if_ti.c revision 83630
1153838Sdfr/*
2153838Sdfr * Copyright (c) 1997, 1998, 1999
3153838Sdfr *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4153838Sdfr *
5153838Sdfr * Redistribution and use in source and binary forms, with or without
6153838Sdfr * modification, are permitted provided that the following conditions
7153838Sdfr * are met:
8153838Sdfr * 1. Redistributions of source code must retain the above copyright
9153838Sdfr *    notice, this list of conditions and the following disclaimer.
10153838Sdfr * 2. Redistributions in binary form must reproduce the above copyright
11153838Sdfr *    notice, this list of conditions and the following disclaimer in the
12153838Sdfr *    documentation and/or other materials provided with the distribution.
13153838Sdfr * 3. All advertising materials mentioning features or use of this software
14153838Sdfr *    must display the following acknowledgement:
15153838Sdfr *	This product includes software developed by Bill Paul.
16153838Sdfr * 4. Neither the name of the author nor the names of any co-contributors
17153838Sdfr *    may be used to endorse or promote products derived from this software
18153838Sdfr *    without specific prior written permission.
19153838Sdfr *
20153838Sdfr * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21153838Sdfr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22153838Sdfr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23153838Sdfr * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24153838Sdfr * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25153838Sdfr * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26153838Sdfr * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27153838Sdfr * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28153838Sdfr * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29153838Sdfr * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30153838Sdfr * THE POSSIBILITY OF SUCH DAMAGE.
31153838Sdfr *
32153838Sdfr * $FreeBSD: head/sys/dev/ti/if_ti.c 83630 2001-09-18 18:40:22Z jlemon $
33153838Sdfr */
34153838Sdfr
35153838Sdfr/*
36153838Sdfr * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37153838Sdfr * Manuals, sample driver and firmware source kits are available
38153838Sdfr * from http://www.alteon.com/support/openkits.
39153838Sdfr *
40153838Sdfr * Written by Bill Paul <wpaul@ctr.columbia.edu>
41153838Sdfr * Electrical Engineering Department
42153838Sdfr * Columbia University, New York City
43153838Sdfr */
44153838Sdfr
45153838Sdfr/*
46153838Sdfr * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47153838Sdfr * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48153838Sdfr * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49153838Sdfr * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50153838Sdfr * filtering and jumbo (9014 byte) frames. The hardware is largely
51153838Sdfr * controlled by firmware, which must be loaded into the NIC during
52153838Sdfr * initialization.
53153838Sdfr *
54153838Sdfr * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55178828Sdfr * revision, which supports new features such as extended commands,
56178828Sdfr * extended jumbo receive ring desciptors and a mini receive ring.
57153838Sdfr *
58153838Sdfr * Alteon Networks is to be commended for releasing such a vast amount
59153838Sdfr * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/sockio.h>
84#include <sys/mbuf.h>
85#include <sys/malloc.h>
86#include <sys/kernel.h>
87#include <sys/socket.h>
88#include <sys/queue.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95#include <net/if_types.h>
96#include <net/if_vlan_var.h>
97
98#include <net/bpf.h>
99
100#include <netinet/in_systm.h>
101#include <netinet/in.h>
102#include <netinet/ip.h>
103
104#include <vm/vm.h>              /* for vtophys */
105#include <vm/pmap.h>            /* for vtophys */
106#include <machine/bus_memio.h>
107#include <machine/bus.h>
108#include <machine/resource.h>
109#include <sys/bus.h>
110#include <sys/rman.h>
111
112#include <pci/pcireg.h>
113#include <pci/pcivar.h>
114
115#include <pci/if_tireg.h>
116#include <pci/ti_fw.h>
117#include <pci/ti_fw2.h>
118
119#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
120
121#if !defined(lint)
122static const char rcsid[] =
123  "$FreeBSD: head/sys/dev/ti/if_ti.c 83630 2001-09-18 18:40:22Z jlemon $";
124#endif
125
126/*
127 * Various supported device vendors/types and their names.
128 */
129
130static struct ti_type ti_devs[] = {
131	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
132		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
133	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
134		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
135	{ TC_VENDORID,	TC_DEVICEID_3C985,
136		"3Com 3c985-SX Gigabit Ethernet" },
137	{ NG_VENDORID, NG_DEVICEID_GA620,
138		"Netgear GA620 1000baseSX Gigabit Ethernet" },
139	{ NG_VENDORID, NG_DEVICEID_GA620T,
140		"Netgear GA620 1000baseT Gigabit Ethernet" },
141	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
142		"Silicon Graphics Gigabit Ethernet" },
143	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
144		"Farallon PN9000SX Gigabit Ethernet" },
145	{ 0, 0, NULL }
146};
147
148static int ti_probe		__P((device_t));
149static int ti_attach		__P((device_t));
150static int ti_detach		__P((device_t));
151static void ti_txeof		__P((struct ti_softc *));
152static void ti_rxeof		__P((struct ti_softc *));
153
154static void ti_stats_update	__P((struct ti_softc *));
155static int ti_encap		__P((struct ti_softc *, struct mbuf *,
156					u_int32_t *));
157
158static void ti_intr		__P((void *));
159static void ti_start		__P((struct ifnet *));
160static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
161static void ti_init		__P((void *));
162static void ti_init2		__P((struct ti_softc *));
163static void ti_stop		__P((struct ti_softc *));
164static void ti_watchdog		__P((struct ifnet *));
165static void ti_shutdown		__P((device_t));
166static int ti_ifmedia_upd	__P((struct ifnet *));
167static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
168
169static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
170static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
171						int, u_int8_t *));
172static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
173
174static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
175static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
176static void ti_setmulti		__P((struct ti_softc *));
177
178static void ti_mem		__P((struct ti_softc *, u_int32_t,
179					u_int32_t, caddr_t));
180static void ti_loadfw		__P((struct ti_softc *));
181static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
182static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
183					caddr_t, int));
184static void ti_handle_events	__P((struct ti_softc *));
185static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
186static void *ti_jalloc		__P((struct ti_softc *));
187static void ti_jfree		__P((caddr_t, void *));
188static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
189static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
190static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
191static int ti_init_rx_ring_std	__P((struct ti_softc *));
192static void ti_free_rx_ring_std	__P((struct ti_softc *));
193static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
194static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
195static int ti_init_rx_ring_mini	__P((struct ti_softc *));
196static void ti_free_rx_ring_mini	__P((struct ti_softc *));
197static void ti_free_tx_ring	__P((struct ti_softc *));
198static int ti_init_tx_ring	__P((struct ti_softc *));
199
200static int ti_64bitslot_war	__P((struct ti_softc *));
201static int ti_chipinit		__P((struct ti_softc *));
202static int ti_gibinit		__P((struct ti_softc *));
203
204static device_method_t ti_methods[] = {
205	/* Device interface */
206	DEVMETHOD(device_probe,		ti_probe),
207	DEVMETHOD(device_attach,	ti_attach),
208	DEVMETHOD(device_detach,	ti_detach),
209	DEVMETHOD(device_shutdown,	ti_shutdown),
210	{ 0, 0 }
211};
212
213static driver_t ti_driver = {
214	"ti",
215	ti_methods,
216	sizeof(struct ti_softc)
217};
218
219static devclass_t ti_devclass;
220
221DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
222
223/*
224 * Send an instruction or address to the EEPROM, check for ACK.
225 */
226static u_int32_t ti_eeprom_putbyte(sc, byte)
227	struct ti_softc		*sc;
228	int			byte;
229{
230	register int		i, ack = 0;
231
232	/*
233	 * Make sure we're in TX mode.
234	 */
235	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
236
237	/*
238	 * Feed in each bit and stobe the clock.
239	 */
240	for (i = 0x80; i; i >>= 1) {
241		if (byte & i) {
242			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
243		} else {
244			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
245		}
246		DELAY(1);
247		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248		DELAY(1);
249		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250	}
251
252	/*
253	 * Turn off TX mode.
254	 */
255	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
256
257	/*
258	 * Check for ack.
259	 */
260	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
262	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263
264	return(ack);
265}
266
267/*
268 * Read a byte of data stored in the EEPROM at address 'addr.'
269 * We have to send two address bytes since the EEPROM can hold
270 * more than 256 bytes of data.
271 */
272static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
273	struct ti_softc		*sc;
274	int			addr;
275	u_int8_t		*dest;
276{
277	register int		i;
278	u_int8_t		byte = 0;
279
280	EEPROM_START;
281
282	/*
283	 * Send write control code to EEPROM.
284	 */
285	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
286		printf("ti%d: failed to send write command, status: %x\n",
287		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
288		return(1);
289	}
290
291	/*
292	 * Send first byte of address of byte we want to read.
293	 */
294	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
295		printf("ti%d: failed to send address, status: %x\n",
296		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297		return(1);
298	}
299	/*
300	 * Send second byte address of byte we want to read.
301	 */
302	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
303		printf("ti%d: failed to send address, status: %x\n",
304		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
305		return(1);
306	}
307
308	EEPROM_STOP;
309	EEPROM_START;
310	/*
311	 * Send read control code to EEPROM.
312	 */
313	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
314		printf("ti%d: failed to send read command, status: %x\n",
315		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
316		return(1);
317	}
318
319	/*
320	 * Start reading bits from EEPROM.
321	 */
322	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
323	for (i = 0x80; i; i >>= 1) {
324		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
325		DELAY(1);
326		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
327			byte |= i;
328		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
329		DELAY(1);
330	}
331
332	EEPROM_STOP;
333
334	/*
335	 * No ACK generated for read, so just return byte.
336	 */
337
338	*dest = byte;
339
340	return(0);
341}
342
343/*
344 * Read a sequence of bytes from the EEPROM.
345 */
346static int ti_read_eeprom(sc, dest, off, cnt)
347	struct ti_softc		*sc;
348	caddr_t			dest;
349	int			off;
350	int			cnt;
351{
352	int			err = 0, i;
353	u_int8_t		byte = 0;
354
355	for (i = 0; i < cnt; i++) {
356		err = ti_eeprom_getbyte(sc, off + i, &byte);
357		if (err)
358			break;
359		*(dest + i) = byte;
360	}
361
362	return(err ? 1 : 0);
363}
364
365/*
366 * NIC memory access function. Can be used to either clear a section
367 * of NIC local memory or (if buf is non-NULL) copy data into it.
368 */
369static void ti_mem(sc, addr, len, buf)
370	struct ti_softc		*sc;
371	u_int32_t		addr, len;
372	caddr_t			buf;
373{
374	int			segptr, segsize, cnt;
375	caddr_t			ti_winbase, ptr;
376
377	segptr = addr;
378	cnt = len;
379	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
380	ptr = buf;
381
382	while(cnt) {
383		if (cnt < TI_WINLEN)
384			segsize = cnt;
385		else
386			segsize = TI_WINLEN - (segptr % TI_WINLEN);
387		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
388		if (buf == NULL)
389			bzero((char *)ti_winbase + (segptr &
390			    (TI_WINLEN - 1)), segsize);
391		else {
392			bcopy((char *)ptr, (char *)ti_winbase +
393			    (segptr & (TI_WINLEN - 1)), segsize);
394			ptr += segsize;
395		}
396		segptr += segsize;
397		cnt -= segsize;
398	}
399
400	return;
401}
402
403/*
404 * Load firmware image into the NIC. Check that the firmware revision
405 * is acceptable and see if we want the firmware for the Tigon 1 or
406 * Tigon 2.
407 */
408static void ti_loadfw(sc)
409	struct ti_softc		*sc;
410{
411	switch(sc->ti_hwrev) {
412	case TI_HWREV_TIGON:
413		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
414		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
415		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
416			printf("ti%d: firmware revision mismatch; want "
417			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
418			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
419			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
420			    tigonFwReleaseMinor, tigonFwReleaseFix);
421			return;
422		}
423		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
424		    (caddr_t)tigonFwText);
425		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
426		    (caddr_t)tigonFwData);
427		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
428		    (caddr_t)tigonFwRodata);
429		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
430		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
431		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
432		break;
433	case TI_HWREV_TIGON_II:
434		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
435		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
436		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
437			printf("ti%d: firmware revision mismatch; want "
438			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
439			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
440			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
441			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
442			return;
443		}
444		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
445		    (caddr_t)tigon2FwText);
446		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
447		    (caddr_t)tigon2FwData);
448		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
449		    (caddr_t)tigon2FwRodata);
450		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
451		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
452		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
453		break;
454	default:
455		printf("ti%d: can't load firmware: unknown hardware rev\n",
456		    sc->ti_unit);
457		break;
458	}
459
460	return;
461}
462
463/*
464 * Send the NIC a command via the command ring.
465 */
466static void ti_cmd(sc, cmd)
467	struct ti_softc		*sc;
468	struct ti_cmd_desc	*cmd;
469{
470	u_int32_t		index;
471
472	if (sc->ti_rdata->ti_cmd_ring == NULL)
473		return;
474
475	index = sc->ti_cmd_saved_prodidx;
476	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
477	TI_INC(index, TI_CMD_RING_CNT);
478	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
479	sc->ti_cmd_saved_prodidx = index;
480
481	return;
482}
483
484/*
485 * Send the NIC an extended command. The 'len' parameter specifies the
486 * number of command slots to include after the initial command.
487 */
488static void ti_cmd_ext(sc, cmd, arg, len)
489	struct ti_softc		*sc;
490	struct ti_cmd_desc	*cmd;
491	caddr_t			arg;
492	int			len;
493{
494	u_int32_t		index;
495	register int		i;
496
497	if (sc->ti_rdata->ti_cmd_ring == NULL)
498		return;
499
500	index = sc->ti_cmd_saved_prodidx;
501	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
502	TI_INC(index, TI_CMD_RING_CNT);
503	for (i = 0; i < len; i++) {
504		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
505		    *(u_int32_t *)(&arg[i * 4]));
506		TI_INC(index, TI_CMD_RING_CNT);
507	}
508	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
509	sc->ti_cmd_saved_prodidx = index;
510
511	return;
512}
513
514/*
515 * Handle events that have triggered interrupts.
516 */
517static void ti_handle_events(sc)
518	struct ti_softc		*sc;
519{
520	struct ti_event_desc	*e;
521
522	if (sc->ti_rdata->ti_event_ring == NULL)
523		return;
524
525	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
526		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
527		switch(e->ti_event) {
528		case TI_EV_LINKSTAT_CHANGED:
529			sc->ti_linkstat = e->ti_code;
530			if (e->ti_code == TI_EV_CODE_LINK_UP)
531				printf("ti%d: 10/100 link up\n", sc->ti_unit);
532			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
533				printf("ti%d: gigabit link up\n", sc->ti_unit);
534			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
535				printf("ti%d: link down\n", sc->ti_unit);
536			break;
537		case TI_EV_ERROR:
538			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
539				printf("ti%d: invalid command\n", sc->ti_unit);
540			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
541				printf("ti%d: unknown command\n", sc->ti_unit);
542			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
543				printf("ti%d: bad config data\n", sc->ti_unit);
544			break;
545		case TI_EV_FIRMWARE_UP:
546			ti_init2(sc);
547			break;
548		case TI_EV_STATS_UPDATED:
549			ti_stats_update(sc);
550			break;
551		case TI_EV_RESET_JUMBO_RING:
552		case TI_EV_MCAST_UPDATED:
553			/* Who cares. */
554			break;
555		default:
556			printf("ti%d: unknown event: %d\n",
557			    sc->ti_unit, e->ti_event);
558			break;
559		}
560		/* Advance the consumer index. */
561		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
562		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
563	}
564
565	return;
566}
567
568/*
569 * Memory management for the jumbo receive ring is a pain in the
570 * butt. We need to allocate at least 9018 bytes of space per frame,
571 * _and_ it has to be contiguous (unless you use the extended
572 * jumbo descriptor format). Using malloc() all the time won't
573 * work: malloc() allocates memory in powers of two, which means we
574 * would end up wasting a considerable amount of space by allocating
575 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
576 * to do our own memory management.
577 *
578 * The driver needs to allocate a contiguous chunk of memory at boot
579 * time. We then chop this up ourselves into 9K pieces and use them
580 * as external mbuf storage.
581 *
582 * One issue here is how much memory to allocate. The jumbo ring has
583 * 256 slots in it, but at 9K per slot than can consume over 2MB of
584 * RAM. This is a bit much, especially considering we also need
585 * RAM for the standard ring and mini ring (on the Tigon 2). To
586 * save space, we only actually allocate enough memory for 64 slots
587 * by default, which works out to between 500 and 600K. This can
588 * be tuned by changing a #define in if_tireg.h.
589 */
590
591static int ti_alloc_jumbo_mem(sc)
592	struct ti_softc		*sc;
593{
594	caddr_t			ptr;
595	register int		i;
596	struct ti_jpool_entry   *entry;
597
598	/* Grab a big chunk o' storage. */
599	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
600		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
601
602	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
603		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
604		return(ENOBUFS);
605	}
606
607	SLIST_INIT(&sc->ti_jfree_listhead);
608	SLIST_INIT(&sc->ti_jinuse_listhead);
609
610	/*
611	 * Now divide it up into 9K pieces and save the addresses
612	 * in an array.
613	 */
614	ptr = sc->ti_cdata.ti_jumbo_buf;
615	for (i = 0; i < TI_JSLOTS; i++) {
616		sc->ti_cdata.ti_jslots[i] = ptr;
617		ptr += TI_JLEN;
618		entry = malloc(sizeof(struct ti_jpool_entry),
619			       M_DEVBUF, M_NOWAIT);
620		if (entry == NULL) {
621			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
622			           M_DEVBUF);
623			sc->ti_cdata.ti_jumbo_buf = NULL;
624			printf("ti%d: no memory for jumbo "
625			    "buffer queue!\n", sc->ti_unit);
626			return(ENOBUFS);
627		}
628		entry->slot = i;
629		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
630	}
631
632	return(0);
633}
634
635/*
636 * Allocate a jumbo buffer.
637 */
638static void *ti_jalloc(sc)
639	struct ti_softc		*sc;
640{
641	struct ti_jpool_entry   *entry;
642
643	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
644
645	if (entry == NULL) {
646		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
647		return(NULL);
648	}
649
650	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
651	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
652	return(sc->ti_cdata.ti_jslots[entry->slot]);
653}
654
655/*
656 * Release a jumbo buffer.
657 */
658static void ti_jfree(buf, args)
659	caddr_t			buf;
660	void			*args;
661{
662	struct ti_softc		*sc;
663	int		        i;
664	struct ti_jpool_entry   *entry;
665
666	/* Extract the softc struct pointer. */
667	sc = (struct ti_softc *)args;
668
669	if (sc == NULL)
670		panic("ti_jfree: didn't get softc pointer!");
671
672	/* calculate the slot this buffer belongs to */
673	i = ((vm_offset_t)buf
674	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
675
676	if ((i < 0) || (i >= TI_JSLOTS))
677		panic("ti_jfree: asked to free buffer that we don't manage!");
678
679	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
680	if (entry == NULL)
681		panic("ti_jfree: buffer not in use!");
682	entry->slot = i;
683	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
684	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
685
686	return;
687}
688
689
690/*
691 * Intialize a standard receive ring descriptor.
692 */
693static int ti_newbuf_std(sc, i, m)
694	struct ti_softc		*sc;
695	int			i;
696	struct mbuf		*m;
697{
698	struct mbuf		*m_new = NULL;
699	struct ti_rx_desc	*r;
700
701	if (m == NULL) {
702		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
703		if (m_new == NULL) {
704			printf("ti%d: mbuf allocation failed "
705			    "-- packet dropped!\n", sc->ti_unit);
706			return(ENOBUFS);
707		}
708
709		MCLGET(m_new, M_DONTWAIT);
710		if (!(m_new->m_flags & M_EXT)) {
711			printf("ti%d: cluster allocation failed "
712			    "-- packet dropped!\n", sc->ti_unit);
713			m_freem(m_new);
714			return(ENOBUFS);
715		}
716		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
717	} else {
718		m_new = m;
719		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
720		m_new->m_data = m_new->m_ext.ext_buf;
721	}
722
723	m_adj(m_new, ETHER_ALIGN);
724	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
725	r = &sc->ti_rdata->ti_rx_std_ring[i];
726	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
727	r->ti_type = TI_BDTYPE_RECV_BD;
728	r->ti_flags = 0;
729	if (sc->arpcom.ac_if.if_hwassist)
730		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
731	r->ti_len = m_new->m_len;
732	r->ti_idx = i;
733
734	return(0);
735}
736
737/*
738 * Intialize a mini receive ring descriptor. This only applies to
739 * the Tigon 2.
740 */
741static int ti_newbuf_mini(sc, i, m)
742	struct ti_softc		*sc;
743	int			i;
744	struct mbuf		*m;
745{
746	struct mbuf		*m_new = NULL;
747	struct ti_rx_desc	*r;
748
749	if (m == NULL) {
750		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
751		if (m_new == NULL) {
752			printf("ti%d: mbuf allocation failed "
753			    "-- packet dropped!\n", sc->ti_unit);
754			return(ENOBUFS);
755		}
756		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
757	} else {
758		m_new = m;
759		m_new->m_data = m_new->m_pktdat;
760		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
761	}
762
763	m_adj(m_new, ETHER_ALIGN);
764	r = &sc->ti_rdata->ti_rx_mini_ring[i];
765	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
766	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
767	r->ti_type = TI_BDTYPE_RECV_BD;
768	r->ti_flags = TI_BDFLAG_MINI_RING;
769	if (sc->arpcom.ac_if.if_hwassist)
770		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
771	r->ti_len = m_new->m_len;
772	r->ti_idx = i;
773
774	return(0);
775}
776
777/*
778 * Initialize a jumbo receive ring descriptor. This allocates
779 * a jumbo buffer from the pool managed internally by the driver.
780 */
781static int ti_newbuf_jumbo(sc, i, m)
782	struct ti_softc		*sc;
783	int			i;
784	struct mbuf		*m;
785{
786	struct mbuf		*m_new = NULL;
787	struct ti_rx_desc	*r;
788
789	if (m == NULL) {
790		caddr_t			*buf = NULL;
791
792		/* Allocate the mbuf. */
793		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
794		if (m_new == NULL) {
795			printf("ti%d: mbuf allocation failed "
796			    "-- packet dropped!\n", sc->ti_unit);
797			return(ENOBUFS);
798		}
799
800		/* Allocate the jumbo buffer */
801		buf = ti_jalloc(sc);
802		if (buf == NULL) {
803			m_freem(m_new);
804			printf("ti%d: jumbo allocation failed "
805			    "-- packet dropped!\n", sc->ti_unit);
806			return(ENOBUFS);
807		}
808
809		/* Attach the buffer to the mbuf. */
810		m_new->m_data = (void *) buf;
811		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
812		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
813		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
814	} else {
815		m_new = m;
816		m_new->m_data = m_new->m_ext.ext_buf;
817		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
818	}
819
820	m_adj(m_new, ETHER_ALIGN);
821	/* Set up the descriptor. */
822	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
823	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
824	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
825	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
826	r->ti_flags = TI_BDFLAG_JUMBO_RING;
827	if (sc->arpcom.ac_if.if_hwassist)
828		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
829	r->ti_len = m_new->m_len;
830	r->ti_idx = i;
831
832	return(0);
833}
834
835/*
836 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
837 * that's 1MB or memory, which is a lot. For now, we fill only the first
838 * 256 ring entries and hope that our CPU is fast enough to keep up with
839 * the NIC.
840 */
841static int ti_init_rx_ring_std(sc)
842	struct ti_softc		*sc;
843{
844	register int		i;
845	struct ti_cmd_desc	cmd;
846
847	for (i = 0; i < TI_SSLOTS; i++) {
848		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
849			return(ENOBUFS);
850	};
851
852	TI_UPDATE_STDPROD(sc, i - 1);
853	sc->ti_std = i - 1;
854
855	return(0);
856}
857
858static void ti_free_rx_ring_std(sc)
859	struct ti_softc		*sc;
860{
861	register int		i;
862
863	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
864		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
865			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
866			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
867		}
868		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
869		    sizeof(struct ti_rx_desc));
870	}
871
872	return;
873}
874
875static int ti_init_rx_ring_jumbo(sc)
876	struct ti_softc		*sc;
877{
878	register int		i;
879	struct ti_cmd_desc	cmd;
880
881	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
882		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
883			return(ENOBUFS);
884	};
885
886	TI_UPDATE_JUMBOPROD(sc, i - 1);
887	sc->ti_jumbo = i - 1;
888
889	return(0);
890}
891
892static void ti_free_rx_ring_jumbo(sc)
893	struct ti_softc		*sc;
894{
895	register int		i;
896
897	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
898		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
899			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
900			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
901		}
902		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
903		    sizeof(struct ti_rx_desc));
904	}
905
906	return;
907}
908
909static int ti_init_rx_ring_mini(sc)
910	struct ti_softc		*sc;
911{
912	register int		i;
913
914	for (i = 0; i < TI_MSLOTS; i++) {
915		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
916			return(ENOBUFS);
917	};
918
919	TI_UPDATE_MINIPROD(sc, i - 1);
920	sc->ti_mini = i - 1;
921
922	return(0);
923}
924
925static void ti_free_rx_ring_mini(sc)
926	struct ti_softc		*sc;
927{
928	register int		i;
929
930	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
931		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
932			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
933			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
934		}
935		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
936		    sizeof(struct ti_rx_desc));
937	}
938
939	return;
940}
941
942static void ti_free_tx_ring(sc)
943	struct ti_softc		*sc;
944{
945	register int		i;
946
947	if (sc->ti_rdata->ti_tx_ring == NULL)
948		return;
949
950	for (i = 0; i < TI_TX_RING_CNT; i++) {
951		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
952			m_freem(sc->ti_cdata.ti_tx_chain[i]);
953			sc->ti_cdata.ti_tx_chain[i] = NULL;
954		}
955		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
956		    sizeof(struct ti_tx_desc));
957	}
958
959	return;
960}
961
962static int ti_init_tx_ring(sc)
963	struct ti_softc		*sc;
964{
965	sc->ti_txcnt = 0;
966	sc->ti_tx_saved_considx = 0;
967	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
968	return(0);
969}
970
971/*
972 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
973 * but we have to support the old way too so that Tigon 1 cards will
974 * work.
975 */
976void ti_add_mcast(sc, addr)
977	struct ti_softc		*sc;
978	struct ether_addr	*addr;
979{
980	struct ti_cmd_desc	cmd;
981	u_int16_t		*m;
982	u_int32_t		ext[2] = {0, 0};
983
984	m = (u_int16_t *)&addr->octet[0];
985
986	switch(sc->ti_hwrev) {
987	case TI_HWREV_TIGON:
988		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
989		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
990		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
991		break;
992	case TI_HWREV_TIGON_II:
993		ext[0] = htons(m[0]);
994		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
995		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
996		break;
997	default:
998		printf("ti%d: unknown hwrev\n", sc->ti_unit);
999		break;
1000	}
1001
1002	return;
1003}
1004
1005void ti_del_mcast(sc, addr)
1006	struct ti_softc		*sc;
1007	struct ether_addr	*addr;
1008{
1009	struct ti_cmd_desc	cmd;
1010	u_int16_t		*m;
1011	u_int32_t		ext[2] = {0, 0};
1012
1013	m = (u_int16_t *)&addr->octet[0];
1014
1015	switch(sc->ti_hwrev) {
1016	case TI_HWREV_TIGON:
1017		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1018		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1019		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1020		break;
1021	case TI_HWREV_TIGON_II:
1022		ext[0] = htons(m[0]);
1023		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1024		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1025		break;
1026	default:
1027		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1028		break;
1029	}
1030
1031	return;
1032}
1033
1034/*
1035 * Configure the Tigon's multicast address filter.
1036 *
1037 * The actual multicast table management is a bit of a pain, thanks to
1038 * slight brain damage on the part of both Alteon and us. With our
1039 * multicast code, we are only alerted when the multicast address table
1040 * changes and at that point we only have the current list of addresses:
1041 * we only know the current state, not the previous state, so we don't
1042 * actually know what addresses were removed or added. The firmware has
1043 * state, but we can't get our grubby mits on it, and there is no 'delete
1044 * all multicast addresses' command. Hence, we have to maintain our own
1045 * state so we know what addresses have been programmed into the NIC at
1046 * any given time.
1047 */
1048static void ti_setmulti(sc)
1049	struct ti_softc		*sc;
1050{
1051	struct ifnet		*ifp;
1052	struct ifmultiaddr	*ifma;
1053	struct ti_cmd_desc	cmd;
1054	struct ti_mc_entry	*mc;
1055	u_int32_t		intrs;
1056
1057	ifp = &sc->arpcom.ac_if;
1058
1059	if (ifp->if_flags & IFF_ALLMULTI) {
1060		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1061		return;
1062	} else {
1063		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1064	}
1065
1066	/* Disable interrupts. */
1067	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1068	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1069
1070	/* First, zot all the existing filters. */
1071	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1072		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1073		ti_del_mcast(sc, &mc->mc_addr);
1074		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1075		free(mc, M_DEVBUF);
1076	}
1077
1078	/* Now program new ones. */
1079	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1080		if (ifma->ifma_addr->sa_family != AF_LINK)
1081			continue;
1082		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1083		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1084		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1085		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1086		ti_add_mcast(sc, &mc->mc_addr);
1087	}
1088
1089	/* Re-enable interrupts. */
1090	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1091
1092	return;
1093}
1094
1095/*
1096 * Check to see if the BIOS has configured us for a 64 bit slot when
1097 * we aren't actually in one. If we detect this condition, we can work
1098 * around it on the Tigon 2 by setting a bit in the PCI state register,
1099 * but for the Tigon 1 we must give up and abort the interface attach.
1100 */
1101static int ti_64bitslot_war(sc)
1102	struct ti_softc		*sc;
1103{
1104	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1105		CSR_WRITE_4(sc, 0x600, 0);
1106		CSR_WRITE_4(sc, 0x604, 0);
1107		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1108		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1109			if (sc->ti_hwrev == TI_HWREV_TIGON)
1110				return(EINVAL);
1111			else {
1112				TI_SETBIT(sc, TI_PCI_STATE,
1113				    TI_PCISTATE_32BIT_BUS);
1114				return(0);
1115			}
1116		}
1117	}
1118
1119	return(0);
1120}
1121
1122/*
1123 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1124 * self-test results.
1125 */
1126static int ti_chipinit(sc)
1127	struct ti_softc		*sc;
1128{
1129	u_int32_t		cacheline;
1130	u_int32_t		pci_writemax = 0;
1131
1132	/* Initialize link to down state. */
1133	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1134
1135	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1136		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1137	else
1138		sc->arpcom.ac_if.if_hwassist = 0;
1139
1140	/* Set endianness before we access any non-PCI registers. */
1141#if BYTE_ORDER == BIG_ENDIAN
1142	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1143	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1144#else
1145	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1146	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1147#endif
1148
1149	/* Check the ROM failed bit to see if self-tests passed. */
1150	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1151		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1152		return(ENODEV);
1153	}
1154
1155	/* Halt the CPU. */
1156	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1157
1158	/* Figure out the hardware revision. */
1159	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1160	case TI_REV_TIGON_I:
1161		sc->ti_hwrev = TI_HWREV_TIGON;
1162		break;
1163	case TI_REV_TIGON_II:
1164		sc->ti_hwrev = TI_HWREV_TIGON_II;
1165		break;
1166	default:
1167		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1168		return(ENODEV);
1169	}
1170
1171	/* Do special setup for Tigon 2. */
1172	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1173		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1174		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1175		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1176	}
1177
1178	/* Set up the PCI state register. */
1179	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1180	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1181		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1182	}
1183
1184	/* Clear the read/write max DMA parameters. */
1185	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1186	    TI_PCISTATE_READ_MAXDMA));
1187
1188	/* Get cache line size. */
1189	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1190
1191	/*
1192	 * If the system has set enabled the PCI memory write
1193	 * and invalidate command in the command register, set
1194	 * the write max parameter accordingly. This is necessary
1195	 * to use MWI with the Tigon 2.
1196	 */
1197	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1198		switch(cacheline) {
1199		case 1:
1200		case 4:
1201		case 8:
1202		case 16:
1203		case 32:
1204		case 64:
1205			break;
1206		default:
1207		/* Disable PCI memory write and invalidate. */
1208			if (bootverbose)
1209				printf("ti%d: cache line size %d not "
1210				    "supported; disabling PCI MWI\n",
1211				    sc->ti_unit, cacheline);
1212			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1213			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1214			break;
1215		}
1216	}
1217
1218#ifdef __brokenalpha__
1219	/*
1220	 * From the Alteon sample driver:
1221	 * Must insure that we do not cross an 8K (bytes) boundary
1222	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1223	 * restriction on some ALPHA platforms with early revision
1224	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1225	 */
1226	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1227#else
1228	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1229#endif
1230
1231	/* This sets the min dma param all the way up (0xff). */
1232	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1233
1234	/* Configure DMA variables. */
1235#if BYTE_ORDER == BIG_ENDIAN
1236	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1237	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1238	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1239	    TI_OPMODE_DONT_FRAG_JUMBO);
1240#else
1241	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1242	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1243	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1244#endif
1245
1246	/*
1247	 * Only allow 1 DMA channel to be active at a time.
1248	 * I don't think this is a good idea, but without it
1249	 * the firmware racks up lots of nicDmaReadRingFull
1250	 * errors.  This is not compatible with hardware checksums.
1251	 */
1252	if (sc->arpcom.ac_if.if_hwassist == 0)
1253		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1254
1255	/* Recommended settings from Tigon manual. */
1256	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1257	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1258
1259	if (ti_64bitslot_war(sc)) {
1260		printf("ti%d: bios thinks we're in a 64 bit slot, "
1261		    "but we aren't", sc->ti_unit);
1262		return(EINVAL);
1263	}
1264
1265	return(0);
1266}
1267
1268/*
1269 * Initialize the general information block and firmware, and
1270 * start the CPU(s) running.
1271 */
1272static int ti_gibinit(sc)
1273	struct ti_softc		*sc;
1274{
1275	struct ti_rcb		*rcb;
1276	int			i;
1277	struct ifnet		*ifp;
1278
1279	ifp = &sc->arpcom.ac_if;
1280
1281	/* Disable interrupts for now. */
1282	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1283
1284	/* Tell the chip where to find the general information block. */
1285	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1286	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1287
1288	/* Load the firmware into SRAM. */
1289	ti_loadfw(sc);
1290
1291	/* Set up the contents of the general info and ring control blocks. */
1292
1293	/* Set up the event ring and producer pointer. */
1294	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1295
1296	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1297	rcb->ti_flags = 0;
1298	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1299	    vtophys(&sc->ti_ev_prodidx);
1300	sc->ti_ev_prodidx.ti_idx = 0;
1301	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1302	sc->ti_ev_saved_considx = 0;
1303
1304	/* Set up the command ring and producer mailbox. */
1305	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1306
1307	sc->ti_rdata->ti_cmd_ring =
1308	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1309	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1310	rcb->ti_flags = 0;
1311	rcb->ti_max_len = 0;
1312	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1313		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1314	}
1315	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1316	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1317	sc->ti_cmd_saved_prodidx = 0;
1318
1319	/*
1320	 * Assign the address of the stats refresh buffer.
1321	 * We re-use the current stats buffer for this to
1322	 * conserve memory.
1323	 */
1324	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1325	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1326
1327	/* Set up the standard receive ring. */
1328	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1329	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1330	rcb->ti_max_len = TI_FRAMELEN;
1331	rcb->ti_flags = 0;
1332	if (sc->arpcom.ac_if.if_hwassist)
1333		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1334		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1335	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1336
1337	/* Set up the jumbo receive ring. */
1338	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1339	TI_HOSTADDR(rcb->ti_hostaddr) =
1340	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1341	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1342	rcb->ti_flags = 0;
1343	if (sc->arpcom.ac_if.if_hwassist)
1344		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1345		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1346	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1347
1348	/*
1349	 * Set up the mini ring. Only activated on the
1350	 * Tigon 2 but the slot in the config block is
1351	 * still there on the Tigon 1.
1352	 */
1353	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1354	TI_HOSTADDR(rcb->ti_hostaddr) =
1355	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1356	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1357	if (sc->ti_hwrev == TI_HWREV_TIGON)
1358		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1359	else
1360		rcb->ti_flags = 0;
1361	if (sc->arpcom.ac_if.if_hwassist)
1362		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1363		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1364	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1365
1366	/*
1367	 * Set up the receive return ring.
1368	 */
1369	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1370	TI_HOSTADDR(rcb->ti_hostaddr) =
1371	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1372	rcb->ti_flags = 0;
1373	rcb->ti_max_len = TI_RETURN_RING_CNT;
1374	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1375	    vtophys(&sc->ti_return_prodidx);
1376
1377	/*
1378	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1379	 * of putting the transmit ring in the host's address space and
1380	 * letting the chip DMA it instead of leaving the ring in the NIC's
1381	 * memory and accessing it through the shared memory region. We
1382	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1383	 * so we have to revert to the shared memory scheme if we detect
1384	 * a Tigon 1 chip.
1385	 */
1386	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1387	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1388		sc->ti_rdata->ti_tx_ring_nic =
1389		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1390	}
1391	bzero((char *)sc->ti_rdata->ti_tx_ring,
1392	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1393	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1394	if (sc->ti_hwrev == TI_HWREV_TIGON)
1395		rcb->ti_flags = 0;
1396	else
1397		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1398	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1399	if (sc->arpcom.ac_if.if_hwassist)
1400		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1401		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1402	rcb->ti_max_len = TI_TX_RING_CNT;
1403	if (sc->ti_hwrev == TI_HWREV_TIGON)
1404		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1405	else
1406		TI_HOSTADDR(rcb->ti_hostaddr) =
1407		    vtophys(&sc->ti_rdata->ti_tx_ring);
1408	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1409	    vtophys(&sc->ti_tx_considx);
1410
1411	/* Set up tuneables */
1412	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1413		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1414		    (sc->ti_rx_coal_ticks / 10));
1415	else
1416		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1417	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1418	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1419	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1420	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1421	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1422
1423	/* Turn interrupts on. */
1424	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1425	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1426
1427	/* Start CPU. */
1428	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1429
1430	return(0);
1431}
1432
1433/*
1434 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1435 * against our list and return its name if we find a match.
1436 */
1437static int ti_probe(dev)
1438	device_t		dev;
1439{
1440	struct ti_type		*t;
1441
1442	t = ti_devs;
1443
1444	while(t->ti_name != NULL) {
1445		if ((pci_get_vendor(dev) == t->ti_vid) &&
1446		    (pci_get_device(dev) == t->ti_did)) {
1447			device_set_desc(dev, t->ti_name);
1448			return(0);
1449		}
1450		t++;
1451	}
1452
1453	return(ENXIO);
1454}
1455
1456static int ti_attach(dev)
1457	device_t		dev;
1458{
1459	u_int32_t		command;
1460	struct ifnet		*ifp;
1461	struct ti_softc		*sc;
1462	int			unit, error = 0, rid;
1463
1464	sc = device_get_softc(dev);
1465	unit = device_get_unit(dev);
1466	bzero(sc, sizeof(struct ti_softc));
1467
1468	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
1469	TI_LOCK(sc);
1470	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
1471	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
1472
1473	/*
1474	 * Map control/status registers.
1475	 */
1476	pci_enable_busmaster(dev);
1477	pci_enable_io(dev, SYS_RES_MEMORY);
1478	command = pci_read_config(dev, PCIR_COMMAND, 4);
1479
1480	if (!(command & PCIM_CMD_MEMEN)) {
1481		printf("ti%d: failed to enable memory mapping!\n", unit);
1482		error = ENXIO;
1483		goto fail;
1484	}
1485
1486	rid = TI_PCI_LOMEM;
1487	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1488	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1489
1490	if (sc->ti_res == NULL) {
1491		printf ("ti%d: couldn't map memory\n", unit);
1492		error = ENXIO;
1493		goto fail;
1494	}
1495
1496	sc->ti_btag = rman_get_bustag(sc->ti_res);
1497	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1498	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1499
1500	/* Allocate interrupt */
1501	rid = 0;
1502
1503	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1504	    RF_SHAREABLE | RF_ACTIVE);
1505
1506	if (sc->ti_irq == NULL) {
1507		printf("ti%d: couldn't map interrupt\n", unit);
1508		error = ENXIO;
1509		goto fail;
1510	}
1511
1512	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1513	   ti_intr, sc, &sc->ti_intrhand);
1514
1515	if (error) {
1516		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1517		bus_release_resource(dev, SYS_RES_MEMORY,
1518		    TI_PCI_LOMEM, sc->ti_res);
1519		printf("ti%d: couldn't set up irq\n", unit);
1520		goto fail;
1521	}
1522
1523	sc->ti_unit = unit;
1524
1525	if (ti_chipinit(sc)) {
1526		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1527		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1528		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1529		bus_release_resource(dev, SYS_RES_MEMORY,
1530		    TI_PCI_LOMEM, sc->ti_res);
1531		error = ENXIO;
1532		goto fail;
1533	}
1534
1535	/* Zero out the NIC's on-board SRAM. */
1536	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1537
1538	/* Init again -- zeroing memory may have clobbered some registers. */
1539	if (ti_chipinit(sc)) {
1540		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1541		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1542		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1543		bus_release_resource(dev, SYS_RES_MEMORY,
1544		    TI_PCI_LOMEM, sc->ti_res);
1545		error = ENXIO;
1546		goto fail;
1547	}
1548
1549	/*
1550	 * Get station address from the EEPROM. Note: the manual states
1551	 * that the MAC address is at offset 0x8c, however the data is
1552	 * stored as two longwords (since that's how it's loaded into
1553	 * the NIC). This means the MAC address is actually preceded
1554	 * by two zero bytes. We need to skip over those.
1555	 */
1556	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1557				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1558		printf("ti%d: failed to read station address\n", unit);
1559		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1560		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1561		bus_release_resource(dev, SYS_RES_MEMORY,
1562		    TI_PCI_LOMEM, sc->ti_res);
1563		error = ENXIO;
1564		goto fail;
1565	}
1566
1567	/*
1568	 * A Tigon chip was detected. Inform the world.
1569	 */
1570	printf("ti%d: Ethernet address: %6D\n", unit,
1571				sc->arpcom.ac_enaddr, ":");
1572
1573	/* Allocate the general information block and ring buffers. */
1574	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1575	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1576
1577	if (sc->ti_rdata == NULL) {
1578		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1579		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1580		bus_release_resource(dev, SYS_RES_MEMORY,
1581		    TI_PCI_LOMEM, sc->ti_res);
1582		error = ENXIO;
1583		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1584		goto fail;
1585	}
1586
1587	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1588
1589	/* Try to allocate memory for jumbo buffers. */
1590	if (ti_alloc_jumbo_mem(sc)) {
1591		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1592		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1593		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1594		bus_release_resource(dev, SYS_RES_MEMORY,
1595		    TI_PCI_LOMEM, sc->ti_res);
1596		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1597		    M_DEVBUF);
1598		error = ENXIO;
1599		goto fail;
1600	}
1601
1602	/*
1603	 * We really need a better way to tell a 1000baseTX card
1604	 * from a 1000baseSX one, since in theory there could be
1605	 * OEMed 1000baseTX cards from lame vendors who aren't
1606	 * clever enough to change the PCI ID. For the moment
1607	 * though, the AceNIC is the only copper card available.
1608	 */
1609	if (pci_get_vendor(dev) == ALT_VENDORID &&
1610	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1611		sc->ti_copper = 1;
1612	/* Ok, it's not the only copper card available. */
1613	if (pci_get_vendor(dev) == NG_VENDORID &&
1614	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1615		sc->ti_copper = 1;
1616
1617	/* Set default tuneable values. */
1618	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1619	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1620	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1621	sc->ti_rx_max_coal_bds = 64;
1622	sc->ti_tx_max_coal_bds = 128;
1623	sc->ti_tx_buf_ratio = 21;
1624
1625	/* Set up ifnet structure */
1626	ifp = &sc->arpcom.ac_if;
1627	ifp->if_softc = sc;
1628	ifp->if_unit = sc->ti_unit;
1629	ifp->if_name = "ti";
1630	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1631	ifp->if_ioctl = ti_ioctl;
1632	ifp->if_output = ether_output;
1633	ifp->if_start = ti_start;
1634	ifp->if_watchdog = ti_watchdog;
1635	ifp->if_init = ti_init;
1636	ifp->if_mtu = ETHERMTU;
1637	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1638
1639	/* Set up ifmedia support. */
1640	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1641	if (sc->ti_copper) {
1642		/*
1643		 * Copper cards allow manual 10/100 mode selection,
1644		 * but not manual 1000baseTX mode selection. Why?
1645		 * Becuase currently there's no way to specify the
1646		 * master/slave setting through the firmware interface,
1647		 * so Alteon decided to just bag it and handle it
1648		 * via autonegotiation.
1649		 */
1650		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1651		ifmedia_add(&sc->ifmedia,
1652		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1653		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1654		ifmedia_add(&sc->ifmedia,
1655		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1656		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1657		ifmedia_add(&sc->ifmedia,
1658		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1659	} else {
1660		/* Fiber cards don't support 10/100 modes. */
1661		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1662		ifmedia_add(&sc->ifmedia,
1663		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1664	}
1665	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1666	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1667
1668	/*
1669	 * Call MI attach routine.
1670	 */
1671	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1672	TI_UNLOCK(sc);
1673	return(0);
1674
1675fail:
1676	TI_UNLOCK(sc);
1677	mtx_destroy(&sc->ti_mtx);
1678	return(error);
1679}
1680
1681static int ti_detach(dev)
1682	device_t		dev;
1683{
1684	struct ti_softc		*sc;
1685	struct ifnet		*ifp;
1686
1687
1688	sc = device_get_softc(dev);
1689	TI_LOCK(sc);
1690	ifp = &sc->arpcom.ac_if;
1691
1692	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1693	ti_stop(sc);
1694
1695	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1696	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1697	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1698
1699	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1700	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1701	ifmedia_removeall(&sc->ifmedia);
1702
1703	TI_UNLOCK(sc);
1704	mtx_destroy(&sc->ti_mtx);
1705
1706	return(0);
1707}
1708
1709/*
1710 * Frame reception handling. This is called if there's a frame
1711 * on the receive return list.
1712 *
1713 * Note: we have to be able to handle three possibilities here:
1714 * 1) the frame is from the mini receive ring (can only happen)
1715 *    on Tigon 2 boards)
1716 * 2) the frame is from the jumbo recieve ring
1717 * 3) the frame is from the standard receive ring
1718 */
1719
1720static void ti_rxeof(sc)
1721	struct ti_softc		*sc;
1722{
1723	struct ifnet		*ifp;
1724	struct ti_cmd_desc	cmd;
1725
1726	ifp = &sc->arpcom.ac_if;
1727
1728	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1729		struct ti_rx_desc	*cur_rx;
1730		u_int32_t		rxidx;
1731		struct ether_header	*eh;
1732		struct mbuf		*m = NULL;
1733		u_int16_t		vlan_tag = 0;
1734		int			have_tag = 0;
1735
1736		cur_rx =
1737		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1738		rxidx = cur_rx->ti_idx;
1739		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1740
1741		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1742			have_tag = 1;
1743			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1744		}
1745
1746		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1747			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1748			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1749			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1750			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1751				ifp->if_ierrors++;
1752				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1753				continue;
1754			}
1755			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1756				ifp->if_ierrors++;
1757				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1758				continue;
1759			}
1760		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1761			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1762			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1763			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1764			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1765				ifp->if_ierrors++;
1766				ti_newbuf_mini(sc, sc->ti_mini, m);
1767				continue;
1768			}
1769			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1770				ifp->if_ierrors++;
1771				ti_newbuf_mini(sc, sc->ti_mini, m);
1772				continue;
1773			}
1774		} else {
1775			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1776			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1777			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1778			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1779				ifp->if_ierrors++;
1780				ti_newbuf_std(sc, sc->ti_std, m);
1781				continue;
1782			}
1783			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1784				ifp->if_ierrors++;
1785				ti_newbuf_std(sc, sc->ti_std, m);
1786				continue;
1787			}
1788		}
1789
1790		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1791		ifp->if_ipackets++;
1792		eh = mtod(m, struct ether_header *);
1793		m->m_pkthdr.rcvif = ifp;
1794
1795		/* Remove header from mbuf and pass it on. */
1796		m_adj(m, sizeof(struct ether_header));
1797
1798		if (ifp->if_hwassist) {
1799			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1800			    CSUM_DATA_VALID;
1801			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1802				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1803			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1804		}
1805
1806		/*
1807		 * If we received a packet with a vlan tag, pass it
1808		 * to vlan_input() instead of ether_input().
1809		 */
1810		if (have_tag) {
1811			VLAN_INPUT_TAG(ifp, eh, m, vlan_tag);
1812			have_tag = vlan_tag = 0;
1813			continue;
1814		}
1815		ether_input(ifp, eh, m);
1816	}
1817
1818	/* Only necessary on the Tigon 1. */
1819	if (sc->ti_hwrev == TI_HWREV_TIGON)
1820		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1821		    sc->ti_rx_saved_considx);
1822
1823	TI_UPDATE_STDPROD(sc, sc->ti_std);
1824	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1825	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1826
1827	return;
1828}
1829
1830static void ti_txeof(sc)
1831	struct ti_softc		*sc;
1832{
1833	struct ti_tx_desc	*cur_tx = NULL;
1834	struct ifnet		*ifp;
1835
1836	ifp = &sc->arpcom.ac_if;
1837
1838	/*
1839	 * Go through our tx ring and free mbufs for those
1840	 * frames that have been sent.
1841	 */
1842	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1843		u_int32_t		idx = 0;
1844
1845		idx = sc->ti_tx_saved_considx;
1846		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1847			if (idx > 383)
1848				CSR_WRITE_4(sc, TI_WINBASE,
1849				    TI_TX_RING_BASE + 6144);
1850			else if (idx > 255)
1851				CSR_WRITE_4(sc, TI_WINBASE,
1852				    TI_TX_RING_BASE + 4096);
1853			else if (idx > 127)
1854				CSR_WRITE_4(sc, TI_WINBASE,
1855				    TI_TX_RING_BASE + 2048);
1856			else
1857				CSR_WRITE_4(sc, TI_WINBASE,
1858				    TI_TX_RING_BASE);
1859			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1860		} else
1861			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1862		if (cur_tx->ti_flags & TI_BDFLAG_END)
1863			ifp->if_opackets++;
1864		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1865			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1866			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1867		}
1868		sc->ti_txcnt--;
1869		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1870		ifp->if_timer = 0;
1871	}
1872
1873	if (cur_tx != NULL)
1874		ifp->if_flags &= ~IFF_OACTIVE;
1875
1876	return;
1877}
1878
1879static void ti_intr(xsc)
1880	void			*xsc;
1881{
1882	struct ti_softc		*sc;
1883	struct ifnet		*ifp;
1884
1885	sc = xsc;
1886	TI_LOCK(sc);
1887	ifp = &sc->arpcom.ac_if;
1888
1889#ifdef notdef
1890	/* Avoid this for now -- checking this register is expensive. */
1891	/* Make sure this is really our interrupt. */
1892	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1893		TI_UNLOCK(sc);
1894		return;
1895	}
1896#endif
1897
1898	/* Ack interrupt and stop others from occuring. */
1899	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1900
1901	if (ifp->if_flags & IFF_RUNNING) {
1902		/* Check RX return ring producer/consumer */
1903		ti_rxeof(sc);
1904
1905		/* Check TX ring producer/consumer */
1906		ti_txeof(sc);
1907	}
1908
1909	ti_handle_events(sc);
1910
1911	/* Re-enable interrupts. */
1912	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1913
1914	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1915		ti_start(ifp);
1916
1917	TI_UNLOCK(sc);
1918
1919	return;
1920}
1921
1922static void ti_stats_update(sc)
1923	struct ti_softc		*sc;
1924{
1925	struct ifnet		*ifp;
1926
1927	ifp = &sc->arpcom.ac_if;
1928
1929	ifp->if_collisions +=
1930	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1931	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1932	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1933	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1934	   ifp->if_collisions;
1935
1936	return;
1937}
1938
1939/*
1940 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1941 * pointers to descriptors.
1942 */
1943static int ti_encap(sc, m_head, txidx)
1944	struct ti_softc		*sc;
1945	struct mbuf		*m_head;
1946	u_int32_t		*txidx;
1947{
1948	struct ti_tx_desc	*f = NULL;
1949	struct mbuf		*m;
1950	u_int32_t		frag, cur, cnt = 0;
1951	u_int16_t		csum_flags = 0;
1952	struct ifvlan		*ifv = NULL;
1953
1954	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1955	    m_head->m_pkthdr.rcvif != NULL &&
1956	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1957		ifv = m_head->m_pkthdr.rcvif->if_softc;
1958
1959	m = m_head;
1960	cur = frag = *txidx;
1961
1962	if (m_head->m_pkthdr.csum_flags) {
1963		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1964			csum_flags |= TI_BDFLAG_IP_CKSUM;
1965		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1966			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1967		if (m_head->m_flags & M_LASTFRAG)
1968			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1969		else if (m_head->m_flags & M_FRAG)
1970			csum_flags |= TI_BDFLAG_IP_FRAG;
1971	}
1972	/*
1973 	 * Start packing the mbufs in this chain into
1974	 * the fragment pointers. Stop when we run out
1975 	 * of fragments or hit the end of the mbuf chain.
1976	 */
1977	for (m = m_head; m != NULL; m = m->m_next) {
1978		if (m->m_len != 0) {
1979			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1980				if (frag > 383)
1981					CSR_WRITE_4(sc, TI_WINBASE,
1982					    TI_TX_RING_BASE + 6144);
1983				else if (frag > 255)
1984					CSR_WRITE_4(sc, TI_WINBASE,
1985					    TI_TX_RING_BASE + 4096);
1986				else if (frag > 127)
1987					CSR_WRITE_4(sc, TI_WINBASE,
1988					    TI_TX_RING_BASE + 2048);
1989				else
1990					CSR_WRITE_4(sc, TI_WINBASE,
1991					    TI_TX_RING_BASE);
1992				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1993			} else
1994				f = &sc->ti_rdata->ti_tx_ring[frag];
1995			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1996				break;
1997			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1998			f->ti_len = m->m_len;
1999			f->ti_flags = csum_flags;
2000
2001			if (ifv != NULL) {
2002				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2003				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
2004			} else {
2005				f->ti_vlan_tag = 0;
2006			}
2007
2008			/*
2009			 * Sanity check: avoid coming within 16 descriptors
2010			 * of the end of the ring.
2011			 */
2012			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2013				return(ENOBUFS);
2014			cur = frag;
2015			TI_INC(frag, TI_TX_RING_CNT);
2016			cnt++;
2017		}
2018	}
2019
2020	if (m != NULL)
2021		return(ENOBUFS);
2022
2023	if (frag == sc->ti_tx_saved_considx)
2024		return(ENOBUFS);
2025
2026	if (sc->ti_hwrev == TI_HWREV_TIGON)
2027		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2028		    TI_BDFLAG_END;
2029	else
2030		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2031	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2032	sc->ti_txcnt += cnt;
2033
2034	*txidx = frag;
2035
2036	return(0);
2037}
2038
2039/*
2040 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2041 * to the mbuf data regions directly in the transmit descriptors.
2042 */
2043static void ti_start(ifp)
2044	struct ifnet		*ifp;
2045{
2046	struct ti_softc		*sc;
2047	struct mbuf		*m_head = NULL;
2048	u_int32_t		prodidx = 0;
2049
2050	sc = ifp->if_softc;
2051	TI_LOCK(sc);
2052
2053	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2054
2055	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2056		IF_DEQUEUE(&ifp->if_snd, m_head);
2057		if (m_head == NULL)
2058			break;
2059
2060		/*
2061		 * XXX
2062		 * safety overkill.  If this is a fragmented packet chain
2063		 * with delayed TCP/UDP checksums, then only encapsulate
2064		 * it if we have enough descriptors to handle the entire
2065		 * chain at once.
2066		 * (paranoia -- may not actually be needed)
2067		 */
2068		if (m_head->m_flags & M_FIRSTFRAG &&
2069		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2070			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2071			    m_head->m_pkthdr.csum_data + 16) {
2072				IF_PREPEND(&ifp->if_snd, m_head);
2073				ifp->if_flags |= IFF_OACTIVE;
2074				break;
2075			}
2076		}
2077
2078		/*
2079		 * Pack the data into the transmit ring. If we
2080		 * don't have room, set the OACTIVE flag and wait
2081		 * for the NIC to drain the ring.
2082		 */
2083		if (ti_encap(sc, m_head, &prodidx)) {
2084			IF_PREPEND(&ifp->if_snd, m_head);
2085			ifp->if_flags |= IFF_OACTIVE;
2086			break;
2087		}
2088
2089		/*
2090		 * If there's a BPF listener, bounce a copy of this frame
2091		 * to him.
2092		 */
2093		if (ifp->if_bpf)
2094			bpf_mtap(ifp, m_head);
2095	}
2096
2097	/* Transmit */
2098	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2099
2100	/*
2101	 * Set a timeout in case the chip goes out to lunch.
2102	 */
2103	ifp->if_timer = 5;
2104	TI_UNLOCK(sc);
2105
2106	return;
2107}
2108
2109static void ti_init(xsc)
2110	void			*xsc;
2111{
2112	struct ti_softc		*sc = xsc;
2113
2114	/* Cancel pending I/O and flush buffers. */
2115	ti_stop(sc);
2116
2117	TI_LOCK(sc);
2118	/* Init the gen info block, ring control blocks and firmware. */
2119	if (ti_gibinit(sc)) {
2120		printf("ti%d: initialization failure\n", sc->ti_unit);
2121		TI_UNLOCK(sc);
2122		return;
2123	}
2124
2125	TI_UNLOCK(sc);
2126
2127	return;
2128}
2129
2130static void ti_init2(sc)
2131	struct ti_softc		*sc;
2132{
2133	struct ti_cmd_desc	cmd;
2134	struct ifnet		*ifp;
2135	u_int16_t		*m;
2136	struct ifmedia		*ifm;
2137	int			tmp;
2138
2139	ifp = &sc->arpcom.ac_if;
2140
2141	/* Specify MTU and interface index. */
2142	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2143	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2144	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2145	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2146
2147	/* Load our MAC address. */
2148	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2149	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2150	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2151	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2152
2153	/* Enable or disable promiscuous mode as needed. */
2154	if (ifp->if_flags & IFF_PROMISC) {
2155		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2156	} else {
2157		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2158	}
2159
2160	/* Program multicast filter. */
2161	ti_setmulti(sc);
2162
2163	/*
2164	 * If this is a Tigon 1, we should tell the
2165	 * firmware to use software packet filtering.
2166	 */
2167	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2168		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2169	}
2170
2171	/* Init RX ring. */
2172	ti_init_rx_ring_std(sc);
2173
2174	/* Init jumbo RX ring. */
2175	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2176		ti_init_rx_ring_jumbo(sc);
2177
2178	/*
2179	 * If this is a Tigon 2, we can also configure the
2180	 * mini ring.
2181	 */
2182	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2183		ti_init_rx_ring_mini(sc);
2184
2185	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2186	sc->ti_rx_saved_considx = 0;
2187
2188	/* Init TX ring. */
2189	ti_init_tx_ring(sc);
2190
2191	/* Tell firmware we're alive. */
2192	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2193
2194	/* Enable host interrupts. */
2195	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2196
2197	ifp->if_flags |= IFF_RUNNING;
2198	ifp->if_flags &= ~IFF_OACTIVE;
2199
2200	/*
2201	 * Make sure to set media properly. We have to do this
2202	 * here since we have to issue commands in order to set
2203	 * the link negotiation and we can't issue commands until
2204	 * the firmware is running.
2205	 */
2206	ifm = &sc->ifmedia;
2207	tmp = ifm->ifm_media;
2208	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2209	ti_ifmedia_upd(ifp);
2210	ifm->ifm_media = tmp;
2211
2212	return;
2213}
2214
2215/*
2216 * Set media options.
2217 */
2218static int ti_ifmedia_upd(ifp)
2219	struct ifnet		*ifp;
2220{
2221	struct ti_softc		*sc;
2222	struct ifmedia		*ifm;
2223	struct ti_cmd_desc	cmd;
2224
2225	sc = ifp->if_softc;
2226	ifm = &sc->ifmedia;
2227
2228	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2229		return(EINVAL);
2230
2231	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2232	case IFM_AUTO:
2233		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2234		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2235		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2236		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2237		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2238		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2239		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2240		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2241		break;
2242	case IFM_1000_SX:
2243	case IFM_1000_TX:
2244		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2245		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2246		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2247		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2248			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2249		}
2250		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2251		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2252		break;
2253	case IFM_100_FX:
2254	case IFM_10_FL:
2255	case IFM_100_TX:
2256	case IFM_10_T:
2257		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2258		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2259		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2260		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2261			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2262		} else {
2263			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2264		}
2265		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2266			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2267		} else {
2268			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2269		}
2270		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2271		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2272		break;
2273	}
2274
2275	return(0);
2276}
2277
2278/*
2279 * Report current media status.
2280 */
2281static void ti_ifmedia_sts(ifp, ifmr)
2282	struct ifnet		*ifp;
2283	struct ifmediareq	*ifmr;
2284{
2285	struct ti_softc		*sc;
2286	u_int32_t		media = 0;
2287
2288	sc = ifp->if_softc;
2289
2290	ifmr->ifm_status = IFM_AVALID;
2291	ifmr->ifm_active = IFM_ETHER;
2292
2293	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2294		return;
2295
2296	ifmr->ifm_status |= IFM_ACTIVE;
2297
2298	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2299		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2300		if (sc->ti_copper)
2301			ifmr->ifm_active |= IFM_1000_TX;
2302		else
2303			ifmr->ifm_active |= IFM_1000_SX;
2304		if (media & TI_GLNK_FULL_DUPLEX)
2305			ifmr->ifm_active |= IFM_FDX;
2306		else
2307			ifmr->ifm_active |= IFM_HDX;
2308	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2309		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2310		if (sc->ti_copper) {
2311			if (media & TI_LNK_100MB)
2312				ifmr->ifm_active |= IFM_100_TX;
2313			if (media & TI_LNK_10MB)
2314				ifmr->ifm_active |= IFM_10_T;
2315		} else {
2316			if (media & TI_LNK_100MB)
2317				ifmr->ifm_active |= IFM_100_FX;
2318			if (media & TI_LNK_10MB)
2319				ifmr->ifm_active |= IFM_10_FL;
2320		}
2321		if (media & TI_LNK_FULL_DUPLEX)
2322			ifmr->ifm_active |= IFM_FDX;
2323		if (media & TI_LNK_HALF_DUPLEX)
2324			ifmr->ifm_active |= IFM_HDX;
2325	}
2326
2327	return;
2328}
2329
2330static int ti_ioctl(ifp, command, data)
2331	struct ifnet		*ifp;
2332	u_long			command;
2333	caddr_t			data;
2334{
2335	struct ti_softc		*sc = ifp->if_softc;
2336	struct ifreq		*ifr = (struct ifreq *) data;
2337	int			mask, error = 0;
2338	struct ti_cmd_desc	cmd;
2339
2340	TI_LOCK(sc);
2341
2342	switch(command) {
2343	case SIOCSIFADDR:
2344	case SIOCGIFADDR:
2345		error = ether_ioctl(ifp, command, data);
2346		break;
2347	case SIOCSIFMTU:
2348		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2349			error = EINVAL;
2350		else {
2351			ifp->if_mtu = ifr->ifr_mtu;
2352			ti_init(sc);
2353		}
2354		break;
2355	case SIOCSIFFLAGS:
2356		if (ifp->if_flags & IFF_UP) {
2357			/*
2358			 * If only the state of the PROMISC flag changed,
2359			 * then just use the 'set promisc mode' command
2360			 * instead of reinitializing the entire NIC. Doing
2361			 * a full re-init means reloading the firmware and
2362			 * waiting for it to start up, which may take a
2363			 * second or two.
2364			 */
2365			if (ifp->if_flags & IFF_RUNNING &&
2366			    ifp->if_flags & IFF_PROMISC &&
2367			    !(sc->ti_if_flags & IFF_PROMISC)) {
2368				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2369				    TI_CMD_CODE_PROMISC_ENB, 0);
2370			} else if (ifp->if_flags & IFF_RUNNING &&
2371			    !(ifp->if_flags & IFF_PROMISC) &&
2372			    sc->ti_if_flags & IFF_PROMISC) {
2373				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2374				    TI_CMD_CODE_PROMISC_DIS, 0);
2375			} else
2376				ti_init(sc);
2377		} else {
2378			if (ifp->if_flags & IFF_RUNNING) {
2379				ti_stop(sc);
2380			}
2381		}
2382		sc->ti_if_flags = ifp->if_flags;
2383		error = 0;
2384		break;
2385	case SIOCADDMULTI:
2386	case SIOCDELMULTI:
2387		if (ifp->if_flags & IFF_RUNNING) {
2388			ti_setmulti(sc);
2389			error = 0;
2390		}
2391		break;
2392	case SIOCSIFMEDIA:
2393	case SIOCGIFMEDIA:
2394		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2395		break;
2396	case SIOCSIFCAP:
2397		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2398		if (mask & IFCAP_HWCSUM) {
2399			if (IFCAP_HWCSUM & ifp->if_capenable)
2400				ifp->if_capenable &= ~IFCAP_HWCSUM;
2401                        else
2402                                ifp->if_capenable |= IFCAP_HWCSUM;
2403			if (ifp->if_flags & IFF_RUNNING)
2404				ti_init(sc);
2405                }
2406		error = 0;
2407		break;
2408	default:
2409		error = EINVAL;
2410		break;
2411	}
2412
2413	TI_UNLOCK(sc);
2414
2415	return(error);
2416}
2417
2418static void ti_watchdog(ifp)
2419	struct ifnet		*ifp;
2420{
2421	struct ti_softc		*sc;
2422
2423	sc = ifp->if_softc;
2424	TI_LOCK(sc);
2425
2426	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2427	ti_stop(sc);
2428	ti_init(sc);
2429
2430	ifp->if_oerrors++;
2431	TI_UNLOCK(sc);
2432
2433	return;
2434}
2435
2436/*
2437 * Stop the adapter and free any mbufs allocated to the
2438 * RX and TX lists.
2439 */
2440static void ti_stop(sc)
2441	struct ti_softc		*sc;
2442{
2443	struct ifnet		*ifp;
2444	struct ti_cmd_desc	cmd;
2445
2446	TI_LOCK(sc);
2447
2448	ifp = &sc->arpcom.ac_if;
2449
2450	/* Disable host interrupts. */
2451	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2452	/*
2453	 * Tell firmware we're shutting down.
2454	 */
2455	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2456
2457	/* Halt and reinitialize. */
2458	ti_chipinit(sc);
2459	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2460	ti_chipinit(sc);
2461
2462	/* Free the RX lists. */
2463	ti_free_rx_ring_std(sc);
2464
2465	/* Free jumbo RX list. */
2466	ti_free_rx_ring_jumbo(sc);
2467
2468	/* Free mini RX list. */
2469	ti_free_rx_ring_mini(sc);
2470
2471	/* Free TX buffers. */
2472	ti_free_tx_ring(sc);
2473
2474	sc->ti_ev_prodidx.ti_idx = 0;
2475	sc->ti_return_prodidx.ti_idx = 0;
2476	sc->ti_tx_considx.ti_idx = 0;
2477	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2478
2479	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2480	TI_UNLOCK(sc);
2481
2482	return;
2483}
2484
2485/*
2486 * Stop all chip I/O so that the kernel's probe routines don't
2487 * get confused by errant DMAs when rebooting.
2488 */
2489static void ti_shutdown(dev)
2490	device_t		dev;
2491{
2492	struct ti_softc		*sc;
2493
2494	sc = device_get_softc(dev);
2495	TI_LOCK(sc);
2496	ti_chipinit(sc);
2497	TI_UNLOCK(sc);
2498
2499	return;
2500}
2501