if_ti.c revision 90548
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/ti/if_ti.c 90548 2002-02-11 23:38:30Z silby $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/sockio.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/queue.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95#include <net/if_types.h>
96#include <net/if_vlan_var.h>
97
98#include <net/bpf.h>
99
100#include <netinet/in_systm.h>
101#include <netinet/in.h>
102#include <netinet/ip.h>
103
104#include <vm/vm.h>              /* for vtophys */
105#include <vm/pmap.h>            /* for vtophys */
106#include <machine/bus_memio.h>
107#include <machine/bus.h>
108#include <machine/resource.h>
109#include <sys/bus.h>
110#include <sys/rman.h>
111
112#include <pci/pcireg.h>
113#include <pci/pcivar.h>
114
115#include <pci/if_tireg.h>
116#include <pci/ti_fw.h>
117#include <pci/ti_fw2.h>
118
119#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
120
121#if !defined(lint)
122static const char rcsid[] =
123  "$FreeBSD: head/sys/dev/ti/if_ti.c 90548 2002-02-11 23:38:30Z silby $";
124#endif
125
126/*
127 * Various supported device vendors/types and their names.
128 */
129
130static struct ti_type ti_devs[] = {
131	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
132		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
133	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
134		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
135	{ TC_VENDORID,	TC_DEVICEID_3C985,
136		"3Com 3c985-SX Gigabit Ethernet" },
137	{ NG_VENDORID, NG_DEVICEID_GA620,
138		"Netgear GA620 1000baseSX Gigabit Ethernet" },
139	{ NG_VENDORID, NG_DEVICEID_GA620T,
140		"Netgear GA620 1000baseT Gigabit Ethernet" },
141	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
142		"Silicon Graphics Gigabit Ethernet" },
143	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
144		"Farallon PN9000SX Gigabit Ethernet" },
145	{ 0, 0, NULL }
146};
147
148static int ti_probe		__P((device_t));
149static int ti_attach		__P((device_t));
150static int ti_detach		__P((device_t));
151static void ti_txeof		__P((struct ti_softc *));
152static void ti_rxeof		__P((struct ti_softc *));
153
154static void ti_stats_update	__P((struct ti_softc *));
155static int ti_encap		__P((struct ti_softc *, struct mbuf *,
156					u_int32_t *));
157
158static void ti_intr		__P((void *));
159static void ti_start		__P((struct ifnet *));
160static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
161static void ti_init		__P((void *));
162static void ti_init2		__P((struct ti_softc *));
163static void ti_stop		__P((struct ti_softc *));
164static void ti_watchdog		__P((struct ifnet *));
165static void ti_shutdown		__P((device_t));
166static int ti_ifmedia_upd	__P((struct ifnet *));
167static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
168
169static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
170static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
171						int, u_int8_t *));
172static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
173
174static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
175static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
176static void ti_setmulti		__P((struct ti_softc *));
177
178static void ti_mem		__P((struct ti_softc *, u_int32_t,
179					u_int32_t, caddr_t));
180static void ti_loadfw		__P((struct ti_softc *));
181static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
182static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
183					caddr_t, int));
184static void ti_handle_events	__P((struct ti_softc *));
185static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
186static void *ti_jalloc		__P((struct ti_softc *));
187static void ti_jfree		__P((caddr_t, void *));
188static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
189static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
190static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
191static int ti_init_rx_ring_std	__P((struct ti_softc *));
192static void ti_free_rx_ring_std	__P((struct ti_softc *));
193static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
194static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
195static int ti_init_rx_ring_mini	__P((struct ti_softc *));
196static void ti_free_rx_ring_mini	__P((struct ti_softc *));
197static void ti_free_tx_ring	__P((struct ti_softc *));
198static int ti_init_tx_ring	__P((struct ti_softc *));
199
200static int ti_64bitslot_war	__P((struct ti_softc *));
201static int ti_chipinit		__P((struct ti_softc *));
202static int ti_gibinit		__P((struct ti_softc *));
203
204static device_method_t ti_methods[] = {
205	/* Device interface */
206	DEVMETHOD(device_probe,		ti_probe),
207	DEVMETHOD(device_attach,	ti_attach),
208	DEVMETHOD(device_detach,	ti_detach),
209	DEVMETHOD(device_shutdown,	ti_shutdown),
210	{ 0, 0 }
211};
212
213static driver_t ti_driver = {
214	"ti",
215	ti_methods,
216	sizeof(struct ti_softc)
217};
218
219static devclass_t ti_devclass;
220
221DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
222
223/*
224 * Send an instruction or address to the EEPROM, check for ACK.
225 */
226static u_int32_t ti_eeprom_putbyte(sc, byte)
227	struct ti_softc		*sc;
228	int			byte;
229{
230	register int		i, ack = 0;
231
232	/*
233	 * Make sure we're in TX mode.
234	 */
235	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
236
237	/*
238	 * Feed in each bit and stobe the clock.
239	 */
240	for (i = 0x80; i; i >>= 1) {
241		if (byte & i) {
242			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
243		} else {
244			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
245		}
246		DELAY(1);
247		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248		DELAY(1);
249		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250	}
251
252	/*
253	 * Turn off TX mode.
254	 */
255	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
256
257	/*
258	 * Check for ack.
259	 */
260	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
262	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263
264	return(ack);
265}
266
267/*
268 * Read a byte of data stored in the EEPROM at address 'addr.'
269 * We have to send two address bytes since the EEPROM can hold
270 * more than 256 bytes of data.
271 */
272static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
273	struct ti_softc		*sc;
274	int			addr;
275	u_int8_t		*dest;
276{
277	register int		i;
278	u_int8_t		byte = 0;
279
280	EEPROM_START;
281
282	/*
283	 * Send write control code to EEPROM.
284	 */
285	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
286		printf("ti%d: failed to send write command, status: %x\n",
287		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
288		return(1);
289	}
290
291	/*
292	 * Send first byte of address of byte we want to read.
293	 */
294	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
295		printf("ti%d: failed to send address, status: %x\n",
296		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297		return(1);
298	}
299	/*
300	 * Send second byte address of byte we want to read.
301	 */
302	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
303		printf("ti%d: failed to send address, status: %x\n",
304		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
305		return(1);
306	}
307
308	EEPROM_STOP;
309	EEPROM_START;
310	/*
311	 * Send read control code to EEPROM.
312	 */
313	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
314		printf("ti%d: failed to send read command, status: %x\n",
315		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
316		return(1);
317	}
318
319	/*
320	 * Start reading bits from EEPROM.
321	 */
322	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
323	for (i = 0x80; i; i >>= 1) {
324		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
325		DELAY(1);
326		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
327			byte |= i;
328		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
329		DELAY(1);
330	}
331
332	EEPROM_STOP;
333
334	/*
335	 * No ACK generated for read, so just return byte.
336	 */
337
338	*dest = byte;
339
340	return(0);
341}
342
343/*
344 * Read a sequence of bytes from the EEPROM.
345 */
346static int ti_read_eeprom(sc, dest, off, cnt)
347	struct ti_softc		*sc;
348	caddr_t			dest;
349	int			off;
350	int			cnt;
351{
352	int			err = 0, i;
353	u_int8_t		byte = 0;
354
355	for (i = 0; i < cnt; i++) {
356		err = ti_eeprom_getbyte(sc, off + i, &byte);
357		if (err)
358			break;
359		*(dest + i) = byte;
360	}
361
362	return(err ? 1 : 0);
363}
364
365/*
366 * NIC memory access function. Can be used to either clear a section
367 * of NIC local memory or (if buf is non-NULL) copy data into it.
368 */
369static void ti_mem(sc, addr, len, buf)
370	struct ti_softc		*sc;
371	u_int32_t		addr, len;
372	caddr_t			buf;
373{
374	int			segptr, segsize, cnt;
375	caddr_t			ti_winbase, ptr;
376
377	segptr = addr;
378	cnt = len;
379	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
380	ptr = buf;
381
382	while(cnt) {
383		if (cnt < TI_WINLEN)
384			segsize = cnt;
385		else
386			segsize = TI_WINLEN - (segptr % TI_WINLEN);
387		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
388		if (buf == NULL)
389			bzero((char *)ti_winbase + (segptr &
390			    (TI_WINLEN - 1)), segsize);
391		else {
392			bcopy((char *)ptr, (char *)ti_winbase +
393			    (segptr & (TI_WINLEN - 1)), segsize);
394			ptr += segsize;
395		}
396		segptr += segsize;
397		cnt -= segsize;
398	}
399
400	return;
401}
402
403/*
404 * Load firmware image into the NIC. Check that the firmware revision
405 * is acceptable and see if we want the firmware for the Tigon 1 or
406 * Tigon 2.
407 */
408static void ti_loadfw(sc)
409	struct ti_softc		*sc;
410{
411	switch(sc->ti_hwrev) {
412	case TI_HWREV_TIGON:
413		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
414		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
415		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
416			printf("ti%d: firmware revision mismatch; want "
417			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
418			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
419			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
420			    tigonFwReleaseMinor, tigonFwReleaseFix);
421			return;
422		}
423		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
424		    (caddr_t)tigonFwText);
425		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
426		    (caddr_t)tigonFwData);
427		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
428		    (caddr_t)tigonFwRodata);
429		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
430		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
431		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
432		break;
433	case TI_HWREV_TIGON_II:
434		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
435		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
436		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
437			printf("ti%d: firmware revision mismatch; want "
438			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
439			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
440			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
441			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
442			return;
443		}
444		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
445		    (caddr_t)tigon2FwText);
446		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
447		    (caddr_t)tigon2FwData);
448		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
449		    (caddr_t)tigon2FwRodata);
450		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
451		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
452		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
453		break;
454	default:
455		printf("ti%d: can't load firmware: unknown hardware rev\n",
456		    sc->ti_unit);
457		break;
458	}
459
460	return;
461}
462
463/*
464 * Send the NIC a command via the command ring.
465 */
466static void ti_cmd(sc, cmd)
467	struct ti_softc		*sc;
468	struct ti_cmd_desc	*cmd;
469{
470	u_int32_t		index;
471
472	if (sc->ti_rdata->ti_cmd_ring == NULL)
473		return;
474
475	index = sc->ti_cmd_saved_prodidx;
476	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
477	TI_INC(index, TI_CMD_RING_CNT);
478	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
479	sc->ti_cmd_saved_prodidx = index;
480
481	return;
482}
483
484/*
485 * Send the NIC an extended command. The 'len' parameter specifies the
486 * number of command slots to include after the initial command.
487 */
488static void ti_cmd_ext(sc, cmd, arg, len)
489	struct ti_softc		*sc;
490	struct ti_cmd_desc	*cmd;
491	caddr_t			arg;
492	int			len;
493{
494	u_int32_t		index;
495	register int		i;
496
497	if (sc->ti_rdata->ti_cmd_ring == NULL)
498		return;
499
500	index = sc->ti_cmd_saved_prodidx;
501	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
502	TI_INC(index, TI_CMD_RING_CNT);
503	for (i = 0; i < len; i++) {
504		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
505		    *(u_int32_t *)(&arg[i * 4]));
506		TI_INC(index, TI_CMD_RING_CNT);
507	}
508	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
509	sc->ti_cmd_saved_prodidx = index;
510
511	return;
512}
513
514/*
515 * Handle events that have triggered interrupts.
516 */
517static void ti_handle_events(sc)
518	struct ti_softc		*sc;
519{
520	struct ti_event_desc	*e;
521
522	if (sc->ti_rdata->ti_event_ring == NULL)
523		return;
524
525	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
526		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
527		switch(e->ti_event) {
528		case TI_EV_LINKSTAT_CHANGED:
529			sc->ti_linkstat = e->ti_code;
530			if (e->ti_code == TI_EV_CODE_LINK_UP)
531				printf("ti%d: 10/100 link up\n", sc->ti_unit);
532			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
533				printf("ti%d: gigabit link up\n", sc->ti_unit);
534			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
535				printf("ti%d: link down\n", sc->ti_unit);
536			break;
537		case TI_EV_ERROR:
538			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
539				printf("ti%d: invalid command\n", sc->ti_unit);
540			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
541				printf("ti%d: unknown command\n", sc->ti_unit);
542			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
543				printf("ti%d: bad config data\n", sc->ti_unit);
544			break;
545		case TI_EV_FIRMWARE_UP:
546			ti_init2(sc);
547			break;
548		case TI_EV_STATS_UPDATED:
549			ti_stats_update(sc);
550			break;
551		case TI_EV_RESET_JUMBO_RING:
552		case TI_EV_MCAST_UPDATED:
553			/* Who cares. */
554			break;
555		default:
556			printf("ti%d: unknown event: %d\n",
557			    sc->ti_unit, e->ti_event);
558			break;
559		}
560		/* Advance the consumer index. */
561		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
562		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
563	}
564
565	return;
566}
567
568/*
569 * Memory management for the jumbo receive ring is a pain in the
570 * butt. We need to allocate at least 9018 bytes of space per frame,
571 * _and_ it has to be contiguous (unless you use the extended
572 * jumbo descriptor format). Using malloc() all the time won't
573 * work: malloc() allocates memory in powers of two, which means we
574 * would end up wasting a considerable amount of space by allocating
575 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
576 * to do our own memory management.
577 *
578 * The driver needs to allocate a contiguous chunk of memory at boot
579 * time. We then chop this up ourselves into 9K pieces and use them
580 * as external mbuf storage.
581 *
582 * One issue here is how much memory to allocate. The jumbo ring has
583 * 256 slots in it, but at 9K per slot than can consume over 2MB of
584 * RAM. This is a bit much, especially considering we also need
585 * RAM for the standard ring and mini ring (on the Tigon 2). To
586 * save space, we only actually allocate enough memory for 64 slots
587 * by default, which works out to between 500 and 600K. This can
588 * be tuned by changing a #define in if_tireg.h.
589 */
590
591static int ti_alloc_jumbo_mem(sc)
592	struct ti_softc		*sc;
593{
594	caddr_t			ptr;
595	register int		i;
596	struct ti_jpool_entry   *entry;
597
598	/* Grab a big chunk o' storage. */
599	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
600		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
601
602	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
603		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
604		return(ENOBUFS);
605	}
606
607	SLIST_INIT(&sc->ti_jfree_listhead);
608	SLIST_INIT(&sc->ti_jinuse_listhead);
609
610	/*
611	 * Now divide it up into 9K pieces and save the addresses
612	 * in an array.
613	 */
614	ptr = sc->ti_cdata.ti_jumbo_buf;
615	for (i = 0; i < TI_JSLOTS; i++) {
616		sc->ti_cdata.ti_jslots[i] = ptr;
617		ptr += TI_JLEN;
618		entry = malloc(sizeof(struct ti_jpool_entry),
619			       M_DEVBUF, M_NOWAIT);
620		if (entry == NULL) {
621			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
622			           M_DEVBUF);
623			sc->ti_cdata.ti_jumbo_buf = NULL;
624			printf("ti%d: no memory for jumbo "
625			    "buffer queue!\n", sc->ti_unit);
626			return(ENOBUFS);
627		}
628		entry->slot = i;
629		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
630	}
631
632	return(0);
633}
634
635/*
636 * Allocate a jumbo buffer.
637 */
638static void *ti_jalloc(sc)
639	struct ti_softc		*sc;
640{
641	struct ti_jpool_entry   *entry;
642
643	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
644
645	if (entry == NULL) {
646		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
647		return(NULL);
648	}
649
650	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
651	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
652	return(sc->ti_cdata.ti_jslots[entry->slot]);
653}
654
655/*
656 * Release a jumbo buffer.
657 */
658static void ti_jfree(buf, args)
659	caddr_t			buf;
660	void			*args;
661{
662	struct ti_softc		*sc;
663	int		        i;
664	struct ti_jpool_entry   *entry;
665
666	/* Extract the softc struct pointer. */
667	sc = (struct ti_softc *)args;
668
669	if (sc == NULL)
670		panic("ti_jfree: didn't get softc pointer!");
671
672	/* calculate the slot this buffer belongs to */
673	i = ((vm_offset_t)buf
674	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
675
676	if ((i < 0) || (i >= TI_JSLOTS))
677		panic("ti_jfree: asked to free buffer that we don't manage!");
678
679	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
680	if (entry == NULL)
681		panic("ti_jfree: buffer not in use!");
682	entry->slot = i;
683	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
684	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
685
686	return;
687}
688
689
690/*
691 * Intialize a standard receive ring descriptor.
692 */
693static int ti_newbuf_std(sc, i, m)
694	struct ti_softc		*sc;
695	int			i;
696	struct mbuf		*m;
697{
698	struct mbuf		*m_new = NULL;
699	struct ti_rx_desc	*r;
700
701	if (m == NULL) {
702		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
703		if (m_new == NULL)
704			return(ENOBUFS);
705
706		MCLGET(m_new, M_DONTWAIT);
707		if (!(m_new->m_flags & M_EXT)) {
708			m_freem(m_new);
709			return(ENOBUFS);
710		}
711		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
712	} else {
713		m_new = m;
714		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
715		m_new->m_data = m_new->m_ext.ext_buf;
716	}
717
718	m_adj(m_new, ETHER_ALIGN);
719	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
720	r = &sc->ti_rdata->ti_rx_std_ring[i];
721	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
722	r->ti_type = TI_BDTYPE_RECV_BD;
723	r->ti_flags = 0;
724	if (sc->arpcom.ac_if.if_hwassist)
725		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
726	r->ti_len = m_new->m_len;
727	r->ti_idx = i;
728
729	return(0);
730}
731
732/*
733 * Intialize a mini receive ring descriptor. This only applies to
734 * the Tigon 2.
735 */
736static int ti_newbuf_mini(sc, i, m)
737	struct ti_softc		*sc;
738	int			i;
739	struct mbuf		*m;
740{
741	struct mbuf		*m_new = NULL;
742	struct ti_rx_desc	*r;
743
744	if (m == NULL) {
745		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
746		if (m_new == NULL) {
747			return(ENOBUFS);
748		}
749		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
750	} else {
751		m_new = m;
752		m_new->m_data = m_new->m_pktdat;
753		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
754	}
755
756	m_adj(m_new, ETHER_ALIGN);
757	r = &sc->ti_rdata->ti_rx_mini_ring[i];
758	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
759	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
760	r->ti_type = TI_BDTYPE_RECV_BD;
761	r->ti_flags = TI_BDFLAG_MINI_RING;
762	if (sc->arpcom.ac_if.if_hwassist)
763		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
764	r->ti_len = m_new->m_len;
765	r->ti_idx = i;
766
767	return(0);
768}
769
770/*
771 * Initialize a jumbo receive ring descriptor. This allocates
772 * a jumbo buffer from the pool managed internally by the driver.
773 */
774static int ti_newbuf_jumbo(sc, i, m)
775	struct ti_softc		*sc;
776	int			i;
777	struct mbuf		*m;
778{
779	struct mbuf		*m_new = NULL;
780	struct ti_rx_desc	*r;
781
782	if (m == NULL) {
783		caddr_t			*buf = NULL;
784
785		/* Allocate the mbuf. */
786		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
787		if (m_new == NULL) {
788			return(ENOBUFS);
789		}
790
791		/* Allocate the jumbo buffer */
792		buf = ti_jalloc(sc);
793		if (buf == NULL) {
794			m_freem(m_new);
795			printf("ti%d: jumbo allocation failed "
796			    "-- packet dropped!\n", sc->ti_unit);
797			return(ENOBUFS);
798		}
799
800		/* Attach the buffer to the mbuf. */
801		m_new->m_data = (void *) buf;
802		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
803		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
804		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
805	} else {
806		m_new = m;
807		m_new->m_data = m_new->m_ext.ext_buf;
808		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
809	}
810
811	m_adj(m_new, ETHER_ALIGN);
812	/* Set up the descriptor. */
813	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
814	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
815	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
816	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
817	r->ti_flags = TI_BDFLAG_JUMBO_RING;
818	if (sc->arpcom.ac_if.if_hwassist)
819		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
820	r->ti_len = m_new->m_len;
821	r->ti_idx = i;
822
823	return(0);
824}
825
826/*
827 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
828 * that's 1MB or memory, which is a lot. For now, we fill only the first
829 * 256 ring entries and hope that our CPU is fast enough to keep up with
830 * the NIC.
831 */
832static int ti_init_rx_ring_std(sc)
833	struct ti_softc		*sc;
834{
835	register int		i;
836	struct ti_cmd_desc	cmd;
837
838	for (i = 0; i < TI_SSLOTS; i++) {
839		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
840			return(ENOBUFS);
841	};
842
843	TI_UPDATE_STDPROD(sc, i - 1);
844	sc->ti_std = i - 1;
845
846	return(0);
847}
848
849static void ti_free_rx_ring_std(sc)
850	struct ti_softc		*sc;
851{
852	register int		i;
853
854	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
855		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
856			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
857			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
858		}
859		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
860		    sizeof(struct ti_rx_desc));
861	}
862
863	return;
864}
865
866static int ti_init_rx_ring_jumbo(sc)
867	struct ti_softc		*sc;
868{
869	register int		i;
870	struct ti_cmd_desc	cmd;
871
872	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
873		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
874			return(ENOBUFS);
875	};
876
877	TI_UPDATE_JUMBOPROD(sc, i - 1);
878	sc->ti_jumbo = i - 1;
879
880	return(0);
881}
882
883static void ti_free_rx_ring_jumbo(sc)
884	struct ti_softc		*sc;
885{
886	register int		i;
887
888	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
889		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
890			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
891			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
892		}
893		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
894		    sizeof(struct ti_rx_desc));
895	}
896
897	return;
898}
899
900static int ti_init_rx_ring_mini(sc)
901	struct ti_softc		*sc;
902{
903	register int		i;
904
905	for (i = 0; i < TI_MSLOTS; i++) {
906		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
907			return(ENOBUFS);
908	};
909
910	TI_UPDATE_MINIPROD(sc, i - 1);
911	sc->ti_mini = i - 1;
912
913	return(0);
914}
915
916static void ti_free_rx_ring_mini(sc)
917	struct ti_softc		*sc;
918{
919	register int		i;
920
921	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
922		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
923			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
924			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
925		}
926		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
927		    sizeof(struct ti_rx_desc));
928	}
929
930	return;
931}
932
933static void ti_free_tx_ring(sc)
934	struct ti_softc		*sc;
935{
936	register int		i;
937
938	if (sc->ti_rdata->ti_tx_ring == NULL)
939		return;
940
941	for (i = 0; i < TI_TX_RING_CNT; i++) {
942		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
943			m_freem(sc->ti_cdata.ti_tx_chain[i]);
944			sc->ti_cdata.ti_tx_chain[i] = NULL;
945		}
946		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
947		    sizeof(struct ti_tx_desc));
948	}
949
950	return;
951}
952
953static int ti_init_tx_ring(sc)
954	struct ti_softc		*sc;
955{
956	sc->ti_txcnt = 0;
957	sc->ti_tx_saved_considx = 0;
958	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
959	return(0);
960}
961
962/*
963 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
964 * but we have to support the old way too so that Tigon 1 cards will
965 * work.
966 */
967void ti_add_mcast(sc, addr)
968	struct ti_softc		*sc;
969	struct ether_addr	*addr;
970{
971	struct ti_cmd_desc	cmd;
972	u_int16_t		*m;
973	u_int32_t		ext[2] = {0, 0};
974
975	m = (u_int16_t *)&addr->octet[0];
976
977	switch(sc->ti_hwrev) {
978	case TI_HWREV_TIGON:
979		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
980		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
981		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
982		break;
983	case TI_HWREV_TIGON_II:
984		ext[0] = htons(m[0]);
985		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
986		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
987		break;
988	default:
989		printf("ti%d: unknown hwrev\n", sc->ti_unit);
990		break;
991	}
992
993	return;
994}
995
996void ti_del_mcast(sc, addr)
997	struct ti_softc		*sc;
998	struct ether_addr	*addr;
999{
1000	struct ti_cmd_desc	cmd;
1001	u_int16_t		*m;
1002	u_int32_t		ext[2] = {0, 0};
1003
1004	m = (u_int16_t *)&addr->octet[0];
1005
1006	switch(sc->ti_hwrev) {
1007	case TI_HWREV_TIGON:
1008		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1009		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1010		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1011		break;
1012	case TI_HWREV_TIGON_II:
1013		ext[0] = htons(m[0]);
1014		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1015		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1016		break;
1017	default:
1018		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1019		break;
1020	}
1021
1022	return;
1023}
1024
1025/*
1026 * Configure the Tigon's multicast address filter.
1027 *
1028 * The actual multicast table management is a bit of a pain, thanks to
1029 * slight brain damage on the part of both Alteon and us. With our
1030 * multicast code, we are only alerted when the multicast address table
1031 * changes and at that point we only have the current list of addresses:
1032 * we only know the current state, not the previous state, so we don't
1033 * actually know what addresses were removed or added. The firmware has
1034 * state, but we can't get our grubby mits on it, and there is no 'delete
1035 * all multicast addresses' command. Hence, we have to maintain our own
1036 * state so we know what addresses have been programmed into the NIC at
1037 * any given time.
1038 */
1039static void ti_setmulti(sc)
1040	struct ti_softc		*sc;
1041{
1042	struct ifnet		*ifp;
1043	struct ifmultiaddr	*ifma;
1044	struct ti_cmd_desc	cmd;
1045	struct ti_mc_entry	*mc;
1046	u_int32_t		intrs;
1047
1048	ifp = &sc->arpcom.ac_if;
1049
1050	if (ifp->if_flags & IFF_ALLMULTI) {
1051		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1052		return;
1053	} else {
1054		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1055	}
1056
1057	/* Disable interrupts. */
1058	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1059	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1060
1061	/* First, zot all the existing filters. */
1062	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1063		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1064		ti_del_mcast(sc, &mc->mc_addr);
1065		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1066		free(mc, M_DEVBUF);
1067	}
1068
1069	/* Now program new ones. */
1070	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1071		if (ifma->ifma_addr->sa_family != AF_LINK)
1072			continue;
1073		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1074		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1075		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1076		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1077		ti_add_mcast(sc, &mc->mc_addr);
1078	}
1079
1080	/* Re-enable interrupts. */
1081	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1082
1083	return;
1084}
1085
1086/*
1087 * Check to see if the BIOS has configured us for a 64 bit slot when
1088 * we aren't actually in one. If we detect this condition, we can work
1089 * around it on the Tigon 2 by setting a bit in the PCI state register,
1090 * but for the Tigon 1 we must give up and abort the interface attach.
1091 */
1092static int ti_64bitslot_war(sc)
1093	struct ti_softc		*sc;
1094{
1095	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1096		CSR_WRITE_4(sc, 0x600, 0);
1097		CSR_WRITE_4(sc, 0x604, 0);
1098		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1099		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1100			if (sc->ti_hwrev == TI_HWREV_TIGON)
1101				return(EINVAL);
1102			else {
1103				TI_SETBIT(sc, TI_PCI_STATE,
1104				    TI_PCISTATE_32BIT_BUS);
1105				return(0);
1106			}
1107		}
1108	}
1109
1110	return(0);
1111}
1112
1113/*
1114 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1115 * self-test results.
1116 */
1117static int ti_chipinit(sc)
1118	struct ti_softc		*sc;
1119{
1120	u_int32_t		cacheline;
1121	u_int32_t		pci_writemax = 0;
1122
1123	/* Initialize link to down state. */
1124	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1125
1126	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1127		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1128	else
1129		sc->arpcom.ac_if.if_hwassist = 0;
1130
1131	/* Set endianness before we access any non-PCI registers. */
1132#if BYTE_ORDER == BIG_ENDIAN
1133	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1134	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1135#else
1136	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1137	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1138#endif
1139
1140	/* Check the ROM failed bit to see if self-tests passed. */
1141	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1142		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1143		return(ENODEV);
1144	}
1145
1146	/* Halt the CPU. */
1147	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1148
1149	/* Figure out the hardware revision. */
1150	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1151	case TI_REV_TIGON_I:
1152		sc->ti_hwrev = TI_HWREV_TIGON;
1153		break;
1154	case TI_REV_TIGON_II:
1155		sc->ti_hwrev = TI_HWREV_TIGON_II;
1156		break;
1157	default:
1158		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1159		return(ENODEV);
1160	}
1161
1162	/* Do special setup for Tigon 2. */
1163	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1164		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1165		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1166		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1167	}
1168
1169	/* Set up the PCI state register. */
1170	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1171	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1172		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1173	}
1174
1175	/* Clear the read/write max DMA parameters. */
1176	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1177	    TI_PCISTATE_READ_MAXDMA));
1178
1179	/* Get cache line size. */
1180	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1181
1182	/*
1183	 * If the system has set enabled the PCI memory write
1184	 * and invalidate command in the command register, set
1185	 * the write max parameter accordingly. This is necessary
1186	 * to use MWI with the Tigon 2.
1187	 */
1188	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1189		switch(cacheline) {
1190		case 1:
1191		case 4:
1192		case 8:
1193		case 16:
1194		case 32:
1195		case 64:
1196			break;
1197		default:
1198		/* Disable PCI memory write and invalidate. */
1199			if (bootverbose)
1200				printf("ti%d: cache line size %d not "
1201				    "supported; disabling PCI MWI\n",
1202				    sc->ti_unit, cacheline);
1203			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1204			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1205			break;
1206		}
1207	}
1208
1209#ifdef __brokenalpha__
1210	/*
1211	 * From the Alteon sample driver:
1212	 * Must insure that we do not cross an 8K (bytes) boundary
1213	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1214	 * restriction on some ALPHA platforms with early revision
1215	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1216	 */
1217	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1218#else
1219	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1220#endif
1221
1222	/* This sets the min dma param all the way up (0xff). */
1223	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1224
1225	/* Configure DMA variables. */
1226#if BYTE_ORDER == BIG_ENDIAN
1227	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1228	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1229	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1230	    TI_OPMODE_DONT_FRAG_JUMBO);
1231#else
1232	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1233	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1234	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1235#endif
1236
1237	/*
1238	 * Only allow 1 DMA channel to be active at a time.
1239	 * I don't think this is a good idea, but without it
1240	 * the firmware racks up lots of nicDmaReadRingFull
1241	 * errors.  This is not compatible with hardware checksums.
1242	 */
1243	if (sc->arpcom.ac_if.if_hwassist == 0)
1244		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1245
1246	/* Recommended settings from Tigon manual. */
1247	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1248	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1249
1250	if (ti_64bitslot_war(sc)) {
1251		printf("ti%d: bios thinks we're in a 64 bit slot, "
1252		    "but we aren't", sc->ti_unit);
1253		return(EINVAL);
1254	}
1255
1256	return(0);
1257}
1258
1259/*
1260 * Initialize the general information block and firmware, and
1261 * start the CPU(s) running.
1262 */
1263static int ti_gibinit(sc)
1264	struct ti_softc		*sc;
1265{
1266	struct ti_rcb		*rcb;
1267	int			i;
1268	struct ifnet		*ifp;
1269
1270	ifp = &sc->arpcom.ac_if;
1271
1272	/* Disable interrupts for now. */
1273	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1274
1275	/* Tell the chip where to find the general information block. */
1276	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1277	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1278
1279	/* Load the firmware into SRAM. */
1280	ti_loadfw(sc);
1281
1282	/* Set up the contents of the general info and ring control blocks. */
1283
1284	/* Set up the event ring and producer pointer. */
1285	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1286
1287	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1288	rcb->ti_flags = 0;
1289	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1290	    vtophys(&sc->ti_ev_prodidx);
1291	sc->ti_ev_prodidx.ti_idx = 0;
1292	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1293	sc->ti_ev_saved_considx = 0;
1294
1295	/* Set up the command ring and producer mailbox. */
1296	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1297
1298	sc->ti_rdata->ti_cmd_ring =
1299	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1300	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1301	rcb->ti_flags = 0;
1302	rcb->ti_max_len = 0;
1303	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1304		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1305	}
1306	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1307	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1308	sc->ti_cmd_saved_prodidx = 0;
1309
1310	/*
1311	 * Assign the address of the stats refresh buffer.
1312	 * We re-use the current stats buffer for this to
1313	 * conserve memory.
1314	 */
1315	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1316	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1317
1318	/* Set up the standard receive ring. */
1319	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1320	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1321	rcb->ti_max_len = TI_FRAMELEN;
1322	rcb->ti_flags = 0;
1323	if (sc->arpcom.ac_if.if_hwassist)
1324		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1325		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1326	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1327
1328	/* Set up the jumbo receive ring. */
1329	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1330	TI_HOSTADDR(rcb->ti_hostaddr) =
1331	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1332	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1333	rcb->ti_flags = 0;
1334	if (sc->arpcom.ac_if.if_hwassist)
1335		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1336		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1337	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1338
1339	/*
1340	 * Set up the mini ring. Only activated on the
1341	 * Tigon 2 but the slot in the config block is
1342	 * still there on the Tigon 1.
1343	 */
1344	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1345	TI_HOSTADDR(rcb->ti_hostaddr) =
1346	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1347	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1348	if (sc->ti_hwrev == TI_HWREV_TIGON)
1349		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1350	else
1351		rcb->ti_flags = 0;
1352	if (sc->arpcom.ac_if.if_hwassist)
1353		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1354		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1355	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1356
1357	/*
1358	 * Set up the receive return ring.
1359	 */
1360	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1361	TI_HOSTADDR(rcb->ti_hostaddr) =
1362	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1363	rcb->ti_flags = 0;
1364	rcb->ti_max_len = TI_RETURN_RING_CNT;
1365	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1366	    vtophys(&sc->ti_return_prodidx);
1367
1368	/*
1369	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1370	 * of putting the transmit ring in the host's address space and
1371	 * letting the chip DMA it instead of leaving the ring in the NIC's
1372	 * memory and accessing it through the shared memory region. We
1373	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1374	 * so we have to revert to the shared memory scheme if we detect
1375	 * a Tigon 1 chip.
1376	 */
1377	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1378	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1379		sc->ti_rdata->ti_tx_ring_nic =
1380		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1381	}
1382	bzero((char *)sc->ti_rdata->ti_tx_ring,
1383	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1384	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1385	if (sc->ti_hwrev == TI_HWREV_TIGON)
1386		rcb->ti_flags = 0;
1387	else
1388		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1389	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1390	if (sc->arpcom.ac_if.if_hwassist)
1391		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1392		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1393	rcb->ti_max_len = TI_TX_RING_CNT;
1394	if (sc->ti_hwrev == TI_HWREV_TIGON)
1395		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1396	else
1397		TI_HOSTADDR(rcb->ti_hostaddr) =
1398		    vtophys(&sc->ti_rdata->ti_tx_ring);
1399	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1400	    vtophys(&sc->ti_tx_considx);
1401
1402	/* Set up tuneables */
1403	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1404		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1405		    (sc->ti_rx_coal_ticks / 10));
1406	else
1407		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1408	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1409	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1410	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1411	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1412	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1413
1414	/* Turn interrupts on. */
1415	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1416	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1417
1418	/* Start CPU. */
1419	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1420
1421	return(0);
1422}
1423
1424/*
1425 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1426 * against our list and return its name if we find a match.
1427 */
1428static int ti_probe(dev)
1429	device_t		dev;
1430{
1431	struct ti_type		*t;
1432
1433	t = ti_devs;
1434
1435	while(t->ti_name != NULL) {
1436		if ((pci_get_vendor(dev) == t->ti_vid) &&
1437		    (pci_get_device(dev) == t->ti_did)) {
1438			device_set_desc(dev, t->ti_name);
1439			return(0);
1440		}
1441		t++;
1442	}
1443
1444	return(ENXIO);
1445}
1446
1447static int ti_attach(dev)
1448	device_t		dev;
1449{
1450	u_int32_t		command;
1451	struct ifnet		*ifp;
1452	struct ti_softc		*sc;
1453	int			unit, error = 0, rid;
1454
1455	sc = device_get_softc(dev);
1456	unit = device_get_unit(dev);
1457	bzero(sc, sizeof(struct ti_softc));
1458
1459	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
1460	TI_LOCK(sc);
1461	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
1462	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
1463
1464	/*
1465	 * Map control/status registers.
1466	 */
1467	pci_enable_busmaster(dev);
1468	pci_enable_io(dev, SYS_RES_MEMORY);
1469	command = pci_read_config(dev, PCIR_COMMAND, 4);
1470
1471	if (!(command & PCIM_CMD_MEMEN)) {
1472		printf("ti%d: failed to enable memory mapping!\n", unit);
1473		error = ENXIO;
1474		goto fail;
1475	}
1476
1477	rid = TI_PCI_LOMEM;
1478	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1479	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1480
1481	if (sc->ti_res == NULL) {
1482		printf ("ti%d: couldn't map memory\n", unit);
1483		error = ENXIO;
1484		goto fail;
1485	}
1486
1487	sc->ti_btag = rman_get_bustag(sc->ti_res);
1488	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1489	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1490
1491	/* Allocate interrupt */
1492	rid = 0;
1493
1494	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1495	    RF_SHAREABLE | RF_ACTIVE);
1496
1497	if (sc->ti_irq == NULL) {
1498		printf("ti%d: couldn't map interrupt\n", unit);
1499		error = ENXIO;
1500		goto fail;
1501	}
1502
1503	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1504	   ti_intr, sc, &sc->ti_intrhand);
1505
1506	if (error) {
1507		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1508		bus_release_resource(dev, SYS_RES_MEMORY,
1509		    TI_PCI_LOMEM, sc->ti_res);
1510		printf("ti%d: couldn't set up irq\n", unit);
1511		goto fail;
1512	}
1513
1514	sc->ti_unit = unit;
1515
1516	if (ti_chipinit(sc)) {
1517		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1518		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1519		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1520		bus_release_resource(dev, SYS_RES_MEMORY,
1521		    TI_PCI_LOMEM, sc->ti_res);
1522		error = ENXIO;
1523		goto fail;
1524	}
1525
1526	/* Zero out the NIC's on-board SRAM. */
1527	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1528
1529	/* Init again -- zeroing memory may have clobbered some registers. */
1530	if (ti_chipinit(sc)) {
1531		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1532		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1533		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1534		bus_release_resource(dev, SYS_RES_MEMORY,
1535		    TI_PCI_LOMEM, sc->ti_res);
1536		error = ENXIO;
1537		goto fail;
1538	}
1539
1540	/*
1541	 * Get station address from the EEPROM. Note: the manual states
1542	 * that the MAC address is at offset 0x8c, however the data is
1543	 * stored as two longwords (since that's how it's loaded into
1544	 * the NIC). This means the MAC address is actually preceded
1545	 * by two zero bytes. We need to skip over those.
1546	 */
1547	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1548				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1549		printf("ti%d: failed to read station address\n", unit);
1550		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1551		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1552		bus_release_resource(dev, SYS_RES_MEMORY,
1553		    TI_PCI_LOMEM, sc->ti_res);
1554		error = ENXIO;
1555		goto fail;
1556	}
1557
1558	/*
1559	 * A Tigon chip was detected. Inform the world.
1560	 */
1561	printf("ti%d: Ethernet address: %6D\n", unit,
1562				sc->arpcom.ac_enaddr, ":");
1563
1564	/* Allocate the general information block and ring buffers. */
1565	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1566	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1567
1568	if (sc->ti_rdata == NULL) {
1569		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1570		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1571		bus_release_resource(dev, SYS_RES_MEMORY,
1572		    TI_PCI_LOMEM, sc->ti_res);
1573		error = ENXIO;
1574		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1575		goto fail;
1576	}
1577
1578	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1579
1580	/* Try to allocate memory for jumbo buffers. */
1581	if (ti_alloc_jumbo_mem(sc)) {
1582		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1583		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1584		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1585		bus_release_resource(dev, SYS_RES_MEMORY,
1586		    TI_PCI_LOMEM, sc->ti_res);
1587		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1588		    M_DEVBUF);
1589		error = ENXIO;
1590		goto fail;
1591	}
1592
1593	/*
1594	 * We really need a better way to tell a 1000baseTX card
1595	 * from a 1000baseSX one, since in theory there could be
1596	 * OEMed 1000baseTX cards from lame vendors who aren't
1597	 * clever enough to change the PCI ID. For the moment
1598	 * though, the AceNIC is the only copper card available.
1599	 */
1600	if (pci_get_vendor(dev) == ALT_VENDORID &&
1601	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1602		sc->ti_copper = 1;
1603	/* Ok, it's not the only copper card available. */
1604	if (pci_get_vendor(dev) == NG_VENDORID &&
1605	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1606		sc->ti_copper = 1;
1607
1608	/* Set default tuneable values. */
1609	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1610	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1611	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1612	sc->ti_rx_max_coal_bds = 64;
1613	sc->ti_tx_max_coal_bds = 128;
1614	sc->ti_tx_buf_ratio = 21;
1615
1616	/* Set up ifnet structure */
1617	ifp = &sc->arpcom.ac_if;
1618	ifp->if_softc = sc;
1619	ifp->if_unit = sc->ti_unit;
1620	ifp->if_name = "ti";
1621	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1622	ifp->if_ioctl = ti_ioctl;
1623	ifp->if_output = ether_output;
1624	ifp->if_start = ti_start;
1625	ifp->if_watchdog = ti_watchdog;
1626	ifp->if_init = ti_init;
1627	ifp->if_mtu = ETHERMTU;
1628	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1629
1630	/* Set up ifmedia support. */
1631	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1632	if (sc->ti_copper) {
1633		/*
1634		 * Copper cards allow manual 10/100 mode selection,
1635		 * but not manual 1000baseTX mode selection. Why?
1636		 * Becuase currently there's no way to specify the
1637		 * master/slave setting through the firmware interface,
1638		 * so Alteon decided to just bag it and handle it
1639		 * via autonegotiation.
1640		 */
1641		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1642		ifmedia_add(&sc->ifmedia,
1643		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1644		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1645		ifmedia_add(&sc->ifmedia,
1646		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1647		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1648		ifmedia_add(&sc->ifmedia,
1649		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1650	} else {
1651		/* Fiber cards don't support 10/100 modes. */
1652		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1653		ifmedia_add(&sc->ifmedia,
1654		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1655	}
1656	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1657	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1658
1659	/*
1660	 * Call MI attach routine.
1661	 */
1662	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1663	TI_UNLOCK(sc);
1664	return(0);
1665
1666fail:
1667	TI_UNLOCK(sc);
1668	mtx_destroy(&sc->ti_mtx);
1669	return(error);
1670}
1671
1672static int ti_detach(dev)
1673	device_t		dev;
1674{
1675	struct ti_softc		*sc;
1676	struct ifnet		*ifp;
1677
1678
1679	sc = device_get_softc(dev);
1680	TI_LOCK(sc);
1681	ifp = &sc->arpcom.ac_if;
1682
1683	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1684	ti_stop(sc);
1685
1686	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1687	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1688	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1689
1690	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1691	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1692	ifmedia_removeall(&sc->ifmedia);
1693
1694	TI_UNLOCK(sc);
1695	mtx_destroy(&sc->ti_mtx);
1696
1697	return(0);
1698}
1699
1700/*
1701 * Frame reception handling. This is called if there's a frame
1702 * on the receive return list.
1703 *
1704 * Note: we have to be able to handle three possibilities here:
1705 * 1) the frame is from the mini receive ring (can only happen)
1706 *    on Tigon 2 boards)
1707 * 2) the frame is from the jumbo recieve ring
1708 * 3) the frame is from the standard receive ring
1709 */
1710
1711static void ti_rxeof(sc)
1712	struct ti_softc		*sc;
1713{
1714	struct ifnet		*ifp;
1715	struct ti_cmd_desc	cmd;
1716
1717	ifp = &sc->arpcom.ac_if;
1718
1719	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1720		struct ti_rx_desc	*cur_rx;
1721		u_int32_t		rxidx;
1722		struct ether_header	*eh;
1723		struct mbuf		*m = NULL;
1724		u_int16_t		vlan_tag = 0;
1725		int			have_tag = 0;
1726
1727		cur_rx =
1728		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1729		rxidx = cur_rx->ti_idx;
1730		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1731
1732		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1733			have_tag = 1;
1734			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1735		}
1736
1737		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1738			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1739			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1740			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1741			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1742				ifp->if_ierrors++;
1743				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1744				continue;
1745			}
1746			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1747				ifp->if_ierrors++;
1748				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1749				continue;
1750			}
1751		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1752			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1753			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1754			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1755			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1756				ifp->if_ierrors++;
1757				ti_newbuf_mini(sc, sc->ti_mini, m);
1758				continue;
1759			}
1760			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1761				ifp->if_ierrors++;
1762				ti_newbuf_mini(sc, sc->ti_mini, m);
1763				continue;
1764			}
1765		} else {
1766			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1767			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1768			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1769			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1770				ifp->if_ierrors++;
1771				ti_newbuf_std(sc, sc->ti_std, m);
1772				continue;
1773			}
1774			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1775				ifp->if_ierrors++;
1776				ti_newbuf_std(sc, sc->ti_std, m);
1777				continue;
1778			}
1779		}
1780
1781		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1782		ifp->if_ipackets++;
1783		eh = mtod(m, struct ether_header *);
1784		m->m_pkthdr.rcvif = ifp;
1785
1786		/* Remove header from mbuf and pass it on. */
1787		m_adj(m, sizeof(struct ether_header));
1788
1789		if (ifp->if_hwassist) {
1790			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1791			    CSUM_DATA_VALID;
1792			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1793				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1794			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1795		}
1796
1797		/*
1798		 * If we received a packet with a vlan tag, pass it
1799		 * to vlan_input() instead of ether_input().
1800		 */
1801		if (have_tag) {
1802			VLAN_INPUT_TAG(eh, m, vlan_tag);
1803			have_tag = vlan_tag = 0;
1804			continue;
1805		}
1806		ether_input(ifp, eh, m);
1807	}
1808
1809	/* Only necessary on the Tigon 1. */
1810	if (sc->ti_hwrev == TI_HWREV_TIGON)
1811		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1812		    sc->ti_rx_saved_considx);
1813
1814	TI_UPDATE_STDPROD(sc, sc->ti_std);
1815	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1816	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1817
1818	return;
1819}
1820
1821static void ti_txeof(sc)
1822	struct ti_softc		*sc;
1823{
1824	struct ti_tx_desc	*cur_tx = NULL;
1825	struct ifnet		*ifp;
1826
1827	ifp = &sc->arpcom.ac_if;
1828
1829	/*
1830	 * Go through our tx ring and free mbufs for those
1831	 * frames that have been sent.
1832	 */
1833	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1834		u_int32_t		idx = 0;
1835
1836		idx = sc->ti_tx_saved_considx;
1837		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1838			if (idx > 383)
1839				CSR_WRITE_4(sc, TI_WINBASE,
1840				    TI_TX_RING_BASE + 6144);
1841			else if (idx > 255)
1842				CSR_WRITE_4(sc, TI_WINBASE,
1843				    TI_TX_RING_BASE + 4096);
1844			else if (idx > 127)
1845				CSR_WRITE_4(sc, TI_WINBASE,
1846				    TI_TX_RING_BASE + 2048);
1847			else
1848				CSR_WRITE_4(sc, TI_WINBASE,
1849				    TI_TX_RING_BASE);
1850			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1851		} else
1852			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1853		if (cur_tx->ti_flags & TI_BDFLAG_END)
1854			ifp->if_opackets++;
1855		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1856			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1857			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1858		}
1859		sc->ti_txcnt--;
1860		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1861		ifp->if_timer = 0;
1862	}
1863
1864	if (cur_tx != NULL)
1865		ifp->if_flags &= ~IFF_OACTIVE;
1866
1867	return;
1868}
1869
1870static void ti_intr(xsc)
1871	void			*xsc;
1872{
1873	struct ti_softc		*sc;
1874	struct ifnet		*ifp;
1875
1876	sc = xsc;
1877	TI_LOCK(sc);
1878	ifp = &sc->arpcom.ac_if;
1879
1880#ifdef notdef
1881	/* Avoid this for now -- checking this register is expensive. */
1882	/* Make sure this is really our interrupt. */
1883	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1884		TI_UNLOCK(sc);
1885		return;
1886	}
1887#endif
1888
1889	/* Ack interrupt and stop others from occuring. */
1890	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1891
1892	if (ifp->if_flags & IFF_RUNNING) {
1893		/* Check RX return ring producer/consumer */
1894		ti_rxeof(sc);
1895
1896		/* Check TX ring producer/consumer */
1897		ti_txeof(sc);
1898	}
1899
1900	ti_handle_events(sc);
1901
1902	/* Re-enable interrupts. */
1903	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1904
1905	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1906		ti_start(ifp);
1907
1908	TI_UNLOCK(sc);
1909
1910	return;
1911}
1912
1913static void ti_stats_update(sc)
1914	struct ti_softc		*sc;
1915{
1916	struct ifnet		*ifp;
1917
1918	ifp = &sc->arpcom.ac_if;
1919
1920	ifp->if_collisions +=
1921	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1922	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1923	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1924	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1925	   ifp->if_collisions;
1926
1927	return;
1928}
1929
1930/*
1931 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1932 * pointers to descriptors.
1933 */
1934static int ti_encap(sc, m_head, txidx)
1935	struct ti_softc		*sc;
1936	struct mbuf		*m_head;
1937	u_int32_t		*txidx;
1938{
1939	struct ti_tx_desc	*f = NULL;
1940	struct mbuf		*m;
1941	u_int32_t		frag, cur, cnt = 0;
1942	u_int16_t		csum_flags = 0;
1943	struct ifvlan		*ifv = NULL;
1944
1945	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1946	    m_head->m_pkthdr.rcvif != NULL &&
1947	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1948		ifv = m_head->m_pkthdr.rcvif->if_softc;
1949
1950	m = m_head;
1951	cur = frag = *txidx;
1952
1953	if (m_head->m_pkthdr.csum_flags) {
1954		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1955			csum_flags |= TI_BDFLAG_IP_CKSUM;
1956		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1957			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1958		if (m_head->m_flags & M_LASTFRAG)
1959			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1960		else if (m_head->m_flags & M_FRAG)
1961			csum_flags |= TI_BDFLAG_IP_FRAG;
1962	}
1963	/*
1964 	 * Start packing the mbufs in this chain into
1965	 * the fragment pointers. Stop when we run out
1966 	 * of fragments or hit the end of the mbuf chain.
1967	 */
1968	for (m = m_head; m != NULL; m = m->m_next) {
1969		if (m->m_len != 0) {
1970			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1971				if (frag > 383)
1972					CSR_WRITE_4(sc, TI_WINBASE,
1973					    TI_TX_RING_BASE + 6144);
1974				else if (frag > 255)
1975					CSR_WRITE_4(sc, TI_WINBASE,
1976					    TI_TX_RING_BASE + 4096);
1977				else if (frag > 127)
1978					CSR_WRITE_4(sc, TI_WINBASE,
1979					    TI_TX_RING_BASE + 2048);
1980				else
1981					CSR_WRITE_4(sc, TI_WINBASE,
1982					    TI_TX_RING_BASE);
1983				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1984			} else
1985				f = &sc->ti_rdata->ti_tx_ring[frag];
1986			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1987				break;
1988			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1989			f->ti_len = m->m_len;
1990			f->ti_flags = csum_flags;
1991
1992			if (ifv != NULL) {
1993				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1994				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
1995			} else {
1996				f->ti_vlan_tag = 0;
1997			}
1998
1999			/*
2000			 * Sanity check: avoid coming within 16 descriptors
2001			 * of the end of the ring.
2002			 */
2003			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2004				return(ENOBUFS);
2005			cur = frag;
2006			TI_INC(frag, TI_TX_RING_CNT);
2007			cnt++;
2008		}
2009	}
2010
2011	if (m != NULL)
2012		return(ENOBUFS);
2013
2014	if (frag == sc->ti_tx_saved_considx)
2015		return(ENOBUFS);
2016
2017	if (sc->ti_hwrev == TI_HWREV_TIGON)
2018		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2019		    TI_BDFLAG_END;
2020	else
2021		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2022	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2023	sc->ti_txcnt += cnt;
2024
2025	*txidx = frag;
2026
2027	return(0);
2028}
2029
2030/*
2031 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2032 * to the mbuf data regions directly in the transmit descriptors.
2033 */
2034static void ti_start(ifp)
2035	struct ifnet		*ifp;
2036{
2037	struct ti_softc		*sc;
2038	struct mbuf		*m_head = NULL;
2039	u_int32_t		prodidx = 0;
2040
2041	sc = ifp->if_softc;
2042	TI_LOCK(sc);
2043
2044	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2045
2046	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2047		IF_DEQUEUE(&ifp->if_snd, m_head);
2048		if (m_head == NULL)
2049			break;
2050
2051		/*
2052		 * XXX
2053		 * safety overkill.  If this is a fragmented packet chain
2054		 * with delayed TCP/UDP checksums, then only encapsulate
2055		 * it if we have enough descriptors to handle the entire
2056		 * chain at once.
2057		 * (paranoia -- may not actually be needed)
2058		 */
2059		if (m_head->m_flags & M_FIRSTFRAG &&
2060		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2061			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2062			    m_head->m_pkthdr.csum_data + 16) {
2063				IF_PREPEND(&ifp->if_snd, m_head);
2064				ifp->if_flags |= IFF_OACTIVE;
2065				break;
2066			}
2067		}
2068
2069		/*
2070		 * Pack the data into the transmit ring. If we
2071		 * don't have room, set the OACTIVE flag and wait
2072		 * for the NIC to drain the ring.
2073		 */
2074		if (ti_encap(sc, m_head, &prodidx)) {
2075			IF_PREPEND(&ifp->if_snd, m_head);
2076			ifp->if_flags |= IFF_OACTIVE;
2077			break;
2078		}
2079
2080		/*
2081		 * If there's a BPF listener, bounce a copy of this frame
2082		 * to him.
2083		 */
2084		if (ifp->if_bpf)
2085			bpf_mtap(ifp, m_head);
2086	}
2087
2088	/* Transmit */
2089	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2090
2091	/*
2092	 * Set a timeout in case the chip goes out to lunch.
2093	 */
2094	ifp->if_timer = 5;
2095	TI_UNLOCK(sc);
2096
2097	return;
2098}
2099
2100static void ti_init(xsc)
2101	void			*xsc;
2102{
2103	struct ti_softc		*sc = xsc;
2104
2105	/* Cancel pending I/O and flush buffers. */
2106	ti_stop(sc);
2107
2108	TI_LOCK(sc);
2109	/* Init the gen info block, ring control blocks and firmware. */
2110	if (ti_gibinit(sc)) {
2111		printf("ti%d: initialization failure\n", sc->ti_unit);
2112		TI_UNLOCK(sc);
2113		return;
2114	}
2115
2116	TI_UNLOCK(sc);
2117
2118	return;
2119}
2120
2121static void ti_init2(sc)
2122	struct ti_softc		*sc;
2123{
2124	struct ti_cmd_desc	cmd;
2125	struct ifnet		*ifp;
2126	u_int16_t		*m;
2127	struct ifmedia		*ifm;
2128	int			tmp;
2129
2130	ifp = &sc->arpcom.ac_if;
2131
2132	/* Specify MTU and interface index. */
2133	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2134	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2135	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2136	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2137
2138	/* Load our MAC address. */
2139	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2140	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2141	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2142	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2143
2144	/* Enable or disable promiscuous mode as needed. */
2145	if (ifp->if_flags & IFF_PROMISC) {
2146		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2147	} else {
2148		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2149	}
2150
2151	/* Program multicast filter. */
2152	ti_setmulti(sc);
2153
2154	/*
2155	 * If this is a Tigon 1, we should tell the
2156	 * firmware to use software packet filtering.
2157	 */
2158	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2159		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2160	}
2161
2162	/* Init RX ring. */
2163	ti_init_rx_ring_std(sc);
2164
2165	/* Init jumbo RX ring. */
2166	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2167		ti_init_rx_ring_jumbo(sc);
2168
2169	/*
2170	 * If this is a Tigon 2, we can also configure the
2171	 * mini ring.
2172	 */
2173	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2174		ti_init_rx_ring_mini(sc);
2175
2176	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2177	sc->ti_rx_saved_considx = 0;
2178
2179	/* Init TX ring. */
2180	ti_init_tx_ring(sc);
2181
2182	/* Tell firmware we're alive. */
2183	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2184
2185	/* Enable host interrupts. */
2186	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2187
2188	ifp->if_flags |= IFF_RUNNING;
2189	ifp->if_flags &= ~IFF_OACTIVE;
2190
2191	/*
2192	 * Make sure to set media properly. We have to do this
2193	 * here since we have to issue commands in order to set
2194	 * the link negotiation and we can't issue commands until
2195	 * the firmware is running.
2196	 */
2197	ifm = &sc->ifmedia;
2198	tmp = ifm->ifm_media;
2199	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2200	ti_ifmedia_upd(ifp);
2201	ifm->ifm_media = tmp;
2202
2203	return;
2204}
2205
2206/*
2207 * Set media options.
2208 */
2209static int ti_ifmedia_upd(ifp)
2210	struct ifnet		*ifp;
2211{
2212	struct ti_softc		*sc;
2213	struct ifmedia		*ifm;
2214	struct ti_cmd_desc	cmd;
2215
2216	sc = ifp->if_softc;
2217	ifm = &sc->ifmedia;
2218
2219	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2220		return(EINVAL);
2221
2222	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2223	case IFM_AUTO:
2224		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2225		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2226		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2227		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2228		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2229		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2230		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2231		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2232		break;
2233	case IFM_1000_SX:
2234	case IFM_1000_TX:
2235		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2236		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2237		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2238		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2239			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2240		}
2241		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2242		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2243		break;
2244	case IFM_100_FX:
2245	case IFM_10_FL:
2246	case IFM_100_TX:
2247	case IFM_10_T:
2248		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2249		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2250		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2251		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2252			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2253		} else {
2254			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2255		}
2256		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2257			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2258		} else {
2259			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2260		}
2261		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2262		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2263		break;
2264	}
2265
2266	return(0);
2267}
2268
2269/*
2270 * Report current media status.
2271 */
2272static void ti_ifmedia_sts(ifp, ifmr)
2273	struct ifnet		*ifp;
2274	struct ifmediareq	*ifmr;
2275{
2276	struct ti_softc		*sc;
2277	u_int32_t		media = 0;
2278
2279	sc = ifp->if_softc;
2280
2281	ifmr->ifm_status = IFM_AVALID;
2282	ifmr->ifm_active = IFM_ETHER;
2283
2284	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2285		return;
2286
2287	ifmr->ifm_status |= IFM_ACTIVE;
2288
2289	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2290		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2291		if (sc->ti_copper)
2292			ifmr->ifm_active |= IFM_1000_TX;
2293		else
2294			ifmr->ifm_active |= IFM_1000_SX;
2295		if (media & TI_GLNK_FULL_DUPLEX)
2296			ifmr->ifm_active |= IFM_FDX;
2297		else
2298			ifmr->ifm_active |= IFM_HDX;
2299	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2300		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2301		if (sc->ti_copper) {
2302			if (media & TI_LNK_100MB)
2303				ifmr->ifm_active |= IFM_100_TX;
2304			if (media & TI_LNK_10MB)
2305				ifmr->ifm_active |= IFM_10_T;
2306		} else {
2307			if (media & TI_LNK_100MB)
2308				ifmr->ifm_active |= IFM_100_FX;
2309			if (media & TI_LNK_10MB)
2310				ifmr->ifm_active |= IFM_10_FL;
2311		}
2312		if (media & TI_LNK_FULL_DUPLEX)
2313			ifmr->ifm_active |= IFM_FDX;
2314		if (media & TI_LNK_HALF_DUPLEX)
2315			ifmr->ifm_active |= IFM_HDX;
2316	}
2317
2318	return;
2319}
2320
2321static int ti_ioctl(ifp, command, data)
2322	struct ifnet		*ifp;
2323	u_long			command;
2324	caddr_t			data;
2325{
2326	struct ti_softc		*sc = ifp->if_softc;
2327	struct ifreq		*ifr = (struct ifreq *) data;
2328	int			mask, error = 0;
2329	struct ti_cmd_desc	cmd;
2330
2331	TI_LOCK(sc);
2332
2333	switch(command) {
2334	case SIOCSIFADDR:
2335	case SIOCGIFADDR:
2336		error = ether_ioctl(ifp, command, data);
2337		break;
2338	case SIOCSIFMTU:
2339		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2340			error = EINVAL;
2341		else {
2342			ifp->if_mtu = ifr->ifr_mtu;
2343			ti_init(sc);
2344		}
2345		break;
2346	case SIOCSIFFLAGS:
2347		if (ifp->if_flags & IFF_UP) {
2348			/*
2349			 * If only the state of the PROMISC flag changed,
2350			 * then just use the 'set promisc mode' command
2351			 * instead of reinitializing the entire NIC. Doing
2352			 * a full re-init means reloading the firmware and
2353			 * waiting for it to start up, which may take a
2354			 * second or two.
2355			 */
2356			if (ifp->if_flags & IFF_RUNNING &&
2357			    ifp->if_flags & IFF_PROMISC &&
2358			    !(sc->ti_if_flags & IFF_PROMISC)) {
2359				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2360				    TI_CMD_CODE_PROMISC_ENB, 0);
2361			} else if (ifp->if_flags & IFF_RUNNING &&
2362			    !(ifp->if_flags & IFF_PROMISC) &&
2363			    sc->ti_if_flags & IFF_PROMISC) {
2364				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2365				    TI_CMD_CODE_PROMISC_DIS, 0);
2366			} else
2367				ti_init(sc);
2368		} else {
2369			if (ifp->if_flags & IFF_RUNNING) {
2370				ti_stop(sc);
2371			}
2372		}
2373		sc->ti_if_flags = ifp->if_flags;
2374		error = 0;
2375		break;
2376	case SIOCADDMULTI:
2377	case SIOCDELMULTI:
2378		if (ifp->if_flags & IFF_RUNNING) {
2379			ti_setmulti(sc);
2380			error = 0;
2381		}
2382		break;
2383	case SIOCSIFMEDIA:
2384	case SIOCGIFMEDIA:
2385		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2386		break;
2387	case SIOCSIFCAP:
2388		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2389		if (mask & IFCAP_HWCSUM) {
2390			if (IFCAP_HWCSUM & ifp->if_capenable)
2391				ifp->if_capenable &= ~IFCAP_HWCSUM;
2392                        else
2393                                ifp->if_capenable |= IFCAP_HWCSUM;
2394			if (ifp->if_flags & IFF_RUNNING)
2395				ti_init(sc);
2396                }
2397		error = 0;
2398		break;
2399	default:
2400		error = EINVAL;
2401		break;
2402	}
2403
2404	TI_UNLOCK(sc);
2405
2406	return(error);
2407}
2408
2409static void ti_watchdog(ifp)
2410	struct ifnet		*ifp;
2411{
2412	struct ti_softc		*sc;
2413
2414	sc = ifp->if_softc;
2415	TI_LOCK(sc);
2416
2417	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2418	ti_stop(sc);
2419	ti_init(sc);
2420
2421	ifp->if_oerrors++;
2422	TI_UNLOCK(sc);
2423
2424	return;
2425}
2426
2427/*
2428 * Stop the adapter and free any mbufs allocated to the
2429 * RX and TX lists.
2430 */
2431static void ti_stop(sc)
2432	struct ti_softc		*sc;
2433{
2434	struct ifnet		*ifp;
2435	struct ti_cmd_desc	cmd;
2436
2437	TI_LOCK(sc);
2438
2439	ifp = &sc->arpcom.ac_if;
2440
2441	/* Disable host interrupts. */
2442	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2443	/*
2444	 * Tell firmware we're shutting down.
2445	 */
2446	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2447
2448	/* Halt and reinitialize. */
2449	ti_chipinit(sc);
2450	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2451	ti_chipinit(sc);
2452
2453	/* Free the RX lists. */
2454	ti_free_rx_ring_std(sc);
2455
2456	/* Free jumbo RX list. */
2457	ti_free_rx_ring_jumbo(sc);
2458
2459	/* Free mini RX list. */
2460	ti_free_rx_ring_mini(sc);
2461
2462	/* Free TX buffers. */
2463	ti_free_tx_ring(sc);
2464
2465	sc->ti_ev_prodidx.ti_idx = 0;
2466	sc->ti_return_prodidx.ti_idx = 0;
2467	sc->ti_tx_considx.ti_idx = 0;
2468	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2469
2470	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2471	TI_UNLOCK(sc);
2472
2473	return;
2474}
2475
2476/*
2477 * Stop all chip I/O so that the kernel's probe routines don't
2478 * get confused by errant DMAs when rebooting.
2479 */
2480static void ti_shutdown(dev)
2481	device_t		dev;
2482{
2483	struct ti_softc		*sc;
2484
2485	sc = device_get_softc(dev);
2486	TI_LOCK(sc);
2487	ti_chipinit(sc);
2488	TI_UNLOCK(sc);
2489
2490	return;
2491}
2492