ext2_alloc.c revision 31485
1/*
2 *  modified for Lites 1.1
3 *
4 *  Aug 1995, Godmar Back (gback@cs.utah.edu)
5 *  University of Utah, Department of Computer Science
6 */
7/*
8 * Copyright (c) 1982, 1986, 1989, 1993
9 *	The Regents of the University of California.  All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	@(#)ext2_alloc.c	8.8 (Berkeley) 2/21/94
40 */
41
42#include "opt_quota.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/vnode.h>
47#include <sys/stat.h>
48#include <sys/mount.h>
49#include <sys/kernel.h>
50#include <sys/syslog.h>
51
52#include <ufs/ufs/quota.h>
53#include <ufs/ufs/inode.h>
54#include <ufs/ufs/ufsmount.h>
55
56#include <gnu/ext2fs/ext2_fs.h>
57#include <gnu/ext2fs/ext2_fs_sb.h>
58#include <gnu/ext2fs/fs.h>
59#include <gnu/ext2fs/ext2_extern.h>
60
61static void	ext2_fserr __P((struct ext2_sb_info *, u_int, char *));
62
63/*
64 * Linux calls this functions at the following locations:
65 * (1) the inode is freed
66 * (2) a preallocation miss occurs
67 * (3) truncate is called
68 * (4) release_file is called and f_mode & 2
69 *
70 * I call it in ext2_inactive, ext2_truncate, ext2_vfree and in (2)
71 * the call in vfree might be redundant
72 */
73void
74ext2_discard_prealloc(ip)
75	struct inode * ip;
76{
77#ifdef EXT2_PREALLOCATE
78        if (ip->i_prealloc_count) {
79                int i = ip->i_prealloc_count;
80                ip->i_prealloc_count = 0;
81                ext2_free_blocks (ITOV(ip)->v_mount,
82                                  ip->i_prealloc_block,
83                                  i);
84        }
85#endif
86}
87
88/*
89 * Allocate a block in the file system.
90 *
91 * this takes the framework from ffs_alloc. To implement the
92 * actual allocation, it calls ext2_new_block, the ported version
93 * of the same Linux routine.
94 *
95 * we note that this is always called in connection with ext2_blkpref
96 *
97 * preallocation is done as Linux does it
98 */
99int
100ext2_alloc(ip, lbn, bpref, size, cred, bnp)
101	register struct inode *ip;
102	daddr_t lbn, bpref;
103	int size;
104	struct ucred *cred;
105	daddr_t *bnp;
106{
107	register struct ext2_sb_info *fs;
108	daddr_t bno;
109#if QUOTA
110	int error;
111#endif
112
113	*bnp = 0;
114	fs = ip->i_e2fs;
115#if DIAGNOSTIC
116	if ((u_int)size > fs->s_blocksize || blkoff(fs, size) != 0) {
117		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
118		    ip->i_dev, fs->s_blocksize, size, fs->fs_fsmnt);
119		panic("ext2_alloc: bad size");
120	}
121	if (cred == NOCRED)
122		panic("ext2_alloc: missing credential");
123#endif /* DIAGNOSTIC */
124	if (size == fs->s_blocksize && fs->s_es->s_free_blocks_count == 0)
125		goto nospace;
126	if (cred->cr_uid != 0 &&
127		fs->s_es->s_free_blocks_count < fs->s_es->s_r_blocks_count)
128		goto nospace;
129#if QUOTA
130	if (error = chkdq(ip, (long)btodb(size), cred, 0))
131		return (error);
132#endif
133	if (bpref >= fs->s_es->s_blocks_count)
134		bpref = 0;
135	/* call the Linux code */
136#ifdef EXT2_PREALLOCATE
137	/* To have a preallocation hit, we must
138	 * - have at least one block preallocated
139	 * - and our preferred block must have that block number or one below
140	 */
141        if (ip->i_prealloc_count &&
142            (bpref == ip->i_prealloc_block ||
143             bpref + 1 == ip->i_prealloc_block))
144        {
145                bno = ip->i_prealloc_block++;
146                ip->i_prealloc_count--;
147                /* ext2_debug ("preallocation hit (%lu/%lu).\n",
148                            ++alloc_hits, ++alloc_attempts); */
149
150		/* Linux gets, clears, and releases the buffer at this
151		   point - we don't have to that; we leave it to the caller
152		 */
153        } else {
154                ext2_discard_prealloc (ip);
155                /* ext2_debug ("preallocation miss (%lu/%lu).\n",
156                            alloc_hits, ++alloc_attempts); */
157                if (S_ISREG(ip->i_mode))
158                        bno = ext2_new_block
159                                (ITOV(ip)->v_mount, bpref,
160                                 &ip->i_prealloc_count,
161                                 &ip->i_prealloc_block);
162                else
163			bno = (daddr_t)ext2_new_block(ITOV(ip)->v_mount,
164					bpref, 0, 0);
165        }
166#else
167	bno = (daddr_t)ext2_new_block(ITOV(ip)->v_mount, bpref, 0, 0);
168#endif
169
170	if (bno > 0) {
171		/* set next_alloc fields as done in block_getblk */
172		ip->i_next_alloc_block = lbn;
173		ip->i_next_alloc_goal = bno;
174
175		ip->i_blocks += btodb(size);
176		ip->i_flag |= IN_CHANGE | IN_UPDATE;
177		*bnp = bno;
178		return (0);
179	}
180#if QUOTA
181	/*
182	 * Restore user's disk quota because allocation failed.
183	 */
184	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
185#endif
186nospace:
187	ext2_fserr(fs, cred->cr_uid, "file system full");
188	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
189	return (ENOSPC);
190}
191
192/*
193 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
194 *
195 * The vnode and an array of buffer pointers for a range of sequential
196 * logical blocks to be made contiguous is given. The allocator attempts
197 * to find a range of sequential blocks starting as close as possible to
198 * an fs_rotdelay offset from the end of the allocation for the logical
199 * block immediately preceeding the current range. If successful, the
200 * physical block numbers in the buffer pointers and in the inode are
201 * changed to reflect the new allocation. If unsuccessful, the allocation
202 * is left unchanged. The success in doing the reallocation is returned.
203 * Note that the error return is not reflected back to the user. Rather
204 * the previous block allocation will be used.
205 */
206
207#ifdef FANCY_REALLOC
208#include <sys/sysctl.h>
209static int doasyncfree = 1;
210#ifdef	OPT_DEBUG
211SYSCTL_INT(_debug, 14, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
212#endif	/* OPT_DEBUG */
213#endif
214
215int
216ext2_reallocblks(ap)
217	struct vop_reallocblks_args /* {
218		struct vnode *a_vp;
219		struct cluster_save *a_buflist;
220	} */ *ap;
221{
222#ifndef FANCY_REALLOC
223/* printf("ext2_reallocblks not implemented\n"); */
224return ENOSPC;
225#else
226
227	struct ext2_sb_info *fs;
228	struct inode *ip;
229	struct vnode *vp;
230	struct buf *sbp, *ebp;
231	daddr_t *bap, *sbap, *ebap;
232	struct cluster_save *buflist;
233	daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
234	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
235	int i, len, start_lvl, end_lvl, pref, ssize;
236	struct timeval tv;
237
238	vp = ap->a_vp;
239	ip = VTOI(vp);
240	fs = ip->i_e2fs;
241#ifdef UNKLAR
242	if (fs->fs_contigsumsize <= 0)
243		return (ENOSPC);
244#endif
245	buflist = ap->a_buflist;
246	len = buflist->bs_nchildren;
247	start_lbn = buflist->bs_children[0]->b_lblkno;
248	end_lbn = start_lbn + len - 1;
249#if DIAGNOSTIC
250	for (i = 1; i < len; i++)
251		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
252			panic("ext2_reallocblks: non-cluster");
253#endif
254	/*
255	 * If the latest allocation is in a new cylinder group, assume that
256	 * the filesystem has decided to move and do not force it back to
257	 * the previous cylinder group.
258	 */
259	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
260	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
261		return (ENOSPC);
262	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
263	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
264		return (ENOSPC);
265	/*
266	 * Get the starting offset and block map for the first block.
267	 */
268	if (start_lvl == 0) {
269		sbap = &ip->i_db[0];
270		soff = start_lbn;
271	} else {
272		idp = &start_ap[start_lvl - 1];
273		if (bread(vp, idp->in_lbn, (int)fs->s_blocksize, NOCRED, &sbp)) {
274			brelse(sbp);
275			return (ENOSPC);
276		}
277		sbap = (daddr_t *)sbp->b_data;
278		soff = idp->in_off;
279	}
280	/*
281	 * Find the preferred location for the cluster.
282	 */
283	pref = ext2_blkpref(ip, start_lbn, soff, sbap);
284	/*
285	 * If the block range spans two block maps, get the second map.
286	 */
287	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
288		ssize = len;
289	} else {
290#if DIAGNOSTIC
291		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
292			panic("ext2_reallocblk: start == end");
293#endif
294		ssize = len - (idp->in_off + 1);
295		if (bread(vp, idp->in_lbn, (int)fs->s_blocksize, NOCRED, &ebp))
296			goto fail;
297		ebap = (daddr_t *)ebp->b_data;
298	}
299	/*
300	 * Search the block map looking for an allocation of the desired size.
301	 */
302	if ((newblk = (daddr_t)ext2_hashalloc(ip, dtog(fs, pref), (long)pref,
303	    len, (u_long (*)())ext2_clusteralloc)) == 0)
304		goto fail;
305	/*
306	 * We have found a new contiguous block.
307	 *
308	 * First we have to replace the old block pointers with the new
309	 * block pointers in the inode and indirect blocks associated
310	 * with the file.
311	 */
312	blkno = newblk;
313	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->s_frags_per_block) {
314		if (i == ssize)
315			bap = ebap;
316#if DIAGNOSTIC
317		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
318			panic("ext2_reallocblks: alloc mismatch");
319#endif
320		*bap++ = blkno;
321	}
322	/*
323	 * Next we must write out the modified inode and indirect blocks.
324	 * For strict correctness, the writes should be synchronous since
325	 * the old block values may have been written to disk. In practise
326	 * they are almost never written, but if we are concerned about
327	 * strict correctness, the `doasyncfree' flag should be set to zero.
328	 *
329	 * The test on `doasyncfree' should be changed to test a flag
330	 * that shows whether the associated buffers and inodes have
331	 * been written. The flag should be set when the cluster is
332	 * started and cleared whenever the buffer or inode is flushed.
333	 * We can then check below to see if it is set, and do the
334	 * synchronous write only when it has been cleared.
335	 */
336	if (sbap != &ip->i_db[0]) {
337		if (doasyncfree)
338			bdwrite(sbp);
339		else
340			bwrite(sbp);
341	} else {
342		ip->i_flag |= IN_CHANGE | IN_UPDATE;
343		if (!doasyncfree) {
344			gettime(&tv);
345			UFS_UPDATE(vp, &tv, &tv, MNT_WAIT);
346		}
347	}
348	if (ssize < len)
349		if (doasyncfree)
350			bdwrite(ebp);
351		else
352			bwrite(ebp);
353	/*
354	 * Last, free the old blocks and assign the new blocks to the buffers.
355	 */
356	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->s_frags_per_block) {
357		ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
358		    fs->s_blocksize);
359		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
360	}
361	return (0);
362
363fail:
364	if (ssize < len)
365		brelse(ebp);
366	if (sbap != &ip->i_db[0])
367		brelse(sbp);
368	return (ENOSPC);
369
370#endif /* FANCY_REALLOC */
371}
372
373/*
374 * Allocate an inode in the file system.
375 *
376 * we leave the actual allocation strategy to the (modified)
377 * ext2_new_inode(), to make sure we get the policies right
378 */
379int
380ext2_valloc(pvp, mode, cred, vpp)
381	struct vnode *pvp;
382	int mode;
383	struct ucred *cred;
384	struct vnode **vpp;
385{
386	register struct inode *pip;
387	register struct ext2_sb_info *fs;
388	register struct inode *ip;
389	ino_t ino;
390	int i, error;
391
392	*vpp = NULL;
393	pip = VTOI(pvp);
394	fs = pip->i_e2fs;
395	if (fs->s_es->s_free_inodes_count == 0)
396		goto noinodes;
397
398	/* call the Linux routine - it returns the inode number only */
399	ino = ext2_new_inode(pip, mode);
400
401	if (ino == 0)
402		goto noinodes;
403	error = VFS_VGET(pvp->v_mount, ino, vpp);
404	if (error) {
405		UFS_VFREE(pvp, ino, mode);
406		return (error);
407	}
408	ip = VTOI(*vpp);
409
410	/*
411	  the question is whether using VGET was such good idea at all -
412	  Linux doesn't read the old inode in when it's allocating a
413	  new one. I will set at least i_size & i_blocks the zero.
414	*/
415	ip->i_mode = 0;
416	ip->i_size = 0;
417	ip->i_blocks = 0;
418	ip->i_flags = 0;
419        /* now we want to make sure that the block pointers are zeroed out */
420        for(i = 0; i < EXT2_NDIR_BLOCKS; i++)
421                ip->i_db[i] = 0;
422
423	/*
424	 * Set up a new generation number for this inode.
425	 * XXX check if this makes sense in ext2
426	 */
427	if (ip->i_gen == 0 || ++ip->i_gen == 0)
428		ip->i_gen = random() / 2 + 1;
429/*
430printf("ext2_valloc: allocated inode %d\n", ino);
431*/
432	return (0);
433noinodes:
434	ext2_fserr(fs, cred->cr_uid, "out of inodes");
435	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
436	return (ENOSPC);
437}
438
439/*
440 * Select the desired position for the next block in a file.
441 *
442 * we try to mimic what Remy does in inode_getblk/block_getblk
443 *
444 * we note: blocknr == 0 means that we're about to allocate either
445 * a direct block or a pointer block at the first level of indirection
446 * (In other words, stuff that will go in i_db[] or i_ib[])
447 *
448 * blocknr != 0 means that we're allocating a block that is none
449 * of the above. Then, blocknr tells us the number of the block
450 * that will hold the pointer
451 */
452daddr_t
453ext2_blkpref(ip, lbn, indx, bap, blocknr)
454	struct inode *ip;
455	daddr_t lbn;
456	int indx;
457	daddr_t *bap;
458	daddr_t blocknr;
459{
460	int	tmp;
461
462	/* if the next block is actually what we thought it is,
463	   then set the goal to what we thought it should be
464	*/
465	if(ip->i_next_alloc_block == lbn)
466		return ip->i_next_alloc_goal;
467
468	/* now check whether we were provided with an array that basically
469	   tells us previous blocks to which we want to stay closeby
470	*/
471	if(bap)
472                for (tmp = indx - 1; tmp >= 0; tmp--)
473			if (bap[tmp])
474				return bap[tmp];
475
476	/* else let's fall back to the blocknr, or, if there is none,
477	   follow the rule that a block should be allocated near it's inode
478	*/
479	return blocknr ? blocknr :
480			(daddr_t)(ip->i_block_group *
481			EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) +
482			ip->i_e2fs->s_es->s_first_data_block;
483}
484
485/*
486 * Free a block or fragment.
487 *
488 * pass on to the Linux code
489 */
490void
491ext2_blkfree(ip, bno, size)
492	register struct inode *ip;
493	daddr_t bno;
494	long size;
495{
496	register struct ext2_sb_info *fs;
497
498	fs = ip->i_e2fs;
499	/*
500	 *	call Linux code with mount *, block number, count
501	 */
502	ext2_free_blocks(ITOV(ip)->v_mount, bno, size / fs->s_frag_size);
503}
504
505/*
506 * Free an inode.
507 *
508 * the maintenance of the actual bitmaps is again up to the linux code
509 */
510int
511ext2_vfree(pvp, ino, mode)
512	struct vnode *pvp;
513	ino_t ino;
514	int mode;
515{
516	register struct ext2_sb_info *fs;
517	register struct inode *pip;
518
519	pip = VTOI(pvp);
520	fs = pip->i_e2fs;
521	if ((u_int)ino >= fs->s_inodes_per_group * fs->s_groups_count)
522		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s",
523		    pip->i_dev, ino, fs->fs_fsmnt);
524
525/* ext2_debug("ext2_vfree (%d, %d) called\n", pip->i_number, mode);
526 */
527	ext2_discard_prealloc(pip);
528
529	/* we need to make sure that ext2_free_inode can adjust the
530	   used_dir_counts in the group summary information - I'd
531	   really like to know what the rationale behind this
532	   'set i_mode to zero to denote an unused inode' is
533	 */
534	mode = pip->i_mode;
535	pip->i_mode = mode;
536	ext2_free_inode(pip);
537	pip->i_mode = mode;
538	return (0);
539}
540
541/*
542 * Fserr prints the name of a file system with an error diagnostic.
543 *
544 * The form of the error message is:
545 *	fs: error message
546 */
547static void
548ext2_fserr(fs, uid, cp)
549	struct ext2_sb_info *fs;
550	u_int uid;
551	char *cp;
552{
553
554	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
555}
556