the specified virtual address is elgible
3682 *	for prefault.
3683 */
3684static boolean_t
3685pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3686{
3687	pt_entry_t *pte;
3688	boolean_t rv = FALSE;
3689
3690	return (rv);
3691
3692	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3693		pte = vtopte(addr);
3694		rv = (*pte == 0);
3695	}
3696	return (rv);
3697}
3698
3699boolean_t
3700pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3701{
3702	boolean_t rv;
3703
3704	PMAP_LOCK(pmap);
3705	rv = pmap_is_prefaultable_locked(pmap, addr);
3706	PMAP_UNLOCK(pmap);
3707	return (rv);
3708}
3709
3710void
3711pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3712{
3713	int i, npages = round_page(len) >> PAGE_SHIFT;
3714	for (i = 0; i < npages; i++) {
3715		pt_entry_t *pte;
3716		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3717		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3718		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3719		pmap_pte_release(pte);
3720	}
3721}
3722
3723void
3724pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3725{
3726	int i, npages = round_page(len) >> PAGE_SHIFT;
3727	for (i = 0; i < npages; i++) {
3728		pt_entry_t *pte;
3729		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3730		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3731		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3732		pmap_pte_release(pte);
3733	}
3734}
3735
3736/*
3737 * Clear the write and modified bits in each of the given page's mappings.
3738 */
3739void
3740pmap_remove_write(vm_page_t m)
3741{
3742	pv_entry_t pv;
3743	pmap_t pmap;
3744	pt_entry_t oldpte, *pte;
3745
3746	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3747	if ((m->flags & PG_FICTITIOUS) != 0 ||
3748	    (m->flags & PG_WRITEABLE) == 0)
3749		return;
3750	sched_pin();
3751	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3752		pmap = PV_PMAP(pv);
3753		PMAP_LOCK(pmap);
3754		pte = pmap_pte_quick(pmap, pv->pv_va);
3755retry:
3756		oldpte = *pte;
3757		if ((oldpte & PG_RW) != 0) {
3758			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3759
3760			/*
3761			 * Regardless of whether a pte is 32 or 64 bits
3762			 * in size, PG_RW and PG_M are among the least
3763			 * significant 32 bits.
3764			 */
3765			PT_SET_VA_MA(pte, newpte, TRUE);
3766			if (*pte != newpte)
3767				goto retry;
3768
3769			if ((oldpte & PG_M) != 0)
3770				vm_page_dirty(m);
3771			pmap_invalidate_page(pmap, pv->pv_va);
3772		}
3773		PMAP_UNLOCK(pmap);
3774	}
3775	vm_page_flag_clear(m, PG_WRITEABLE);
3776	PT_UPDATES_FLUSH();
3777	if (*PMAP1)
3778		PT_SET_MA(PADDR1, 0);
3779	sched_unpin();
3780}
3781
3782/*
3783 *	pmap_ts_referenced:
3784 *
3785 *	Return a count of reference bits for a page, clearing those bits.
3786 *	It is not necessary for every reference bit to be cleared, but it
3787 *	is necessary that 0 only be returned when there are truly no
3788 *	reference bits set.
3789 *
3790 *	XXX: The exact number of bits to check and clear is a matter that
3791 *	should be tested and standardized at some point in the future for
3792 *	optimal aging of shared pages.
3793 */
3794int
3795pmap_ts_referenced(vm_page_t m)
3796{
3797	pv_entry_t pv, pvf, pvn;
3798	pmap_t pmap;
3799	pt_entry_t *pte;
3800	int rtval = 0;
3801
3802	if (m->flags & PG_FICTITIOUS)
3803		return (rtval);
3804	sched_pin();
3805	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3806	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3807		pvf = pv;
3808		do {
3809			pvn = TAILQ_NEXT(pv, pv_list);
3810			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3811			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3812			pmap = PV_PMAP(pv);
3813			PMAP_LOCK(pmap);
3814			pte = pmap_pte_quick(pmap, pv->pv_va);
3815			if ((*pte & PG_A) != 0) {
3816				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3817				pmap_invalidate_page(pmap, pv->pv_va);
3818				rtval++;
3819				if (rtval > 4)
3820					pvn = NULL;
3821			}
3822			PMAP_UNLOCK(pmap);
3823		} while ((pv = pvn) != NULL && pv != pvf);
3824	}
3825	PT_UPDATES_FLUSH();
3826	if (*PMAP1)
3827		PT_SET_MA(PADDR1, 0);
3828
3829	sched_unpin();
3830	return (rtval);
3831}
3832
3833/*
3834 *	Clear the modify bits on the specified physical page.
3835 */
3836void
3837pmap_clear_modify(vm_page_t m)
3838{
3839	pv_entry_t pv;
3840	pmap_t pmap;
3841	pt_entry_t *pte;
3842
3843	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3844	if ((m->flags & PG_FICTITIOUS) != 0)
3845		return;
3846	sched_pin();
3847	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3848		pmap = PV_PMAP(pv);
3849		PMAP_LOCK(pmap);
3850		pte = pmap_pte_quick(pmap, pv->pv_va);
3851		if ((*pte & PG_M) != 0) {
3852			/*
3853			 * Regardless of whether a pte is 32 or 64 bits
3854			 * in size, PG_M is among the least significant
3855			 * 32 bits.
3856			 */
3857			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3858			pmap_invalidate_page(pmap, pv->pv_va);
3859		}
3860		PMAP_UNLOCK(pmap);
3861	}
3862	sched_unpin();
3863}
3864
3865/*
3866 *	pmap_clear_reference:
3867 *
3868 *	Clear the reference bit on the specified physical page.
3869 */
3870void
3871pmap_clear_reference(vm_page_t m)
3872{
3873	pv_entry_t pv;
3874	pmap_t pmap;
3875	pt_entry_t *pte;
3876
3877	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3878	if ((m->flags & PG_FICTITIOUS) != 0)
3879		return;
3880	sched_pin();
3881	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3882		pmap = PV_PMAP(pv);
3883		PMAP_LOCK(pmap);
3884		pte = pmap_pte_quick(pmap, pv->pv_va);
3885		if ((*pte & PG_A) != 0) {
3886			/*
3887			 * Regardless of whether a pte is 32 or 64 bits
3888			 * in size, PG_A is among the least significant
3889			 * 32 bits.
3890			 */
3891			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3892			pmap_invalidate_page(pmap, pv->pv_va);
3893		}
3894		PMAP_UNLOCK(pmap);
3895	}
3896	sched_unpin();
3897}
3898
3899/*
3900 * Miscellaneous support routines follow
3901 */
3902
3903/*
3904 * Map a set of physical memory pages into the kernel virtual
3905 * address space. Return a pointer to where it is mapped. This
3906 * routine is intended to be used for mapping device memory,
3907 * NOT real memory.
3908 */
3909void *
3910pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3911{
3912	vm_offset_t va, offset;
3913	vm_size_t tmpsize;
3914
3915	offset = pa & PAGE_MASK;
3916	size = roundup(offset + size, PAGE_SIZE);
3917	pa = pa & PG_FRAME;
3918
3919	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3920		va = KERNBASE + pa;
3921	else
3922		va = kmem_alloc_nofault(kernel_map, size);
3923	if (!va)
3924		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3925
3926	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3927		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3928	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3929	pmap_invalidate_cache_range(va, va + size);
3930	return ((void *)(va + offset));
3931}
3932
3933void *
3934pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3935{
3936
3937	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3938}
3939
3940void *
3941pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3942{
3943
3944	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3945}
3946
3947void
3948pmap_unmapdev(vm_offset_t va, vm_size_t size)
3949{
3950	vm_offset_t base, offset, tmpva;
3951
3952	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3953		return;
3954	base = trunc_page(va);
3955	offset = va & PAGE_MASK;
3956	size = roundup(offset + size, PAGE_SIZE);
3957	critical_enter();
3958	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3959		pmap_kremove(tmpva);
3960	pmap_invalidate_range(kernel_pmap, va, tmpva);
3961	critical_exit();
3962	kmem_free(kernel_map, base, size);
3963}
3964
3965/*
3966 * Sets the memory attribute for the specified page.
3967 */
3968void
3969pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3970{
3971	struct sysmaps *sysmaps;
3972	vm_offset_t sva, eva;
3973
3974	m->md.pat_mode = ma;
3975	if ((m->flags & PG_FICTITIOUS) != 0)
3976		return;
3977
3978	/*
3979	 * If "m" is a normal page, flush it from the cache.
3980	 * See pmap_invalidate_cache_range().
3981	 *
3982	 * First, try to find an existing mapping of the page by sf
3983	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3984	 * flushes the cache.
3985	 */
3986	if (sf_buf_invalidate_cache(m))
3987		return;
3988
3989	/*
3990	 * If page is not mapped by sf buffer, but CPU does not
3991	 * support self snoop, map the page transient and do
3992	 * invalidation. In the worst case, whole cache is flushed by
3993	 * pmap_invalidate_cache_range().
3994	 */
3995	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
3996		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3997		mtx_lock(&sysmaps->lock);
3998		if (*sysmaps->CMAP2)
3999			panic("pmap_page_set_memattr: CMAP2 busy");
4000		sched_pin();
4001		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4002		    xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M |
4003		    pmap_cache_bits(m->md.pat_mode, 0));
4004		invlcaddr(sysmaps->CADDR2);
4005		sva = (vm_offset_t)sysmaps->CADDR2;
4006		eva = sva + PAGE_SIZE;
4007	} else
4008		sva = eva = 0; /* gcc */
4009	pmap_invalidate_cache_range(sva, eva);
4010	if (sva != 0) {
4011		PT_SET_MA(sysmaps->CADDR2, 0);
4012		sched_unpin();
4013		mtx_unlock(&sysmaps->lock);
4014	}
4015}
4016
4017int
4018pmap_change_attr(va, size, mode)
4019	vm_offset_t va;
4020	vm_size_t size;
4021	int mode;
4022{
4023	vm_offset_t base, offset, tmpva;
4024	pt_entry_t *pte;
4025	u_int opte, npte;
4026	pd_entry_t *pde;
4027	boolean_t changed;
4028
4029	base = trunc_page(va);
4030	offset = va & PAGE_MASK;
4031	size = roundup(offset + size, PAGE_SIZE);
4032
4033	/* Only supported on kernel virtual addresses. */
4034	if (base <= VM_MAXUSER_ADDRESS)
4035		return (EINVAL);
4036
4037	/* 4MB pages and pages that aren't mapped aren't supported. */
4038	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4039		pde = pmap_pde(kernel_pmap, tmpva);
4040		if (*pde & PG_PS)
4041			return (EINVAL);
4042		if ((*pde & PG_V) == 0)
4043			return (EINVAL);
4044		pte = vtopte(va);
4045		if ((*pte & PG_V) == 0)
4046			return (EINVAL);
4047	}
4048
4049	changed = FALSE;
4050
4051	/*
4052	 * Ok, all the pages exist and are 4k, so run through them updating
4053	 * their cache mode.
4054	 */
4055	for (tmpva = base; size > 0; ) {
4056		pte = vtopte(tmpva);
4057
4058		/*
4059		 * The cache mode bits are all in the low 32-bits of the
4060		 * PTE, so we can just spin on updating the low 32-bits.
4061		 */
4062		do {
4063			opte = *(u_int *)pte;
4064			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4065			npte |= pmap_cache_bits(mode, 0);
4066			PT_SET_VA_MA(pte, npte, TRUE);
4067		} while (npte != opte && (*pte != npte));
4068		if (npte != opte)
4069			changed = TRUE;
4070		tmpva += PAGE_SIZE;
4071		size -= PAGE_SIZE;
4072	}
4073
4074	/*
4075	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4076	 * be, etc.
4077	 */
4078	if (changed) {
4079		pmap_invalidate_range(kernel_pmap, base, tmpva);
4080		pmap_invalidate_cache_range(base, tmpva);
4081	}
4082	return (0);
4083}
4084
4085/*
4086 * perform the pmap work for mincore
4087 */
4088int
4089pmap_mincore(pmap_t pmap, vm_offset_t addr)
4090{
4091	pt_entry_t *ptep, pte;
4092	vm_page_t m;
4093	int val = 0;
4094
4095	PMAP_LOCK(pmap);
4096	ptep = pmap_pte(pmap, addr);
4097	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4098	pmap_pte_release(ptep);
4099	PMAP_UNLOCK(pmap);
4100
4101	if (pte != 0) {
4102		vm_paddr_t pa;
4103
4104		val = MINCORE_INCORE;
4105		if ((pte & PG_MANAGED) == 0)
4106			return val;
4107
4108		pa = pte & PG_FRAME;
4109
4110		m = PHYS_TO_VM_PAGE(pa);
4111
4112		/*
4113		 * Modified by us
4114		 */
4115		if (pte & PG_M)
4116			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4117		else {
4118			/*
4119			 * Modified by someone else
4120			 */
4121			vm_page_lock_queues();
4122			if (m->dirty || pmap_is_modified(m))
4123				val |= MINCORE_MODIFIED_OTHER;
4124			vm_page_unlock_queues();
4125		}
4126		/*
4127		 * Referenced by us
4128		 */
4129		if (pte & PG_A)
4130			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4131		else {
4132			/*
4133			 * Referenced by someone else
4134			 */
4135			vm_page_lock_queues();
4136			if ((m->flags & PG_REFERENCED) ||
4137			    pmap_ts_referenced(m)) {
4138				val |= MINCORE_REFERENCED_OTHER;
4139				vm_page_flag_set(m, PG_REFERENCED);
4140			}
4141			vm_page_unlock_queues();
4142		}
4143	}
4144	return val;
4145}
4146
4147void
4148pmap_activate(struct thread *td)
4149{
4150	pmap_t	pmap, oldpmap;
4151	u_int32_t  cr3;
4152
4153	critical_enter();
4154	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4155	oldpmap = PCPU_GET(curpmap);
4156#if defined(SMP)
4157	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4158	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4159#else
4160	oldpmap->pm_active &= ~1;
4161	pmap->pm_active |= 1;
4162#endif
4163#ifdef PAE
4164	cr3 = vtophys(pmap->pm_pdpt);
4165#else
4166	cr3 = vtophys(pmap->pm_pdir);
4167#endif
4168	/*
4169	 * pmap_activate is for the current thread on the current cpu
4170	 */
4171	td->td_pcb->pcb_cr3 = cr3;
4172	PT_UPDATES_FLUSH();
4173	load_cr3(cr3);
4174	PCPU_SET(curpmap, pmap);
4175	critical_exit();
4176}
4177
4178void
4179pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4180{
4181}
4182
4183/*
4184 *	Increase the starting virtual address of the given mapping if a
4185 *	different alignment might result in more superpage mappings.
4186 */
4187void
4188pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4189    vm_offset_t *addr, vm_size_t size)
4190{
4191	vm_offset_t superpage_offset;
4192
4193	if (size < NBPDR)
4194		return;
4195	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4196		offset += ptoa(object->pg_color);
4197	superpage_offset = offset & PDRMASK;
4198	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4199	    (*addr & PDRMASK) == superpage_offset)
4200		return;
4201	if ((*addr & PDRMASK) < superpage_offset)
4202		*addr = (*addr & ~PDRMASK) + superpage_offset;
4203	else
4204		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4205}
4206
4207#ifdef XEN
4208
4209void
4210pmap_suspend()
4211{
4212	pmap_t pmap;
4213	int i, pdir, offset;
4214	vm_paddr_t pdirma;
4215	mmu_update_t mu[4];
4216
4217	/*
4218	 * We need to remove the recursive mapping structure from all
4219	 * our pmaps so that Xen doesn't get confused when it restores
4220	 * the page tables. The recursive map lives at page directory
4221	 * index PTDPTDI. We assume that the suspend code has stopped
4222	 * the other vcpus (if any).
4223	 */
4224	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4225		for (i = 0; i < 4; i++) {
4226			/*
4227			 * Figure out which page directory (L2) page
4228			 * contains this bit of the recursive map and
4229			 * the offset within that page of the map
4230			 * entry
4231			 */
4232			pdir = (PTDPTDI + i) / NPDEPG;
4233			offset = (PTDPTDI + i) % NPDEPG;
4234			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4235			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4236			mu[i].val = 0;
4237		}
4238		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4239	}
4240}
4241
4242void
4243pmap_resume()
4244{
4245	pmap_t pmap;
4246	int i, pdir, offset;
4247	vm_paddr_t pdirma;
4248	mmu_update_t mu[4];
4249
4250	/*
4251	 * Restore the recursive map that we removed on suspend.
4252	 */
4253	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4254		for (i = 0; i < 4; i++) {
4255			/*
4256			 * Figure out which page directory (L2) page
4257			 * contains this bit of the recursive map and
4258			 * the offset within that page of the map
4259			 * entry
4260			 */
4261			pdir = (PTDPTDI + i) / NPDEPG;
4262			offset = (PTDPTDI + i) % NPDEPG;
4263			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4264			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4265			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4266		}
4267		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4268	}
4269}
4270
4271#endif
4272
4273#if defined(PMAP_DEBUG)
4274pmap_pid_dump(int pid)
4275{
4276	pmap_t pmap;
4277	struct proc *p;
4278	int npte = 0;
4279	int index;
4280
4281	sx_slock(&allproc_lock);
4282	FOREACH_PROC_IN_SYSTEM(p) {
4283		if (p->p_pid != pid)
4284			continue;
4285
4286		if (p->p_vmspace) {
4287			int i,j;
4288			index = 0;
4289			pmap = vmspace_pmap(p->p_vmspace);
4290			for (i = 0; i < NPDEPTD; i++) {
4291				pd_entry_t *pde;
4292				pt_entry_t *pte;
4293				vm_offset_t base = i << PDRSHIFT;
4294
4295				pde = &pmap->pm_pdir[i];
4296				if (pde && pmap_pde_v(pde)) {
4297					for (j = 0; j < NPTEPG; j++) {
4298						vm_offset_t va = base + (j << PAGE_SHIFT);
4299						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4300							if (index) {
4301								index = 0;
4302								printf("\n");
4303							}
4304							sx_sunlock(&allproc_lock);
4305							return npte;
4306						}
4307						pte = pmap_pte(pmap, va);
4308						if (pte && pmap_pte_v(pte)) {
4309							pt_entry_t pa;
4310							vm_page_t m;
4311							pa = PT_GET(pte);
4312							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4313							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4314								va, pa, m->hold_count, m->wire_count, m->flags);
4315							npte++;
4316							index++;
4317							if (index >= 2) {
4318								index = 0;
4319								printf("\n");
4320							} else {
4321								printf(" ");
4322							}
4323						}
4324					}
4325				}
4326			}
4327		}
4328	}
4329	sx_sunlock(&allproc_lock);
4330	return npte;
4331}
4332#endif
4333
4334#if defined(DEBUG)
4335
4336static void	pads(pmap_t pm);
4337void		pmap_pvdump(vm_paddr_t pa);
4338
4339/* print address space of pmap*/
4340static void
4341pads(pmap_t pm)
4342{
4343	int i, j;
4344	vm_paddr_t va;
4345	pt_entry_t *ptep;
4346
4347	if (pm == kernel_pmap)
4348		return;
4349	for (i = 0; i < NPDEPTD; i++)
4350		if (pm->pm_pdir[i])
4351			for (j = 0; j < NPTEPG; j++) {
4352				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4353				if (pm == kernel_pmap && va < KERNBASE)
4354					continue;
4355				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4356					continue;
4357				ptep = pmap_pte(pm, va);
4358				if (pmap_pte_v(ptep))
4359					printf("%x:%x ", va, *ptep);
4360			};
4361
4362}
4363
4364void
4365pmap_pvdump(vm_paddr_t pa)
4366{
4367	pv_entry_t pv;
4368	pmap_t pmap;
4369	vm_page_t m;
4370
4371	printf("pa %x", pa);
4372	m = PHYS_TO_VM_PAGE(pa);
4373	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4374		pmap = PV_PMAP(pv);
4375		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4376		pads(pmap);
4377	}
4378	printf(" ");
4379}
4380#endif
4381