g_part_gpt.c revision 223660
1/*-
2 * Copyright (c) 2002, 2005, 2006, 2007 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/geom/part/g_part_gpt.c 223660 2011-06-29 05:41:14Z ae $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/diskmbr.h>
33#include <sys/endian.h>
34#include <sys/gpt.h>
35#include <sys/kernel.h>
36#include <sys/kobj.h>
37#include <sys/limits.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mutex.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/systm.h>
44#include <sys/sysctl.h>
45#include <sys/uuid.h>
46#include <geom/geom.h>
47#include <geom/part/g_part.h>
48
49#include "g_part_if.h"
50
51FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
52
53CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
54CTASSERT(sizeof(struct gpt_ent) == 128);
55
56#define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
57
58#define	MBRSIZE		512
59
60enum gpt_elt {
61	GPT_ELT_PRIHDR,
62	GPT_ELT_PRITBL,
63	GPT_ELT_SECHDR,
64	GPT_ELT_SECTBL,
65	GPT_ELT_COUNT
66};
67
68enum gpt_state {
69	GPT_STATE_UNKNOWN,	/* Not determined. */
70	GPT_STATE_MISSING,	/* No signature found. */
71	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
72	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
73	GPT_STATE_OK		/* Perfectly fine. */
74};
75
76struct g_part_gpt_table {
77	struct g_part_table	base;
78	u_char			mbr[MBRSIZE];
79	struct gpt_hdr		*hdr;
80	quad_t			lba[GPT_ELT_COUNT];
81	enum gpt_state		state[GPT_ELT_COUNT];
82};
83
84struct g_part_gpt_entry {
85	struct g_part_entry	base;
86	struct gpt_ent		ent;
87};
88
89static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
90static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
91static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *);
92
93static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
94    struct g_part_parms *);
95static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
96static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
97static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
98static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
99    struct sbuf *, const char *);
100static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
101static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
102    struct g_part_parms *);
103static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
104    char *, size_t);
105static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
106static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
107static int g_part_gpt_setunset(struct g_part_table *table,
108    struct g_part_entry *baseentry, const char *attrib, unsigned int set);
109static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
110    char *, size_t);
111static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
112static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
113    struct g_part_parms *);
114static int g_part_gpt_recover(struct g_part_table *);
115
116static kobj_method_t g_part_gpt_methods[] = {
117	KOBJMETHOD(g_part_add,		g_part_gpt_add),
118	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
119	KOBJMETHOD(g_part_create,	g_part_gpt_create),
120	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
121	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
122	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
123	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
124	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
125	KOBJMETHOD(g_part_name,		g_part_gpt_name),
126	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
127	KOBJMETHOD(g_part_read,		g_part_gpt_read),
128	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
129	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
130	KOBJMETHOD(g_part_type,		g_part_gpt_type),
131	KOBJMETHOD(g_part_write,	g_part_gpt_write),
132	{ 0, 0 }
133};
134
135static struct g_part_scheme g_part_gpt_scheme = {
136	"GPT",
137	g_part_gpt_methods,
138	sizeof(struct g_part_gpt_table),
139	.gps_entrysz = sizeof(struct g_part_gpt_entry),
140	.gps_minent = 128,
141	.gps_maxent = 4096,
142	.gps_bootcodesz = MBRSIZE,
143};
144G_PART_SCHEME_DECLARE(g_part_gpt);
145
146static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
147static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
148static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
149static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
150static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
151static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
152static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
153static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
154static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
155static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
156static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
157static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
158static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
159static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
160static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
161static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
162static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
163static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
164static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
165static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
166static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
167static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
168static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
169static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
170static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
171static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
172static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
173static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
174static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
175static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
176static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
177
178static struct g_part_uuid_alias {
179	struct uuid *uuid;
180	int alias;
181} gpt_uuid_alias_match[] = {
182	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT },
183	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS },
184	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL },
185	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID },
186	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE },
187	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY },
188	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS },
189	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT },
190	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI },
191	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD },
192	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT },
193	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP },
194	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS },
195	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM },
196	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS },
197	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA },
198	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM },
199	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID },
200	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP },
201	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR },
202	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA },
203	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA },
204	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA },
205	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED },
206	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD },
207	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD },
208	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS },
209	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS },
210	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID },
211	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP },
212
213	{ NULL, 0 }
214};
215
216static struct gpt_hdr *
217gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
218    enum gpt_elt elt)
219{
220	struct gpt_hdr *buf, *hdr;
221	struct g_provider *pp;
222	quad_t lba, last;
223	int error;
224	uint32_t crc, sz;
225
226	pp = cp->provider;
227	last = (pp->mediasize / pp->sectorsize) - 1;
228	table->state[elt] = GPT_STATE_MISSING;
229	/*
230	 * If the primary header is valid look for secondary
231	 * header in AlternateLBA, otherwise in the last medium's LBA.
232	 */
233	if (elt == GPT_ELT_SECHDR) {
234		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
235			table->lba[elt] = last;
236	} else
237		table->lba[elt] = 1;
238	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
239	    &error);
240	if (buf == NULL)
241		return (NULL);
242	hdr = NULL;
243	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
244		goto fail;
245
246	table->state[elt] = GPT_STATE_CORRUPT;
247	sz = le32toh(buf->hdr_size);
248	if (sz < 92 || sz > pp->sectorsize)
249		goto fail;
250
251	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
252	bcopy(buf, hdr, sz);
253	hdr->hdr_size = sz;
254
255	crc = le32toh(buf->hdr_crc_self);
256	buf->hdr_crc_self = 0;
257	if (crc32(buf, sz) != crc)
258		goto fail;
259	hdr->hdr_crc_self = crc;
260
261	table->state[elt] = GPT_STATE_INVALID;
262	hdr->hdr_revision = le32toh(buf->hdr_revision);
263	if (hdr->hdr_revision < GPT_HDR_REVISION)
264		goto fail;
265	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
266	if (hdr->hdr_lba_self != table->lba[elt])
267		goto fail;
268	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
269	if (hdr->hdr_lba_alt == hdr->hdr_lba_self ||
270	    hdr->hdr_lba_alt > last)
271		goto fail;
272
273	/* Check the managed area. */
274	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
275	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
276		goto fail;
277	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
278	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
279		goto fail;
280
281	/* Check the table location and size of the table. */
282	hdr->hdr_entries = le32toh(buf->hdr_entries);
283	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
284	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
285	    (hdr->hdr_entsz & 7) != 0)
286		goto fail;
287	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
288	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
289		goto fail;
290	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
291	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
292		goto fail;
293	lba = hdr->hdr_lba_table +
294	    (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) /
295	    pp->sectorsize - 1;
296	if (lba >= last)
297		goto fail;
298	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
299		goto fail;
300
301	table->state[elt] = GPT_STATE_OK;
302	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
303	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
304
305	/* save LBA for secondary header */
306	if (elt == GPT_ELT_PRIHDR)
307		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
308
309	g_free(buf);
310	return (hdr);
311
312 fail:
313	if (hdr != NULL)
314		g_free(hdr);
315	g_free(buf);
316	return (NULL);
317}
318
319static struct gpt_ent *
320gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
321    enum gpt_elt elt, struct gpt_hdr *hdr)
322{
323	struct g_provider *pp;
324	struct gpt_ent *ent, *tbl;
325	char *buf, *p;
326	unsigned int idx, sectors, tblsz, size;
327	int error;
328
329	if (hdr == NULL)
330		return (NULL);
331
332	pp = cp->provider;
333	table->lba[elt] = hdr->hdr_lba_table;
334
335	table->state[elt] = GPT_STATE_MISSING;
336	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
337	sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize;
338	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
339	for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) {
340		size = (sectors - idx > MAXPHYS / pp->sectorsize) ?  MAXPHYS:
341		    (sectors - idx) * pp->sectorsize;
342		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
343		    size, &error);
344		if (p == NULL) {
345			g_free(buf);
346			return (NULL);
347		}
348		bcopy(p, buf + idx * pp->sectorsize, size);
349		g_free(p);
350	}
351	table->state[elt] = GPT_STATE_CORRUPT;
352	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
353		g_free(buf);
354		return (NULL);
355	}
356
357	table->state[elt] = GPT_STATE_OK;
358	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
359	    M_WAITOK | M_ZERO);
360
361	for (idx = 0, ent = tbl, p = buf;
362	     idx < hdr->hdr_entries;
363	     idx++, ent++, p += hdr->hdr_entsz) {
364		le_uuid_dec(p, &ent->ent_type);
365		le_uuid_dec(p + 16, &ent->ent_uuid);
366		ent->ent_lba_start = le64dec(p + 32);
367		ent->ent_lba_end = le64dec(p + 40);
368		ent->ent_attr = le64dec(p + 48);
369		/* Keep UTF-16 in little-endian. */
370		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
371	}
372
373	g_free(buf);
374	return (tbl);
375}
376
377static int
378gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
379{
380
381	if (pri == NULL || sec == NULL)
382		return (0);
383
384	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
385		return (0);
386	return ((pri->hdr_revision == sec->hdr_revision &&
387	    pri->hdr_size == sec->hdr_size &&
388	    pri->hdr_lba_start == sec->hdr_lba_start &&
389	    pri->hdr_lba_end == sec->hdr_lba_end &&
390	    pri->hdr_entries == sec->hdr_entries &&
391	    pri->hdr_entsz == sec->hdr_entsz &&
392	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
393}
394
395static int
396gpt_parse_type(const char *type, struct uuid *uuid)
397{
398	struct uuid tmp;
399	const char *alias;
400	int error;
401	struct g_part_uuid_alias *uap;
402
403	if (type[0] == '!') {
404		error = parse_uuid(type + 1, &tmp);
405		if (error)
406			return (error);
407		if (EQUUID(&tmp, &gpt_uuid_unused))
408			return (EINVAL);
409		*uuid = tmp;
410		return (0);
411	}
412	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
413		alias = g_part_alias_name(uap->alias);
414		if (!strcasecmp(type, alias)) {
415			*uuid = *uap->uuid;
416			return (0);
417		}
418	}
419	return (EINVAL);
420}
421
422static int
423g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
424    struct g_part_parms *gpp)
425{
426	struct g_part_gpt_entry *entry;
427	int error;
428
429	entry = (struct g_part_gpt_entry *)baseentry;
430	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
431	if (error)
432		return (error);
433	kern_uuidgen(&entry->ent.ent_uuid, 1);
434	entry->ent.ent_lba_start = baseentry->gpe_start;
435	entry->ent.ent_lba_end = baseentry->gpe_end;
436	if (baseentry->gpe_deleted) {
437		entry->ent.ent_attr = 0;
438		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
439	}
440	if (gpp->gpp_parms & G_PART_PARM_LABEL)
441		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
442		    sizeof(entry->ent.ent_name) /
443		    sizeof(entry->ent.ent_name[0]));
444	return (0);
445}
446
447static int
448g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
449{
450	struct g_part_gpt_table *table;
451	size_t codesz;
452
453	codesz = DOSPARTOFF;
454	table = (struct g_part_gpt_table *)basetable;
455	bzero(table->mbr, codesz);
456	codesz = MIN(codesz, gpp->gpp_codesize);
457	if (codesz > 0)
458		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
459
460	/* Mark the PMBR active since some BIOS require it */
461	table->mbr[DOSPARTOFF] = 0x80;		/* status */
462	return (0);
463}
464
465static int
466g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
467{
468	struct g_provider *pp;
469	struct g_part_gpt_table *table;
470	quad_t last;
471	size_t tblsz;
472
473	/* We don't nest, which means that our depth should be 0. */
474	if (basetable->gpt_depth != 0)
475		return (ENXIO);
476
477	table = (struct g_part_gpt_table *)basetable;
478	pp = gpp->gpp_provider;
479	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
480	    pp->sectorsize - 1) / pp->sectorsize;
481	if (pp->sectorsize < MBRSIZE ||
482	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
483	    pp->sectorsize)
484		return (ENOSPC);
485
486	last = (pp->mediasize / pp->sectorsize) - 1;
487
488	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
489	table->mbr[DOSPARTOFF + 1] = 0x01;		/* shd */
490	table->mbr[DOSPARTOFF + 2] = 0x01;		/* ssect */
491	table->mbr[DOSPARTOFF + 3] = 0x00;		/* scyl */
492	table->mbr[DOSPARTOFF + 4] = 0xee;		/* typ */
493	table->mbr[DOSPARTOFF + 5] = 0xff;		/* ehd */
494	table->mbr[DOSPARTOFF + 6] = 0xff;		/* esect */
495	table->mbr[DOSPARTOFF + 7] = 0xff;		/* ecyl */
496	le32enc(table->mbr + DOSPARTOFF + 8, 1);	/* start */
497	le32enc(table->mbr + DOSPARTOFF + 12, MIN(last, UINT32_MAX));
498
499	/* Allocate space for the header */
500	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
501
502	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
503	table->hdr->hdr_revision = GPT_HDR_REVISION;
504	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
505	kern_uuidgen(&table->hdr->hdr_uuid, 1);
506	table->hdr->hdr_entries = basetable->gpt_entries;
507	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
508
509	g_gpt_set_defaults(basetable, pp);
510	return (0);
511}
512
513static int
514g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
515{
516	struct g_part_gpt_table *table;
517	struct g_provider *pp;
518
519	table = (struct g_part_gpt_table *)basetable;
520	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
521	g_free(table->hdr);
522	table->hdr = NULL;
523
524	/*
525	 * Wipe the first 2 sectors to clear the partitioning. Wipe the last
526	 * sector only if it has valid secondary header.
527	 */
528	basetable->gpt_smhead |= 3;
529	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
530	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
531		basetable->gpt_smtail |= 1;
532	return (0);
533}
534
535static void
536g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
537    struct sbuf *sb, const char *indent)
538{
539	struct g_part_gpt_entry *entry;
540
541	entry = (struct g_part_gpt_entry *)baseentry;
542	if (indent == NULL) {
543		/* conftxt: libdisk compatibility */
544		sbuf_printf(sb, " xs GPT xt ");
545		sbuf_printf_uuid(sb, &entry->ent.ent_type);
546	} else if (entry != NULL) {
547		/* confxml: partition entry information */
548		sbuf_printf(sb, "%s<label>", indent);
549		g_gpt_printf_utf16(sb, entry->ent.ent_name,
550		    sizeof(entry->ent.ent_name) >> 1);
551		sbuf_printf(sb, "</label>\n");
552		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
553			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
554		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
555			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
556			    indent);
557		}
558		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
559			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
560			    indent);
561		}
562		sbuf_printf(sb, "%s<rawtype>", indent);
563		sbuf_printf_uuid(sb, &entry->ent.ent_type);
564		sbuf_printf(sb, "</rawtype>\n");
565		sbuf_printf(sb, "%s<rawuuid>", indent);
566		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
567		sbuf_printf(sb, "</rawuuid>\n");
568	} else {
569		/* confxml: scheme information */
570	}
571}
572
573static int
574g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
575{
576	struct g_part_gpt_entry *entry;
577
578	entry = (struct g_part_gpt_entry *)baseentry;
579	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
580	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap)) ? 1 : 0);
581}
582
583static int
584g_part_gpt_modify(struct g_part_table *basetable,
585    struct g_part_entry *baseentry, struct g_part_parms *gpp)
586{
587	struct g_part_gpt_entry *entry;
588	int error;
589
590	entry = (struct g_part_gpt_entry *)baseentry;
591	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
592		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
593		if (error)
594			return (error);
595	}
596	if (gpp->gpp_parms & G_PART_PARM_LABEL)
597		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
598		    sizeof(entry->ent.ent_name) /
599		    sizeof(entry->ent.ent_name[0]));
600	return (0);
601}
602
603static int
604g_part_gpt_resize(struct g_part_table *basetable,
605    struct g_part_entry *baseentry, struct g_part_parms *gpp)
606{
607	struct g_part_gpt_entry *entry;
608	entry = (struct g_part_gpt_entry *)baseentry;
609
610	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
611	entry->ent.ent_lba_end = baseentry->gpe_end;
612
613	return (0);
614}
615
616static const char *
617g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
618    char *buf, size_t bufsz)
619{
620	struct g_part_gpt_entry *entry;
621	char c;
622
623	entry = (struct g_part_gpt_entry *)baseentry;
624	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
625	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
626	return (buf);
627}
628
629static int
630g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
631{
632	struct g_provider *pp;
633	char *buf;
634	int error, res;
635
636	/* We don't nest, which means that our depth should be 0. */
637	if (table->gpt_depth != 0)
638		return (ENXIO);
639
640	pp = cp->provider;
641
642	/*
643	 * Sanity-check the provider. Since the first sector on the provider
644	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
645	 * must be at least 512 bytes.  Also, since the theoretical minimum
646	 * number of sectors needed by GPT is 6, any medium that has less
647	 * than 6 sectors is never going to be able to hold a GPT. The
648	 * number 6 comes from:
649	 *	1 sector for the PMBR
650	 *	2 sectors for the GPT headers (each 1 sector)
651	 *	2 sectors for the GPT tables (each 1 sector)
652	 *	1 sector for an actual partition
653	 * It's better to catch this pathological case early than behaving
654	 * pathologically later on...
655	 */
656	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
657		return (ENOSPC);
658
659	/* Check that there's a MBR. */
660	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
661	if (buf == NULL)
662		return (error);
663	res = le16dec(buf + DOSMAGICOFFSET);
664	g_free(buf);
665	if (res != DOSMAGIC)
666		return (ENXIO);
667
668	/* Check that there's a primary header. */
669	buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
670	if (buf == NULL)
671		return (error);
672	res = memcmp(buf, GPT_HDR_SIG, 8);
673	g_free(buf);
674	if (res == 0)
675		return (G_PART_PROBE_PRI_HIGH);
676
677	/* No primary? Check that there's a secondary. */
678	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
679	    &error);
680	if (buf == NULL)
681		return (error);
682	res = memcmp(buf, GPT_HDR_SIG, 8);
683	g_free(buf);
684	return ((res == 0) ? G_PART_PROBE_PRI_HIGH : ENXIO);
685}
686
687static int
688g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
689{
690	struct gpt_hdr *prihdr, *sechdr;
691	struct gpt_ent *tbl, *pritbl, *sectbl;
692	struct g_provider *pp;
693	struct g_part_gpt_table *table;
694	struct g_part_gpt_entry *entry;
695	u_char *buf;
696	uint64_t last;
697	int error, index;
698
699	table = (struct g_part_gpt_table *)basetable;
700	pp = cp->provider;
701	last = (pp->mediasize / pp->sectorsize) - 1;
702
703	/* Read the PMBR */
704	buf = g_read_data(cp, 0, pp->sectorsize, &error);
705	if (buf == NULL)
706		return (error);
707	bcopy(buf, table->mbr, MBRSIZE);
708	g_free(buf);
709
710	/* Read the primary header and table. */
711	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
712	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
713		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
714	} else {
715		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
716		pritbl = NULL;
717	}
718
719	/* Read the secondary header and table. */
720	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
721	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
722		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
723	} else {
724		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
725		sectbl = NULL;
726	}
727
728	/* Fail if we haven't got any good tables at all. */
729	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
730	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
731		printf("GEOM: %s: corrupt or invalid GPT detected.\n",
732		    pp->name);
733		printf("GEOM: %s: GPT rejected -- may not be recoverable.\n",
734		    pp->name);
735		return (EINVAL);
736	}
737
738	/*
739	 * If both headers are good but they disagree with each other,
740	 * then invalidate one. We prefer to keep the primary header,
741	 * unless the primary table is corrupt.
742	 */
743	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
744	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
745	    !gpt_matched_hdrs(prihdr, sechdr)) {
746		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
747			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
748			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
749			g_free(sechdr);
750			sechdr = NULL;
751		} else {
752			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
753			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
754			g_free(prihdr);
755			prihdr = NULL;
756		}
757	}
758
759	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
760		printf("GEOM: %s: the primary GPT table is corrupt or "
761		    "invalid.\n", pp->name);
762		printf("GEOM: %s: using the secondary instead -- recovery "
763		    "strongly advised.\n", pp->name);
764		table->hdr = sechdr;
765		basetable->gpt_corrupt = 1;
766		if (prihdr != NULL)
767			g_free(prihdr);
768		tbl = sectbl;
769		if (pritbl != NULL)
770			g_free(pritbl);
771	} else {
772		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
773			printf("GEOM: %s: the secondary GPT table is corrupt "
774			    "or invalid.\n", pp->name);
775			printf("GEOM: %s: using the primary only -- recovery "
776			    "suggested.\n", pp->name);
777			basetable->gpt_corrupt = 1;
778		} else if (table->lba[GPT_ELT_SECHDR] != last) {
779			printf( "GEOM: %s: the secondary GPT header is not in "
780			    "the last LBA.\n", pp->name);
781			basetable->gpt_corrupt = 1;
782		}
783		table->hdr = prihdr;
784		if (sechdr != NULL)
785			g_free(sechdr);
786		tbl = pritbl;
787		if (sectbl != NULL)
788			g_free(sectbl);
789	}
790
791	basetable->gpt_first = table->hdr->hdr_lba_start;
792	basetable->gpt_last = table->hdr->hdr_lba_end;
793	basetable->gpt_entries = table->hdr->hdr_entries;
794
795	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
796		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
797			continue;
798		entry = (struct g_part_gpt_entry *)g_part_new_entry(
799		    basetable, index + 1, tbl[index].ent_lba_start,
800		    tbl[index].ent_lba_end);
801		entry->ent = tbl[index];
802	}
803
804	g_free(tbl);
805	return (0);
806}
807
808static int
809g_part_gpt_recover(struct g_part_table *basetable)
810{
811
812	g_gpt_set_defaults(basetable,
813	    LIST_FIRST(&basetable->gpt_gp->consumer)->provider);
814	basetable->gpt_corrupt = 0;
815	return (0);
816}
817
818static int
819g_part_gpt_setunset(struct g_part_table *table, struct g_part_entry *baseentry,
820    const char *attrib, unsigned int set)
821{
822	struct g_part_entry *iter;
823	struct g_part_gpt_entry *entry;
824	int changed, bootme, bootonce, bootfailed;
825
826	bootme = bootonce = bootfailed = 0;
827	if (strcasecmp(attrib, "bootme") == 0) {
828		bootme = 1;
829	} else if (strcasecmp(attrib, "bootonce") == 0) {
830		/* BOOTME is set automatically with BOOTONCE, but not unset. */
831		bootonce = 1;
832		if (set)
833			bootme = 1;
834	} else if (strcasecmp(attrib, "bootfailed") == 0) {
835		/*
836		 * It should only be possible to unset BOOTFAILED, but it might
837		 * be useful for test purposes to also be able to set it.
838		 */
839		bootfailed = 1;
840	}
841	if (!bootme && !bootonce && !bootfailed)
842		return (EINVAL);
843
844	LIST_FOREACH(iter, &table->gpt_entry, gpe_entry) {
845		if (iter->gpe_deleted)
846			continue;
847		if (iter != baseentry)
848			continue;
849		changed = 0;
850		entry = (struct g_part_gpt_entry *)iter;
851		if (set) {
852			if (bootme &&
853			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
854				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTME;
855				changed = 1;
856			}
857			if (bootonce &&
858			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
859				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTONCE;
860				changed = 1;
861			}
862			if (bootfailed &&
863			    !(entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
864				entry->ent.ent_attr |= GPT_ENT_ATTR_BOOTFAILED;
865				changed = 1;
866			}
867		} else {
868			if (bootme &&
869			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)) {
870				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTME;
871				changed = 1;
872			}
873			if (bootonce &&
874			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE)) {
875				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTONCE;
876				changed = 1;
877			}
878			if (bootfailed &&
879			    (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED)) {
880				entry->ent.ent_attr &= ~GPT_ENT_ATTR_BOOTFAILED;
881				changed = 1;
882			}
883		}
884		if (changed && !iter->gpe_created)
885			iter->gpe_modified = 1;
886	}
887	return (0);
888}
889
890static const char *
891g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
892    char *buf, size_t bufsz)
893{
894	struct g_part_gpt_entry *entry;
895	struct uuid *type;
896	struct g_part_uuid_alias *uap;
897
898	entry = (struct g_part_gpt_entry *)baseentry;
899	type = &entry->ent.ent_type;
900	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
901		if (EQUUID(type, uap->uuid))
902			return (g_part_alias_name(uap->alias));
903	buf[0] = '!';
904	snprintf_uuid(buf + 1, bufsz - 1, type);
905
906	return (buf);
907}
908
909static int
910g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
911{
912	unsigned char *buf, *bp;
913	struct g_provider *pp;
914	struct g_part_entry *baseentry;
915	struct g_part_gpt_entry *entry;
916	struct g_part_gpt_table *table;
917	size_t tblsz;
918	uint32_t crc;
919	int error, index;
920
921	pp = cp->provider;
922	table = (struct g_part_gpt_table *)basetable;
923	tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz +
924	    pp->sectorsize - 1) / pp->sectorsize;
925
926	/* Write the PMBR */
927	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
928	bcopy(table->mbr, buf, MBRSIZE);
929	error = g_write_data(cp, 0, buf, pp->sectorsize);
930	g_free(buf);
931	if (error)
932		return (error);
933
934	/* Allocate space for the header and entries. */
935	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
936
937	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
938	le32enc(buf + 8, table->hdr->hdr_revision);
939	le32enc(buf + 12, table->hdr->hdr_size);
940	le64enc(buf + 40, table->hdr->hdr_lba_start);
941	le64enc(buf + 48, table->hdr->hdr_lba_end);
942	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
943	le32enc(buf + 80, table->hdr->hdr_entries);
944	le32enc(buf + 84, table->hdr->hdr_entsz);
945
946	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
947		if (baseentry->gpe_deleted)
948			continue;
949		entry = (struct g_part_gpt_entry *)baseentry;
950		index = baseentry->gpe_index - 1;
951		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
952		le_uuid_enc(bp, &entry->ent.ent_type);
953		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
954		le64enc(bp + 32, entry->ent.ent_lba_start);
955		le64enc(bp + 40, entry->ent.ent_lba_end);
956		le64enc(bp + 48, entry->ent.ent_attr);
957		memcpy(bp + 56, entry->ent.ent_name,
958		    sizeof(entry->ent.ent_name));
959	}
960
961	crc = crc32(buf + pp->sectorsize,
962	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
963	le32enc(buf + 88, crc);
964
965	/* Write primary meta-data. */
966	le32enc(buf + 16, 0);	/* hdr_crc_self. */
967	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
968	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
969	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
970	crc = crc32(buf, table->hdr->hdr_size);
971	le32enc(buf + 16, crc);
972
973	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
974		error = g_write_data(cp,
975		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
976		    buf + (index + 1) * pp->sectorsize,
977		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
978		    (tblsz - index) * pp->sectorsize);
979		if (error)
980			goto out;
981	}
982	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
983	    buf, pp->sectorsize);
984	if (error)
985		goto out;
986
987	/* Write secondary meta-data. */
988	le32enc(buf + 16, 0);	/* hdr_crc_self. */
989	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
990	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
991	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
992	crc = crc32(buf, table->hdr->hdr_size);
993	le32enc(buf + 16, crc);
994
995	for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) {
996		error = g_write_data(cp,
997		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
998		    buf + (index + 1) * pp->sectorsize,
999		    (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS:
1000		    (tblsz - index) * pp->sectorsize);
1001		if (error)
1002			goto out;
1003	}
1004	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1005	    buf, pp->sectorsize);
1006
1007 out:
1008	g_free(buf);
1009	return (error);
1010}
1011
1012static void
1013g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp)
1014{
1015	struct g_part_gpt_table *table;
1016	quad_t last;
1017	size_t tblsz;
1018
1019	table = (struct g_part_gpt_table *)basetable;
1020	last = pp->mediasize / pp->sectorsize - 1;
1021	tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) +
1022	    pp->sectorsize - 1) / pp->sectorsize;
1023
1024	table->lba[GPT_ELT_PRIHDR] = 1;
1025	table->lba[GPT_ELT_PRITBL] = 2;
1026	table->lba[GPT_ELT_SECHDR] = last;
1027	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1028	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1029	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1030	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1031	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1032
1033	table->hdr->hdr_lba_start = 2 + tblsz;
1034	table->hdr->hdr_lba_end = last - tblsz - 1;
1035
1036	basetable->gpt_first = table->hdr->hdr_lba_start;
1037	basetable->gpt_last = table->hdr->hdr_lba_end;
1038}
1039
1040static void
1041g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1042{
1043	u_int bo;
1044	uint32_t ch;
1045	uint16_t c;
1046
1047	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1048	while (len > 0 && *str != 0) {
1049		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1050		str++, len--;
1051		if ((ch & 0xf800) == 0xd800) {
1052			if (len > 0) {
1053				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1054				    : le16toh(*str);
1055				str++, len--;
1056			} else
1057				c = 0xfffd;
1058			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1059				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1060				ch += 0x10000;
1061			} else
1062				ch = 0xfffd;
1063		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1064			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1065			continue;
1066		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1067			continue;
1068
1069		/* Write the Unicode character in UTF-8 */
1070		if (ch < 0x80)
1071			sbuf_printf(sb, "%c", ch);
1072		else if (ch < 0x800)
1073			sbuf_printf(sb, "%c%c", 0xc0 | (ch >> 6),
1074			    0x80 | (ch & 0x3f));
1075		else if (ch < 0x10000)
1076			sbuf_printf(sb, "%c%c%c", 0xe0 | (ch >> 12),
1077			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1078		else if (ch < 0x200000)
1079			sbuf_printf(sb, "%c%c%c%c", 0xf0 | (ch >> 18),
1080			    0x80 | ((ch >> 12) & 0x3f),
1081			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1082	}
1083}
1084
1085static void
1086g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1087{
1088	size_t s16idx, s8idx;
1089	uint32_t utfchar;
1090	unsigned int c, utfbytes;
1091
1092	s8idx = s16idx = 0;
1093	utfchar = 0;
1094	utfbytes = 0;
1095	bzero(s16, s16len << 1);
1096	while (s8[s8idx] != 0 && s16idx < s16len) {
1097		c = s8[s8idx++];
1098		if ((c & 0xc0) != 0x80) {
1099			/* Initial characters. */
1100			if (utfbytes != 0) {
1101				/* Incomplete encoding of previous char. */
1102				s16[s16idx++] = htole16(0xfffd);
1103			}
1104			if ((c & 0xf8) == 0xf0) {
1105				utfchar = c & 0x07;
1106				utfbytes = 3;
1107			} else if ((c & 0xf0) == 0xe0) {
1108				utfchar = c & 0x0f;
1109				utfbytes = 2;
1110			} else if ((c & 0xe0) == 0xc0) {
1111				utfchar = c & 0x1f;
1112				utfbytes = 1;
1113			} else {
1114				utfchar = c & 0x7f;
1115				utfbytes = 0;
1116			}
1117		} else {
1118			/* Followup characters. */
1119			if (utfbytes > 0) {
1120				utfchar = (utfchar << 6) + (c & 0x3f);
1121				utfbytes--;
1122			} else if (utfbytes == 0)
1123				utfbytes = ~0;
1124		}
1125		/*
1126		 * Write the complete Unicode character as UTF-16 when we
1127		 * have all the UTF-8 charactars collected.
1128		 */
1129		if (utfbytes == 0) {
1130			/*
1131			 * If we need to write 2 UTF-16 characters, but
1132			 * we only have room for 1, then we truncate the
1133			 * string by writing a 0 instead.
1134			 */
1135			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1136				s16[s16idx++] =
1137				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1138				s16[s16idx++] =
1139				    htole16(0xdc00 | (utfchar & 0x3ff));
1140			} else
1141				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1142				    htole16(utfchar);
1143		}
1144	}
1145	/*
1146	 * If our input string was truncated, append an invalid encoding
1147	 * character to the output string.
1148	 */
1149	if (utfbytes != 0 && s16idx < s16len)
1150		s16[s16idx++] = htole16(0xfffd);
1151}
1152