if_ti.c revision 68621
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/ti/if_ti.c 68621 2000-11-11 23:08:22Z bmilekic $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include "vlan.h"
82
83#include <sys/param.h>
84#include <sys/systm.h>
85#include <sys/sockio.h>
86#include <sys/mbuf.h>
87#include <sys/malloc.h>
88#include <sys/kernel.h>
89#include <sys/socket.h>
90#include <sys/queue.h>
91
92#include <net/if.h>
93#include <net/if_arp.h>
94#include <net/ethernet.h>
95#include <net/if_dl.h>
96#include <net/if_media.h>
97
98#include <net/bpf.h>
99
100#if NVLAN > 0
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103#endif
104
105#include <netinet/in_systm.h>
106#include <netinet/in.h>
107#include <netinet/ip.h>
108
109#include <vm/vm.h>              /* for vtophys */
110#include <vm/pmap.h>            /* for vtophys */
111#include <machine/bus_memio.h>
112#include <machine/bus.h>
113#include <machine/resource.h>
114#include <sys/bus.h>
115#include <sys/rman.h>
116
117#include <pci/pcireg.h>
118#include <pci/pcivar.h>
119
120#include <pci/if_tireg.h>
121#include <pci/ti_fw.h>
122#include <pci/ti_fw2.h>
123
124#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
125
126#if !defined(lint)
127static const char rcsid[] =
128  "$FreeBSD: head/sys/dev/ti/if_ti.c 68621 2000-11-11 23:08:22Z bmilekic $";
129#endif
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134
135static struct ti_type ti_devs[] = {
136	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
137		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
138	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
139		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
140	{ TC_VENDORID,	TC_DEVICEID_3C985,
141		"3Com 3c985-SX Gigabit Ethernet" },
142	{ NG_VENDORID, NG_DEVICEID_GA620,
143		"Netgear GA620 1000baseSX Gigabit Ethernet" },
144	{ NG_VENDORID, NG_DEVICEID_GA620T,
145		"Netgear GA620 1000baseT Gigabit Ethernet" },
146	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
147		"Silicon Graphics Gigabit Ethernet" },
148	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
149		"Farallon PN9000SX Gigabit Ethernet" },
150	{ 0, 0, NULL }
151};
152
153static int ti_probe		__P((device_t));
154static int ti_attach		__P((device_t));
155static int ti_detach		__P((device_t));
156static void ti_txeof		__P((struct ti_softc *));
157static void ti_rxeof		__P((struct ti_softc *));
158
159static void ti_stats_update	__P((struct ti_softc *));
160static int ti_encap		__P((struct ti_softc *, struct mbuf *,
161					u_int32_t *));
162
163static void ti_intr		__P((void *));
164static void ti_start		__P((struct ifnet *));
165static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
166static void ti_init		__P((void *));
167static void ti_init2		__P((struct ti_softc *));
168static void ti_stop		__P((struct ti_softc *));
169static void ti_watchdog		__P((struct ifnet *));
170static void ti_shutdown		__P((device_t));
171static int ti_ifmedia_upd	__P((struct ifnet *));
172static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
173
174static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
175static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
176						int, u_int8_t *));
177static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
178
179static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
180static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
181static void ti_setmulti		__P((struct ti_softc *));
182
183static void ti_mem		__P((struct ti_softc *, u_int32_t,
184					u_int32_t, caddr_t));
185static void ti_loadfw		__P((struct ti_softc *));
186static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
187static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
188					caddr_t, int));
189static void ti_handle_events	__P((struct ti_softc *));
190static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
191static void *ti_jalloc		__P((struct ti_softc *));
192static void ti_jfree		__P((caddr_t, void *));
193static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
194static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
195static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
196static int ti_init_rx_ring_std	__P((struct ti_softc *));
197static void ti_free_rx_ring_std	__P((struct ti_softc *));
198static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
199static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
200static int ti_init_rx_ring_mini	__P((struct ti_softc *));
201static void ti_free_rx_ring_mini	__P((struct ti_softc *));
202static void ti_free_tx_ring	__P((struct ti_softc *));
203static int ti_init_tx_ring	__P((struct ti_softc *));
204
205static int ti_64bitslot_war	__P((struct ti_softc *));
206static int ti_chipinit		__P((struct ti_softc *));
207static int ti_gibinit		__P((struct ti_softc *));
208
209static device_method_t ti_methods[] = {
210	/* Device interface */
211	DEVMETHOD(device_probe,		ti_probe),
212	DEVMETHOD(device_attach,	ti_attach),
213	DEVMETHOD(device_detach,	ti_detach),
214	DEVMETHOD(device_shutdown,	ti_shutdown),
215	{ 0, 0 }
216};
217
218static driver_t ti_driver = {
219	"ti",
220	ti_methods,
221	sizeof(struct ti_softc)
222};
223
224static devclass_t ti_devclass;
225
226DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
227
228/*
229 * Send an instruction or address to the EEPROM, check for ACK.
230 */
231static u_int32_t ti_eeprom_putbyte(sc, byte)
232	struct ti_softc		*sc;
233	int			byte;
234{
235	register int		i, ack = 0;
236
237	/*
238	 * Make sure we're in TX mode.
239	 */
240	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241
242	/*
243	 * Feed in each bit and stobe the clock.
244	 */
245	for (i = 0x80; i; i >>= 1) {
246		if (byte & i) {
247			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248		} else {
249			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250		}
251		DELAY(1);
252		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253		DELAY(1);
254		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255	}
256
257	/*
258	 * Turn off TX mode.
259	 */
260	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
261
262	/*
263	 * Check for ack.
264	 */
265	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
267	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
268
269	return(ack);
270}
271
272/*
273 * Read a byte of data stored in the EEPROM at address 'addr.'
274 * We have to send two address bytes since the EEPROM can hold
275 * more than 256 bytes of data.
276 */
277static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
278	struct ti_softc		*sc;
279	int			addr;
280	u_int8_t		*dest;
281{
282	register int		i;
283	u_int8_t		byte = 0;
284
285	EEPROM_START;
286
287	/*
288	 * Send write control code to EEPROM.
289	 */
290	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
291		printf("ti%d: failed to send write command, status: %x\n",
292		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
293		return(1);
294	}
295
296	/*
297	 * Send first byte of address of byte we want to read.
298	 */
299	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
300		printf("ti%d: failed to send address, status: %x\n",
301		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302		return(1);
303	}
304	/*
305	 * Send second byte address of byte we want to read.
306	 */
307	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
308		printf("ti%d: failed to send address, status: %x\n",
309		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310		return(1);
311	}
312
313	EEPROM_STOP;
314	EEPROM_START;
315	/*
316	 * Send read control code to EEPROM.
317	 */
318	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
319		printf("ti%d: failed to send read command, status: %x\n",
320		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
321		return(1);
322	}
323
324	/*
325	 * Start reading bits from EEPROM.
326	 */
327	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
328	for (i = 0x80; i; i >>= 1) {
329		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330		DELAY(1);
331		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
332			byte |= i;
333		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
334		DELAY(1);
335	}
336
337	EEPROM_STOP;
338
339	/*
340	 * No ACK generated for read, so just return byte.
341	 */
342
343	*dest = byte;
344
345	return(0);
346}
347
348/*
349 * Read a sequence of bytes from the EEPROM.
350 */
351static int ti_read_eeprom(sc, dest, off, cnt)
352	struct ti_softc		*sc;
353	caddr_t			dest;
354	int			off;
355	int			cnt;
356{
357	int			err = 0, i;
358	u_int8_t		byte = 0;
359
360	for (i = 0; i < cnt; i++) {
361		err = ti_eeprom_getbyte(sc, off + i, &byte);
362		if (err)
363			break;
364		*(dest + i) = byte;
365	}
366
367	return(err ? 1 : 0);
368}
369
370/*
371 * NIC memory access function. Can be used to either clear a section
372 * of NIC local memory or (if buf is non-NULL) copy data into it.
373 */
374static void ti_mem(sc, addr, len, buf)
375	struct ti_softc		*sc;
376	u_int32_t		addr, len;
377	caddr_t			buf;
378{
379	int			segptr, segsize, cnt;
380	caddr_t			ti_winbase, ptr;
381
382	segptr = addr;
383	cnt = len;
384	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
385	ptr = buf;
386
387	while(cnt) {
388		if (cnt < TI_WINLEN)
389			segsize = cnt;
390		else
391			segsize = TI_WINLEN - (segptr % TI_WINLEN);
392		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
393		if (buf == NULL)
394			bzero((char *)ti_winbase + (segptr &
395			    (TI_WINLEN - 1)), segsize);
396		else {
397			bcopy((char *)ptr, (char *)ti_winbase +
398			    (segptr & (TI_WINLEN - 1)), segsize);
399			ptr += segsize;
400		}
401		segptr += segsize;
402		cnt -= segsize;
403	}
404
405	return;
406}
407
408/*
409 * Load firmware image into the NIC. Check that the firmware revision
410 * is acceptable and see if we want the firmware for the Tigon 1 or
411 * Tigon 2.
412 */
413static void ti_loadfw(sc)
414	struct ti_softc		*sc;
415{
416	switch(sc->ti_hwrev) {
417	case TI_HWREV_TIGON:
418		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421			printf("ti%d: firmware revision mismatch; want "
422			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
423			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425			    tigonFwReleaseMinor, tigonFwReleaseFix);
426			return;
427		}
428		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429		    (caddr_t)tigonFwText);
430		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431		    (caddr_t)tigonFwData);
432		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433		    (caddr_t)tigonFwRodata);
434		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437		break;
438	case TI_HWREV_TIGON_II:
439		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442			printf("ti%d: firmware revision mismatch; want "
443			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
444			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
447			return;
448		}
449		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450		    (caddr_t)tigon2FwText);
451		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452		    (caddr_t)tigon2FwData);
453		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454		    (caddr_t)tigon2FwRodata);
455		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458		break;
459	default:
460		printf("ti%d: can't load firmware: unknown hardware rev\n",
461		    sc->ti_unit);
462		break;
463	}
464
465	return;
466}
467
468/*
469 * Send the NIC a command via the command ring.
470 */
471static void ti_cmd(sc, cmd)
472	struct ti_softc		*sc;
473	struct ti_cmd_desc	*cmd;
474{
475	u_int32_t		index;
476
477	if (sc->ti_rdata->ti_cmd_ring == NULL)
478		return;
479
480	index = sc->ti_cmd_saved_prodidx;
481	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
482	TI_INC(index, TI_CMD_RING_CNT);
483	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
484	sc->ti_cmd_saved_prodidx = index;
485
486	return;
487}
488
489/*
490 * Send the NIC an extended command. The 'len' parameter specifies the
491 * number of command slots to include after the initial command.
492 */
493static void ti_cmd_ext(sc, cmd, arg, len)
494	struct ti_softc		*sc;
495	struct ti_cmd_desc	*cmd;
496	caddr_t			arg;
497	int			len;
498{
499	u_int32_t		index;
500	register int		i;
501
502	if (sc->ti_rdata->ti_cmd_ring == NULL)
503		return;
504
505	index = sc->ti_cmd_saved_prodidx;
506	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
507	TI_INC(index, TI_CMD_RING_CNT);
508	for (i = 0; i < len; i++) {
509		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
510		    *(u_int32_t *)(&arg[i * 4]));
511		TI_INC(index, TI_CMD_RING_CNT);
512	}
513	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
514	sc->ti_cmd_saved_prodidx = index;
515
516	return;
517}
518
519/*
520 * Handle events that have triggered interrupts.
521 */
522static void ti_handle_events(sc)
523	struct ti_softc		*sc;
524{
525	struct ti_event_desc	*e;
526
527	if (sc->ti_rdata->ti_event_ring == NULL)
528		return;
529
530	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
531		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
532		switch(e->ti_event) {
533		case TI_EV_LINKSTAT_CHANGED:
534			sc->ti_linkstat = e->ti_code;
535			if (e->ti_code == TI_EV_CODE_LINK_UP)
536				printf("ti%d: 10/100 link up\n", sc->ti_unit);
537			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
538				printf("ti%d: gigabit link up\n", sc->ti_unit);
539			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
540				printf("ti%d: link down\n", sc->ti_unit);
541			break;
542		case TI_EV_ERROR:
543			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
544				printf("ti%d: invalid command\n", sc->ti_unit);
545			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
546				printf("ti%d: unknown command\n", sc->ti_unit);
547			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
548				printf("ti%d: bad config data\n", sc->ti_unit);
549			break;
550		case TI_EV_FIRMWARE_UP:
551			ti_init2(sc);
552			break;
553		case TI_EV_STATS_UPDATED:
554			ti_stats_update(sc);
555			break;
556		case TI_EV_RESET_JUMBO_RING:
557		case TI_EV_MCAST_UPDATED:
558			/* Who cares. */
559			break;
560		default:
561			printf("ti%d: unknown event: %d\n",
562			    sc->ti_unit, e->ti_event);
563			break;
564		}
565		/* Advance the consumer index. */
566		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568	}
569
570	return;
571}
572
573/*
574 * Memory management for the jumbo receive ring is a pain in the
575 * butt. We need to allocate at least 9018 bytes of space per frame,
576 * _and_ it has to be contiguous (unless you use the extended
577 * jumbo descriptor format). Using malloc() all the time won't
578 * work: malloc() allocates memory in powers of two, which means we
579 * would end up wasting a considerable amount of space by allocating
580 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581 * to do our own memory management.
582 *
583 * The driver needs to allocate a contiguous chunk of memory at boot
584 * time. We then chop this up ourselves into 9K pieces and use them
585 * as external mbuf storage.
586 *
587 * One issue here is how much memory to allocate. The jumbo ring has
588 * 256 slots in it, but at 9K per slot than can consume over 2MB of
589 * RAM. This is a bit much, especially considering we also need
590 * RAM for the standard ring and mini ring (on the Tigon 2). To
591 * save space, we only actually allocate enough memory for 64 slots
592 * by default, which works out to between 500 and 600K. This can
593 * be tuned by changing a #define in if_tireg.h.
594 */
595
596static int ti_alloc_jumbo_mem(sc)
597	struct ti_softc		*sc;
598{
599	caddr_t			ptr;
600	register int		i;
601	struct ti_jpool_entry   *entry;
602
603	/* Grab a big chunk o' storage. */
604	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
605		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
606
607	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
608		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
609		return(ENOBUFS);
610	}
611
612	SLIST_INIT(&sc->ti_jfree_listhead);
613	SLIST_INIT(&sc->ti_jinuse_listhead);
614
615	/*
616	 * Now divide it up into 9K pieces and save the addresses
617	 * in an array.
618	 */
619	ptr = sc->ti_cdata.ti_jumbo_buf;
620	for (i = 0; i < TI_JSLOTS; i++) {
621		sc->ti_cdata.ti_jslots[i] = ptr;
622		ptr += TI_JLEN;
623		entry = malloc(sizeof(struct ti_jpool_entry),
624			       M_DEVBUF, M_NOWAIT);
625		if (entry == NULL) {
626			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
627			           M_DEVBUF);
628			sc->ti_cdata.ti_jumbo_buf = NULL;
629			printf("ti%d: no memory for jumbo "
630			    "buffer queue!\n", sc->ti_unit);
631			return(ENOBUFS);
632		}
633		entry->slot = i;
634		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
635	}
636
637	return(0);
638}
639
640/*
641 * Allocate a jumbo buffer.
642 */
643static void *ti_jalloc(sc)
644	struct ti_softc		*sc;
645{
646	struct ti_jpool_entry   *entry;
647
648	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
649
650	if (entry == NULL) {
651		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
652		return(NULL);
653	}
654
655	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
656	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
657	return(sc->ti_cdata.ti_jslots[entry->slot]);
658}
659
660/*
661 * Release a jumbo buffer.
662 */
663static void ti_jfree(buf, args)
664	caddr_t			buf;
665	void			*args;
666{
667	struct ti_softc		*sc;
668	int		        i;
669	struct ti_jpool_entry   *entry;
670
671	/* Extract the softc struct pointer. */
672	sc = (struct ti_softc *)args;
673
674	if (sc == NULL)
675		panic("ti_jfree: didn't get softc pointer!");
676
677	/* calculate the slot this buffer belongs to */
678	i = ((vm_offset_t)buf
679	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
680
681	if ((i < 0) || (i >= TI_JSLOTS))
682		panic("ti_jfree: asked to free buffer that we don't manage!");
683
684	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
685	if (entry == NULL)
686		panic("ti_jfree: buffer not in use!");
687	entry->slot = i;
688	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
689	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
690
691	return;
692}
693
694
695/*
696 * Intialize a standard receive ring descriptor.
697 */
698static int ti_newbuf_std(sc, i, m)
699	struct ti_softc		*sc;
700	int			i;
701	struct mbuf		*m;
702{
703	struct mbuf		*m_new = NULL;
704	struct ti_rx_desc	*r;
705
706	if (m == NULL) {
707		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
708		if (m_new == NULL) {
709			printf("ti%d: mbuf allocation failed "
710			    "-- packet dropped!\n", sc->ti_unit);
711			return(ENOBUFS);
712		}
713
714		MCLGET(m_new, M_DONTWAIT);
715		if (!(m_new->m_flags & M_EXT)) {
716			printf("ti%d: cluster allocation failed "
717			    "-- packet dropped!\n", sc->ti_unit);
718			m_freem(m_new);
719			return(ENOBUFS);
720		}
721		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
722	} else {
723		m_new = m;
724		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
725		m_new->m_data = m_new->m_ext.ext_buf;
726	}
727
728	m_adj(m_new, ETHER_ALIGN);
729	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
730	r = &sc->ti_rdata->ti_rx_std_ring[i];
731	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
732	r->ti_type = TI_BDTYPE_RECV_BD;
733	r->ti_flags = 0;
734	if (sc->arpcom.ac_if.if_hwassist)
735		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
736	r->ti_len = m_new->m_len;
737	r->ti_idx = i;
738
739	return(0);
740}
741
742/*
743 * Intialize a mini receive ring descriptor. This only applies to
744 * the Tigon 2.
745 */
746static int ti_newbuf_mini(sc, i, m)
747	struct ti_softc		*sc;
748	int			i;
749	struct mbuf		*m;
750{
751	struct mbuf		*m_new = NULL;
752	struct ti_rx_desc	*r;
753
754	if (m == NULL) {
755		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
756		if (m_new == NULL) {
757			printf("ti%d: mbuf allocation failed "
758			    "-- packet dropped!\n", sc->ti_unit);
759			return(ENOBUFS);
760		}
761		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
762	} else {
763		m_new = m;
764		m_new->m_data = m_new->m_pktdat;
765		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
766	}
767
768	m_adj(m_new, ETHER_ALIGN);
769	r = &sc->ti_rdata->ti_rx_mini_ring[i];
770	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
771	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
772	r->ti_type = TI_BDTYPE_RECV_BD;
773	r->ti_flags = TI_BDFLAG_MINI_RING;
774	if (sc->arpcom.ac_if.if_hwassist)
775		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
776	r->ti_len = m_new->m_len;
777	r->ti_idx = i;
778
779	return(0);
780}
781
782/*
783 * Initialize a jumbo receive ring descriptor. This allocates
784 * a jumbo buffer from the pool managed internally by the driver.
785 */
786static int ti_newbuf_jumbo(sc, i, m)
787	struct ti_softc		*sc;
788	int			i;
789	struct mbuf		*m;
790{
791	struct mbuf		*m_new = NULL;
792	struct ti_rx_desc	*r;
793
794	if (m == NULL) {
795		caddr_t			*buf = NULL;
796
797		/* Allocate the mbuf. */
798		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
799		if (m_new == NULL) {
800			printf("ti%d: mbuf allocation failed "
801			    "-- packet dropped!\n", sc->ti_unit);
802			return(ENOBUFS);
803		}
804
805		/* Allocate the jumbo buffer */
806		buf = ti_jalloc(sc);
807		if (buf == NULL) {
808			m_freem(m_new);
809			printf("ti%d: jumbo allocation failed "
810			    "-- packet dropped!\n", sc->ti_unit);
811			return(ENOBUFS);
812		}
813
814		/* Attach the buffer to the mbuf. */
815		m_new->m_data = (void *) buf;
816		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
817		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
818		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
819	} else {
820		m_new = m;
821		m_new->m_data = m_new->m_ext.ext_buf;
822		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
823	}
824
825	m_adj(m_new, ETHER_ALIGN);
826	/* Set up the descriptor. */
827	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
828	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
829	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
830	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
831	r->ti_flags = TI_BDFLAG_JUMBO_RING;
832	if (sc->arpcom.ac_if.if_hwassist)
833		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
834	r->ti_len = m_new->m_len;
835	r->ti_idx = i;
836
837	return(0);
838}
839
840/*
841 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
842 * that's 1MB or memory, which is a lot. For now, we fill only the first
843 * 256 ring entries and hope that our CPU is fast enough to keep up with
844 * the NIC.
845 */
846static int ti_init_rx_ring_std(sc)
847	struct ti_softc		*sc;
848{
849	register int		i;
850	struct ti_cmd_desc	cmd;
851
852	for (i = 0; i < TI_SSLOTS; i++) {
853		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
854			return(ENOBUFS);
855	};
856
857	TI_UPDATE_STDPROD(sc, i - 1);
858	sc->ti_std = i - 1;
859
860	return(0);
861}
862
863static void ti_free_rx_ring_std(sc)
864	struct ti_softc		*sc;
865{
866	register int		i;
867
868	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
869		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
870			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
871			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
872		}
873		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
874		    sizeof(struct ti_rx_desc));
875	}
876
877	return;
878}
879
880static int ti_init_rx_ring_jumbo(sc)
881	struct ti_softc		*sc;
882{
883	register int		i;
884	struct ti_cmd_desc	cmd;
885
886	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
887		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
888			return(ENOBUFS);
889	};
890
891	TI_UPDATE_JUMBOPROD(sc, i - 1);
892	sc->ti_jumbo = i - 1;
893
894	return(0);
895}
896
897static void ti_free_rx_ring_jumbo(sc)
898	struct ti_softc		*sc;
899{
900	register int		i;
901
902	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
903		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
904			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
905			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
906		}
907		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
908		    sizeof(struct ti_rx_desc));
909	}
910
911	return;
912}
913
914static int ti_init_rx_ring_mini(sc)
915	struct ti_softc		*sc;
916{
917	register int		i;
918
919	for (i = 0; i < TI_MSLOTS; i++) {
920		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
921			return(ENOBUFS);
922	};
923
924	TI_UPDATE_MINIPROD(sc, i - 1);
925	sc->ti_mini = i - 1;
926
927	return(0);
928}
929
930static void ti_free_rx_ring_mini(sc)
931	struct ti_softc		*sc;
932{
933	register int		i;
934
935	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
936		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
937			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
938			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
939		}
940		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
941		    sizeof(struct ti_rx_desc));
942	}
943
944	return;
945}
946
947static void ti_free_tx_ring(sc)
948	struct ti_softc		*sc;
949{
950	register int		i;
951
952	if (sc->ti_rdata->ti_tx_ring == NULL)
953		return;
954
955	for (i = 0; i < TI_TX_RING_CNT; i++) {
956		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
957			m_freem(sc->ti_cdata.ti_tx_chain[i]);
958			sc->ti_cdata.ti_tx_chain[i] = NULL;
959		}
960		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
961		    sizeof(struct ti_tx_desc));
962	}
963
964	return;
965}
966
967static int ti_init_tx_ring(sc)
968	struct ti_softc		*sc;
969{
970	sc->ti_txcnt = 0;
971	sc->ti_tx_saved_considx = 0;
972	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
973	return(0);
974}
975
976/*
977 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
978 * but we have to support the old way too so that Tigon 1 cards will
979 * work.
980 */
981void ti_add_mcast(sc, addr)
982	struct ti_softc		*sc;
983	struct ether_addr	*addr;
984{
985	struct ti_cmd_desc	cmd;
986	u_int16_t		*m;
987	u_int32_t		ext[2] = {0, 0};
988
989	m = (u_int16_t *)&addr->octet[0];
990
991	switch(sc->ti_hwrev) {
992	case TI_HWREV_TIGON:
993		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
994		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
995		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
996		break;
997	case TI_HWREV_TIGON_II:
998		ext[0] = htons(m[0]);
999		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1000		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1001		break;
1002	default:
1003		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1004		break;
1005	}
1006
1007	return;
1008}
1009
1010void ti_del_mcast(sc, addr)
1011	struct ti_softc		*sc;
1012	struct ether_addr	*addr;
1013{
1014	struct ti_cmd_desc	cmd;
1015	u_int16_t		*m;
1016	u_int32_t		ext[2] = {0, 0};
1017
1018	m = (u_int16_t *)&addr->octet[0];
1019
1020	switch(sc->ti_hwrev) {
1021	case TI_HWREV_TIGON:
1022		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1023		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1024		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1025		break;
1026	case TI_HWREV_TIGON_II:
1027		ext[0] = htons(m[0]);
1028		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1029		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1030		break;
1031	default:
1032		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1033		break;
1034	}
1035
1036	return;
1037}
1038
1039/*
1040 * Configure the Tigon's multicast address filter.
1041 *
1042 * The actual multicast table management is a bit of a pain, thanks to
1043 * slight brain damage on the part of both Alteon and us. With our
1044 * multicast code, we are only alerted when the multicast address table
1045 * changes and at that point we only have the current list of addresses:
1046 * we only know the current state, not the previous state, so we don't
1047 * actually know what addresses were removed or added. The firmware has
1048 * state, but we can't get our grubby mits on it, and there is no 'delete
1049 * all multicast addresses' command. Hence, we have to maintain our own
1050 * state so we know what addresses have been programmed into the NIC at
1051 * any given time.
1052 */
1053static void ti_setmulti(sc)
1054	struct ti_softc		*sc;
1055{
1056	struct ifnet		*ifp;
1057	struct ifmultiaddr	*ifma;
1058	struct ti_cmd_desc	cmd;
1059	struct ti_mc_entry	*mc;
1060	u_int32_t		intrs;
1061
1062	ifp = &sc->arpcom.ac_if;
1063
1064	if (ifp->if_flags & IFF_ALLMULTI) {
1065		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1066		return;
1067	} else {
1068		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1069	}
1070
1071	/* Disable interrupts. */
1072	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1073	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1074
1075	/* First, zot all the existing filters. */
1076	while (sc->ti_mc_listhead.slh_first != NULL) {
1077		mc = sc->ti_mc_listhead.slh_first;
1078		ti_del_mcast(sc, &mc->mc_addr);
1079		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1080		free(mc, M_DEVBUF);
1081	}
1082
1083	/* Now program new ones. */
1084	for (ifma = ifp->if_multiaddrs.lh_first;
1085	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1086		if (ifma->ifma_addr->sa_family != AF_LINK)
1087			continue;
1088		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1089		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1090		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1091		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1092		ti_add_mcast(sc, &mc->mc_addr);
1093	}
1094
1095	/* Re-enable interrupts. */
1096	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1097
1098	return;
1099}
1100
1101/*
1102 * Check to see if the BIOS has configured us for a 64 bit slot when
1103 * we aren't actually in one. If we detect this condition, we can work
1104 * around it on the Tigon 2 by setting a bit in the PCI state register,
1105 * but for the Tigon 1 we must give up and abort the interface attach.
1106 */
1107static int ti_64bitslot_war(sc)
1108	struct ti_softc		*sc;
1109{
1110	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1111		CSR_WRITE_4(sc, 0x600, 0);
1112		CSR_WRITE_4(sc, 0x604, 0);
1113		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1114		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1115			if (sc->ti_hwrev == TI_HWREV_TIGON)
1116				return(EINVAL);
1117			else {
1118				TI_SETBIT(sc, TI_PCI_STATE,
1119				    TI_PCISTATE_32BIT_BUS);
1120				return(0);
1121			}
1122		}
1123	}
1124
1125	return(0);
1126}
1127
1128/*
1129 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1130 * self-test results.
1131 */
1132static int ti_chipinit(sc)
1133	struct ti_softc		*sc;
1134{
1135	u_int32_t		cacheline;
1136	u_int32_t		pci_writemax = 0;
1137
1138	/* Initialize link to down state. */
1139	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1140
1141	sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1142
1143	/* Set endianness before we access any non-PCI registers. */
1144#if BYTE_ORDER == BIG_ENDIAN
1145	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1146	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1147#else
1148	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1149	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1150#endif
1151
1152	/* Check the ROM failed bit to see if self-tests passed. */
1153	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1154		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1155		return(ENODEV);
1156	}
1157
1158	/* Halt the CPU. */
1159	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1160
1161	/* Figure out the hardware revision. */
1162	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1163	case TI_REV_TIGON_I:
1164		sc->ti_hwrev = TI_HWREV_TIGON;
1165		break;
1166	case TI_REV_TIGON_II:
1167		sc->ti_hwrev = TI_HWREV_TIGON_II;
1168		break;
1169	default:
1170		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1171		return(ENODEV);
1172	}
1173
1174	/* Do special setup for Tigon 2. */
1175	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1176		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1177		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1178		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1179	}
1180
1181	/* Set up the PCI state register. */
1182	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1183	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1184		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1185	}
1186
1187	/* Clear the read/write max DMA parameters. */
1188	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1189	    TI_PCISTATE_READ_MAXDMA));
1190
1191	/* Get cache line size. */
1192	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1193
1194	/*
1195	 * If the system has set enabled the PCI memory write
1196	 * and invalidate command in the command register, set
1197	 * the write max parameter accordingly. This is necessary
1198	 * to use MWI with the Tigon 2.
1199	 */
1200	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1201		switch(cacheline) {
1202		case 1:
1203		case 4:
1204		case 8:
1205		case 16:
1206		case 32:
1207		case 64:
1208			break;
1209		default:
1210		/* Disable PCI memory write and invalidate. */
1211			if (bootverbose)
1212				printf("ti%d: cache line size %d not "
1213				    "supported; disabling PCI MWI\n",
1214				    sc->ti_unit, cacheline);
1215			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1216			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1217			break;
1218		}
1219	}
1220
1221#ifdef __brokenalpha__
1222	/*
1223	 * From the Alteon sample driver:
1224	 * Must insure that we do not cross an 8K (bytes) boundary
1225	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1226	 * restriction on some ALPHA platforms with early revision
1227	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1228	 */
1229	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1230#else
1231	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1232#endif
1233
1234	/* This sets the min dma param all the way up (0xff). */
1235	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1236
1237	/* Configure DMA variables. */
1238#if BYTE_ORDER == BIG_ENDIAN
1239	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1240	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1241	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1242	    TI_OPMODE_DONT_FRAG_JUMBO);
1243#else
1244	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1245	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1246	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1247#endif
1248
1249	/*
1250	 * Only allow 1 DMA channel to be active at a time.
1251	 * I don't think this is a good idea, but without it
1252	 * the firmware racks up lots of nicDmaReadRingFull
1253	 * errors.  This is not compatible with hardware checksums.
1254	 */
1255	if (sc->arpcom.ac_if.if_hwassist == 0)
1256		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1257
1258	/* Recommended settings from Tigon manual. */
1259	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1260	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1261
1262	if (ti_64bitslot_war(sc)) {
1263		printf("ti%d: bios thinks we're in a 64 bit slot, "
1264		    "but we aren't", sc->ti_unit);
1265		return(EINVAL);
1266	}
1267
1268	return(0);
1269}
1270
1271/*
1272 * Initialize the general information block and firmware, and
1273 * start the CPU(s) running.
1274 */
1275static int ti_gibinit(sc)
1276	struct ti_softc		*sc;
1277{
1278	struct ti_rcb		*rcb;
1279	int			i;
1280	struct ifnet		*ifp;
1281
1282	ifp = &sc->arpcom.ac_if;
1283
1284	/* Disable interrupts for now. */
1285	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1286
1287	/* Tell the chip where to find the general information block. */
1288	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1289	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1290
1291	/* Load the firmware into SRAM. */
1292	ti_loadfw(sc);
1293
1294	/* Set up the contents of the general info and ring control blocks. */
1295
1296	/* Set up the event ring and producer pointer. */
1297	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1298
1299	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1300	rcb->ti_flags = 0;
1301	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1302	    vtophys(&sc->ti_ev_prodidx);
1303	sc->ti_ev_prodidx.ti_idx = 0;
1304	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1305	sc->ti_ev_saved_considx = 0;
1306
1307	/* Set up the command ring and producer mailbox. */
1308	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1309
1310	sc->ti_rdata->ti_cmd_ring =
1311	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1312	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1313	rcb->ti_flags = 0;
1314	rcb->ti_max_len = 0;
1315	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1316		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1317	}
1318	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1319	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1320	sc->ti_cmd_saved_prodidx = 0;
1321
1322	/*
1323	 * Assign the address of the stats refresh buffer.
1324	 * We re-use the current stats buffer for this to
1325	 * conserve memory.
1326	 */
1327	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1328	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1329
1330	/* Set up the standard receive ring. */
1331	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1332	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1333	rcb->ti_max_len = TI_FRAMELEN;
1334	rcb->ti_flags = 0;
1335	if (sc->arpcom.ac_if.if_hwassist)
1336		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1337		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1338#if NVLAN > 0
1339	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1340#endif
1341
1342	/* Set up the jumbo receive ring. */
1343	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1344	TI_HOSTADDR(rcb->ti_hostaddr) =
1345	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1346	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1347	rcb->ti_flags = 0;
1348	if (sc->arpcom.ac_if.if_hwassist)
1349		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1350		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1351#if NVLAN > 0
1352	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1353#endif
1354
1355	/*
1356	 * Set up the mini ring. Only activated on the
1357	 * Tigon 2 but the slot in the config block is
1358	 * still there on the Tigon 1.
1359	 */
1360	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1361	TI_HOSTADDR(rcb->ti_hostaddr) =
1362	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1363	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1364	if (sc->ti_hwrev == TI_HWREV_TIGON)
1365		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1366	else
1367		rcb->ti_flags = 0;
1368	if (sc->arpcom.ac_if.if_hwassist)
1369		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1370		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1371#if NVLAN > 0
1372	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1373#endif
1374
1375	/*
1376	 * Set up the receive return ring.
1377	 */
1378	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1379	TI_HOSTADDR(rcb->ti_hostaddr) =
1380	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1381	rcb->ti_flags = 0;
1382	rcb->ti_max_len = TI_RETURN_RING_CNT;
1383	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1384	    vtophys(&sc->ti_return_prodidx);
1385
1386	/*
1387	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1388	 * of putting the transmit ring in the host's address space and
1389	 * letting the chip DMA it instead of leaving the ring in the NIC's
1390	 * memory and accessing it through the shared memory region. We
1391	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1392	 * so we have to revert to the shared memory scheme if we detect
1393	 * a Tigon 1 chip.
1394	 */
1395	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1396	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1397		sc->ti_rdata->ti_tx_ring_nic =
1398		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1399	}
1400	bzero((char *)sc->ti_rdata->ti_tx_ring,
1401	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1402	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1403	if (sc->ti_hwrev == TI_HWREV_TIGON)
1404		rcb->ti_flags = 0;
1405	else
1406		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1407#if NVLAN > 0
1408	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1409#endif
1410	if (sc->arpcom.ac_if.if_hwassist)
1411		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1412		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1413	rcb->ti_max_len = TI_TX_RING_CNT;
1414	if (sc->ti_hwrev == TI_HWREV_TIGON)
1415		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1416	else
1417		TI_HOSTADDR(rcb->ti_hostaddr) =
1418		    vtophys(&sc->ti_rdata->ti_tx_ring);
1419	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1420	    vtophys(&sc->ti_tx_considx);
1421
1422	/* Set up tuneables */
1423	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1424		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1425		    (sc->ti_rx_coal_ticks / 10));
1426	else
1427		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1428	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1429	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1430	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1431	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1432	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1433
1434	/* Turn interrupts on. */
1435	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1436	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1437
1438	/* Start CPU. */
1439	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1440
1441	return(0);
1442}
1443
1444/*
1445 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1446 * against our list and return its name if we find a match.
1447 */
1448static int ti_probe(dev)
1449	device_t		dev;
1450{
1451	struct ti_type		*t;
1452
1453	t = ti_devs;
1454
1455	while(t->ti_name != NULL) {
1456		if ((pci_get_vendor(dev) == t->ti_vid) &&
1457		    (pci_get_device(dev) == t->ti_did)) {
1458			device_set_desc(dev, t->ti_name);
1459			return(0);
1460		}
1461		t++;
1462	}
1463
1464	return(ENXIO);
1465}
1466
1467static int ti_attach(dev)
1468	device_t		dev;
1469{
1470	u_int32_t		command;
1471	struct ifnet		*ifp;
1472	struct ti_softc		*sc;
1473	int			unit, error = 0, rid;
1474
1475	sc = device_get_softc(dev);
1476	unit = device_get_unit(dev);
1477	bzero(sc, sizeof(struct ti_softc));
1478
1479	/*
1480	 * Map control/status registers.
1481	 */
1482	command = pci_read_config(dev, PCIR_COMMAND, 4);
1483	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1484	pci_write_config(dev, PCIR_COMMAND, command, 4);
1485	command = pci_read_config(dev, PCIR_COMMAND, 4);
1486
1487	if (!(command & PCIM_CMD_MEMEN)) {
1488		printf("ti%d: failed to enable memory mapping!\n", unit);
1489		error = ENXIO;
1490		goto fail;
1491	}
1492
1493	rid = TI_PCI_LOMEM;
1494	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1495	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1496
1497	if (sc->ti_res == NULL) {
1498		printf ("ti%d: couldn't map memory\n", unit);
1499		error = ENXIO;
1500		goto fail;
1501	}
1502
1503	sc->ti_btag = rman_get_bustag(sc->ti_res);
1504	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1505	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1506
1507	/* Allocate interrupt */
1508	rid = 0;
1509
1510	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1511	    RF_SHAREABLE | RF_ACTIVE);
1512
1513	if (sc->ti_irq == NULL) {
1514		printf("ti%d: couldn't map interrupt\n", unit);
1515		error = ENXIO;
1516		goto fail;
1517	}
1518
1519	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1520	   ti_intr, sc, &sc->ti_intrhand);
1521
1522	if (error) {
1523		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1524		bus_release_resource(dev, SYS_RES_MEMORY,
1525		    TI_PCI_LOMEM, sc->ti_res);
1526		printf("ti%d: couldn't set up irq\n", unit);
1527		goto fail;
1528	}
1529
1530	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF);
1531	TI_LOCK(sc);
1532
1533	sc->ti_unit = unit;
1534
1535	if (ti_chipinit(sc)) {
1536		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1537		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1538		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1539		bus_release_resource(dev, SYS_RES_MEMORY,
1540		    TI_PCI_LOMEM, sc->ti_res);
1541		error = ENXIO;
1542		goto fail;
1543	}
1544
1545	/* Zero out the NIC's on-board SRAM. */
1546	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1547
1548	/* Init again -- zeroing memory may have clobbered some registers. */
1549	if (ti_chipinit(sc)) {
1550		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1551		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1552		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1553		bus_release_resource(dev, SYS_RES_MEMORY,
1554		    TI_PCI_LOMEM, sc->ti_res);
1555		error = ENXIO;
1556		goto fail;
1557	}
1558
1559	/*
1560	 * Get station address from the EEPROM. Note: the manual states
1561	 * that the MAC address is at offset 0x8c, however the data is
1562	 * stored as two longwords (since that's how it's loaded into
1563	 * the NIC). This means the MAC address is actually preceeded
1564	 * by two zero bytes. We need to skip over those.
1565	 */
1566	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1567				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1568		printf("ti%d: failed to read station address\n", unit);
1569		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1570		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1571		bus_release_resource(dev, SYS_RES_MEMORY,
1572		    TI_PCI_LOMEM, sc->ti_res);
1573		error = ENXIO;
1574		goto fail;
1575	}
1576
1577	/*
1578	 * A Tigon chip was detected. Inform the world.
1579	 */
1580	printf("ti%d: Ethernet address: %6D\n", unit,
1581				sc->arpcom.ac_enaddr, ":");
1582
1583	/* Allocate the general information block and ring buffers. */
1584	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1585	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1586
1587	if (sc->ti_rdata == NULL) {
1588		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1589		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1590		bus_release_resource(dev, SYS_RES_MEMORY,
1591		    TI_PCI_LOMEM, sc->ti_res);
1592		error = ENXIO;
1593		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1594		goto fail;
1595	}
1596
1597	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1598
1599	/* Try to allocate memory for jumbo buffers. */
1600	if (ti_alloc_jumbo_mem(sc)) {
1601		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1602		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1603		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1604		bus_release_resource(dev, SYS_RES_MEMORY,
1605		    TI_PCI_LOMEM, sc->ti_res);
1606		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1607		    M_DEVBUF);
1608		error = ENXIO;
1609		goto fail;
1610	}
1611
1612	/*
1613	 * We really need a better way to tell a 1000baseTX card
1614	 * from a 1000baseSX one, since in theory there could be
1615	 * OEMed 1000baseTX cards from lame vendors who aren't
1616	 * clever enough to change the PCI ID. For the moment
1617	 * though, the AceNIC is the only copper card available.
1618	 */
1619	if (pci_get_vendor(dev) == ALT_VENDORID &&
1620	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1621		sc->ti_copper = 1;
1622	/* Ok, it's not the only copper card available. */
1623	if (pci_get_vendor(dev) == NG_VENDORID &&
1624	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1625		sc->ti_copper = 1;
1626
1627	/* Set default tuneable values. */
1628	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1629	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1630	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1631	sc->ti_rx_max_coal_bds = 64;
1632	sc->ti_tx_max_coal_bds = 128;
1633	sc->ti_tx_buf_ratio = 21;
1634
1635	/* Set up ifnet structure */
1636	ifp = &sc->arpcom.ac_if;
1637	ifp->if_softc = sc;
1638	ifp->if_unit = sc->ti_unit;
1639	ifp->if_name = "ti";
1640	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1641	ifp->if_ioctl = ti_ioctl;
1642	ifp->if_output = ether_output;
1643	ifp->if_start = ti_start;
1644	ifp->if_watchdog = ti_watchdog;
1645	ifp->if_init = ti_init;
1646	ifp->if_mtu = ETHERMTU;
1647	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1648
1649	/* Set up ifmedia support. */
1650	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1651	if (sc->ti_copper) {
1652		/*
1653		 * Copper cards allow manual 10/100 mode selection,
1654		 * but not manual 1000baseTX mode selection. Why?
1655		 * Becuase currently there's no way to specify the
1656		 * master/slave setting through the firmware interface,
1657		 * so Alteon decided to just bag it and handle it
1658		 * via autonegotiation.
1659		 */
1660		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1661		ifmedia_add(&sc->ifmedia,
1662		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1663		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1664		ifmedia_add(&sc->ifmedia,
1665		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1666		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1667		ifmedia_add(&sc->ifmedia,
1668		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1669	} else {
1670		/* Fiber cards don't support 10/100 modes. */
1671		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1672		ifmedia_add(&sc->ifmedia,
1673		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1674	}
1675	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1676	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1677
1678	/*
1679	 * Call MI attach routine.
1680	 */
1681	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1682	TI_UNLOCK(sc);
1683	return(0);
1684
1685fail:
1686	TI_UNLOCK(sc);
1687	mtx_destroy(&sc->ti_mtx);
1688	return(error);
1689}
1690
1691static int ti_detach(dev)
1692	device_t		dev;
1693{
1694	struct ti_softc		*sc;
1695	struct ifnet		*ifp;
1696
1697
1698	sc = device_get_softc(dev);
1699	TI_LOCK(sc);
1700	ifp = &sc->arpcom.ac_if;
1701
1702	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1703	ti_stop(sc);
1704
1705	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1706	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1707	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1708
1709	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1710	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1711	ifmedia_removeall(&sc->ifmedia);
1712
1713	TI_UNLOCK(sc);
1714	mtx_destroy(&sc->ti_mtx);
1715
1716	return(0);
1717}
1718
1719/*
1720 * Frame reception handling. This is called if there's a frame
1721 * on the receive return list.
1722 *
1723 * Note: we have to be able to handle three possibilities here:
1724 * 1) the frame is from the mini receive ring (can only happen)
1725 *    on Tigon 2 boards)
1726 * 2) the frame is from the jumbo recieve ring
1727 * 3) the frame is from the standard receive ring
1728 */
1729
1730static void ti_rxeof(sc)
1731	struct ti_softc		*sc;
1732{
1733	struct ifnet		*ifp;
1734	struct ti_cmd_desc	cmd;
1735
1736	ifp = &sc->arpcom.ac_if;
1737
1738	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1739		struct ti_rx_desc	*cur_rx;
1740		u_int32_t		rxidx;
1741		struct ether_header	*eh;
1742		struct mbuf		*m = NULL;
1743#if NVLAN > 0
1744		u_int16_t		vlan_tag = 0;
1745		int			have_tag = 0;
1746#endif
1747
1748		cur_rx =
1749		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1750		rxidx = cur_rx->ti_idx;
1751		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1752
1753#if NVLAN > 0
1754		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1755			have_tag = 1;
1756			vlan_tag = cur_rx->ti_vlan_tag;
1757		}
1758#endif
1759
1760		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1761			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1762			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1763			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1764			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1765				ifp->if_ierrors++;
1766				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1767				continue;
1768			}
1769			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1770				ifp->if_ierrors++;
1771				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1772				continue;
1773			}
1774		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1775			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1776			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1777			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1778			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1779				ifp->if_ierrors++;
1780				ti_newbuf_mini(sc, sc->ti_mini, m);
1781				continue;
1782			}
1783			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1784				ifp->if_ierrors++;
1785				ti_newbuf_mini(sc, sc->ti_mini, m);
1786				continue;
1787			}
1788		} else {
1789			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1790			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1791			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1792			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1793				ifp->if_ierrors++;
1794				ti_newbuf_std(sc, sc->ti_std, m);
1795				continue;
1796			}
1797			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1798				ifp->if_ierrors++;
1799				ti_newbuf_std(sc, sc->ti_std, m);
1800				continue;
1801			}
1802		}
1803
1804		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1805		ifp->if_ipackets++;
1806		eh = mtod(m, struct ether_header *);
1807		m->m_pkthdr.rcvif = ifp;
1808
1809		/* Remove header from mbuf and pass it on. */
1810		m_adj(m, sizeof(struct ether_header));
1811
1812		if (ifp->if_hwassist) {
1813			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1814			    CSUM_DATA_VALID;
1815			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1816				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1817			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1818		}
1819
1820#if NVLAN > 0
1821		/*
1822		 * If we received a packet with a vlan tag, pass it
1823		 * to vlan_input() instead of ether_input().
1824		 */
1825		if (have_tag) {
1826			vlan_input_tag(eh, m, vlan_tag);
1827			have_tag = vlan_tag = 0;
1828			continue;
1829		}
1830#endif
1831		ether_input(ifp, eh, m);
1832	}
1833
1834	/* Only necessary on the Tigon 1. */
1835	if (sc->ti_hwrev == TI_HWREV_TIGON)
1836		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1837		    sc->ti_rx_saved_considx);
1838
1839	TI_UPDATE_STDPROD(sc, sc->ti_std);
1840	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1841	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1842
1843	return;
1844}
1845
1846static void ti_txeof(sc)
1847	struct ti_softc		*sc;
1848{
1849	struct ti_tx_desc	*cur_tx = NULL;
1850	struct ifnet		*ifp;
1851
1852	ifp = &sc->arpcom.ac_if;
1853
1854	/*
1855	 * Go through our tx ring and free mbufs for those
1856	 * frames that have been sent.
1857	 */
1858	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1859		u_int32_t		idx = 0;
1860
1861		idx = sc->ti_tx_saved_considx;
1862		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1863			if (idx > 383)
1864				CSR_WRITE_4(sc, TI_WINBASE,
1865				    TI_TX_RING_BASE + 6144);
1866			else if (idx > 255)
1867				CSR_WRITE_4(sc, TI_WINBASE,
1868				    TI_TX_RING_BASE + 4096);
1869			else if (idx > 127)
1870				CSR_WRITE_4(sc, TI_WINBASE,
1871				    TI_TX_RING_BASE + 2048);
1872			else
1873				CSR_WRITE_4(sc, TI_WINBASE,
1874				    TI_TX_RING_BASE);
1875			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1876		} else
1877			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1878		if (cur_tx->ti_flags & TI_BDFLAG_END)
1879			ifp->if_opackets++;
1880		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1881			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1882			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1883		}
1884		sc->ti_txcnt--;
1885		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1886		ifp->if_timer = 0;
1887	}
1888
1889	if (cur_tx != NULL)
1890		ifp->if_flags &= ~IFF_OACTIVE;
1891
1892	return;
1893}
1894
1895static void ti_intr(xsc)
1896	void			*xsc;
1897{
1898	struct ti_softc		*sc;
1899	struct ifnet		*ifp;
1900
1901	sc = xsc;
1902	TI_LOCK(sc);
1903	ifp = &sc->arpcom.ac_if;
1904
1905#ifdef notdef
1906	/* Avoid this for now -- checking this register is expensive. */
1907	/* Make sure this is really our interrupt. */
1908	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1909		TI_UNLOCK(sc);
1910		return;
1911	}
1912#endif
1913
1914	/* Ack interrupt and stop others from occuring. */
1915	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1916
1917	if (ifp->if_flags & IFF_RUNNING) {
1918		/* Check RX return ring producer/consumer */
1919		ti_rxeof(sc);
1920
1921		/* Check TX ring producer/consumer */
1922		ti_txeof(sc);
1923	}
1924
1925	ti_handle_events(sc);
1926
1927	/* Re-enable interrupts. */
1928	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1929
1930	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1931		ti_start(ifp);
1932
1933	TI_UNLOCK(sc);
1934
1935	return;
1936}
1937
1938static void ti_stats_update(sc)
1939	struct ti_softc		*sc;
1940{
1941	struct ifnet		*ifp;
1942
1943	ifp = &sc->arpcom.ac_if;
1944
1945	ifp->if_collisions +=
1946	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1947	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1948	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1949	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1950	   ifp->if_collisions;
1951
1952	return;
1953}
1954
1955/*
1956 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1957 * pointers to descriptors.
1958 */
1959static int ti_encap(sc, m_head, txidx)
1960	struct ti_softc		*sc;
1961	struct mbuf		*m_head;
1962	u_int32_t		*txidx;
1963{
1964	struct ti_tx_desc	*f = NULL;
1965	struct mbuf		*m;
1966	u_int32_t		frag, cur, cnt = 0;
1967	u_int16_t		csum_flags = 0;
1968#if NVLAN > 0
1969	struct ifvlan		*ifv = NULL;
1970
1971	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1972	    m_head->m_pkthdr.rcvif != NULL &&
1973	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
1974		ifv = m_head->m_pkthdr.rcvif->if_softc;
1975#endif
1976
1977	m = m_head;
1978	cur = frag = *txidx;
1979
1980	if (m_head->m_pkthdr.csum_flags) {
1981		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1982			csum_flags |= TI_BDFLAG_IP_CKSUM;
1983		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1984			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1985		if (m_head->m_flags & M_LASTFRAG)
1986			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1987		else if (m_head->m_flags & M_FRAG)
1988			csum_flags |= TI_BDFLAG_IP_FRAG;
1989	}
1990	/*
1991 	 * Start packing the mbufs in this chain into
1992	 * the fragment pointers. Stop when we run out
1993 	 * of fragments or hit the end of the mbuf chain.
1994	 */
1995	for (m = m_head; m != NULL; m = m->m_next) {
1996		if (m->m_len != 0) {
1997			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1998				if (frag > 383)
1999					CSR_WRITE_4(sc, TI_WINBASE,
2000					    TI_TX_RING_BASE + 6144);
2001				else if (frag > 255)
2002					CSR_WRITE_4(sc, TI_WINBASE,
2003					    TI_TX_RING_BASE + 4096);
2004				else if (frag > 127)
2005					CSR_WRITE_4(sc, TI_WINBASE,
2006					    TI_TX_RING_BASE + 2048);
2007				else
2008					CSR_WRITE_4(sc, TI_WINBASE,
2009					    TI_TX_RING_BASE);
2010				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2011			} else
2012				f = &sc->ti_rdata->ti_tx_ring[frag];
2013			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2014				break;
2015			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2016			f->ti_len = m->m_len;
2017			f->ti_flags = csum_flags;
2018#if NVLAN > 0
2019			if (ifv != NULL) {
2020				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2021				f->ti_vlan_tag = ifv->ifv_tag;
2022			} else {
2023				f->ti_vlan_tag = 0;
2024			}
2025#endif
2026			/*
2027			 * Sanity check: avoid coming within 16 descriptors
2028			 * of the end of the ring.
2029			 */
2030			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2031				return(ENOBUFS);
2032			cur = frag;
2033			TI_INC(frag, TI_TX_RING_CNT);
2034			cnt++;
2035		}
2036	}
2037
2038	if (m != NULL)
2039		return(ENOBUFS);
2040
2041	if (frag == sc->ti_tx_saved_considx)
2042		return(ENOBUFS);
2043
2044	if (sc->ti_hwrev == TI_HWREV_TIGON)
2045		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2046		    TI_BDFLAG_END;
2047	else
2048		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2049	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2050	sc->ti_txcnt += cnt;
2051
2052	*txidx = frag;
2053
2054	return(0);
2055}
2056
2057/*
2058 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2059 * to the mbuf data regions directly in the transmit descriptors.
2060 */
2061static void ti_start(ifp)
2062	struct ifnet		*ifp;
2063{
2064	struct ti_softc		*sc;
2065	struct mbuf		*m_head = NULL;
2066	u_int32_t		prodidx = 0;
2067
2068	sc = ifp->if_softc;
2069	TI_LOCK(sc);
2070
2071	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2072
2073	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2074		IF_DEQUEUE(&ifp->if_snd, m_head);
2075		if (m_head == NULL)
2076			break;
2077
2078		/*
2079		 * XXX
2080		 * safety overkill.  If this is a fragmented packet chain
2081		 * with delayed TCP/UDP checksums, then only encapsulate
2082		 * it if we have enough descriptors to handle the entire
2083		 * chain at once.
2084		 * (paranoia -- may not actually be needed)
2085		 */
2086		if (m_head->m_flags & M_FIRSTFRAG &&
2087		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2088			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2089			    m_head->m_pkthdr.csum_data + 16) {
2090				IF_PREPEND(&ifp->if_snd, m_head);
2091				ifp->if_flags |= IFF_OACTIVE;
2092				break;
2093			}
2094		}
2095
2096		/*
2097		 * Pack the data into the transmit ring. If we
2098		 * don't have room, set the OACTIVE flag and wait
2099		 * for the NIC to drain the ring.
2100		 */
2101		if (ti_encap(sc, m_head, &prodidx)) {
2102			IF_PREPEND(&ifp->if_snd, m_head);
2103			ifp->if_flags |= IFF_OACTIVE;
2104			break;
2105		}
2106
2107		/*
2108		 * If there's a BPF listener, bounce a copy of this frame
2109		 * to him.
2110		 */
2111		if (ifp->if_bpf)
2112			bpf_mtap(ifp, m_head);
2113	}
2114
2115	/* Transmit */
2116	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2117
2118	/*
2119	 * Set a timeout in case the chip goes out to lunch.
2120	 */
2121	ifp->if_timer = 5;
2122	TI_UNLOCK(sc);
2123
2124	return;
2125}
2126
2127static void ti_init(xsc)
2128	void			*xsc;
2129{
2130	struct ti_softc		*sc = xsc;
2131
2132	/* Cancel pending I/O and flush buffers. */
2133	ti_stop(sc);
2134
2135	TI_LOCK(sc);
2136	/* Init the gen info block, ring control blocks and firmware. */
2137	if (ti_gibinit(sc)) {
2138		printf("ti%d: initialization failure\n", sc->ti_unit);
2139		TI_UNLOCK(sc);
2140		return;
2141	}
2142
2143	TI_UNLOCK(sc);
2144
2145	return;
2146}
2147
2148static void ti_init2(sc)
2149	struct ti_softc		*sc;
2150{
2151	struct ti_cmd_desc	cmd;
2152	struct ifnet		*ifp;
2153	u_int16_t		*m;
2154	struct ifmedia		*ifm;
2155	int			tmp;
2156
2157	ifp = &sc->arpcom.ac_if;
2158
2159	/* Specify MTU and interface index. */
2160	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2161	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2162	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2163	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2164
2165	/* Load our MAC address. */
2166	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2167	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2168	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2169	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2170
2171	/* Enable or disable promiscuous mode as needed. */
2172	if (ifp->if_flags & IFF_PROMISC) {
2173		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2174	} else {
2175		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2176	}
2177
2178	/* Program multicast filter. */
2179	ti_setmulti(sc);
2180
2181	/*
2182	 * If this is a Tigon 1, we should tell the
2183	 * firmware to use software packet filtering.
2184	 */
2185	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2186		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2187	}
2188
2189	/* Init RX ring. */
2190	ti_init_rx_ring_std(sc);
2191
2192	/* Init jumbo RX ring. */
2193	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2194		ti_init_rx_ring_jumbo(sc);
2195
2196	/*
2197	 * If this is a Tigon 2, we can also configure the
2198	 * mini ring.
2199	 */
2200	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2201		ti_init_rx_ring_mini(sc);
2202
2203	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2204	sc->ti_rx_saved_considx = 0;
2205
2206	/* Init TX ring. */
2207	ti_init_tx_ring(sc);
2208
2209	/* Tell firmware we're alive. */
2210	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2211
2212	/* Enable host interrupts. */
2213	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2214
2215	ifp->if_flags |= IFF_RUNNING;
2216	ifp->if_flags &= ~IFF_OACTIVE;
2217
2218	/*
2219	 * Make sure to set media properly. We have to do this
2220	 * here since we have to issue commands in order to set
2221	 * the link negotiation and we can't issue commands until
2222	 * the firmware is running.
2223	 */
2224	ifm = &sc->ifmedia;
2225	tmp = ifm->ifm_media;
2226	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2227	ti_ifmedia_upd(ifp);
2228	ifm->ifm_media = tmp;
2229
2230	return;
2231}
2232
2233/*
2234 * Set media options.
2235 */
2236static int ti_ifmedia_upd(ifp)
2237	struct ifnet		*ifp;
2238{
2239	struct ti_softc		*sc;
2240	struct ifmedia		*ifm;
2241	struct ti_cmd_desc	cmd;
2242
2243	sc = ifp->if_softc;
2244	ifm = &sc->ifmedia;
2245
2246	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2247		return(EINVAL);
2248
2249	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2250	case IFM_AUTO:
2251		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2252		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2253		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2254		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2255		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2256		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2257		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2258		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2259		break;
2260	case IFM_1000_SX:
2261	case IFM_1000_TX:
2262		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2263		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2264		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2265		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2266			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2267		}
2268		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2269		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2270		break;
2271	case IFM_100_FX:
2272	case IFM_10_FL:
2273	case IFM_100_TX:
2274	case IFM_10_T:
2275		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2276		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2277		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2278		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2279			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2280		} else {
2281			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2282		}
2283		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2284			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2285		} else {
2286			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2287		}
2288		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2289		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2290		break;
2291	}
2292
2293	return(0);
2294}
2295
2296/*
2297 * Report current media status.
2298 */
2299static void ti_ifmedia_sts(ifp, ifmr)
2300	struct ifnet		*ifp;
2301	struct ifmediareq	*ifmr;
2302{
2303	struct ti_softc		*sc;
2304	u_int32_t		media = 0;
2305
2306	sc = ifp->if_softc;
2307
2308	ifmr->ifm_status = IFM_AVALID;
2309	ifmr->ifm_active = IFM_ETHER;
2310
2311	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2312		return;
2313
2314	ifmr->ifm_status |= IFM_ACTIVE;
2315
2316	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2317		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2318		if (sc->ti_copper)
2319			ifmr->ifm_active |= IFM_1000_TX;
2320		else
2321			ifmr->ifm_active |= IFM_1000_SX;
2322		if (media & TI_GLNK_FULL_DUPLEX)
2323			ifmr->ifm_active |= IFM_FDX;
2324		else
2325			ifmr->ifm_active |= IFM_HDX;
2326	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2327		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2328		if (sc->ti_copper) {
2329			if (media & TI_LNK_100MB)
2330				ifmr->ifm_active |= IFM_100_TX;
2331			if (media & TI_LNK_10MB)
2332				ifmr->ifm_active |= IFM_10_T;
2333		} else {
2334			if (media & TI_LNK_100MB)
2335				ifmr->ifm_active |= IFM_100_FX;
2336			if (media & TI_LNK_10MB)
2337				ifmr->ifm_active |= IFM_10_FL;
2338		}
2339		if (media & TI_LNK_FULL_DUPLEX)
2340			ifmr->ifm_active |= IFM_FDX;
2341		if (media & TI_LNK_HALF_DUPLEX)
2342			ifmr->ifm_active |= IFM_HDX;
2343	}
2344
2345	return;
2346}
2347
2348static int ti_ioctl(ifp, command, data)
2349	struct ifnet		*ifp;
2350	u_long			command;
2351	caddr_t			data;
2352{
2353	struct ti_softc		*sc = ifp->if_softc;
2354	struct ifreq		*ifr = (struct ifreq *) data;
2355	int			error = 0;
2356	struct ti_cmd_desc	cmd;
2357
2358	TI_LOCK(sc);
2359
2360	switch(command) {
2361	case SIOCSIFADDR:
2362	case SIOCGIFADDR:
2363		error = ether_ioctl(ifp, command, data);
2364		break;
2365	case SIOCSIFMTU:
2366		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2367			error = EINVAL;
2368		else {
2369			ifp->if_mtu = ifr->ifr_mtu;
2370			ti_init(sc);
2371		}
2372		break;
2373	case SIOCSIFFLAGS:
2374		if (ifp->if_flags & IFF_UP) {
2375			/*
2376			 * If only the state of the PROMISC flag changed,
2377			 * then just use the 'set promisc mode' command
2378			 * instead of reinitializing the entire NIC. Doing
2379			 * a full re-init means reloading the firmware and
2380			 * waiting for it to start up, which may take a
2381			 * second or two.
2382			 */
2383			if (ifp->if_flags & IFF_RUNNING &&
2384			    ifp->if_flags & IFF_PROMISC &&
2385			    !(sc->ti_if_flags & IFF_PROMISC)) {
2386				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2387				    TI_CMD_CODE_PROMISC_ENB, 0);
2388			} else if (ifp->if_flags & IFF_RUNNING &&
2389			    !(ifp->if_flags & IFF_PROMISC) &&
2390			    sc->ti_if_flags & IFF_PROMISC) {
2391				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2392				    TI_CMD_CODE_PROMISC_DIS, 0);
2393			} else
2394				ti_init(sc);
2395		} else {
2396			if (ifp->if_flags & IFF_RUNNING) {
2397				ti_stop(sc);
2398			}
2399		}
2400		sc->ti_if_flags = ifp->if_flags;
2401		error = 0;
2402		break;
2403	case SIOCADDMULTI:
2404	case SIOCDELMULTI:
2405		if (ifp->if_flags & IFF_RUNNING) {
2406			ti_setmulti(sc);
2407			error = 0;
2408		}
2409		break;
2410	case SIOCSIFMEDIA:
2411	case SIOCGIFMEDIA:
2412		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2413		break;
2414	default:
2415		error = EINVAL;
2416		break;
2417	}
2418
2419	TI_UNLOCK(sc);
2420
2421	return(error);
2422}
2423
2424static void ti_watchdog(ifp)
2425	struct ifnet		*ifp;
2426{
2427	struct ti_softc		*sc;
2428
2429	sc = ifp->if_softc;
2430	TI_LOCK(sc);
2431
2432	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2433	ti_stop(sc);
2434	ti_init(sc);
2435
2436	ifp->if_oerrors++;
2437	TI_UNLOCK(sc);
2438
2439	return;
2440}
2441
2442/*
2443 * Stop the adapter and free any mbufs allocated to the
2444 * RX and TX lists.
2445 */
2446static void ti_stop(sc)
2447	struct ti_softc		*sc;
2448{
2449	struct ifnet		*ifp;
2450	struct ti_cmd_desc	cmd;
2451
2452	TI_LOCK(sc);
2453
2454	ifp = &sc->arpcom.ac_if;
2455
2456	/* Disable host interrupts. */
2457	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2458	/*
2459	 * Tell firmware we're shutting down.
2460	 */
2461	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2462
2463	/* Halt and reinitialize. */
2464	ti_chipinit(sc);
2465	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2466	ti_chipinit(sc);
2467
2468	/* Free the RX lists. */
2469	ti_free_rx_ring_std(sc);
2470
2471	/* Free jumbo RX list. */
2472	ti_free_rx_ring_jumbo(sc);
2473
2474	/* Free mini RX list. */
2475	ti_free_rx_ring_mini(sc);
2476
2477	/* Free TX buffers. */
2478	ti_free_tx_ring(sc);
2479
2480	sc->ti_ev_prodidx.ti_idx = 0;
2481	sc->ti_return_prodidx.ti_idx = 0;
2482	sc->ti_tx_considx.ti_idx = 0;
2483	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2484
2485	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2486	TI_UNLOCK(sc);
2487
2488	return;
2489}
2490
2491/*
2492 * Stop all chip I/O so that the kernel's probe routines don't
2493 * get confused by errant DMAs when rebooting.
2494 */
2495static void ti_shutdown(dev)
2496	device_t		dev;
2497{
2498	struct ti_softc		*sc;
2499
2500	sc = device_get_softc(dev);
2501	TI_LOCK(sc);
2502	ti_chipinit(sc);
2503	TI_UNLOCK(sc);
2504
2505	return;
2506}
2507