blkback.c revision 231883
1/*-
2 * Copyright (c) 2009-2011 Spectra Logic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    substantially similar to the "NO WARRANTY" disclaimer below
13 *    ("Disclaimer") and any redistribution must be conditioned upon
14 *    including a substantially similar Disclaimer requirement for further
15 *    binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGES.
29 *
30 * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31 *          Ken Merry           (Spectra Logic Corporation)
32 */
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/xen/blkback/blkback.c 231883 2012-02-17 22:33:46Z gibbs $");
35
36/**
37 * \file blkback.c
38 *
39 * \brief Device driver supporting the vending of block storage from
40 *        a FreeBSD domain to other domains.
41 */
42
43#include "opt_kdtrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kernel.h>
48#include <sys/malloc.h>
49
50#include <sys/bio.h>
51#include <sys/bus.h>
52#include <sys/conf.h>
53#include <sys/devicestat.h>
54#include <sys/disk.h>
55#include <sys/fcntl.h>
56#include <sys/filedesc.h>
57#include <sys/kdb.h>
58#include <sys/module.h>
59#include <sys/namei.h>
60#include <sys/proc.h>
61#include <sys/rman.h>
62#include <sys/taskqueue.h>
63#include <sys/types.h>
64#include <sys/vnode.h>
65#include <sys/mount.h>
66#include <sys/sysctl.h>
67#include <sys/bitstring.h>
68#include <sys/sdt.h>
69
70#include <geom/geom.h>
71
72#include <machine/_inttypes.h>
73#include <machine/xen/xen-os.h>
74
75#include <vm/vm.h>
76#include <vm/vm_extern.h>
77#include <vm/vm_kern.h>
78
79#include <xen/blkif.h>
80#include <xen/evtchn.h>
81#include <xen/gnttab.h>
82#include <xen/xen_intr.h>
83
84#include <xen/interface/event_channel.h>
85#include <xen/interface/grant_table.h>
86
87#include <xen/xenbus/xenbusvar.h>
88
89/*--------------------------- Compile-time Tunables --------------------------*/
90/**
91 * The maximum number of outstanding request blocks (request headers plus
92 * additional segment blocks) we will allow in a negotiated block-front/back
93 * communication channel.
94 */
95#define	XBB_MAX_REQUESTS	256
96
97/**
98 * \brief Define to force all I/O to be performed on memory owned by the
99 *        backend device, with a copy-in/out to the remote domain's memory.
100 *
101 * \note  This option is currently required when this driver's domain is
102 *        operating in HVM mode on a system using an IOMMU.
103 *
104 * This driver uses Xen's grant table API to gain access to the memory of
105 * the remote domains it serves.  When our domain is operating in PV mode,
106 * the grant table mechanism directly updates our domain's page table entries
107 * to point to the physical pages of the remote domain.  This scheme guarantees
108 * that blkback and the backing devices it uses can safely perform DMA
109 * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
110 * insure that our domain cannot DMA to pages owned by another domain.  As
111 * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
112 * table API.  For this reason, in HVM mode, we must bounce all requests into
113 * memory that is mapped into our domain at domain startup and thus has
114 * valid IOMMU mappings.
115 */
116#define XBB_USE_BOUNCE_BUFFERS
117
118/**
119 * \brief Define to enable rudimentary request logging to the console.
120 */
121#undef XBB_DEBUG
122
123/*---------------------------------- Macros ----------------------------------*/
124/**
125 * Custom malloc type for all driver allocations.
126 */
127static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
128
129#ifdef XBB_DEBUG
130#define DPRINTF(fmt, args...)					\
131    printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
132#else
133#define DPRINTF(fmt, args...) do {} while(0)
134#endif
135
136/**
137 * The maximum mapped region size per request we will allow in a negotiated
138 * block-front/back communication channel.
139 */
140#define	XBB_MAX_REQUEST_SIZE					\
141	MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
142
143/**
144 * The maximum number of segments (within a request header and accompanying
145 * segment blocks) per request we will allow in a negotiated block-front/back
146 * communication channel.
147 */
148#define	XBB_MAX_SEGMENTS_PER_REQUEST				\
149	(MIN(UIO_MAXIOV,					\
150	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
151		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
152
153/**
154 * The maximum number of shared memory ring pages we will allow in a
155 * negotiated block-front/back communication channel.  Allow enough
156 * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
157 */
158#define	XBB_MAX_RING_PAGES						    \
159	BLKIF_RING_PAGES(BLKIF_SEGS_TO_BLOCKS(XBB_MAX_SEGMENTS_PER_REQUEST) \
160		       * XBB_MAX_REQUESTS)
161/**
162 * The maximum number of ring pages that we can allow per request list.
163 * We limit this to the maximum number of segments per request, because
164 * that is already a reasonable number of segments to aggregate.  This
165 * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
166 * because that would leave situations where we can't dispatch even one
167 * large request.
168 */
169#define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
170
171/*--------------------------- Forward Declarations ---------------------------*/
172struct xbb_softc;
173struct xbb_xen_req;
174
175static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
176			      ...) __attribute__((format(printf, 3, 4)));
177static int  xbb_shutdown(struct xbb_softc *xbb);
178static int  xbb_detach(device_t dev);
179
180/*------------------------------ Data Structures -----------------------------*/
181
182STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
183
184typedef enum {
185	XBB_REQLIST_NONE	= 0x00,
186	XBB_REQLIST_MAPPED	= 0x01
187} xbb_reqlist_flags;
188
189struct xbb_xen_reqlist {
190	/**
191	 * Back reference to the parent block back instance for this
192	 * request.  Used during bio_done handling.
193	 */
194	struct xbb_softc        *xbb;
195
196	/**
197	 * BLKIF_OP code for this request.
198	 */
199	int			 operation;
200
201	/**
202	 * Set to BLKIF_RSP_* to indicate request status.
203	 *
204	 * This field allows an error status to be recorded even if the
205	 * delivery of this status must be deferred.  Deferred reporting
206	 * is necessary, for example, when an error is detected during
207	 * completion processing of one bio when other bios for this
208	 * request are still outstanding.
209	 */
210	int			 status;
211
212	/**
213	 * Number of 512 byte sectors not transferred.
214	 */
215	int			 residual_512b_sectors;
216
217	/**
218	 * Starting sector number of the first request in the list.
219	 */
220	off_t			 starting_sector_number;
221
222	/**
223	 * If we're going to coalesce, the next contiguous sector would be
224	 * this one.
225	 */
226	off_t			 next_contig_sector;
227
228	/**
229	 * Number of child requests in the list.
230	 */
231	int			 num_children;
232
233	/**
234	 * Number of I/O requests dispatched to the backend.
235	 */
236	int			 pendcnt;
237
238	/**
239	 * Total number of segments for requests in the list.
240	 */
241	int			 nr_segments;
242
243	/**
244	 * Flags for this particular request list.
245	 */
246	xbb_reqlist_flags	 flags;
247
248	/**
249	 * Kernel virtual address space reserved for this request
250	 * list structure and used to map the remote domain's pages for
251	 * this I/O, into our domain's address space.
252	 */
253	uint8_t			*kva;
254
255	/**
256	 * Base, psuedo-physical address, corresponding to the start
257	 * of this request's kva region.
258	 */
259	uint64_t	 	 gnt_base;
260
261
262#ifdef XBB_USE_BOUNCE_BUFFERS
263	/**
264	 * Pre-allocated domain local memory used to proxy remote
265	 * domain memory during I/O operations.
266	 */
267	uint8_t			*bounce;
268#endif
269
270	/**
271	 * Array of grant handles (one per page) used to map this request.
272	 */
273	grant_handle_t		*gnt_handles;
274
275	/**
276	 * Device statistics request ordering type (ordered or simple).
277	 */
278	devstat_tag_type	 ds_tag_type;
279
280	/**
281	 * Device statistics request type (read, write, no_data).
282	 */
283	devstat_trans_flags	 ds_trans_type;
284
285	/**
286	 * The start time for this request.
287	 */
288	struct bintime		 ds_t0;
289
290	/**
291	 * Linked list of contiguous requests with the same operation type.
292	 */
293	struct xbb_xen_req_list	 contig_req_list;
294
295	/**
296	 * Linked list links used to aggregate idle requests in the
297	 * request list free pool (xbb->reqlist_free_stailq) and pending
298	 * requests waiting for execution (xbb->reqlist_pending_stailq).
299	 */
300	STAILQ_ENTRY(xbb_xen_reqlist) links;
301};
302
303STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
304
305/**
306 * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
307 */
308struct xbb_xen_req {
309	/**
310	 * Linked list links used to aggregate requests into a reqlist
311	 * and to store them in the request free pool.
312	 */
313	STAILQ_ENTRY(xbb_xen_req) links;
314
315	/**
316	 * The remote domain's identifier for this I/O request.
317	 */
318	uint64_t		  id;
319
320	/**
321	 * The number of pages currently mapped for this request.
322	 */
323	int			  nr_pages;
324
325	/**
326	 * The number of 512 byte sectors comprising this requests.
327	 */
328	int			  nr_512b_sectors;
329
330	/**
331	 * The number of struct bio requests still outstanding for this
332	 * request on the backend device.  This field is only used for
333	 * device (rather than file) backed I/O.
334	 */
335	int			  pendcnt;
336
337	/**
338	 * BLKIF_OP code for this request.
339	 */
340	int			  operation;
341
342	/**
343	 * Storage used for non-native ring requests.
344	 */
345	blkif_request_t		 ring_req_storage;
346
347	/**
348	 * Pointer to the Xen request in the ring.
349	 */
350	blkif_request_t		*ring_req;
351
352	/**
353	 * Consumer index for this request.
354	 */
355	RING_IDX		 req_ring_idx;
356
357	/**
358	 * The start time for this request.
359	 */
360	struct bintime		 ds_t0;
361
362	/**
363	 * Pointer back to our parent request list.
364	 */
365	struct xbb_xen_reqlist  *reqlist;
366};
367SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
368
369/**
370 * \brief Configuration data for the shared memory request ring
371 *        used to communicate with the front-end client of this
372 *        this driver.
373 */
374struct xbb_ring_config {
375	/** KVA address where ring memory is mapped. */
376	vm_offset_t	va;
377
378	/** The pseudo-physical address where ring memory is mapped.*/
379	uint64_t	gnt_addr;
380
381	/**
382	 * Grant table handles, one per-ring page, returned by the
383	 * hyperpervisor upon mapping of the ring and required to
384	 * unmap it when a connection is torn down.
385	 */
386	grant_handle_t	handle[XBB_MAX_RING_PAGES];
387
388	/**
389	 * The device bus address returned by the hypervisor when
390	 * mapping the ring and required to unmap it when a connection
391	 * is torn down.
392	 */
393	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
394
395	/** The number of ring pages mapped for the current connection. */
396	u_int		ring_pages;
397
398	/**
399	 * The grant references, one per-ring page, supplied by the
400	 * front-end, allowing us to reference the ring pages in the
401	 * front-end's domain and to map these pages into our own domain.
402	 */
403	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
404
405	/** The interrupt driven even channel used to signal ring events. */
406	evtchn_port_t   evtchn;
407};
408
409/**
410 * Per-instance connection state flags.
411 */
412typedef enum
413{
414	/**
415	 * The front-end requested a read-only mount of the
416	 * back-end device/file.
417	 */
418	XBBF_READ_ONLY         = 0x01,
419
420	/** Communication with the front-end has been established. */
421	XBBF_RING_CONNECTED    = 0x02,
422
423	/**
424	 * Front-end requests exist in the ring and are waiting for
425	 * xbb_xen_req objects to free up.
426	 */
427	XBBF_RESOURCE_SHORTAGE = 0x04,
428
429	/** Connection teardown in progress. */
430	XBBF_SHUTDOWN          = 0x08,
431
432	/** A thread is already performing shutdown processing. */
433	XBBF_IN_SHUTDOWN       = 0x10
434} xbb_flag_t;
435
436/** Backend device type.  */
437typedef enum {
438	/** Backend type unknown. */
439	XBB_TYPE_NONE		= 0x00,
440
441	/**
442	 * Backend type disk (access via cdev switch
443	 * strategy routine).
444	 */
445	XBB_TYPE_DISK		= 0x01,
446
447	/** Backend type file (access vnode operations.). */
448	XBB_TYPE_FILE		= 0x02
449} xbb_type;
450
451/**
452 * \brief Structure used to memoize information about a per-request
453 *        scatter-gather list.
454 *
455 * The chief benefit of using this data structure is it avoids having
456 * to reparse the possibly discontiguous S/G list in the original
457 * request.  Due to the way that the mapping of the memory backing an
458 * I/O transaction is handled by Xen, a second pass is unavoidable.
459 * At least this way the second walk is a simple array traversal.
460 *
461 * \note A single Scatter/Gather element in the block interface covers
462 *       at most 1 machine page.  In this context a sector (blkif
463 *       nomenclature, not what I'd choose) is a 512b aligned unit
464 *       of mapping within the machine page referenced by an S/G
465 *       element.
466 */
467struct xbb_sg {
468	/** The number of 512b data chunks mapped in this S/G element. */
469	int16_t nsect;
470
471	/**
472	 * The index (0 based) of the first 512b data chunk mapped
473	 * in this S/G element.
474	 */
475	uint8_t first_sect;
476
477	/**
478	 * The index (0 based) of the last 512b data chunk mapped
479	 * in this S/G element.
480	 */
481	uint8_t last_sect;
482};
483
484/**
485 * Character device backend specific configuration data.
486 */
487struct xbb_dev_data {
488	/** Cdev used for device backend access.  */
489	struct cdev   *cdev;
490
491	/** Cdev switch used for device backend access.  */
492	struct cdevsw *csw;
493
494	/** Used to hold a reference on opened cdev backend devices. */
495	int	       dev_ref;
496};
497
498/**
499 * File backend specific configuration data.
500 */
501struct xbb_file_data {
502	/** Credentials to use for vnode backed (file based) I/O. */
503	struct ucred   *cred;
504
505	/**
506	 * \brief Array of io vectors used to process file based I/O.
507	 *
508	 * Only a single file based request is outstanding per-xbb instance,
509	 * so we only need one of these.
510	 */
511	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
512#ifdef XBB_USE_BOUNCE_BUFFERS
513
514	/**
515	 * \brief Array of io vectors used to handle bouncing of file reads.
516	 *
517	 * Vnode operations are free to modify uio data during their
518	 * exectuion.  In the case of a read with bounce buffering active,
519	 * we need some of the data from the original uio in order to
520	 * bounce-out the read data.  This array serves as the temporary
521	 * storage for this saved data.
522	 */
523	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
524
525	/**
526	 * \brief Array of memoized bounce buffer kva offsets used
527	 *        in the file based backend.
528	 *
529	 * Due to the way that the mapping of the memory backing an
530	 * I/O transaction is handled by Xen, a second pass through
531	 * the request sg elements is unavoidable. We memoize the computed
532	 * bounce address here to reduce the cost of the second walk.
533	 */
534	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
535#endif /* XBB_USE_BOUNCE_BUFFERS */
536};
537
538/**
539 * Collection of backend type specific data.
540 */
541union xbb_backend_data {
542	struct xbb_dev_data  dev;
543	struct xbb_file_data file;
544};
545
546/**
547 * Function signature of backend specific I/O handlers.
548 */
549typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
550			      struct xbb_xen_reqlist *reqlist, int operation,
551			      int flags);
552
553/**
554 * Per-instance configuration data.
555 */
556struct xbb_softc {
557
558	/**
559	 * Task-queue used to process I/O requests.
560	 */
561	struct taskqueue	 *io_taskqueue;
562
563	/**
564	 * Single "run the request queue" task enqueued
565	 * on io_taskqueue.
566	 */
567	struct task		  io_task;
568
569	/** Device type for this instance. */
570	xbb_type		  device_type;
571
572	/** NewBus device corresponding to this instance. */
573	device_t		  dev;
574
575	/** Backend specific dispatch routine for this instance. */
576	xbb_dispatch_t		  dispatch_io;
577
578	/** The number of requests outstanding on the backend device/file. */
579	int			  active_request_count;
580
581	/** Free pool of request tracking structures. */
582	struct xbb_xen_req_list   request_free_stailq;
583
584	/** Array, sized at connection time, of request tracking structures. */
585	struct xbb_xen_req	 *requests;
586
587	/** Free pool of request list structures. */
588	struct xbb_xen_reqlist_list reqlist_free_stailq;
589
590	/** List of pending request lists awaiting execution. */
591	struct xbb_xen_reqlist_list reqlist_pending_stailq;
592
593	/** Array, sized at connection time, of request list structures. */
594	struct xbb_xen_reqlist	 *request_lists;
595
596	/**
597	 * Global pool of kva used for mapping remote domain ring
598	 * and I/O transaction data.
599	 */
600	vm_offset_t		  kva;
601
602	/** Psuedo-physical address corresponding to kva. */
603	uint64_t		  gnt_base_addr;
604
605	/** The size of the global kva pool. */
606	int			  kva_size;
607
608	/** The size of the KVA area used for request lists. */
609	int			  reqlist_kva_size;
610
611	/** The number of pages of KVA used for request lists */
612	int			  reqlist_kva_pages;
613
614	/** Bitmap of free KVA pages */
615	bitstr_t		 *kva_free;
616
617	/**
618	 * \brief Cached value of the front-end's domain id.
619	 *
620	 * This value is used at once for each mapped page in
621	 * a transaction.  We cache it to avoid incuring the
622	 * cost of an ivar access every time this is needed.
623	 */
624	domid_t			  otherend_id;
625
626	/**
627	 * \brief The blkif protocol abi in effect.
628	 *
629	 * There are situations where the back and front ends can
630	 * have a different, native abi (e.g. intel x86_64 and
631	 * 32bit x86 domains on the same machine).  The back-end
632	 * always accomodates the front-end's native abi.  That
633	 * value is pulled from the XenStore and recorded here.
634	 */
635	int			  abi;
636
637	/**
638	 * \brief The maximum number of requests and request lists allowed
639	 *        to be in flight at a time.
640	 *
641	 * This value is negotiated via the XenStore.
642	 */
643	u_int			  max_requests;
644
645	/**
646	 * \brief The maximum number of segments (1 page per segment)
647	 *	  that can be mapped by a request.
648	 *
649	 * This value is negotiated via the XenStore.
650	 */
651	u_int			  max_request_segments;
652
653	/**
654	 * \brief Maximum number of segments per request list.
655	 *
656	 * This value is derived from and will generally be larger than
657	 * max_request_segments.
658	 */
659	u_int			  max_reqlist_segments;
660
661	/**
662	 * The maximum size of any request to this back-end
663	 * device.
664	 *
665	 * This value is negotiated via the XenStore.
666	 */
667	u_int			  max_request_size;
668
669	/**
670	 * The maximum size of any request list.  This is derived directly
671	 * from max_reqlist_segments.
672	 */
673	u_int			  max_reqlist_size;
674
675	/** Various configuration and state bit flags. */
676	xbb_flag_t		  flags;
677
678	/** Ring mapping and interrupt configuration data. */
679	struct xbb_ring_config	  ring_config;
680
681	/** Runtime, cross-abi safe, structures for ring access. */
682	blkif_back_rings_t	  rings;
683
684	/** IRQ mapping for the communication ring event channel. */
685	int			  irq;
686
687	/**
688	 * \brief Backend access mode flags (e.g. write, or read-only).
689	 *
690	 * This value is passed to us by the front-end via the XenStore.
691	 */
692	char			 *dev_mode;
693
694	/**
695	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
696	 *
697	 * This value is passed to us by the front-end via the XenStore.
698	 * Currently unused.
699	 */
700	char			 *dev_type;
701
702	/**
703	 * \brief Backend device/file identifier.
704	 *
705	 * This value is passed to us by the front-end via the XenStore.
706	 * We expect this to be a POSIX path indicating the file or
707	 * device to open.
708	 */
709	char			 *dev_name;
710
711	/**
712	 * Vnode corresponding to the backend device node or file
713	 * we are acessing.
714	 */
715	struct vnode		 *vn;
716
717	union xbb_backend_data	  backend;
718
719	/** The native sector size of the backend. */
720	u_int			  sector_size;
721
722	/** log2 of sector_size.  */
723	u_int			  sector_size_shift;
724
725	/** Size in bytes of the backend device or file.  */
726	off_t			  media_size;
727
728	/**
729	 * \brief media_size expressed in terms of the backend native
730	 *	  sector size.
731	 *
732	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
733	 */
734	uint64_t		  media_num_sectors;
735
736	/**
737	 * \brief Array of memoized scatter gather data computed during the
738	 *	  conversion of blkif ring requests to internal xbb_xen_req
739	 *	  structures.
740	 *
741	 * Ring processing is serialized so we only need one of these.
742	 */
743	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
744
745	/**
746	 * Temporary grant table map used in xbb_dispatch_io().  When
747	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
748	 * stack could cause a stack overflow.
749	 */
750	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
751
752	/** Mutex protecting per-instance data. */
753	struct mtx		  lock;
754
755#ifdef XENHVM
756	/**
757	 * Resource representing allocated physical address space
758	 * associated with our per-instance kva region.
759	 */
760	struct resource		 *pseudo_phys_res;
761
762	/** Resource id for allocated physical address space. */
763	int			  pseudo_phys_res_id;
764#endif
765
766	/**
767	 * I/O statistics from BlockBack dispatch down.  These are
768	 * coalesced requests, and we start them right before execution.
769	 */
770	struct devstat		 *xbb_stats;
771
772	/**
773	 * I/O statistics coming into BlockBack.  These are the requests as
774	 * we get them from BlockFront.  They are started as soon as we
775	 * receive a request, and completed when the I/O is complete.
776	 */
777	struct devstat		 *xbb_stats_in;
778
779	/** Disable sending flush to the backend */
780	int			  disable_flush;
781
782	/** Send a real flush for every N flush requests */
783	int			  flush_interval;
784
785	/** Count of flush requests in the interval */
786	int			  flush_count;
787
788	/** Don't coalesce requests if this is set */
789	int			  no_coalesce_reqs;
790
791	/** Number of requests we have received */
792	uint64_t		  reqs_received;
793
794	/** Number of requests we have completed*/
795	uint64_t		  reqs_completed;
796
797	/** How many forced dispatches (i.e. without coalescing) have happend */
798	uint64_t		  forced_dispatch;
799
800	/** How many normal dispatches have happend */
801	uint64_t		  normal_dispatch;
802
803	/** How many total dispatches have happend */
804	uint64_t		  total_dispatch;
805
806	/** How many times we have run out of KVA */
807	uint64_t		  kva_shortages;
808
809	/** How many times we have run out of request structures */
810	uint64_t		  request_shortages;
811};
812
813/*---------------------------- Request Processing ----------------------------*/
814/**
815 * Allocate an internal transaction tracking structure from the free pool.
816 *
817 * \param xbb  Per-instance xbb configuration structure.
818 *
819 * \return  On success, a pointer to the allocated xbb_xen_req structure.
820 *          Otherwise NULL.
821 */
822static inline struct xbb_xen_req *
823xbb_get_req(struct xbb_softc *xbb)
824{
825	struct xbb_xen_req *req;
826
827	req = NULL;
828
829	mtx_assert(&xbb->lock, MA_OWNED);
830
831	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
832		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
833		xbb->active_request_count++;
834	}
835
836	return (req);
837}
838
839/**
840 * Return an allocated transaction tracking structure to the free pool.
841 *
842 * \param xbb  Per-instance xbb configuration structure.
843 * \param req  The request structure to free.
844 */
845static inline void
846xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
847{
848	mtx_assert(&xbb->lock, MA_OWNED);
849
850	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
851	xbb->active_request_count--;
852
853	KASSERT(xbb->active_request_count >= 0,
854		("xbb_release_req: negative active count"));
855}
856
857/**
858 * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
859 *
860 * \param xbb	    Per-instance xbb configuration structure.
861 * \param req_list  The list of requests to free.
862 * \param nreqs	    The number of items in the list.
863 */
864static inline void
865xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
866		 int nreqs)
867{
868	mtx_assert(&xbb->lock, MA_OWNED);
869
870	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
871	xbb->active_request_count -= nreqs;
872
873	KASSERT(xbb->active_request_count >= 0,
874		("xbb_release_reqs: negative active count"));
875}
876
877/**
878 * Given a page index and 512b sector offset within that page,
879 * calculate an offset into a request's kva region.
880 *
881 * \param reqlist The request structure whose kva region will be accessed.
882 * \param pagenr  The page index used to compute the kva offset.
883 * \param sector  The 512b sector index used to compute the page relative
884 *                kva offset.
885 *
886 * \return  The computed global KVA offset.
887 */
888static inline uint8_t *
889xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
890{
891	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
892}
893
894#ifdef XBB_USE_BOUNCE_BUFFERS
895/**
896 * Given a page index and 512b sector offset within that page,
897 * calculate an offset into a request's local bounce memory region.
898 *
899 * \param reqlist The request structure whose bounce region will be accessed.
900 * \param pagenr  The page index used to compute the bounce offset.
901 * \param sector  The 512b sector index used to compute the page relative
902 *                bounce offset.
903 *
904 * \return  The computed global bounce buffer address.
905 */
906static inline uint8_t *
907xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
908{
909	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
910}
911#endif
912
913/**
914 * Given a page number and 512b sector offset within that page,
915 * calculate an offset into the request's memory region that the
916 * underlying backend device/file should use for I/O.
917 *
918 * \param reqlist The request structure whose I/O region will be accessed.
919 * \param pagenr  The page index used to compute the I/O offset.
920 * \param sector  The 512b sector index used to compute the page relative
921 *                I/O offset.
922 *
923 * \return  The computed global I/O address.
924 *
925 * Depending on configuration, this will either be a local bounce buffer
926 * or a pointer to the memory mapped in from the front-end domain for
927 * this request.
928 */
929static inline uint8_t *
930xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
931{
932#ifdef XBB_USE_BOUNCE_BUFFERS
933	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
934#else
935	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
936#endif
937}
938
939/**
940 * Given a page index and 512b sector offset within that page, calculate
941 * an offset into the local psuedo-physical address space used to map a
942 * front-end's request data into a request.
943 *
944 * \param reqlist The request list structure whose pseudo-physical region
945 *                will be accessed.
946 * \param pagenr  The page index used to compute the pseudo-physical offset.
947 * \param sector  The 512b sector index used to compute the page relative
948 *                pseudo-physical offset.
949 *
950 * \return  The computed global pseudo-phsyical address.
951 *
952 * Depending on configuration, this will either be a local bounce buffer
953 * or a pointer to the memory mapped in from the front-end domain for
954 * this request.
955 */
956static inline uintptr_t
957xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
958{
959	struct xbb_softc *xbb;
960
961	xbb = reqlist->xbb;
962
963	return ((uintptr_t)(xbb->gnt_base_addr +
964		(uintptr_t)(reqlist->kva - xbb->kva) +
965		(PAGE_SIZE * pagenr) + (sector << 9)));
966}
967
968/**
969 * Get Kernel Virtual Address space for mapping requests.
970 *
971 * \param xbb         Per-instance xbb configuration structure.
972 * \param nr_pages    Number of pages needed.
973 * \param check_only  If set, check for free KVA but don't allocate it.
974 * \param have_lock   If set, xbb lock is already held.
975 *
976 * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
977 *
978 * Note:  This should be unnecessary once we have either chaining or
979 * scatter/gather support for struct bio.  At that point we'll be able to
980 * put multiple addresses and lengths in one bio/bio chain and won't need
981 * to map everything into one virtual segment.
982 */
983static uint8_t *
984xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
985{
986	intptr_t first_clear;
987	intptr_t num_clear;
988	uint8_t *free_kva;
989	int      i;
990
991	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
992
993	first_clear = 0;
994	free_kva = NULL;
995
996	mtx_lock(&xbb->lock);
997
998	/*
999	 * Look for the first available page.  If there are none, we're done.
1000	 */
1001	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
1002
1003	if (first_clear == -1)
1004		goto bailout;
1005
1006	/*
1007	 * Starting at the first available page, look for consecutive free
1008	 * pages that will satisfy the user's request.
1009	 */
1010	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1011		/*
1012		 * If this is true, the page is used, so we have to reset
1013		 * the number of clear pages and the first clear page
1014		 * (since it pointed to a region with an insufficient number
1015		 * of clear pages).
1016		 */
1017		if (bit_test(xbb->kva_free, i)) {
1018			num_clear = 0;
1019			first_clear = -1;
1020			continue;
1021		}
1022
1023		if (first_clear == -1)
1024			first_clear = i;
1025
1026		/*
1027		 * If this is true, we've found a large enough free region
1028		 * to satisfy the request.
1029		 */
1030		if (++num_clear == nr_pages) {
1031
1032			bit_nset(xbb->kva_free, first_clear,
1033				 first_clear + nr_pages - 1);
1034
1035			free_kva = xbb->kva +
1036				(uint8_t *)(first_clear * PAGE_SIZE);
1037
1038			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1039				free_kva + (nr_pages * PAGE_SIZE) <=
1040				(uint8_t *)xbb->ring_config.va,
1041				("Free KVA %p len %d out of range, "
1042				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1043				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1044				 (uintmax_t)xbb->ring_config.va));
1045			break;
1046		}
1047	}
1048
1049bailout:
1050
1051	if (free_kva == NULL) {
1052		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1053		xbb->kva_shortages++;
1054	}
1055
1056	mtx_unlock(&xbb->lock);
1057
1058	return (free_kva);
1059}
1060
1061/**
1062 * Free allocated KVA.
1063 *
1064 * \param xbb	    Per-instance xbb configuration structure.
1065 * \param kva_ptr   Pointer to allocated KVA region.
1066 * \param nr_pages  Number of pages in the KVA region.
1067 */
1068static void
1069xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1070{
1071	intptr_t start_page;
1072
1073	mtx_assert(&xbb->lock, MA_OWNED);
1074
1075	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1076	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1077
1078}
1079
1080/**
1081 * Unmap the front-end pages associated with this I/O request.
1082 *
1083 * \param req  The request structure to unmap.
1084 */
1085static void
1086xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1087{
1088	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1089	u_int			      i;
1090	u_int			      invcount;
1091	int			      error;
1092
1093	invcount = 0;
1094	for (i = 0; i < reqlist->nr_segments; i++) {
1095
1096		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1097			continue;
1098
1099		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1100		unmap[invcount].dev_bus_addr = 0;
1101		unmap[invcount].handle       = reqlist->gnt_handles[i];
1102		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1103		invcount++;
1104	}
1105
1106	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1107					  unmap, invcount);
1108	KASSERT(error == 0, ("Grant table operation failed"));
1109}
1110
1111/**
1112 * Allocate an internal transaction tracking structure from the free pool.
1113 *
1114 * \param xbb  Per-instance xbb configuration structure.
1115 *
1116 * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1117 *          Otherwise NULL.
1118 */
1119static inline struct xbb_xen_reqlist *
1120xbb_get_reqlist(struct xbb_softc *xbb)
1121{
1122	struct xbb_xen_reqlist *reqlist;
1123
1124	reqlist = NULL;
1125
1126	mtx_assert(&xbb->lock, MA_OWNED);
1127
1128	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1129
1130		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1131		reqlist->flags = XBB_REQLIST_NONE;
1132		reqlist->kva = NULL;
1133		reqlist->status = BLKIF_RSP_OKAY;
1134		reqlist->residual_512b_sectors = 0;
1135		reqlist->num_children = 0;
1136		reqlist->nr_segments = 0;
1137		STAILQ_INIT(&reqlist->contig_req_list);
1138	}
1139
1140	return (reqlist);
1141}
1142
1143/**
1144 * Return an allocated transaction tracking structure to the free pool.
1145 *
1146 * \param xbb        Per-instance xbb configuration structure.
1147 * \param req        The request list structure to free.
1148 * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1149 *                   during a resource shortage condition.
1150 */
1151static inline void
1152xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1153		    int wakeup)
1154{
1155
1156	mtx_lock(&xbb->lock);
1157
1158	if (wakeup) {
1159		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1160		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1161	}
1162
1163	if (reqlist->kva != NULL)
1164		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1165
1166	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1167
1168	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1169
1170	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1171		/*
1172		 * Shutdown is in progress.  See if we can
1173		 * progress further now that one more request
1174		 * has completed and been returned to the
1175		 * free pool.
1176		 */
1177		xbb_shutdown(xbb);
1178	}
1179
1180	mtx_unlock(&xbb->lock);
1181
1182	if (wakeup != 0)
1183		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1184}
1185
1186/**
1187 * Request resources and do basic request setup.
1188 *
1189 * \param xbb          Per-instance xbb configuration structure.
1190 * \param reqlist      Pointer to reqlist pointer.
1191 * \param ring_req     Pointer to a block ring request.
1192 * \param ring_index   The ring index of this request.
1193 *
1194 * \return  0 for success, non-zero for failure.
1195 */
1196static int
1197xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1198		  blkif_request_t *ring_req, RING_IDX ring_idx)
1199{
1200	struct xbb_xen_reqlist *nreqlist;
1201	struct xbb_xen_req     *nreq;
1202
1203	nreqlist = NULL;
1204	nreq     = NULL;
1205
1206	mtx_lock(&xbb->lock);
1207
1208	/*
1209	 * We don't allow new resources to be allocated if we're in the
1210	 * process of shutting down.
1211	 */
1212	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1213		mtx_unlock(&xbb->lock);
1214		return (1);
1215	}
1216
1217	/*
1218	 * Allocate a reqlist if the caller doesn't have one already.
1219	 */
1220	if (*reqlist == NULL) {
1221		nreqlist = xbb_get_reqlist(xbb);
1222		if (nreqlist == NULL)
1223			goto bailout_error;
1224	}
1225
1226	/* We always allocate a request. */
1227	nreq = xbb_get_req(xbb);
1228	if (nreq == NULL)
1229		goto bailout_error;
1230
1231	mtx_unlock(&xbb->lock);
1232
1233	if (*reqlist == NULL) {
1234		*reqlist = nreqlist;
1235		nreqlist->operation = ring_req->operation;
1236		nreqlist->starting_sector_number = ring_req->sector_number;
1237		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1238				   links);
1239	}
1240
1241	nreq->reqlist = *reqlist;
1242	nreq->req_ring_idx = ring_idx;
1243
1244	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1245		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1246		nreq->ring_req = &nreq->ring_req_storage;
1247	} else {
1248		nreq->ring_req = ring_req;
1249	}
1250
1251	binuptime(&nreq->ds_t0);
1252	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1253	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1254	(*reqlist)->num_children++;
1255	(*reqlist)->nr_segments += ring_req->nr_segments;
1256
1257	return (0);
1258
1259bailout_error:
1260
1261	/*
1262	 * We're out of resources, so set the shortage flag.  The next time
1263	 * a request is released, we'll try waking up the work thread to
1264	 * see if we can allocate more resources.
1265	 */
1266	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1267	xbb->request_shortages++;
1268
1269	if (nreq != NULL)
1270		xbb_release_req(xbb, nreq);
1271
1272	mtx_unlock(&xbb->lock);
1273
1274	if (nreqlist != NULL)
1275		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1276
1277	return (1);
1278}
1279
1280/**
1281 * Create and transmit a response to a blkif request.
1282 *
1283 * \param xbb     Per-instance xbb configuration structure.
1284 * \param req     The request structure to which to respond.
1285 * \param status  The status code to report.  See BLKIF_RSP_*
1286 *                in sys/xen/interface/io/blkif.h.
1287 */
1288static void
1289xbb_send_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1290{
1291	blkif_response_t *resp;
1292	int		  more_to_do;
1293	int		  notify;
1294
1295	more_to_do = 0;
1296
1297	/*
1298	 * Place on the response ring for the relevant domain.
1299	 * For now, only the spacing between entries is different
1300	 * in the different ABIs, not the response entry layout.
1301	 */
1302	mtx_lock(&xbb->lock);
1303	switch (xbb->abi) {
1304	case BLKIF_PROTOCOL_NATIVE:
1305		resp = RING_GET_RESPONSE(&xbb->rings.native,
1306					 xbb->rings.native.rsp_prod_pvt);
1307		break;
1308	case BLKIF_PROTOCOL_X86_32:
1309		resp = (blkif_response_t *)
1310		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1311				      xbb->rings.x86_32.rsp_prod_pvt);
1312		break;
1313	case BLKIF_PROTOCOL_X86_64:
1314		resp = (blkif_response_t *)
1315		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1316				      xbb->rings.x86_64.rsp_prod_pvt);
1317		break;
1318	default:
1319		panic("Unexpected blkif protocol ABI.");
1320	}
1321
1322	resp->id        = req->id;
1323	resp->operation = req->operation;
1324	resp->status    = status;
1325
1326	xbb->rings.common.rsp_prod_pvt += BLKIF_SEGS_TO_BLOCKS(req->nr_pages);
1327	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, notify);
1328
1329	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1330
1331		/*
1332		 * Tail check for pending requests. Allows frontend to avoid
1333		 * notifications if requests are already in flight (lower
1334		 * overheads and promotes batching).
1335		 */
1336		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1337	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1338
1339		more_to_do = 1;
1340	}
1341
1342	xbb->reqs_completed++;
1343
1344	mtx_unlock(&xbb->lock);
1345
1346	if (more_to_do)
1347		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1348
1349	if (notify)
1350		notify_remote_via_irq(xbb->irq);
1351}
1352
1353/**
1354 * Complete a request list.
1355 *
1356 * \param xbb        Per-instance xbb configuration structure.
1357 * \param reqlist    Allocated internal request list structure.
1358 */
1359static void
1360xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1361{
1362	struct xbb_xen_req *nreq;
1363	off_t		    sectors_sent;
1364
1365	sectors_sent = 0;
1366
1367	if (reqlist->flags & XBB_REQLIST_MAPPED)
1368		xbb_unmap_reqlist(reqlist);
1369
1370	/*
1371	 * All I/O is done, send the response.  A lock should not be
1372	 * necessary here because the request list is complete, and
1373	 * therefore this is the only context accessing this request
1374	 * right now.  The functions we call do their own locking if
1375	 * necessary.
1376	 */
1377	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1378		off_t cur_sectors_sent;
1379
1380		xbb_send_response(xbb, nreq, reqlist->status);
1381
1382		/* We don't report bytes sent if there is an error. */
1383		if (reqlist->status == BLKIF_RSP_OKAY)
1384			cur_sectors_sent = nreq->nr_512b_sectors;
1385		else
1386			cur_sectors_sent = 0;
1387
1388		sectors_sent += cur_sectors_sent;
1389
1390		devstat_end_transaction(xbb->xbb_stats_in,
1391					/*bytes*/cur_sectors_sent << 9,
1392					reqlist->ds_tag_type,
1393					reqlist->ds_trans_type,
1394					/*now*/NULL,
1395					/*then*/&nreq->ds_t0);
1396	}
1397
1398	/*
1399	 * Take out any sectors not sent.  If we wind up negative (which
1400	 * might happen if an error is reported as well as a residual), just
1401	 * report 0 sectors sent.
1402	 */
1403	sectors_sent -= reqlist->residual_512b_sectors;
1404	if (sectors_sent < 0)
1405		sectors_sent = 0;
1406
1407	devstat_end_transaction(xbb->xbb_stats,
1408				/*bytes*/ sectors_sent << 9,
1409				reqlist->ds_tag_type,
1410				reqlist->ds_trans_type,
1411				/*now*/NULL,
1412				/*then*/&reqlist->ds_t0);
1413
1414	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1415}
1416
1417/**
1418 * Completion handler for buffer I/O requests issued by the device
1419 * backend driver.
1420 *
1421 * \param bio  The buffer I/O request on which to perform completion
1422 *             processing.
1423 */
1424static void
1425xbb_bio_done(struct bio *bio)
1426{
1427	struct xbb_softc       *xbb;
1428	struct xbb_xen_reqlist *reqlist;
1429
1430	reqlist = bio->bio_caller1;
1431	xbb     = reqlist->xbb;
1432
1433	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1434
1435	/*
1436	 * This is a bit imprecise.  With aggregated I/O a single
1437	 * request list can contain multiple front-end requests and
1438	 * a multiple bios may point to a single request.  By carefully
1439	 * walking the request list, we could map residuals and errors
1440	 * back to the original front-end request, but the interface
1441	 * isn't sufficiently rich for us to properly report the error.
1442	 * So, we just treat the entire request list as having failed if an
1443	 * error occurs on any part.  And, if an error occurs, we treat
1444	 * the amount of data transferred as 0.
1445	 *
1446	 * For residuals, we report it on the overall aggregated device,
1447	 * but not on the individual requests, since we don't currently
1448	 * do the work to determine which front-end request to which the
1449	 * residual applies.
1450	 */
1451	if (bio->bio_error) {
1452		DPRINTF("BIO returned error %d for operation on device %s\n",
1453			bio->bio_error, xbb->dev_name);
1454		reqlist->status = BLKIF_RSP_ERROR;
1455
1456		if (bio->bio_error == ENXIO
1457		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1458
1459			/*
1460			 * Backend device has disappeared.  Signal the
1461			 * front-end that we (the device proxy) want to
1462			 * go away.
1463			 */
1464			xenbus_set_state(xbb->dev, XenbusStateClosing);
1465		}
1466	}
1467
1468#ifdef XBB_USE_BOUNCE_BUFFERS
1469	if (bio->bio_cmd == BIO_READ) {
1470		vm_offset_t kva_offset;
1471
1472		kva_offset = (vm_offset_t)bio->bio_data
1473			   - (vm_offset_t)reqlist->bounce;
1474		memcpy((uint8_t *)reqlist->kva + kva_offset,
1475		       bio->bio_data, bio->bio_bcount);
1476	}
1477#endif /* XBB_USE_BOUNCE_BUFFERS */
1478
1479	/*
1480	 * Decrement the pending count for the request list.  When we're
1481	 * done with the requests, send status back for all of them.
1482	 */
1483	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1484		xbb_complete_reqlist(xbb, reqlist);
1485
1486	g_destroy_bio(bio);
1487}
1488
1489/**
1490 * Parse a blkif request into an internal request structure and send
1491 * it to the backend for processing.
1492 *
1493 * \param xbb       Per-instance xbb configuration structure.
1494 * \param reqlist   Allocated internal request list structure.
1495 *
1496 * \return          On success, 0.  For resource shortages, non-zero.
1497 *
1498 * This routine performs the backend common aspects of request parsing
1499 * including compiling an internal request structure, parsing the S/G
1500 * list and any secondary ring requests in which they may reside, and
1501 * the mapping of front-end I/O pages into our domain.
1502 */
1503static int
1504xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1505{
1506	struct xbb_sg                *xbb_sg;
1507	struct gnttab_map_grant_ref  *map;
1508	struct blkif_request_segment *sg;
1509	struct blkif_request_segment *last_block_sg;
1510	struct xbb_xen_req	     *nreq;
1511	u_int			      nseg;
1512	u_int			      seg_idx;
1513	u_int			      block_segs;
1514	int			      nr_sects;
1515	int			      total_sects;
1516	int			      operation;
1517	uint8_t			      bio_flags;
1518	int			      error;
1519
1520	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1521	bio_flags            = 0;
1522	total_sects	     = 0;
1523	nr_sects	     = 0;
1524
1525	/*
1526	 * First determine whether we have enough free KVA to satisfy this
1527	 * request list.  If not, tell xbb_run_queue() so it can go to
1528	 * sleep until we have more KVA.
1529	 */
1530	reqlist->kva = NULL;
1531	if (reqlist->nr_segments != 0) {
1532		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1533		if (reqlist->kva == NULL) {
1534			/*
1535			 * If we're out of KVA, return ENOMEM.
1536			 */
1537			return (ENOMEM);
1538		}
1539	}
1540
1541	binuptime(&reqlist->ds_t0);
1542	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1543
1544	switch (reqlist->operation) {
1545	case BLKIF_OP_WRITE_BARRIER:
1546		bio_flags       |= BIO_ORDERED;
1547		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1548		/* FALLTHROUGH */
1549	case BLKIF_OP_WRITE:
1550		operation = BIO_WRITE;
1551		reqlist->ds_trans_type = DEVSTAT_WRITE;
1552		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1553			DPRINTF("Attempt to write to read only device %s\n",
1554				xbb->dev_name);
1555			reqlist->status = BLKIF_RSP_ERROR;
1556			goto send_response;
1557		}
1558		break;
1559	case BLKIF_OP_READ:
1560		operation = BIO_READ;
1561		reqlist->ds_trans_type = DEVSTAT_READ;
1562		break;
1563	case BLKIF_OP_FLUSH_DISKCACHE:
1564		/*
1565		 * If this is true, the user has requested that we disable
1566		 * flush support.  So we just complete the requests
1567		 * successfully.
1568		 */
1569		if (xbb->disable_flush != 0) {
1570			goto send_response;
1571		}
1572
1573		/*
1574		 * The user has requested that we only send a real flush
1575		 * for every N flush requests.  So keep count, and either
1576		 * complete the request immediately or queue it for the
1577		 * backend.
1578		 */
1579		if (xbb->flush_interval != 0) {
1580		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1581				goto send_response;
1582			} else
1583				xbb->flush_count = 0;
1584		}
1585
1586		operation = BIO_FLUSH;
1587		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1588		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1589		goto do_dispatch;
1590		/*NOTREACHED*/
1591	default:
1592		DPRINTF("error: unknown block io operation [%d]\n",
1593			reqlist->operation);
1594		reqlist->status = BLKIF_RSP_ERROR;
1595		goto send_response;
1596	}
1597
1598	reqlist->xbb  = xbb;
1599	xbb_sg        = xbb->xbb_sgs;
1600	map	      = xbb->maps;
1601	seg_idx	      = 0;
1602
1603	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1604		blkif_request_t		*ring_req;
1605		RING_IDX		 req_ring_idx;
1606		u_int			 req_seg_idx;
1607
1608		ring_req	      = nreq->ring_req;
1609		req_ring_idx	      = nreq->req_ring_idx;
1610		nr_sects              = 0;
1611		nseg                  = ring_req->nr_segments;
1612		nreq->id              = ring_req->id;
1613		nreq->nr_pages        = nseg;
1614		nreq->nr_512b_sectors = 0;
1615		req_seg_idx	      = 0;
1616		sg	              = NULL;
1617
1618		/* Check that number of segments is sane. */
1619		if (unlikely(nseg == 0)
1620		 || unlikely(nseg > xbb->max_request_segments)) {
1621			DPRINTF("Bad number of segments in request (%d)\n",
1622				nseg);
1623			reqlist->status = BLKIF_RSP_ERROR;
1624			goto send_response;
1625		}
1626
1627		block_segs    = MIN(nreq->nr_pages,
1628				    BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK);
1629		sg            = ring_req->seg;
1630		last_block_sg = sg + block_segs;
1631		while (1) {
1632
1633			while (sg < last_block_sg) {
1634				KASSERT(seg_idx <
1635					XBB_MAX_SEGMENTS_PER_REQLIST,
1636					("seg_idx %d is too large, max "
1637					"segs %d\n", seg_idx,
1638					XBB_MAX_SEGMENTS_PER_REQLIST));
1639
1640				xbb_sg->first_sect = sg->first_sect;
1641				xbb_sg->last_sect  = sg->last_sect;
1642				xbb_sg->nsect =
1643				    (int8_t)(sg->last_sect -
1644				    sg->first_sect + 1);
1645
1646				if ((sg->last_sect >= (PAGE_SIZE >> 9))
1647				 || (xbb_sg->nsect <= 0)) {
1648					reqlist->status = BLKIF_RSP_ERROR;
1649					goto send_response;
1650				}
1651
1652				nr_sects += xbb_sg->nsect;
1653				map->host_addr = xbb_get_gntaddr(reqlist,
1654							seg_idx, /*sector*/0);
1655				KASSERT(map->host_addr + PAGE_SIZE <=
1656					xbb->ring_config.gnt_addr,
1657					("Host address %#jx len %d overlaps "
1658					 "ring address %#jx\n",
1659					(uintmax_t)map->host_addr, PAGE_SIZE,
1660					(uintmax_t)xbb->ring_config.gnt_addr));
1661
1662				map->flags     = GNTMAP_host_map;
1663				map->ref       = sg->gref;
1664				map->dom       = xbb->otherend_id;
1665				if (operation == BIO_WRITE)
1666					map->flags |= GNTMAP_readonly;
1667				sg++;
1668				map++;
1669				xbb_sg++;
1670				seg_idx++;
1671				req_seg_idx++;
1672			}
1673
1674			block_segs = MIN(nseg - req_seg_idx,
1675					 BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK);
1676			if (block_segs == 0)
1677				break;
1678
1679			/*
1680			 * Fetch the next request block full of SG elements.
1681			 * For now, only the spacing between entries is
1682			 * different in the different ABIs, not the sg entry
1683			 * layout.
1684			 */
1685			req_ring_idx++;
1686			switch (xbb->abi) {
1687			case BLKIF_PROTOCOL_NATIVE:
1688				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.native,
1689							   req_ring_idx);
1690				break;
1691			case BLKIF_PROTOCOL_X86_32:
1692			{
1693				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_32,
1694							   req_ring_idx);
1695				break;
1696			}
1697			case BLKIF_PROTOCOL_X86_64:
1698			{
1699				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_64,
1700							   req_ring_idx);
1701				break;
1702			}
1703			default:
1704				panic("Unexpected blkif protocol ABI.");
1705				/* NOTREACHED */
1706			}
1707			last_block_sg = sg + block_segs;
1708		}
1709
1710		/* Convert to the disk's sector size */
1711		nreq->nr_512b_sectors = nr_sects;
1712		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1713		total_sects += nr_sects;
1714
1715		if ((nreq->nr_512b_sectors &
1716		    ((xbb->sector_size >> 9) - 1)) != 0) {
1717			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1718				      "a multiple of the backing store sector "
1719				      "size (%d)\n", __func__,
1720				      nreq->nr_512b_sectors << 9,
1721				      xbb->sector_size);
1722			reqlist->status = BLKIF_RSP_ERROR;
1723			goto send_response;
1724		}
1725	}
1726
1727	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1728					  xbb->maps, reqlist->nr_segments);
1729	if (error != 0)
1730		panic("Grant table operation failed (%d)", error);
1731
1732	reqlist->flags |= XBB_REQLIST_MAPPED;
1733
1734	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1735	     seg_idx++, map++){
1736
1737		if (unlikely(map->status != 0)) {
1738			DPRINTF("invalid buffer -- could not remap "
1739			        "it (%d)\n", map->status);
1740			DPRINTF("Mapping(%d): Host Addr 0x%lx, flags "
1741			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1742				map->host_addr, map->flags, map->ref,
1743				map->dom);
1744			reqlist->status = BLKIF_RSP_ERROR;
1745			goto send_response;
1746		}
1747
1748		reqlist->gnt_handles[seg_idx] = map->handle;
1749	}
1750	if (reqlist->starting_sector_number + total_sects >
1751	    xbb->media_num_sectors) {
1752
1753		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1754			"extends past end of device %s\n",
1755			operation == BIO_READ ? "read" : "write",
1756			reqlist->starting_sector_number,
1757			reqlist->starting_sector_number + total_sects,
1758			xbb->dev_name);
1759		reqlist->status = BLKIF_RSP_ERROR;
1760		goto send_response;
1761	}
1762
1763do_dispatch:
1764
1765	error = xbb->dispatch_io(xbb,
1766				 reqlist,
1767				 operation,
1768				 bio_flags);
1769
1770	if (error != 0) {
1771		reqlist->status = BLKIF_RSP_ERROR;
1772		goto send_response;
1773	}
1774
1775	return (0);
1776
1777send_response:
1778
1779	xbb_complete_reqlist(xbb, reqlist);
1780
1781	return (0);
1782}
1783
1784static __inline int
1785xbb_count_sects(blkif_request_t *ring_req)
1786{
1787	int i;
1788	int cur_size = 0;
1789
1790	for (i = 0; i < ring_req->nr_segments; i++) {
1791		int nsect;
1792
1793		nsect = (int8_t)(ring_req->seg[i].last_sect -
1794			ring_req->seg[i].first_sect + 1);
1795		if (nsect <= 0)
1796			break;
1797
1798		cur_size += nsect;
1799	}
1800
1801	return (cur_size);
1802}
1803
1804/**
1805 * Process incoming requests from the shared communication ring in response
1806 * to a signal on the ring's event channel.
1807 *
1808 * \param context  Callback argument registerd during task initialization -
1809 *                 the xbb_softc for this instance.
1810 * \param pending  The number of taskqueue_enqueue events that have
1811 *                 occurred since this handler was last run.
1812 */
1813static void
1814xbb_run_queue(void *context, int pending)
1815{
1816	struct xbb_softc       *xbb;
1817	blkif_back_rings_t     *rings;
1818	RING_IDX		rp;
1819	uint64_t		cur_sector;
1820	int			cur_operation;
1821	struct xbb_xen_reqlist *reqlist;
1822
1823
1824	xbb   = (struct xbb_softc *)context;
1825	rings = &xbb->rings;
1826
1827	/*
1828	 * Work gather and dispatch loop.  Note that we have a bias here
1829	 * towards gathering I/O sent by blockfront.  We first gather up
1830	 * everything in the ring, as long as we have resources.  Then we
1831	 * dispatch one request, and then attempt to gather up any
1832	 * additional requests that have come in while we were dispatching
1833	 * the request.
1834	 *
1835	 * This allows us to get a clearer picture (via devstat) of how
1836	 * many requests blockfront is queueing to us at any given time.
1837	 */
1838	for (;;) {
1839		int retval;
1840
1841		/*
1842		 * Initialize reqlist to the last element in the pending
1843		 * queue, if there is one.  This allows us to add more
1844		 * requests to that request list, if we have room.
1845		 */
1846		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1847				      xbb_xen_reqlist, links);
1848		if (reqlist != NULL) {
1849			cur_sector = reqlist->next_contig_sector;
1850			cur_operation = reqlist->operation;
1851		} else {
1852			cur_operation = 0;
1853			cur_sector    = 0;
1854		}
1855
1856		/*
1857		 * Cache req_prod to avoid accessing a cache line shared
1858		 * with the frontend.
1859		 */
1860		rp = rings->common.sring->req_prod;
1861
1862		/* Ensure we see queued requests up to 'rp'. */
1863		rmb();
1864
1865		/**
1866		 * Run so long as there is work to consume and the generation
1867		 * of a response will not overflow the ring.
1868		 *
1869		 * @note There's a 1 to 1 relationship between requests and
1870		 *       responses, so an overflow should never occur.  This
1871		 *       test is to protect our domain from digesting bogus
1872		 *       data.  Shouldn't we log this?
1873		 */
1874		while (rings->common.req_cons != rp
1875		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1876						  rings->common.req_cons) == 0){
1877			blkif_request_t	        ring_req_storage;
1878			blkif_request_t	       *ring_req;
1879			int			cur_size;
1880
1881			switch (xbb->abi) {
1882			case BLKIF_PROTOCOL_NATIVE:
1883				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1884				    rings->common.req_cons);
1885				break;
1886			case BLKIF_PROTOCOL_X86_32:
1887			{
1888				struct blkif_x86_32_request *ring_req32;
1889
1890				ring_req32 = RING_GET_REQUEST(
1891				    &xbb->rings.x86_32, rings->common.req_cons);
1892				blkif_get_x86_32_req(&ring_req_storage,
1893						     ring_req32);
1894				ring_req = &ring_req_storage;
1895				break;
1896			}
1897			case BLKIF_PROTOCOL_X86_64:
1898			{
1899				struct blkif_x86_64_request *ring_req64;
1900
1901				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1902				    rings->common.req_cons);
1903				blkif_get_x86_64_req(&ring_req_storage,
1904						     ring_req64);
1905				ring_req = &ring_req_storage;
1906				break;
1907			}
1908			default:
1909				panic("Unexpected blkif protocol ABI.");
1910				/* NOTREACHED */
1911			}
1912
1913			/*
1914			 * Check for situations that would require closing
1915			 * off this I/O for further coalescing:
1916			 *  - Coalescing is turned off.
1917			 *  - Current I/O is out of sequence with the previous
1918			 *    I/O.
1919			 *  - Coalesced I/O would be too large.
1920			 */
1921			if ((reqlist != NULL)
1922			 && ((xbb->no_coalesce_reqs != 0)
1923			  || ((xbb->no_coalesce_reqs == 0)
1924			   && ((ring_req->sector_number != cur_sector)
1925			    || (ring_req->operation != cur_operation)
1926			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1927			         xbb->max_reqlist_segments))))) {
1928				reqlist = NULL;
1929			}
1930
1931			/*
1932			 * Grab and check for all resources in one shot.
1933			 * If we can't get all of the resources we need,
1934			 * the shortage is noted and the thread will get
1935			 * woken up when more resources are available.
1936			 */
1937			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1938						   xbb->rings.common.req_cons);
1939
1940			if (retval != 0) {
1941				/*
1942				 * Resource shortage has been recorded.
1943				 * We'll be scheduled to run once a request
1944				 * object frees up due to a completion.
1945				 */
1946				break;
1947			}
1948
1949			/*
1950			 * Signify that	we can overwrite this request with
1951			 * a response by incrementing our consumer index.
1952			 * The response won't be generated until after
1953			 * we've already consumed all necessary data out
1954			 * of the version of the request in the ring buffer
1955			 * (for native mode).  We must update the consumer
1956			 * index  before issueing back-end I/O so there is
1957			 * no possibility that it will complete and a
1958			 * response be generated before we make room in
1959			 * the queue for that response.
1960			 */
1961			xbb->rings.common.req_cons +=
1962			    BLKIF_SEGS_TO_BLOCKS(ring_req->nr_segments);
1963			xbb->reqs_received++;
1964
1965			cur_size = xbb_count_sects(ring_req);
1966			cur_sector = ring_req->sector_number + cur_size;
1967			reqlist->next_contig_sector = cur_sector;
1968			cur_operation = ring_req->operation;
1969		}
1970
1971		/* Check for I/O to dispatch */
1972		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1973		if (reqlist == NULL) {
1974			/*
1975			 * We're out of work to do, put the task queue to
1976			 * sleep.
1977			 */
1978			break;
1979		}
1980
1981		/*
1982		 * Grab the first request off the queue and attempt
1983		 * to dispatch it.
1984		 */
1985		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1986
1987		retval = xbb_dispatch_io(xbb, reqlist);
1988		if (retval != 0) {
1989			/*
1990			 * xbb_dispatch_io() returns non-zero only when
1991			 * there is a resource shortage.  If that's the
1992			 * case, re-queue this request on the head of the
1993			 * queue, and go to sleep until we have more
1994			 * resources.
1995			 */
1996			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
1997					   reqlist, links);
1998			break;
1999		} else {
2000			/*
2001			 * If we still have anything on the queue after
2002			 * removing the head entry, that is because we
2003			 * met one of the criteria to create a new
2004			 * request list (outlined above), and we'll call
2005			 * that a forced dispatch for statistical purposes.
2006			 *
2007			 * Otherwise, if there is only one element on the
2008			 * queue, we coalesced everything available on
2009			 * the ring and we'll call that a normal dispatch.
2010			 */
2011			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2012
2013			if (reqlist != NULL)
2014				xbb->forced_dispatch++;
2015			else
2016				xbb->normal_dispatch++;
2017
2018			xbb->total_dispatch++;
2019		}
2020	}
2021}
2022
2023/**
2024 * Interrupt handler bound to the shared ring's event channel.
2025 *
2026 * \param arg  Callback argument registerd during event channel
2027 *             binding - the xbb_softc for this instance.
2028 */
2029static void
2030xbb_intr(void *arg)
2031{
2032	struct xbb_softc *xbb;
2033
2034	/* Defer to kernel thread. */
2035	xbb = (struct xbb_softc *)arg;
2036	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
2037}
2038
2039SDT_PROVIDER_DEFINE(xbb);
2040SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, flush, "int");
2041SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, read, "int", "uint64_t",
2042		  "uint64_t");
2043SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, write, "int",
2044		  "uint64_t", "uint64_t");
2045
2046/*----------------------------- Backend Handlers -----------------------------*/
2047/**
2048 * Backend handler for character device access.
2049 *
2050 * \param xbb        Per-instance xbb configuration structure.
2051 * \param reqlist    Allocated internal request list structure.
2052 * \param operation  BIO_* I/O operation code.
2053 * \param bio_flags  Additional bio_flag data to pass to any generated
2054 *                   bios (e.g. BIO_ORDERED)..
2055 *
2056 * \return  0 for success, errno codes for failure.
2057 */
2058static int
2059xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2060		 int operation, int bio_flags)
2061{
2062	struct xbb_dev_data *dev_data;
2063	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2064	struct xbb_xen_req  *nreq;
2065	off_t                bio_offset;
2066	struct bio          *bio;
2067	struct xbb_sg       *xbb_sg;
2068	u_int	             nbio;
2069	u_int                bio_idx;
2070	u_int		     nseg;
2071	u_int                seg_idx;
2072	int                  error;
2073
2074	dev_data   = &xbb->backend.dev;
2075	bio_offset = (off_t)reqlist->starting_sector_number
2076		   << xbb->sector_size_shift;
2077	error      = 0;
2078	nbio       = 0;
2079	bio_idx    = 0;
2080
2081	if (operation == BIO_FLUSH) {
2082		nreq = STAILQ_FIRST(&reqlist->contig_req_list);
2083		bio = g_new_bio();
2084		if (unlikely(bio == NULL)) {
2085			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2086			error = ENOMEM;
2087			return (error);
2088		}
2089
2090		bio->bio_cmd	 = BIO_FLUSH;
2091		bio->bio_flags	|= BIO_ORDERED;
2092		bio->bio_dev	 = dev_data->cdev;
2093		bio->bio_offset	 = 0;
2094		bio->bio_data	 = 0;
2095		bio->bio_done	 = xbb_bio_done;
2096		bio->bio_caller1 = nreq;
2097		bio->bio_pblkno	 = 0;
2098
2099		nreq->pendcnt	 = 1;
2100
2101		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2102			   device_get_unit(xbb->dev));
2103
2104		(*dev_data->csw->d_strategy)(bio);
2105
2106		return (0);
2107	}
2108
2109	xbb_sg = xbb->xbb_sgs;
2110	bio    = NULL;
2111	nseg = reqlist->nr_segments;
2112
2113	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2114
2115		/*
2116		 * KVA will not be contiguous, so any additional
2117		 * I/O will need to be represented in a new bio.
2118		 */
2119		if ((bio != NULL)
2120		 && (xbb_sg->first_sect != 0)) {
2121			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2122				printf("%s: Discontiguous I/O request "
2123				       "from domain %d ends on "
2124				       "non-sector boundary\n",
2125				       __func__, xbb->otherend_id);
2126				error = EINVAL;
2127				goto fail_free_bios;
2128			}
2129			bio = NULL;
2130		}
2131
2132		if (bio == NULL) {
2133			/*
2134			 * Make sure that the start of this bio is
2135			 * aligned to a device sector.
2136			 */
2137			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2138				printf("%s: Misaligned I/O request "
2139				       "from domain %d\n", __func__,
2140				       xbb->otherend_id);
2141				error = EINVAL;
2142				goto fail_free_bios;
2143			}
2144
2145			bio = bios[nbio++] = g_new_bio();
2146			if (unlikely(bio == NULL)) {
2147				error = ENOMEM;
2148				goto fail_free_bios;
2149			}
2150			bio->bio_cmd     = operation;
2151			bio->bio_flags  |= bio_flags;
2152			bio->bio_dev     = dev_data->cdev;
2153			bio->bio_offset  = bio_offset;
2154			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2155						xbb_sg->first_sect);
2156			bio->bio_done    = xbb_bio_done;
2157			bio->bio_caller1 = reqlist;
2158			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2159		}
2160
2161		bio->bio_length += xbb_sg->nsect << 9;
2162		bio->bio_bcount  = bio->bio_length;
2163		bio_offset      += xbb_sg->nsect << 9;
2164
2165		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2166
2167			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2168				printf("%s: Discontiguous I/O request "
2169				       "from domain %d ends on "
2170				       "non-sector boundary\n",
2171				       __func__, xbb->otherend_id);
2172				error = EINVAL;
2173				goto fail_free_bios;
2174			}
2175			/*
2176			 * KVA will not be contiguous, so any additional
2177			 * I/O will need to be represented in a new bio.
2178			 */
2179			bio = NULL;
2180		}
2181	}
2182
2183	reqlist->pendcnt = nbio;
2184
2185	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2186	{
2187#ifdef XBB_USE_BOUNCE_BUFFERS
2188		vm_offset_t kva_offset;
2189
2190		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2191			   - (vm_offset_t)reqlist->bounce;
2192		if (operation == BIO_WRITE) {
2193			memcpy(bios[bio_idx]->bio_data,
2194			       (uint8_t *)reqlist->kva + kva_offset,
2195			       bios[bio_idx]->bio_bcount);
2196		}
2197#endif
2198		if (operation == BIO_READ) {
2199			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2200				   device_get_unit(xbb->dev),
2201				   bios[bio_idx]->bio_offset,
2202				   bios[bio_idx]->bio_length);
2203		} else if (operation == BIO_WRITE) {
2204			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2205				   device_get_unit(xbb->dev),
2206				   bios[bio_idx]->bio_offset,
2207				   bios[bio_idx]->bio_length);
2208		}
2209		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2210	}
2211
2212	return (error);
2213
2214fail_free_bios:
2215	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2216		g_destroy_bio(bios[bio_idx]);
2217
2218	return (error);
2219}
2220
2221SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, flush, "int");
2222SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, read, "int", "uint64_t",
2223		  "uint64_t");
2224SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, write, "int",
2225		  "uint64_t", "uint64_t");
2226
2227/**
2228 * Backend handler for file access.
2229 *
2230 * \param xbb        Per-instance xbb configuration structure.
2231 * \param reqlist    Allocated internal request list.
2232 * \param operation  BIO_* I/O operation code.
2233 * \param flags      Additional bio_flag data to pass to any generated bios
2234 *                   (e.g. BIO_ORDERED)..
2235 *
2236 * \return  0 for success, errno codes for failure.
2237 */
2238static int
2239xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2240		  int operation, int flags)
2241{
2242	struct xbb_file_data *file_data;
2243	u_int                 seg_idx;
2244	u_int		      nseg;
2245	off_t		      sectors_sent;
2246	struct uio            xuio;
2247	struct xbb_sg        *xbb_sg;
2248	struct iovec         *xiovec;
2249#ifdef XBB_USE_BOUNCE_BUFFERS
2250	void                **p_vaddr;
2251	int                   saved_uio_iovcnt;
2252#endif /* XBB_USE_BOUNCE_BUFFERS */
2253	int                   vfs_is_locked;
2254	int                   error;
2255
2256	file_data = &xbb->backend.file;
2257	sectors_sent = 0;
2258	error = 0;
2259	bzero(&xuio, sizeof(xuio));
2260
2261	switch (operation) {
2262	case BIO_READ:
2263		xuio.uio_rw = UIO_READ;
2264		break;
2265	case BIO_WRITE:
2266		xuio.uio_rw = UIO_WRITE;
2267		break;
2268	case BIO_FLUSH: {
2269		struct mount *mountpoint;
2270
2271		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2272			   device_get_unit(xbb->dev));
2273
2274		vfs_is_locked = VFS_LOCK_GIANT(xbb->vn->v_mount);
2275
2276		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2277
2278		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2279		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2280		VOP_UNLOCK(xbb->vn, 0);
2281
2282		vn_finished_write(mountpoint);
2283
2284		VFS_UNLOCK_GIANT(vfs_is_locked);
2285
2286		goto bailout_send_response;
2287		/* NOTREACHED */
2288	}
2289	default:
2290		panic("invalid operation %d", operation);
2291		/* NOTREACHED */
2292	}
2293	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2294			<< xbb->sector_size_shift;
2295	xuio.uio_segflg = UIO_SYSSPACE;
2296	xuio.uio_iov = file_data->xiovecs;
2297	xuio.uio_iovcnt = 0;
2298	xbb_sg = xbb->xbb_sgs;
2299	nseg = reqlist->nr_segments;
2300
2301	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2302
2303		/*
2304		 * If the first sector is not 0, the KVA will
2305		 * not be contiguous and we'll need to go on
2306		 * to another segment.
2307		 */
2308		if (xbb_sg->first_sect != 0)
2309			xiovec = NULL;
2310
2311		if (xiovec == NULL) {
2312			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2313			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2314			    seg_idx, xbb_sg->first_sect);
2315#ifdef XBB_USE_BOUNCE_BUFFERS
2316			/*
2317			 * Store the address of the incoming
2318			 * buffer at this particular offset
2319			 * as well, so we can do the copy
2320			 * later without having to do more
2321			 * work to recalculate this address.
2322		 	 */
2323			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2324			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2325			    xbb_sg->first_sect);
2326#endif /* XBB_USE_BOUNCE_BUFFERS */
2327			xiovec->iov_len = 0;
2328			xuio.uio_iovcnt++;
2329		}
2330
2331		xiovec->iov_len += xbb_sg->nsect << 9;
2332
2333		xuio.uio_resid += xbb_sg->nsect << 9;
2334
2335		/*
2336		 * If the last sector is not the full page
2337		 * size count, the next segment will not be
2338		 * contiguous in KVA and we need a new iovec.
2339		 */
2340		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2341			xiovec = NULL;
2342	}
2343
2344	xuio.uio_td = curthread;
2345
2346#ifdef XBB_USE_BOUNCE_BUFFERS
2347	saved_uio_iovcnt = xuio.uio_iovcnt;
2348
2349	if (operation == BIO_WRITE) {
2350		/* Copy the write data to the local buffer. */
2351		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2352		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2353		     seg_idx++, xiovec++, p_vaddr++) {
2354
2355			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2356		}
2357	} else {
2358		/*
2359		 * We only need to save off the iovecs in the case of a
2360		 * read, because the copy for the read happens after the
2361		 * VOP_READ().  (The uio will get modified in that call
2362		 * sequence.)
2363		 */
2364		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2365		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2366	}
2367#endif /* XBB_USE_BOUNCE_BUFFERS */
2368
2369	vfs_is_locked = VFS_LOCK_GIANT(xbb->vn->v_mount);
2370	switch (operation) {
2371	case BIO_READ:
2372
2373		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2374			   device_get_unit(xbb->dev), xuio.uio_offset,
2375			   xuio.uio_resid);
2376
2377		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2378
2379		/*
2380		 * UFS pays attention to IO_DIRECT for reads.  If the
2381		 * DIRECTIO option is configured into the kernel, it calls
2382		 * ffs_rawread().  But that only works for single-segment
2383		 * uios with user space addresses.  In our case, with a
2384		 * kernel uio, it still reads into the buffer cache, but it
2385		 * will just try to release the buffer from the cache later
2386		 * on in ffs_read().
2387		 *
2388		 * ZFS does not pay attention to IO_DIRECT for reads.
2389		 *
2390		 * UFS does not pay attention to IO_SYNC for reads.
2391		 *
2392		 * ZFS pays attention to IO_SYNC (which translates into the
2393		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2394		 * attempts to sync the file before reading.
2395		 *
2396		 * So, to attempt to provide some barrier semantics in the
2397		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2398		 */
2399		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2400				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2401
2402		VOP_UNLOCK(xbb->vn, 0);
2403		break;
2404	case BIO_WRITE: {
2405		struct mount *mountpoint;
2406
2407		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2408			   device_get_unit(xbb->dev), xuio.uio_offset,
2409			   xuio.uio_resid);
2410
2411		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2412
2413		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2414
2415		/*
2416		 * UFS pays attention to IO_DIRECT for writes.  The write
2417		 * is done asynchronously.  (Normally the write would just
2418		 * get put into cache.
2419		 *
2420		 * UFS pays attention to IO_SYNC for writes.  It will
2421		 * attempt to write the buffer out synchronously if that
2422		 * flag is set.
2423		 *
2424		 * ZFS does not pay attention to IO_DIRECT for writes.
2425		 *
2426		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2427		 * for writes.  It will flush the transaction from the
2428		 * cache before returning.
2429		 *
2430		 * So if we've got the BIO_ORDERED flag set, we want
2431		 * IO_SYNC in either the UFS or ZFS case.
2432		 */
2433		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2434				  IO_SYNC : 0, file_data->cred);
2435		VOP_UNLOCK(xbb->vn, 0);
2436
2437		vn_finished_write(mountpoint);
2438
2439		break;
2440	}
2441	default:
2442		panic("invalid operation %d", operation);
2443		/* NOTREACHED */
2444	}
2445	VFS_UNLOCK_GIANT(vfs_is_locked);
2446
2447#ifdef XBB_USE_BOUNCE_BUFFERS
2448	/* We only need to copy here for read operations */
2449	if (operation == BIO_READ) {
2450
2451		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2452		     xiovec = file_data->saved_xiovecs;
2453		     seg_idx < saved_uio_iovcnt; seg_idx++,
2454		     xiovec++, p_vaddr++) {
2455
2456			/*
2457			 * Note that we have to use the copy of the
2458			 * io vector we made above.  uiomove() modifies
2459			 * the uio and its referenced vector as uiomove
2460			 * performs the copy, so we can't rely on any
2461			 * state from the original uio.
2462			 */
2463			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2464		}
2465	}
2466#endif /* XBB_USE_BOUNCE_BUFFERS */
2467
2468bailout_send_response:
2469
2470	if (error != 0)
2471		reqlist->status = BLKIF_RSP_ERROR;
2472
2473	xbb_complete_reqlist(xbb, reqlist);
2474
2475	return (0);
2476}
2477
2478/*--------------------------- Backend Configuration --------------------------*/
2479/**
2480 * Close and cleanup any backend device/file specific state for this
2481 * block back instance.
2482 *
2483 * \param xbb  Per-instance xbb configuration structure.
2484 */
2485static void
2486xbb_close_backend(struct xbb_softc *xbb)
2487{
2488	DROP_GIANT();
2489	DPRINTF("closing dev=%s\n", xbb->dev_name);
2490	if (xbb->vn) {
2491		int flags = FREAD;
2492		int vfs_is_locked = 0;
2493
2494		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2495			flags |= FWRITE;
2496
2497		switch (xbb->device_type) {
2498		case XBB_TYPE_DISK:
2499			if (xbb->backend.dev.csw) {
2500				dev_relthread(xbb->backend.dev.cdev,
2501					      xbb->backend.dev.dev_ref);
2502				xbb->backend.dev.csw  = NULL;
2503				xbb->backend.dev.cdev = NULL;
2504			}
2505			break;
2506		case XBB_TYPE_FILE:
2507			vfs_is_locked = VFS_LOCK_GIANT(xbb->vn->v_mount);
2508			break;
2509		case XBB_TYPE_NONE:
2510		default:
2511			panic("Unexpected backend type.");
2512			break;
2513		}
2514
2515		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2516		xbb->vn = NULL;
2517
2518		switch (xbb->device_type) {
2519		case XBB_TYPE_DISK:
2520			break;
2521		case XBB_TYPE_FILE:
2522			VFS_UNLOCK_GIANT(vfs_is_locked);
2523			if (xbb->backend.file.cred != NULL) {
2524				crfree(xbb->backend.file.cred);
2525				xbb->backend.file.cred = NULL;
2526			}
2527			break;
2528		case XBB_TYPE_NONE:
2529		default:
2530			panic("Unexpected backend type.");
2531			break;
2532		}
2533	}
2534	PICKUP_GIANT();
2535}
2536
2537/**
2538 * Open a character device to be used for backend I/O.
2539 *
2540 * \param xbb  Per-instance xbb configuration structure.
2541 *
2542 * \return  0 for success, errno codes for failure.
2543 */
2544static int
2545xbb_open_dev(struct xbb_softc *xbb)
2546{
2547	struct vattr   vattr;
2548	struct cdev   *dev;
2549	struct cdevsw *devsw;
2550	int	       error;
2551
2552	xbb->device_type = XBB_TYPE_DISK;
2553	xbb->dispatch_io = xbb_dispatch_dev;
2554	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2555	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2556					     &xbb->backend.dev.dev_ref);
2557	if (xbb->backend.dev.csw == NULL)
2558		panic("Unable to retrieve device switch");
2559
2560	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2561	if (error) {
2562		xenbus_dev_fatal(xbb->dev, error, "error getting "
2563				 "vnode attributes for device %s",
2564				 xbb->dev_name);
2565		return (error);
2566	}
2567
2568
2569	dev = xbb->vn->v_rdev;
2570	devsw = dev->si_devsw;
2571	if (!devsw->d_ioctl) {
2572		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2573				 "device %s!", xbb->dev_name);
2574		return (ENODEV);
2575	}
2576
2577	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2578			       (caddr_t)&xbb->sector_size, FREAD,
2579			       curthread);
2580	if (error) {
2581		xenbus_dev_fatal(xbb->dev, error,
2582				 "error calling ioctl DIOCGSECTORSIZE "
2583				 "for device %s", xbb->dev_name);
2584		return (error);
2585	}
2586
2587	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2588			       (caddr_t)&xbb->media_size, FREAD,
2589			       curthread);
2590	if (error) {
2591		xenbus_dev_fatal(xbb->dev, error,
2592				 "error calling ioctl DIOCGMEDIASIZE "
2593				 "for device %s", xbb->dev_name);
2594		return (error);
2595	}
2596
2597	return (0);
2598}
2599
2600/**
2601 * Open a file to be used for backend I/O.
2602 *
2603 * \param xbb  Per-instance xbb configuration structure.
2604 *
2605 * \return  0 for success, errno codes for failure.
2606 */
2607static int
2608xbb_open_file(struct xbb_softc *xbb)
2609{
2610	struct xbb_file_data *file_data;
2611	struct vattr          vattr;
2612	int                   error;
2613
2614	file_data = &xbb->backend.file;
2615	xbb->device_type = XBB_TYPE_FILE;
2616	xbb->dispatch_io = xbb_dispatch_file;
2617	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2618	if (error != 0) {
2619		xenbus_dev_fatal(xbb->dev, error,
2620				 "error calling VOP_GETATTR()"
2621				 "for file %s", xbb->dev_name);
2622		return (error);
2623	}
2624
2625	/*
2626	 * Verify that we have the ability to upgrade to exclusive
2627	 * access on this file so we can trap errors at open instead
2628	 * of reporting them during first access.
2629	 */
2630	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2631		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2632		if (xbb->vn->v_iflag & VI_DOOMED) {
2633			error = EBADF;
2634			xenbus_dev_fatal(xbb->dev, error,
2635					 "error locking file %s",
2636					 xbb->dev_name);
2637
2638			return (error);
2639		}
2640	}
2641
2642	file_data->cred = crhold(curthread->td_ucred);
2643	xbb->media_size = vattr.va_size;
2644
2645	/*
2646	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2647	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2648	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2649	 * may not work with other OSes as well.  So just export a sector
2650	 * size of 512 bytes, which should work with any OS or
2651	 * application.  Since our backing is a file, any block size will
2652	 * work fine for the backing store.
2653	 */
2654#if 0
2655	xbb->sector_size = vattr.va_blocksize;
2656#endif
2657	xbb->sector_size = 512;
2658
2659	/*
2660	 * Sanity check.  The media size has to be at least one
2661	 * sector long.
2662	 */
2663	if (xbb->media_size < xbb->sector_size) {
2664		error = EINVAL;
2665		xenbus_dev_fatal(xbb->dev, error,
2666				 "file %s size %ju < block size %u",
2667				 xbb->dev_name,
2668				 (uintmax_t)xbb->media_size,
2669				 xbb->sector_size);
2670	}
2671	return (error);
2672}
2673
2674/**
2675 * Open the backend provider for this connection.
2676 *
2677 * \param xbb  Per-instance xbb configuration structure.
2678 *
2679 * \return  0 for success, errno codes for failure.
2680 */
2681static int
2682xbb_open_backend(struct xbb_softc *xbb)
2683{
2684	struct nameidata nd;
2685	int		 flags;
2686	int		 error;
2687	int		 vfs_is_locked;
2688
2689	flags = FREAD;
2690	error = 0;
2691
2692	DPRINTF("opening dev=%s\n", xbb->dev_name);
2693
2694	if (rootvnode == NULL) {
2695		xenbus_dev_fatal(xbb->dev, ENOENT,
2696				 "Root file system not mounted");
2697		return (ENOENT);
2698	}
2699
2700	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2701		flags |= FWRITE;
2702
2703	if (!curthread->td_proc->p_fd->fd_cdir) {
2704		curthread->td_proc->p_fd->fd_cdir = rootvnode;
2705		VREF(rootvnode);
2706	}
2707	if (!curthread->td_proc->p_fd->fd_rdir) {
2708		curthread->td_proc->p_fd->fd_rdir = rootvnode;
2709		VREF(rootvnode);
2710	}
2711	if (!curthread->td_proc->p_fd->fd_jdir) {
2712		curthread->td_proc->p_fd->fd_jdir = rootvnode;
2713		VREF(rootvnode);
2714	}
2715
2716 again:
2717	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2718	error = vn_open(&nd, &flags, 0, NULL);
2719	if (error) {
2720		/*
2721		 * This is the only reasonable guess we can make as far as
2722		 * path if the user doesn't give us a fully qualified path.
2723		 * If they want to specify a file, they need to specify the
2724		 * full path.
2725		 */
2726		if (xbb->dev_name[0] != '/') {
2727			char *dev_path = "/dev/";
2728			char *dev_name;
2729
2730			/* Try adding device path at beginning of name */
2731			dev_name = malloc(strlen(xbb->dev_name)
2732					+ strlen(dev_path) + 1,
2733					  M_XENBLOCKBACK, M_NOWAIT);
2734			if (dev_name) {
2735				sprintf(dev_name, "%s%s", dev_path,
2736					xbb->dev_name);
2737				free(xbb->dev_name, M_XENBLOCKBACK);
2738				xbb->dev_name = dev_name;
2739				goto again;
2740			}
2741		}
2742		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2743				 xbb->dev_name);
2744		return (error);
2745	}
2746
2747	vfs_is_locked = NDHASGIANT(&nd);
2748
2749	NDFREE(&nd, NDF_ONLY_PNBUF);
2750
2751	xbb->vn = nd.ni_vp;
2752
2753	/* We only support disks and files. */
2754	if (vn_isdisk(xbb->vn, &error)) {
2755		error = xbb_open_dev(xbb);
2756	} else if (xbb->vn->v_type == VREG) {
2757		error = xbb_open_file(xbb);
2758	} else {
2759		error = EINVAL;
2760		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2761				 "or file", xbb->dev_name);
2762	}
2763	VOP_UNLOCK(xbb->vn, 0);
2764	VFS_UNLOCK_GIANT(vfs_is_locked);
2765
2766	if (error != 0) {
2767		xbb_close_backend(xbb);
2768		return (error);
2769	}
2770
2771	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2772	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2773
2774	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2775		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2776		xbb->dev_name, xbb->sector_size, xbb->media_size);
2777
2778	return (0);
2779}
2780
2781/*------------------------ Inter-Domain Communication ------------------------*/
2782/**
2783 * Free dynamically allocated KVA or pseudo-physical address allocations.
2784 *
2785 * \param xbb  Per-instance xbb configuration structure.
2786 */
2787static void
2788xbb_free_communication_mem(struct xbb_softc *xbb)
2789{
2790	if (xbb->kva != 0) {
2791#ifndef XENHVM
2792		kmem_free(kernel_map, xbb->kva, xbb->kva_size);
2793#else
2794		if (xbb->pseudo_phys_res != NULL) {
2795			bus_release_resource(xbb->dev, SYS_RES_MEMORY,
2796					     xbb->pseudo_phys_res_id,
2797					     xbb->pseudo_phys_res);
2798			xbb->pseudo_phys_res = NULL;
2799		}
2800#endif
2801	}
2802	xbb->kva = 0;
2803	xbb->gnt_base_addr = 0;
2804	if (xbb->kva_free != NULL) {
2805		free(xbb->kva_free, M_XENBLOCKBACK);
2806		xbb->kva_free = NULL;
2807	}
2808}
2809
2810/**
2811 * Cleanup all inter-domain communication mechanisms.
2812 *
2813 * \param xbb  Per-instance xbb configuration structure.
2814 */
2815static int
2816xbb_disconnect(struct xbb_softc *xbb)
2817{
2818	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2819	struct gnttab_unmap_grant_ref *op;
2820	u_int			       ring_idx;
2821	int			       error;
2822
2823	DPRINTF("\n");
2824
2825	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2826		return (0);
2827
2828	if (xbb->irq != 0) {
2829		unbind_from_irqhandler(xbb->irq);
2830		xbb->irq = 0;
2831	}
2832
2833	mtx_unlock(&xbb->lock);
2834	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2835	mtx_lock(&xbb->lock);
2836
2837	/*
2838	 * No new interrupts can generate work, but we must wait
2839	 * for all currently active requests to drain.
2840	 */
2841	if (xbb->active_request_count != 0)
2842		return (EAGAIN);
2843
2844	for (ring_idx = 0, op = ops;
2845	     ring_idx < xbb->ring_config.ring_pages;
2846	     ring_idx++, op++) {
2847
2848		op->host_addr    = xbb->ring_config.gnt_addr
2849			         + (ring_idx * PAGE_SIZE);
2850		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2851		op->handle	 = xbb->ring_config.handle[ring_idx];
2852	}
2853
2854	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2855					  xbb->ring_config.ring_pages);
2856	if (error != 0)
2857		panic("Grant table op failed (%d)", error);
2858
2859	xbb_free_communication_mem(xbb);
2860
2861	if (xbb->requests != NULL) {
2862		free(xbb->requests, M_XENBLOCKBACK);
2863		xbb->requests = NULL;
2864	}
2865
2866	if (xbb->request_lists != NULL) {
2867		struct xbb_xen_reqlist *reqlist;
2868		int i;
2869
2870		/* There is one request list for ever allocated request. */
2871		for (i = 0, reqlist = xbb->request_lists;
2872		     i < xbb->max_requests; i++, reqlist++){
2873#ifdef XBB_USE_BOUNCE_BUFFERS
2874			if (reqlist->bounce != NULL) {
2875				free(reqlist->bounce, M_XENBLOCKBACK);
2876				reqlist->bounce = NULL;
2877			}
2878#endif
2879			if (reqlist->gnt_handles != NULL) {
2880				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2881				reqlist->gnt_handles = NULL;
2882			}
2883		}
2884		free(xbb->request_lists, M_XENBLOCKBACK);
2885		xbb->request_lists = NULL;
2886	}
2887
2888	xbb->flags &= ~XBBF_RING_CONNECTED;
2889	return (0);
2890}
2891
2892/**
2893 * Map shared memory ring into domain local address space, initialize
2894 * ring control structures, and bind an interrupt to the event channel
2895 * used to notify us of ring changes.
2896 *
2897 * \param xbb  Per-instance xbb configuration structure.
2898 */
2899static int
2900xbb_connect_ring(struct xbb_softc *xbb)
2901{
2902	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2903	struct gnttab_map_grant_ref *gnt;
2904	u_int			     ring_idx;
2905	int			     error;
2906
2907	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2908		return (0);
2909
2910	/*
2911	 * Kva for our ring is at the tail of the region of kva allocated
2912	 * by xbb_alloc_communication_mem().
2913	 */
2914	xbb->ring_config.va = xbb->kva
2915			    + (xbb->kva_size
2916			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2917	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2918				  + (xbb->kva_size
2919				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2920
2921	for (ring_idx = 0, gnt = gnts;
2922	     ring_idx < xbb->ring_config.ring_pages;
2923	     ring_idx++, gnt++) {
2924
2925		gnt->host_addr = xbb->ring_config.gnt_addr
2926			       + (ring_idx * PAGE_SIZE);
2927		gnt->flags     = GNTMAP_host_map;
2928		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2929		gnt->dom       = xbb->otherend_id;
2930	}
2931
2932	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2933					  xbb->ring_config.ring_pages);
2934	if (error)
2935		panic("blkback: Ring page grant table op failed (%d)", error);
2936
2937	for (ring_idx = 0, gnt = gnts;
2938	     ring_idx < xbb->ring_config.ring_pages;
2939	     ring_idx++, gnt++) {
2940		if (gnt->status != 0) {
2941			xbb->ring_config.va = 0;
2942			xenbus_dev_fatal(xbb->dev, EACCES,
2943					 "Ring shared page mapping failed. "
2944					 "Status %d.", gnt->status);
2945			return (EACCES);
2946		}
2947		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2948		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2949	}
2950
2951	/* Initialize the ring based on ABI. */
2952	switch (xbb->abi) {
2953	case BLKIF_PROTOCOL_NATIVE:
2954	{
2955		blkif_sring_t *sring;
2956		sring = (blkif_sring_t *)xbb->ring_config.va;
2957		BACK_RING_INIT(&xbb->rings.native, sring,
2958			       xbb->ring_config.ring_pages * PAGE_SIZE);
2959		break;
2960	}
2961	case BLKIF_PROTOCOL_X86_32:
2962	{
2963		blkif_x86_32_sring_t *sring_x86_32;
2964		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2965		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2966			       xbb->ring_config.ring_pages * PAGE_SIZE);
2967		break;
2968	}
2969	case BLKIF_PROTOCOL_X86_64:
2970	{
2971		blkif_x86_64_sring_t *sring_x86_64;
2972		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2973		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2974			       xbb->ring_config.ring_pages * PAGE_SIZE);
2975		break;
2976	}
2977	default:
2978		panic("Unexpected blkif protocol ABI.");
2979	}
2980
2981	xbb->flags |= XBBF_RING_CONNECTED;
2982
2983	error =
2984	    bind_interdomain_evtchn_to_irqhandler(xbb->otherend_id,
2985						  xbb->ring_config.evtchn,
2986						  device_get_nameunit(xbb->dev),
2987						  xbb_intr, /*arg*/xbb,
2988						  INTR_TYPE_BIO | INTR_MPSAFE,
2989						  &xbb->irq);
2990	if (error) {
2991		(void)xbb_disconnect(xbb);
2992		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2993		return (error);
2994	}
2995
2996	DPRINTF("rings connected!\n");
2997
2998	return 0;
2999}
3000
3001/* Needed to make bit_alloc() macro work */
3002#define	calloc(count, size) malloc((count)*(size), M_XENBLOCKBACK,	\
3003				   M_NOWAIT|M_ZERO);
3004
3005/**
3006 * Size KVA and pseudo-physical address allocations based on negotiated
3007 * values for the size and number of I/O requests, and the size of our
3008 * communication ring.
3009 *
3010 * \param xbb  Per-instance xbb configuration structure.
3011 *
3012 * These address spaces are used to dynamically map pages in the
3013 * front-end's domain into our own.
3014 */
3015static int
3016xbb_alloc_communication_mem(struct xbb_softc *xbb)
3017{
3018	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
3019	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
3020	xbb->kva_size = xbb->reqlist_kva_size +
3021			(xbb->ring_config.ring_pages * PAGE_SIZE);
3022
3023	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages);
3024	if (xbb->kva_free == NULL)
3025		return (ENOMEM);
3026
3027	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
3028		device_get_nameunit(xbb->dev), xbb->kva_size,
3029		xbb->reqlist_kva_size);
3030#ifndef XENHVM
3031	xbb->kva = kmem_alloc_nofault(kernel_map, xbb->kva_size);
3032	if (xbb->kva == 0)
3033		return (ENOMEM);
3034	xbb->gnt_base_addr = xbb->kva;
3035#else /* XENHVM */
3036	/*
3037	 * Reserve a range of pseudo physical memory that we can map
3038	 * into kva.  These pages will only be backed by machine
3039	 * pages ("real memory") during the lifetime of front-end requests
3040	 * via grant table operations.
3041	 */
3042	xbb->pseudo_phys_res_id = 0;
3043	xbb->pseudo_phys_res = bus_alloc_resource(xbb->dev, SYS_RES_MEMORY,
3044						  &xbb->pseudo_phys_res_id,
3045						  0, ~0, xbb->kva_size,
3046						  RF_ACTIVE);
3047	if (xbb->pseudo_phys_res == NULL) {
3048		xbb->kva = 0;
3049		return (ENOMEM);
3050	}
3051	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
3052	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
3053#endif /* XENHVM */
3054
3055	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
3056		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3057		(uintmax_t)xbb->gnt_base_addr);
3058	return (0);
3059}
3060
3061/**
3062 * Collect front-end information from the XenStore.
3063 *
3064 * \param xbb  Per-instance xbb configuration structure.
3065 */
3066static int
3067xbb_collect_frontend_info(struct xbb_softc *xbb)
3068{
3069	char	    protocol_abi[64];
3070	const char *otherend_path;
3071	int	    error;
3072	u_int	    ring_idx;
3073	u_int	    ring_page_order;
3074	size_t	    ring_size;
3075
3076	otherend_path = xenbus_get_otherend_path(xbb->dev);
3077
3078	/*
3079	 * Protocol defaults valid even if all negotiation fails.
3080	 */
3081	xbb->ring_config.ring_pages = 1;
3082	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK;
3083	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3084
3085	/*
3086	 * Mandatory data (used in all versions of the protocol) first.
3087	 */
3088	error = xs_scanf(XST_NIL, otherend_path,
3089			 "event-channel", NULL, "%" PRIu32,
3090			 &xbb->ring_config.evtchn);
3091	if (error != 0) {
3092		xenbus_dev_fatal(xbb->dev, error,
3093				 "Unable to retrieve event-channel information "
3094				 "from frontend %s.  Unable to connect.",
3095				 xenbus_get_otherend_path(xbb->dev));
3096		return (error);
3097	}
3098
3099	/*
3100	 * These fields are initialized to legacy protocol defaults
3101	 * so we only need to fail if reading the updated value succeeds
3102	 * and the new value is outside of its allowed range.
3103	 *
3104	 * \note xs_gather() returns on the first encountered error, so
3105	 *       we must use independant calls in order to guarantee
3106	 *       we don't miss information in a sparsly populated front-end
3107	 *       tree.
3108	 *
3109	 * \note xs_scanf() does not update variables for unmatched
3110	 *       fields.
3111	 */
3112	ring_page_order = 0;
3113	(void)xs_scanf(XST_NIL, otherend_path,
3114		       "ring-page-order", NULL, "%u",
3115		       &ring_page_order);
3116	xbb->ring_config.ring_pages = 1 << ring_page_order;
3117	(void)xs_scanf(XST_NIL, otherend_path,
3118		       "num-ring-pages", NULL, "%u",
3119		       &xbb->ring_config.ring_pages);
3120	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3121	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3122
3123	(void)xs_scanf(XST_NIL, otherend_path,
3124		       "max-requests", NULL, "%u",
3125		       &xbb->max_requests);
3126
3127	(void)xs_scanf(XST_NIL, otherend_path,
3128		       "max-request-segments", NULL, "%u",
3129		       &xbb->max_request_segments);
3130
3131	(void)xs_scanf(XST_NIL, otherend_path,
3132		       "max-request-size", NULL, "%u",
3133		       &xbb->max_request_size);
3134
3135	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3136		xenbus_dev_fatal(xbb->dev, EINVAL,
3137				 "Front-end specified ring-pages of %u "
3138				 "exceeds backend limit of %zu.  "
3139				 "Unable to connect.",
3140				 xbb->ring_config.ring_pages,
3141				 XBB_MAX_RING_PAGES);
3142		return (EINVAL);
3143	} else if (xbb->max_requests > XBB_MAX_REQUESTS) {
3144		xenbus_dev_fatal(xbb->dev, EINVAL,
3145				 "Front-end specified max_requests of %u "
3146				 "exceeds backend limit of %u.  "
3147				 "Unable to connect.",
3148				 xbb->max_requests,
3149				 XBB_MAX_REQUESTS);
3150		return (EINVAL);
3151	} else if (xbb->max_request_segments > XBB_MAX_SEGMENTS_PER_REQUEST) {
3152		xenbus_dev_fatal(xbb->dev, EINVAL,
3153				 "Front-end specified max_requests_segments "
3154				 "of %u exceeds backend limit of %u.  "
3155				 "Unable to connect.",
3156				 xbb->max_request_segments,
3157				 XBB_MAX_SEGMENTS_PER_REQUEST);
3158		return (EINVAL);
3159	} else if (xbb->max_request_size > XBB_MAX_REQUEST_SIZE) {
3160		xenbus_dev_fatal(xbb->dev, EINVAL,
3161				 "Front-end specified max_request_size "
3162				 "of %u exceeds backend limit of %u.  "
3163				 "Unable to connect.",
3164				 xbb->max_request_size,
3165				 XBB_MAX_REQUEST_SIZE);
3166		return (EINVAL);
3167	}
3168
3169	if (xbb->ring_config.ring_pages	== 1) {
3170		error = xs_gather(XST_NIL, otherend_path,
3171				  "ring-ref", "%" PRIu32,
3172				  &xbb->ring_config.ring_ref[0],
3173				  NULL);
3174		if (error != 0) {
3175			xenbus_dev_fatal(xbb->dev, error,
3176					 "Unable to retrieve ring information "
3177					 "from frontend %s.  Unable to "
3178					 "connect.",
3179					 xenbus_get_otherend_path(xbb->dev));
3180			return (error);
3181		}
3182	} else {
3183		/* Multi-page ring format. */
3184		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3185		     ring_idx++) {
3186			char ring_ref_name[]= "ring_refXX";
3187
3188			snprintf(ring_ref_name, sizeof(ring_ref_name),
3189				 "ring-ref%u", ring_idx);
3190			error = xs_scanf(XST_NIL, otherend_path,
3191					 ring_ref_name, NULL, "%" PRIu32,
3192					 &xbb->ring_config.ring_ref[ring_idx]);
3193			if (error != 0) {
3194				xenbus_dev_fatal(xbb->dev, error,
3195						 "Failed to retriev grant "
3196						 "reference for page %u of "
3197						 "shared ring.  Unable "
3198						 "to connect.", ring_idx);
3199				return (error);
3200			}
3201		}
3202	}
3203
3204	error = xs_gather(XST_NIL, otherend_path,
3205			  "protocol", "%63s", protocol_abi,
3206			  NULL);
3207	if (error != 0
3208	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3209		/*
3210		 * Assume native if the frontend has not
3211		 * published ABI data or it has published and
3212		 * matches our own ABI.
3213		 */
3214		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3215	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3216
3217		xbb->abi = BLKIF_PROTOCOL_X86_32;
3218	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3219
3220		xbb->abi = BLKIF_PROTOCOL_X86_64;
3221	} else {
3222
3223		xenbus_dev_fatal(xbb->dev, EINVAL,
3224				 "Unknown protocol ABI (%s) published by "
3225				 "frontend.  Unable to connect.", protocol_abi);
3226		return (EINVAL);
3227	}
3228	return (0);
3229}
3230
3231/**
3232 * Allocate per-request data structures given request size and number
3233 * information negotiated with the front-end.
3234 *
3235 * \param xbb  Per-instance xbb configuration structure.
3236 */
3237static int
3238xbb_alloc_requests(struct xbb_softc *xbb)
3239{
3240	struct xbb_xen_req *req;
3241	struct xbb_xen_req *last_req;
3242
3243	/*
3244	 * Allocate request book keeping datastructures.
3245	 */
3246	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3247			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3248	if (xbb->requests == NULL) {
3249		xenbus_dev_fatal(xbb->dev, ENOMEM,
3250				  "Unable to allocate request structures");
3251		return (ENOMEM);
3252	}
3253
3254	req      = xbb->requests;
3255	last_req = &xbb->requests[xbb->max_requests - 1];
3256	STAILQ_INIT(&xbb->request_free_stailq);
3257	while (req <= last_req) {
3258		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3259		req++;
3260	}
3261	return (0);
3262}
3263
3264static int
3265xbb_alloc_request_lists(struct xbb_softc *xbb)
3266{
3267	struct xbb_xen_reqlist *reqlist;
3268	int			i;
3269
3270	/*
3271	 * If no requests can be merged, we need 1 request list per
3272	 * in flight request.
3273	 */
3274	xbb->request_lists = malloc(xbb->max_requests *
3275		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3276	if (xbb->request_lists == NULL) {
3277		xenbus_dev_fatal(xbb->dev, ENOMEM,
3278				  "Unable to allocate request list structures");
3279		return (ENOMEM);
3280	}
3281
3282	STAILQ_INIT(&xbb->reqlist_free_stailq);
3283	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3284	for (i = 0; i < xbb->max_requests; i++) {
3285		int seg;
3286
3287		reqlist      = &xbb->request_lists[i];
3288
3289		reqlist->xbb = xbb;
3290
3291#ifdef XBB_USE_BOUNCE_BUFFERS
3292		reqlist->bounce = malloc(xbb->max_reqlist_size,
3293					 M_XENBLOCKBACK, M_NOWAIT);
3294		if (reqlist->bounce == NULL) {
3295			xenbus_dev_fatal(xbb->dev, ENOMEM,
3296					 "Unable to allocate request "
3297					 "bounce buffers");
3298			return (ENOMEM);
3299		}
3300#endif /* XBB_USE_BOUNCE_BUFFERS */
3301
3302		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3303					      sizeof(*reqlist->gnt_handles),
3304					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3305		if (reqlist->gnt_handles == NULL) {
3306			xenbus_dev_fatal(xbb->dev, ENOMEM,
3307					  "Unable to allocate request "
3308					  "grant references");
3309			return (ENOMEM);
3310		}
3311
3312		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3313			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3314
3315		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3316	}
3317	return (0);
3318}
3319
3320/**
3321 * Supply information about the physical device to the frontend
3322 * via XenBus.
3323 *
3324 * \param xbb  Per-instance xbb configuration structure.
3325 */
3326static int
3327xbb_publish_backend_info(struct xbb_softc *xbb)
3328{
3329	struct xs_transaction xst;
3330	const char	     *our_path;
3331	const char	     *leaf;
3332	int		      error;
3333
3334	our_path = xenbus_get_node(xbb->dev);
3335	while (1) {
3336		error = xs_transaction_start(&xst);
3337		if (error != 0) {
3338			xenbus_dev_fatal(xbb->dev, error,
3339					 "Error publishing backend info "
3340					 "(start transaction)");
3341			return (error);
3342		}
3343
3344		leaf = "sectors";
3345		error = xs_printf(xst, our_path, leaf,
3346				  "%"PRIu64, xbb->media_num_sectors);
3347		if (error != 0)
3348			break;
3349
3350		/* XXX Support all VBD attributes here. */
3351		leaf = "info";
3352		error = xs_printf(xst, our_path, leaf, "%u",
3353				  xbb->flags & XBBF_READ_ONLY
3354				? VDISK_READONLY : 0);
3355		if (error != 0)
3356			break;
3357
3358		leaf = "sector-size";
3359		error = xs_printf(xst, our_path, leaf, "%u",
3360				  xbb->sector_size);
3361		if (error != 0)
3362			break;
3363
3364		error = xs_transaction_end(xst, 0);
3365		if (error == 0) {
3366			return (0);
3367		} else if (error != EAGAIN) {
3368			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3369			return (error);
3370		}
3371	}
3372
3373	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3374			our_path, leaf);
3375	xs_transaction_end(xst, 1);
3376	return (error);
3377}
3378
3379/**
3380 * Connect to our blkfront peer now that it has completed publishing
3381 * its configuration into the XenStore.
3382 *
3383 * \param xbb  Per-instance xbb configuration structure.
3384 */
3385static void
3386xbb_connect(struct xbb_softc *xbb)
3387{
3388	int error;
3389
3390	if (xenbus_get_state(xbb->dev) == XenbusStateConnected)
3391		return;
3392
3393	if (xbb_collect_frontend_info(xbb) != 0)
3394		return;
3395
3396	xbb->flags &= ~XBBF_SHUTDOWN;
3397
3398	/*
3399	 * We limit the maximum number of reqlist segments to the maximum
3400	 * number of segments in the ring, or our absolute maximum,
3401	 * whichever is smaller.
3402	 */
3403	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3404		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3405
3406	/*
3407	 * The maximum size is simply a function of the number of segments
3408	 * we can handle.
3409	 */
3410	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3411
3412	/* Allocate resources whose size depends on front-end configuration. */
3413	error = xbb_alloc_communication_mem(xbb);
3414	if (error != 0) {
3415		xenbus_dev_fatal(xbb->dev, error,
3416				 "Unable to allocate communication memory");
3417		return;
3418	}
3419
3420	error = xbb_alloc_requests(xbb);
3421	if (error != 0) {
3422		/* Specific errors are reported by xbb_alloc_requests(). */
3423		return;
3424	}
3425
3426	error = xbb_alloc_request_lists(xbb);
3427	if (error != 0) {
3428		/* Specific errors are reported by xbb_alloc_request_lists(). */
3429		return;
3430	}
3431
3432	/*
3433	 * Connect communication channel.
3434	 */
3435	error = xbb_connect_ring(xbb);
3436	if (error != 0) {
3437		/* Specific errors are reported by xbb_connect_ring(). */
3438		return;
3439	}
3440
3441	if (xbb_publish_backend_info(xbb) != 0) {
3442		/*
3443		 * If we can't publish our data, we cannot participate
3444		 * in this connection, and waiting for a front-end state
3445		 * change will not help the situation.
3446		 */
3447		(void)xbb_disconnect(xbb);
3448		return;
3449	}
3450
3451	/* Ready for I/O. */
3452	xenbus_set_state(xbb->dev, XenbusStateConnected);
3453}
3454
3455/*-------------------------- Device Teardown Support -------------------------*/
3456/**
3457 * Perform device shutdown functions.
3458 *
3459 * \param xbb  Per-instance xbb configuration structure.
3460 *
3461 * Mark this instance as shutting down, wait for any active I/O on the
3462 * backend device/file to drain, disconnect from the front-end, and notify
3463 * any waiters (e.g. a thread invoking our detach method) that detach can
3464 * now proceed.
3465 */
3466static int
3467xbb_shutdown(struct xbb_softc *xbb)
3468{
3469	XenbusState frontState;
3470	int	    error;
3471
3472	DPRINTF("\n");
3473
3474	/*
3475	 * Due to the need to drop our mutex during some
3476	 * xenbus operations, it is possible for two threads
3477	 * to attempt to close out shutdown processing at
3478	 * the same time.  Tell the caller that hits this
3479	 * race to try back later.
3480	 */
3481	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3482		return (EAGAIN);
3483
3484	xbb->flags |= XBBF_IN_SHUTDOWN;
3485	mtx_unlock(&xbb->lock);
3486
3487	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3488		xenbus_set_state(xbb->dev, XenbusStateClosing);
3489
3490	frontState = xenbus_get_otherend_state(xbb->dev);
3491	mtx_lock(&xbb->lock);
3492	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3493
3494	/* The front can submit I/O until entering the closed state. */
3495	if (frontState < XenbusStateClosed)
3496		return (EAGAIN);
3497
3498	DPRINTF("\n");
3499
3500	/* Indicate shutdown is in progress. */
3501	xbb->flags |= XBBF_SHUTDOWN;
3502
3503	/* Disconnect from the front-end. */
3504	error = xbb_disconnect(xbb);
3505	if (error != 0) {
3506		/*
3507		 * Requests still outstanding.  We'll be called again
3508		 * once they complete.
3509		 */
3510		KASSERT(error == EAGAIN,
3511			("%s: Unexpected xbb_disconnect() failure %d",
3512			 __func__, error));
3513
3514		return (error);
3515	}
3516
3517	DPRINTF("\n");
3518
3519	/* Indicate to xbb_detach() that is it safe to proceed. */
3520	wakeup(xbb);
3521
3522	return (0);
3523}
3524
3525/**
3526 * Report an attach time error to the console and Xen, and cleanup
3527 * this instance by forcing immediate detach processing.
3528 *
3529 * \param xbb  Per-instance xbb configuration structure.
3530 * \param err  Errno describing the error.
3531 * \param fmt  Printf style format and arguments
3532 */
3533static void
3534xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3535{
3536	va_list ap;
3537	va_list ap_hotplug;
3538
3539	va_start(ap, fmt);
3540	va_copy(ap_hotplug, ap);
3541	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3542		  "hotplug-error", fmt, ap_hotplug);
3543	va_end(ap_hotplug);
3544	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3545		  "hotplug-status", "error");
3546
3547	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3548	va_end(ap);
3549
3550	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3551		  "online", "0");
3552	xbb_detach(xbb->dev);
3553}
3554
3555/*---------------------------- NewBus Entrypoints ----------------------------*/
3556/**
3557 * Inspect a XenBus device and claim it if is of the appropriate type.
3558 *
3559 * \param dev  NewBus device object representing a candidate XenBus device.
3560 *
3561 * \return  0 for success, errno codes for failure.
3562 */
3563static int
3564xbb_probe(device_t dev)
3565{
3566
3567        if (!strcmp(xenbus_get_type(dev), "vbd")) {
3568                device_set_desc(dev, "Backend Virtual Block Device");
3569                device_quiet(dev);
3570                return (0);
3571        }
3572
3573        return (ENXIO);
3574}
3575
3576/**
3577 * Setup sysctl variables to control various Block Back parameters.
3578 *
3579 * \param xbb  Xen Block Back softc.
3580 *
3581 */
3582static void
3583xbb_setup_sysctl(struct xbb_softc *xbb)
3584{
3585	struct sysctl_ctx_list *sysctl_ctx = NULL;
3586	struct sysctl_oid      *sysctl_tree = NULL;
3587
3588	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3589	if (sysctl_ctx == NULL)
3590		return;
3591
3592	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3593	if (sysctl_tree == NULL)
3594		return;
3595
3596	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3597		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3598		       "fake the flush command");
3599
3600	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3601		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3602		       "send a real flush for N flush requests");
3603
3604	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3605		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3606		       "Don't coalesce contiguous requests");
3607
3608	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3609			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3610			 "how many I/O requests we have received");
3611
3612	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3613			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3614			 "how many I/O requests have been completed");
3615
3616	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3617			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3618			 "how many I/O dispatches were forced");
3619
3620	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3621			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3622			 "how many I/O dispatches were normal");
3623
3624	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3625			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3626			 "total number of I/O dispatches");
3627
3628	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3629			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3630			 "how many times we have run out of KVA");
3631
3632	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3633			 "request_shortages", CTLFLAG_RW,
3634			 &xbb->request_shortages,
3635			 "how many times we have run out of requests");
3636
3637	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3638		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3639		        "maximum outstanding requests (negotiated)");
3640
3641	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3642		        "max_request_segments", CTLFLAG_RD,
3643		        &xbb->max_request_segments, 0,
3644		        "maximum number of pages per requests (negotiated)");
3645
3646	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3647		        "max_request_size", CTLFLAG_RD,
3648		        &xbb->max_request_size, 0,
3649		        "maximum size in bytes of a request (negotiated)");
3650
3651	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3652		        "ring_pages", CTLFLAG_RD,
3653		        &xbb->ring_config.ring_pages, 0,
3654		        "communication channel pages (negotiated)");
3655}
3656
3657/**
3658 * Attach to a XenBus device that has been claimed by our probe routine.
3659 *
3660 * \param dev  NewBus device object representing this Xen Block Back instance.
3661 *
3662 * \return  0 for success, errno codes for failure.
3663 */
3664static int
3665xbb_attach(device_t dev)
3666{
3667	struct xbb_softc	*xbb;
3668	int			 error;
3669	u_int			 max_ring_page_order;
3670
3671	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3672
3673	/*
3674	 * Basic initialization.
3675	 * After this block it is safe to call xbb_detach()
3676	 * to clean up any allocated data for this instance.
3677	 */
3678	xbb = device_get_softc(dev);
3679	xbb->dev = dev;
3680	xbb->otherend_id = xenbus_get_otherend_id(dev);
3681	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3682	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3683
3684	/*
3685	 * Publish protocol capabilities for consumption by the
3686	 * front-end.
3687	 */
3688	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3689			  "feature-barrier", "1");
3690	if (error) {
3691		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3692				  xenbus_get_node(xbb->dev));
3693		return (error);
3694	}
3695
3696	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3697			  "feature-flush-cache", "1");
3698	if (error) {
3699		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3700				  xenbus_get_node(xbb->dev));
3701		return (error);
3702	}
3703
3704	/*
3705	 * Amazon EC2 client compatility.  They refer to max-ring-pages
3706	 * instead of to max-ring-page-order.
3707	 */
3708	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3709			  "max-ring-pages", "%zu", XBB_MAX_RING_PAGES);
3710	if (error) {
3711		xbb_attach_failed(xbb, error, "writing %s/max-ring-pages",
3712				  xenbus_get_node(xbb->dev));
3713		return (error);
3714	}
3715
3716	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3717	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3718			  "max-ring-page-order", "%u", max_ring_page_order);
3719	if (error) {
3720		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3721				  xenbus_get_node(xbb->dev));
3722		return (error);
3723	}
3724
3725	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3726			  "max-requests", "%u", XBB_MAX_REQUESTS);
3727	if (error) {
3728		xbb_attach_failed(xbb, error, "writing %s/max-requests",
3729				  xenbus_get_node(xbb->dev));
3730		return (error);
3731	}
3732
3733	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3734			  "max-request-segments", "%u",
3735			  XBB_MAX_SEGMENTS_PER_REQUEST);
3736	if (error) {
3737		xbb_attach_failed(xbb, error, "writing %s/max-request-segments",
3738				  xenbus_get_node(xbb->dev));
3739		return (error);
3740	}
3741
3742	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3743			  "max-request-size", "%u",
3744			  XBB_MAX_REQUEST_SIZE);
3745	if (error) {
3746		xbb_attach_failed(xbb, error, "writing %s/max-request-size",
3747				  xenbus_get_node(xbb->dev));
3748		return (error);
3749	}
3750
3751	/* Collect physical device information. */
3752	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3753			  "device-type", NULL, &xbb->dev_type,
3754			  NULL);
3755	if (error != 0)
3756		xbb->dev_type = NULL;
3757
3758	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3759                          "mode", NULL, &xbb->dev_mode,
3760			  "params", NULL, &xbb->dev_name,
3761                          NULL);
3762	if (error != 0) {
3763		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3764				  xenbus_get_node(dev));
3765                return (ENXIO);
3766        }
3767
3768	/* Parse fopen style mode flags. */
3769	if (strchr(xbb->dev_mode, 'w') == NULL)
3770		xbb->flags |= XBBF_READ_ONLY;
3771
3772	/*
3773	 * Verify the physical device is present and can support
3774	 * the desired I/O mode.
3775	 */
3776	DROP_GIANT();
3777	error = xbb_open_backend(xbb);
3778	PICKUP_GIANT();
3779	if (error != 0) {
3780		xbb_attach_failed(xbb, error, "Unable to open %s",
3781				  xbb->dev_name);
3782		return (ENXIO);
3783	}
3784
3785	/* Use devstat(9) for recording statistics. */
3786	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3787					   xbb->sector_size,
3788					   DEVSTAT_ALL_SUPPORTED,
3789					   DEVSTAT_TYPE_DIRECT
3790					 | DEVSTAT_TYPE_IF_OTHER,
3791					   DEVSTAT_PRIORITY_OTHER);
3792
3793	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3794					      xbb->sector_size,
3795					      DEVSTAT_ALL_SUPPORTED,
3796					      DEVSTAT_TYPE_DIRECT
3797					    | DEVSTAT_TYPE_IF_OTHER,
3798					      DEVSTAT_PRIORITY_OTHER);
3799	/*
3800	 * Setup sysctl variables.
3801	 */
3802	xbb_setup_sysctl(xbb);
3803
3804	/*
3805	 * Create a taskqueue for doing work that must occur from a
3806	 * thread context.
3807	 */
3808	xbb->io_taskqueue = taskqueue_create(device_get_nameunit(dev), M_NOWAIT,
3809					     taskqueue_thread_enqueue,
3810					     /*context*/&xbb->io_taskqueue);
3811	if (xbb->io_taskqueue == NULL) {
3812		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3813		return (ENOMEM);
3814	}
3815
3816	taskqueue_start_threads(&xbb->io_taskqueue,
3817				/*num threads*/1,
3818				/*priority*/PWAIT,
3819				/*thread name*/
3820				"%s taskq", device_get_nameunit(dev));
3821
3822	/* Update hot-plug status to satisfy xend. */
3823	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3824			  "hotplug-status", "connected");
3825	if (error) {
3826		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3827				  xenbus_get_node(xbb->dev));
3828		return (error);
3829	}
3830
3831	/* Tell the front end that we are ready to connect. */
3832	xenbus_set_state(dev, XenbusStateInitWait);
3833
3834	return (0);
3835}
3836
3837/**
3838 * Detach from a block back device instance.
3839 *
3840 * \param dev  NewBus device object representing this Xen Block Back instance.
3841 *
3842 * \return  0 for success, errno codes for failure.
3843 *
3844 * \note A block back device may be detached at any time in its life-cycle,
3845 *       including part way through the attach process.  For this reason,
3846 *       initialization order and the intialization state checks in this
3847 *       routine must be carefully coupled so that attach time failures
3848 *       are gracefully handled.
3849 */
3850static int
3851xbb_detach(device_t dev)
3852{
3853        struct xbb_softc *xbb;
3854
3855	DPRINTF("\n");
3856
3857        xbb = device_get_softc(dev);
3858	mtx_lock(&xbb->lock);
3859	while (xbb_shutdown(xbb) == EAGAIN) {
3860		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3861		       "xbb_shutdown", 0);
3862	}
3863	mtx_unlock(&xbb->lock);
3864
3865	DPRINTF("\n");
3866
3867	if (xbb->io_taskqueue != NULL)
3868		taskqueue_free(xbb->io_taskqueue);
3869
3870	if (xbb->xbb_stats != NULL)
3871		devstat_remove_entry(xbb->xbb_stats);
3872
3873	if (xbb->xbb_stats_in != NULL)
3874		devstat_remove_entry(xbb->xbb_stats_in);
3875
3876	xbb_close_backend(xbb);
3877
3878	if (xbb->dev_mode != NULL) {
3879		free(xbb->dev_mode, M_XENBUS);
3880		xbb->dev_mode = NULL;
3881	}
3882
3883	if (xbb->dev_type != NULL) {
3884		free(xbb->dev_type, M_XENBUS);
3885		xbb->dev_type = NULL;
3886	}
3887
3888	if (xbb->dev_name != NULL) {
3889		free(xbb->dev_name, M_XENBUS);
3890		xbb->dev_name = NULL;
3891	}
3892
3893	mtx_destroy(&xbb->lock);
3894        return (0);
3895}
3896
3897/**
3898 * Prepare this block back device for suspension of this VM.
3899 *
3900 * \param dev  NewBus device object representing this Xen Block Back instance.
3901 *
3902 * \return  0 for success, errno codes for failure.
3903 */
3904static int
3905xbb_suspend(device_t dev)
3906{
3907#ifdef NOT_YET
3908        struct xbb_softc *sc = device_get_softc(dev);
3909
3910        /* Prevent new requests being issued until we fix things up. */
3911        mtx_lock(&sc->xb_io_lock);
3912        sc->connected = BLKIF_STATE_SUSPENDED;
3913        mtx_unlock(&sc->xb_io_lock);
3914#endif
3915
3916        return (0);
3917}
3918
3919/**
3920 * Perform any processing required to recover from a suspended state.
3921 *
3922 * \param dev  NewBus device object representing this Xen Block Back instance.
3923 *
3924 * \return  0 for success, errno codes for failure.
3925 */
3926static int
3927xbb_resume(device_t dev)
3928{
3929	return (0);
3930}
3931
3932/**
3933 * Handle state changes expressed via the XenStore by our front-end peer.
3934 *
3935 * \param dev             NewBus device object representing this Xen
3936 *                        Block Back instance.
3937 * \param frontend_state  The new state of the front-end.
3938 *
3939 * \return  0 for success, errno codes for failure.
3940 */
3941static void
3942xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3943{
3944	struct xbb_softc *xbb = device_get_softc(dev);
3945
3946	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3947	        xenbus_strstate(frontend_state),
3948		xenbus_strstate(xenbus_get_state(xbb->dev)));
3949
3950	switch (frontend_state) {
3951	case XenbusStateInitialising:
3952		break;
3953	case XenbusStateInitialised:
3954	case XenbusStateConnected:
3955		xbb_connect(xbb);
3956		break;
3957	case XenbusStateClosing:
3958	case XenbusStateClosed:
3959		mtx_lock(&xbb->lock);
3960		xbb_shutdown(xbb);
3961		mtx_unlock(&xbb->lock);
3962		if (frontend_state == XenbusStateClosed)
3963			xenbus_set_state(xbb->dev, XenbusStateClosed);
3964		break;
3965	default:
3966		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3967				 frontend_state);
3968		break;
3969	}
3970}
3971
3972/*---------------------------- NewBus Registration ---------------------------*/
3973static device_method_t xbb_methods[] = {
3974	/* Device interface */
3975	DEVMETHOD(device_probe,		xbb_probe),
3976	DEVMETHOD(device_attach,	xbb_attach),
3977	DEVMETHOD(device_detach,	xbb_detach),
3978	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3979	DEVMETHOD(device_suspend,	xbb_suspend),
3980	DEVMETHOD(device_resume,	xbb_resume),
3981
3982	/* Xenbus interface */
3983	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3984
3985	{ 0, 0 }
3986};
3987
3988static driver_t xbb_driver = {
3989        "xbbd",
3990        xbb_methods,
3991        sizeof(struct xbb_softc),
3992};
3993devclass_t xbb_devclass;
3994
3995DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
3996