if_ti.c revision 67164
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/ti/if_ti.c 67164 2000-10-15 14:19:01Z phk $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 *   for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 *   GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 *   convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include "vlan.h"
82
83#include <sys/param.h>
84#include <sys/systm.h>
85#include <sys/sockio.h>
86#include <sys/mbuf.h>
87#include <sys/malloc.h>
88#include <sys/kernel.h>
89#include <sys/socket.h>
90#include <sys/queue.h>
91
92#include <net/if.h>
93#include <net/if_arp.h>
94#include <net/ethernet.h>
95#include <net/if_dl.h>
96#include <net/if_media.h>
97
98#include <net/bpf.h>
99
100#if NVLAN > 0
101#include <net/if_types.h>
102#include <net/if_vlan_var.h>
103#endif
104
105#include <netinet/in_systm.h>
106#include <netinet/in.h>
107#include <netinet/ip.h>
108
109#include <vm/vm.h>              /* for vtophys */
110#include <vm/pmap.h>            /* for vtophys */
111#include <machine/bus_memio.h>
112#include <machine/bus.h>
113#include <machine/resource.h>
114#include <sys/bus.h>
115#include <sys/rman.h>
116
117#include <pci/pcireg.h>
118#include <pci/pcivar.h>
119
120#include <pci/if_tireg.h>
121#include <pci/ti_fw.h>
122#include <pci/ti_fw2.h>
123
124#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
125
126#if !defined(lint)
127static const char rcsid[] =
128  "$FreeBSD: head/sys/dev/ti/if_ti.c 67164 2000-10-15 14:19:01Z phk $";
129#endif
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134
135static struct ti_type ti_devs[] = {
136	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
137		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
138	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
139		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
140	{ TC_VENDORID,	TC_DEVICEID_3C985,
141		"3Com 3c985-SX Gigabit Ethernet" },
142	{ NG_VENDORID, NG_DEVICEID_GA620,
143		"Netgear GA620 1000baseSX Gigabit Ethernet" },
144	{ NG_VENDORID, NG_DEVICEID_GA620T,
145		"Netgear GA620 1000baseT Gigabit Ethernet" },
146	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
147		"Silicon Graphics Gigabit Ethernet" },
148	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
149		"Farallon PN9000SX Gigabit Ethernet" },
150	{ 0, 0, NULL }
151};
152
153static int ti_probe		__P((device_t));
154static int ti_attach		__P((device_t));
155static int ti_detach		__P((device_t));
156static void ti_txeof		__P((struct ti_softc *));
157static void ti_rxeof		__P((struct ti_softc *));
158
159static void ti_stats_update	__P((struct ti_softc *));
160static int ti_encap		__P((struct ti_softc *, struct mbuf *,
161					u_int32_t *));
162
163static void ti_intr		__P((void *));
164static void ti_start		__P((struct ifnet *));
165static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
166static void ti_init		__P((void *));
167static void ti_init2		__P((struct ti_softc *));
168static void ti_stop		__P((struct ti_softc *));
169static void ti_watchdog		__P((struct ifnet *));
170static void ti_shutdown		__P((device_t));
171static int ti_ifmedia_upd	__P((struct ifnet *));
172static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
173
174static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
175static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
176						int, u_int8_t *));
177static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
178
179static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
180static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
181static void ti_setmulti		__P((struct ti_softc *));
182
183static void ti_mem		__P((struct ti_softc *, u_int32_t,
184					u_int32_t, caddr_t));
185static void ti_loadfw		__P((struct ti_softc *));
186static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
187static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
188					caddr_t, int));
189static void ti_handle_events	__P((struct ti_softc *));
190static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
191static void *ti_jalloc		__P((struct ti_softc *));
192static void ti_jfree		__P((caddr_t, void *));
193static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
194static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
195static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
196static int ti_init_rx_ring_std	__P((struct ti_softc *));
197static void ti_free_rx_ring_std	__P((struct ti_softc *));
198static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
199static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
200static int ti_init_rx_ring_mini	__P((struct ti_softc *));
201static void ti_free_rx_ring_mini	__P((struct ti_softc *));
202static void ti_free_tx_ring	__P((struct ti_softc *));
203static int ti_init_tx_ring	__P((struct ti_softc *));
204
205static int ti_64bitslot_war	__P((struct ti_softc *));
206static int ti_chipinit		__P((struct ti_softc *));
207static int ti_gibinit		__P((struct ti_softc *));
208
209static device_method_t ti_methods[] = {
210	/* Device interface */
211	DEVMETHOD(device_probe,		ti_probe),
212	DEVMETHOD(device_attach,	ti_attach),
213	DEVMETHOD(device_detach,	ti_detach),
214	DEVMETHOD(device_shutdown,	ti_shutdown),
215	{ 0, 0 }
216};
217
218static driver_t ti_driver = {
219	"ti",
220	ti_methods,
221	sizeof(struct ti_softc)
222};
223
224static devclass_t ti_devclass;
225
226DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
227
228/*
229 * Send an instruction or address to the EEPROM, check for ACK.
230 */
231static u_int32_t ti_eeprom_putbyte(sc, byte)
232	struct ti_softc		*sc;
233	int			byte;
234{
235	register int		i, ack = 0;
236
237	/*
238	 * Make sure we're in TX mode.
239	 */
240	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241
242	/*
243	 * Feed in each bit and stobe the clock.
244	 */
245	for (i = 0x80; i; i >>= 1) {
246		if (byte & i) {
247			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248		} else {
249			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250		}
251		DELAY(1);
252		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253		DELAY(1);
254		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255	}
256
257	/*
258	 * Turn off TX mode.
259	 */
260	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
261
262	/*
263	 * Check for ack.
264	 */
265	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
267	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
268
269	return(ack);
270}
271
272/*
273 * Read a byte of data stored in the EEPROM at address 'addr.'
274 * We have to send two address bytes since the EEPROM can hold
275 * more than 256 bytes of data.
276 */
277static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
278	struct ti_softc		*sc;
279	int			addr;
280	u_int8_t		*dest;
281{
282	register int		i;
283	u_int8_t		byte = 0;
284
285	EEPROM_START;
286
287	/*
288	 * Send write control code to EEPROM.
289	 */
290	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
291		printf("ti%d: failed to send write command, status: %x\n",
292		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
293		return(1);
294	}
295
296	/*
297	 * Send first byte of address of byte we want to read.
298	 */
299	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
300		printf("ti%d: failed to send address, status: %x\n",
301		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302		return(1);
303	}
304	/*
305	 * Send second byte address of byte we want to read.
306	 */
307	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
308		printf("ti%d: failed to send address, status: %x\n",
309		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310		return(1);
311	}
312
313	EEPROM_STOP;
314	EEPROM_START;
315	/*
316	 * Send read control code to EEPROM.
317	 */
318	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
319		printf("ti%d: failed to send read command, status: %x\n",
320		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
321		return(1);
322	}
323
324	/*
325	 * Start reading bits from EEPROM.
326	 */
327	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
328	for (i = 0x80; i; i >>= 1) {
329		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330		DELAY(1);
331		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
332			byte |= i;
333		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
334		DELAY(1);
335	}
336
337	EEPROM_STOP;
338
339	/*
340	 * No ACK generated for read, so just return byte.
341	 */
342
343	*dest = byte;
344
345	return(0);
346}
347
348/*
349 * Read a sequence of bytes from the EEPROM.
350 */
351static int ti_read_eeprom(sc, dest, off, cnt)
352	struct ti_softc		*sc;
353	caddr_t			dest;
354	int			off;
355	int			cnt;
356{
357	int			err = 0, i;
358	u_int8_t		byte = 0;
359
360	for (i = 0; i < cnt; i++) {
361		err = ti_eeprom_getbyte(sc, off + i, &byte);
362		if (err)
363			break;
364		*(dest + i) = byte;
365	}
366
367	return(err ? 1 : 0);
368}
369
370/*
371 * NIC memory access function. Can be used to either clear a section
372 * of NIC local memory or (if buf is non-NULL) copy data into it.
373 */
374static void ti_mem(sc, addr, len, buf)
375	struct ti_softc		*sc;
376	u_int32_t		addr, len;
377	caddr_t			buf;
378{
379	int			segptr, segsize, cnt;
380	caddr_t			ti_winbase, ptr;
381
382	segptr = addr;
383	cnt = len;
384	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
385	ptr = buf;
386
387	while(cnt) {
388		if (cnt < TI_WINLEN)
389			segsize = cnt;
390		else
391			segsize = TI_WINLEN - (segptr % TI_WINLEN);
392		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
393		if (buf == NULL)
394			bzero((char *)ti_winbase + (segptr &
395			    (TI_WINLEN - 1)), segsize);
396		else {
397			bcopy((char *)ptr, (char *)ti_winbase +
398			    (segptr & (TI_WINLEN - 1)), segsize);
399			ptr += segsize;
400		}
401		segptr += segsize;
402		cnt -= segsize;
403	}
404
405	return;
406}
407
408/*
409 * Load firmware image into the NIC. Check that the firmware revision
410 * is acceptable and see if we want the firmware for the Tigon 1 or
411 * Tigon 2.
412 */
413static void ti_loadfw(sc)
414	struct ti_softc		*sc;
415{
416	switch(sc->ti_hwrev) {
417	case TI_HWREV_TIGON:
418		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421			printf("ti%d: firmware revision mismatch; want "
422			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
423			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425			    tigonFwReleaseMinor, tigonFwReleaseFix);
426			return;
427		}
428		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429		    (caddr_t)tigonFwText);
430		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431		    (caddr_t)tigonFwData);
432		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433		    (caddr_t)tigonFwRodata);
434		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437		break;
438	case TI_HWREV_TIGON_II:
439		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442			printf("ti%d: firmware revision mismatch; want "
443			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
444			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
447			return;
448		}
449		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450		    (caddr_t)tigon2FwText);
451		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452		    (caddr_t)tigon2FwData);
453		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454		    (caddr_t)tigon2FwRodata);
455		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458		break;
459	default:
460		printf("ti%d: can't load firmware: unknown hardware rev\n",
461		    sc->ti_unit);
462		break;
463	}
464
465	return;
466}
467
468/*
469 * Send the NIC a command via the command ring.
470 */
471static void ti_cmd(sc, cmd)
472	struct ti_softc		*sc;
473	struct ti_cmd_desc	*cmd;
474{
475	u_int32_t		index;
476
477	if (sc->ti_rdata->ti_cmd_ring == NULL)
478		return;
479
480	index = sc->ti_cmd_saved_prodidx;
481	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
482	TI_INC(index, TI_CMD_RING_CNT);
483	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
484	sc->ti_cmd_saved_prodidx = index;
485
486	return;
487}
488
489/*
490 * Send the NIC an extended command. The 'len' parameter specifies the
491 * number of command slots to include after the initial command.
492 */
493static void ti_cmd_ext(sc, cmd, arg, len)
494	struct ti_softc		*sc;
495	struct ti_cmd_desc	*cmd;
496	caddr_t			arg;
497	int			len;
498{
499	u_int32_t		index;
500	register int		i;
501
502	if (sc->ti_rdata->ti_cmd_ring == NULL)
503		return;
504
505	index = sc->ti_cmd_saved_prodidx;
506	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
507	TI_INC(index, TI_CMD_RING_CNT);
508	for (i = 0; i < len; i++) {
509		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
510		    *(u_int32_t *)(&arg[i * 4]));
511		TI_INC(index, TI_CMD_RING_CNT);
512	}
513	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
514	sc->ti_cmd_saved_prodidx = index;
515
516	return;
517}
518
519/*
520 * Handle events that have triggered interrupts.
521 */
522static void ti_handle_events(sc)
523	struct ti_softc		*sc;
524{
525	struct ti_event_desc	*e;
526
527	if (sc->ti_rdata->ti_event_ring == NULL)
528		return;
529
530	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
531		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
532		switch(e->ti_event) {
533		case TI_EV_LINKSTAT_CHANGED:
534			sc->ti_linkstat = e->ti_code;
535			if (e->ti_code == TI_EV_CODE_LINK_UP)
536				printf("ti%d: 10/100 link up\n", sc->ti_unit);
537			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
538				printf("ti%d: gigabit link up\n", sc->ti_unit);
539			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
540				printf("ti%d: link down\n", sc->ti_unit);
541			break;
542		case TI_EV_ERROR:
543			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
544				printf("ti%d: invalid command\n", sc->ti_unit);
545			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
546				printf("ti%d: unknown command\n", sc->ti_unit);
547			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
548				printf("ti%d: bad config data\n", sc->ti_unit);
549			break;
550		case TI_EV_FIRMWARE_UP:
551			ti_init2(sc);
552			break;
553		case TI_EV_STATS_UPDATED:
554			ti_stats_update(sc);
555			break;
556		case TI_EV_RESET_JUMBO_RING:
557		case TI_EV_MCAST_UPDATED:
558			/* Who cares. */
559			break;
560		default:
561			printf("ti%d: unknown event: %d\n",
562			    sc->ti_unit, e->ti_event);
563			break;
564		}
565		/* Advance the consumer index. */
566		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568	}
569
570	return;
571}
572
573/*
574 * Memory management for the jumbo receive ring is a pain in the
575 * butt. We need to allocate at least 9018 bytes of space per frame,
576 * _and_ it has to be contiguous (unless you use the extended
577 * jumbo descriptor format). Using malloc() all the time won't
578 * work: malloc() allocates memory in powers of two, which means we
579 * would end up wasting a considerable amount of space by allocating
580 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581 * to do our own memory management.
582 *
583 * The driver needs to allocate a contiguous chunk of memory at boot
584 * time. We then chop this up ourselves into 9K pieces and use them
585 * as external mbuf storage.
586 *
587 * One issue here is how much memory to allocate. The jumbo ring has
588 * 256 slots in it, but at 9K per slot than can consume over 2MB of
589 * RAM. This is a bit much, especially considering we also need
590 * RAM for the standard ring and mini ring (on the Tigon 2). To
591 * save space, we only actually allocate enough memory for 64 slots
592 * by default, which works out to between 500 and 600K. This can
593 * be tuned by changing a #define in if_tireg.h.
594 */
595
596static int ti_alloc_jumbo_mem(sc)
597	struct ti_softc		*sc;
598{
599	caddr_t			ptr;
600	register int		i;
601	struct ti_jpool_entry   *entry;
602
603	/* Grab a big chunk o' storage. */
604	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
605		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
606
607	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
608		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
609		return(ENOBUFS);
610	}
611
612	SLIST_INIT(&sc->ti_jfree_listhead);
613	SLIST_INIT(&sc->ti_jinuse_listhead);
614
615	/*
616	 * Now divide it up into 9K pieces and save the addresses
617	 * in an array. Note that we play an evil trick here by using
618	 * the first few bytes in the buffer to hold the the address
619	 * of the softc structure for this interface. This is because
620	 * ti_jfree() needs it, but it is called by the mbuf management
621	 * code which will not pass it to us explicitly.
622	 */
623	ptr = sc->ti_cdata.ti_jumbo_buf;
624	for (i = 0; i < TI_JSLOTS; i++) {
625		u_int64_t		**aptr;
626		aptr = (u_int64_t **)ptr;
627		aptr[0] = (u_int64_t *)sc;
628		ptr += sizeof(u_int64_t);
629		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
630		ptr += (TI_JLEN - sizeof(u_int64_t));
631		entry = malloc(sizeof(struct ti_jpool_entry),
632			       M_DEVBUF, M_NOWAIT);
633		if (entry == NULL) {
634			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
635			           M_DEVBUF);
636			sc->ti_cdata.ti_jumbo_buf = NULL;
637			printf("ti%d: no memory for jumbo "
638			    "buffer queue!\n", sc->ti_unit);
639			return(ENOBUFS);
640		}
641		entry->slot = i;
642		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
643	}
644
645	return(0);
646}
647
648/*
649 * Allocate a jumbo buffer.
650 */
651static void *ti_jalloc(sc)
652	struct ti_softc		*sc;
653{
654	struct ti_jpool_entry   *entry;
655
656	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
657
658	if (entry == NULL) {
659		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
660		return(NULL);
661	}
662
663	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
664	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
665	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
666}
667
668/*
669 * Release a jumbo buffer.
670 */
671static void ti_jfree(buf, args)
672	caddr_t			buf;
673	void			*args;
674{
675	struct ti_softc		*sc;
676	u_int64_t		**aptr;
677	int		        i;
678	struct ti_jpool_entry   *entry;
679
680	/* Extract the softc struct pointer. */
681	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
682	sc = (struct ti_softc *)(aptr[0]);
683
684	if (sc == NULL)
685		panic("ti_jfree: can't find softc pointer!");
686
687	/* calculate the slot this buffer belongs to */
688	i = ((vm_offset_t)aptr
689	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
690
691	if ((i < 0) || (i >= TI_JSLOTS))
692		panic("ti_jfree: asked to free buffer that we don't manage!");
693
694	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
695	if (entry == NULL)
696		panic("ti_jfree: buffer not in use!");
697	entry->slot = i;
698	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
699	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
700
701	return;
702}
703
704
705/*
706 * Intialize a standard receive ring descriptor.
707 */
708static int ti_newbuf_std(sc, i, m)
709	struct ti_softc		*sc;
710	int			i;
711	struct mbuf		*m;
712{
713	struct mbuf		*m_new = NULL;
714	struct ti_rx_desc	*r;
715
716	if (m == NULL) {
717		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
718		if (m_new == NULL) {
719			printf("ti%d: mbuf allocation failed "
720			    "-- packet dropped!\n", sc->ti_unit);
721			return(ENOBUFS);
722		}
723
724		MCLGET(m_new, M_DONTWAIT);
725		if (!(m_new->m_flags & M_EXT)) {
726			printf("ti%d: cluster allocation failed "
727			    "-- packet dropped!\n", sc->ti_unit);
728			m_freem(m_new);
729			return(ENOBUFS);
730		}
731		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
732	} else {
733		m_new = m;
734		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
735		m_new->m_data = m_new->m_ext.ext_buf;
736	}
737
738	m_adj(m_new, ETHER_ALIGN);
739	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
740	r = &sc->ti_rdata->ti_rx_std_ring[i];
741	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
742	r->ti_type = TI_BDTYPE_RECV_BD;
743	r->ti_flags = 0;
744	if (sc->arpcom.ac_if.if_hwassist)
745		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
746	r->ti_len = m_new->m_len;
747	r->ti_idx = i;
748
749	return(0);
750}
751
752/*
753 * Intialize a mini receive ring descriptor. This only applies to
754 * the Tigon 2.
755 */
756static int ti_newbuf_mini(sc, i, m)
757	struct ti_softc		*sc;
758	int			i;
759	struct mbuf		*m;
760{
761	struct mbuf		*m_new = NULL;
762	struct ti_rx_desc	*r;
763
764	if (m == NULL) {
765		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
766		if (m_new == NULL) {
767			printf("ti%d: mbuf allocation failed "
768			    "-- packet dropped!\n", sc->ti_unit);
769			return(ENOBUFS);
770		}
771		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
772	} else {
773		m_new = m;
774		m_new->m_data = m_new->m_pktdat;
775		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
776	}
777
778	m_adj(m_new, ETHER_ALIGN);
779	r = &sc->ti_rdata->ti_rx_mini_ring[i];
780	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
781	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
782	r->ti_type = TI_BDTYPE_RECV_BD;
783	r->ti_flags = TI_BDFLAG_MINI_RING;
784	if (sc->arpcom.ac_if.if_hwassist)
785		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
786	r->ti_len = m_new->m_len;
787	r->ti_idx = i;
788
789	return(0);
790}
791
792/*
793 * Initialize a jumbo receive ring descriptor. This allocates
794 * a jumbo buffer from the pool managed internally by the driver.
795 */
796static int ti_newbuf_jumbo(sc, i, m)
797	struct ti_softc		*sc;
798	int			i;
799	struct mbuf		*m;
800{
801	struct mbuf		*m_new = NULL;
802	struct ti_rx_desc	*r;
803
804	if (m == NULL) {
805		caddr_t			*buf = NULL;
806
807		/* Allocate the mbuf. */
808		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
809		if (m_new == NULL) {
810			printf("ti%d: mbuf allocation failed "
811			    "-- packet dropped!\n", sc->ti_unit);
812			return(ENOBUFS);
813		}
814
815		/* Allocate the jumbo buffer */
816		buf = ti_jalloc(sc);
817		if (buf == NULL) {
818			m_freem(m_new);
819			printf("ti%d: jumbo allocation failed "
820			    "-- packet dropped!\n", sc->ti_unit);
821			return(ENOBUFS);
822		}
823
824		/* Attach the buffer to the mbuf. */
825		m_new->m_data = (void *) buf;
826		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
827		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree, NULL);
828	} else {
829		m_new = m;
830		m_new->m_data = m_new->m_ext.ext_buf;
831		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
832	}
833
834	m_adj(m_new, ETHER_ALIGN);
835	/* Set up the descriptor. */
836	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
837	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
838	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
839	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
840	r->ti_flags = TI_BDFLAG_JUMBO_RING;
841	if (sc->arpcom.ac_if.if_hwassist)
842		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
843	r->ti_len = m_new->m_len;
844	r->ti_idx = i;
845
846	return(0);
847}
848
849/*
850 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
851 * that's 1MB or memory, which is a lot. For now, we fill only the first
852 * 256 ring entries and hope that our CPU is fast enough to keep up with
853 * the NIC.
854 */
855static int ti_init_rx_ring_std(sc)
856	struct ti_softc		*sc;
857{
858	register int		i;
859	struct ti_cmd_desc	cmd;
860
861	for (i = 0; i < TI_SSLOTS; i++) {
862		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
863			return(ENOBUFS);
864	};
865
866	TI_UPDATE_STDPROD(sc, i - 1);
867	sc->ti_std = i - 1;
868
869	return(0);
870}
871
872static void ti_free_rx_ring_std(sc)
873	struct ti_softc		*sc;
874{
875	register int		i;
876
877	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
878		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
879			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
880			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
881		}
882		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
883		    sizeof(struct ti_rx_desc));
884	}
885
886	return;
887}
888
889static int ti_init_rx_ring_jumbo(sc)
890	struct ti_softc		*sc;
891{
892	register int		i;
893	struct ti_cmd_desc	cmd;
894
895	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
896		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
897			return(ENOBUFS);
898	};
899
900	TI_UPDATE_JUMBOPROD(sc, i - 1);
901	sc->ti_jumbo = i - 1;
902
903	return(0);
904}
905
906static void ti_free_rx_ring_jumbo(sc)
907	struct ti_softc		*sc;
908{
909	register int		i;
910
911	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
912		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
913			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
914			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
915		}
916		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
917		    sizeof(struct ti_rx_desc));
918	}
919
920	return;
921}
922
923static int ti_init_rx_ring_mini(sc)
924	struct ti_softc		*sc;
925{
926	register int		i;
927
928	for (i = 0; i < TI_MSLOTS; i++) {
929		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
930			return(ENOBUFS);
931	};
932
933	TI_UPDATE_MINIPROD(sc, i - 1);
934	sc->ti_mini = i - 1;
935
936	return(0);
937}
938
939static void ti_free_rx_ring_mini(sc)
940	struct ti_softc		*sc;
941{
942	register int		i;
943
944	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
945		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
946			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
947			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
948		}
949		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
950		    sizeof(struct ti_rx_desc));
951	}
952
953	return;
954}
955
956static void ti_free_tx_ring(sc)
957	struct ti_softc		*sc;
958{
959	register int		i;
960
961	if (sc->ti_rdata->ti_tx_ring == NULL)
962		return;
963
964	for (i = 0; i < TI_TX_RING_CNT; i++) {
965		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
966			m_freem(sc->ti_cdata.ti_tx_chain[i]);
967			sc->ti_cdata.ti_tx_chain[i] = NULL;
968		}
969		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
970		    sizeof(struct ti_tx_desc));
971	}
972
973	return;
974}
975
976static int ti_init_tx_ring(sc)
977	struct ti_softc		*sc;
978{
979	sc->ti_txcnt = 0;
980	sc->ti_tx_saved_considx = 0;
981	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
982	return(0);
983}
984
985/*
986 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
987 * but we have to support the old way too so that Tigon 1 cards will
988 * work.
989 */
990void ti_add_mcast(sc, addr)
991	struct ti_softc		*sc;
992	struct ether_addr	*addr;
993{
994	struct ti_cmd_desc	cmd;
995	u_int16_t		*m;
996	u_int32_t		ext[2] = {0, 0};
997
998	m = (u_int16_t *)&addr->octet[0];
999
1000	switch(sc->ti_hwrev) {
1001	case TI_HWREV_TIGON:
1002		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1003		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1004		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1005		break;
1006	case TI_HWREV_TIGON_II:
1007		ext[0] = htons(m[0]);
1008		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1009		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1010		break;
1011	default:
1012		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1013		break;
1014	}
1015
1016	return;
1017}
1018
1019void ti_del_mcast(sc, addr)
1020	struct ti_softc		*sc;
1021	struct ether_addr	*addr;
1022{
1023	struct ti_cmd_desc	cmd;
1024	u_int16_t		*m;
1025	u_int32_t		ext[2] = {0, 0};
1026
1027	m = (u_int16_t *)&addr->octet[0];
1028
1029	switch(sc->ti_hwrev) {
1030	case TI_HWREV_TIGON:
1031		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1032		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1033		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1034		break;
1035	case TI_HWREV_TIGON_II:
1036		ext[0] = htons(m[0]);
1037		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1038		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1039		break;
1040	default:
1041		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1042		break;
1043	}
1044
1045	return;
1046}
1047
1048/*
1049 * Configure the Tigon's multicast address filter.
1050 *
1051 * The actual multicast table management is a bit of a pain, thanks to
1052 * slight brain damage on the part of both Alteon and us. With our
1053 * multicast code, we are only alerted when the multicast address table
1054 * changes and at that point we only have the current list of addresses:
1055 * we only know the current state, not the previous state, so we don't
1056 * actually know what addresses were removed or added. The firmware has
1057 * state, but we can't get our grubby mits on it, and there is no 'delete
1058 * all multicast addresses' command. Hence, we have to maintain our own
1059 * state so we know what addresses have been programmed into the NIC at
1060 * any given time.
1061 */
1062static void ti_setmulti(sc)
1063	struct ti_softc		*sc;
1064{
1065	struct ifnet		*ifp;
1066	struct ifmultiaddr	*ifma;
1067	struct ti_cmd_desc	cmd;
1068	struct ti_mc_entry	*mc;
1069	u_int32_t		intrs;
1070
1071	ifp = &sc->arpcom.ac_if;
1072
1073	if (ifp->if_flags & IFF_ALLMULTI) {
1074		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1075		return;
1076	} else {
1077		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1078	}
1079
1080	/* Disable interrupts. */
1081	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1082	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1083
1084	/* First, zot all the existing filters. */
1085	while (sc->ti_mc_listhead.slh_first != NULL) {
1086		mc = sc->ti_mc_listhead.slh_first;
1087		ti_del_mcast(sc, &mc->mc_addr);
1088		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1089		free(mc, M_DEVBUF);
1090	}
1091
1092	/* Now program new ones. */
1093	for (ifma = ifp->if_multiaddrs.lh_first;
1094	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1095		if (ifma->ifma_addr->sa_family != AF_LINK)
1096			continue;
1097		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1098		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1099		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1100		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1101		ti_add_mcast(sc, &mc->mc_addr);
1102	}
1103
1104	/* Re-enable interrupts. */
1105	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1106
1107	return;
1108}
1109
1110/*
1111 * Check to see if the BIOS has configured us for a 64 bit slot when
1112 * we aren't actually in one. If we detect this condition, we can work
1113 * around it on the Tigon 2 by setting a bit in the PCI state register,
1114 * but for the Tigon 1 we must give up and abort the interface attach.
1115 */
1116static int ti_64bitslot_war(sc)
1117	struct ti_softc		*sc;
1118{
1119	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1120		CSR_WRITE_4(sc, 0x600, 0);
1121		CSR_WRITE_4(sc, 0x604, 0);
1122		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1123		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1124			if (sc->ti_hwrev == TI_HWREV_TIGON)
1125				return(EINVAL);
1126			else {
1127				TI_SETBIT(sc, TI_PCI_STATE,
1128				    TI_PCISTATE_32BIT_BUS);
1129				return(0);
1130			}
1131		}
1132	}
1133
1134	return(0);
1135}
1136
1137/*
1138 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1139 * self-test results.
1140 */
1141static int ti_chipinit(sc)
1142	struct ti_softc		*sc;
1143{
1144	u_int32_t		cacheline;
1145	u_int32_t		pci_writemax = 0;
1146
1147	/* Initialize link to down state. */
1148	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1149
1150	sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1151
1152	/* Set endianness before we access any non-PCI registers. */
1153#if BYTE_ORDER == BIG_ENDIAN
1154	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1155	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1156#else
1157	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1158	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1159#endif
1160
1161	/* Check the ROM failed bit to see if self-tests passed. */
1162	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1163		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1164		return(ENODEV);
1165	}
1166
1167	/* Halt the CPU. */
1168	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1169
1170	/* Figure out the hardware revision. */
1171	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1172	case TI_REV_TIGON_I:
1173		sc->ti_hwrev = TI_HWREV_TIGON;
1174		break;
1175	case TI_REV_TIGON_II:
1176		sc->ti_hwrev = TI_HWREV_TIGON_II;
1177		break;
1178	default:
1179		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1180		return(ENODEV);
1181	}
1182
1183	/* Do special setup for Tigon 2. */
1184	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1185		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1186		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1187		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1188	}
1189
1190	/* Set up the PCI state register. */
1191	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1192	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1193		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1194	}
1195
1196	/* Clear the read/write max DMA parameters. */
1197	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1198	    TI_PCISTATE_READ_MAXDMA));
1199
1200	/* Get cache line size. */
1201	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1202
1203	/*
1204	 * If the system has set enabled the PCI memory write
1205	 * and invalidate command in the command register, set
1206	 * the write max parameter accordingly. This is necessary
1207	 * to use MWI with the Tigon 2.
1208	 */
1209	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1210		switch(cacheline) {
1211		case 1:
1212		case 4:
1213		case 8:
1214		case 16:
1215		case 32:
1216		case 64:
1217			break;
1218		default:
1219		/* Disable PCI memory write and invalidate. */
1220			if (bootverbose)
1221				printf("ti%d: cache line size %d not "
1222				    "supported; disabling PCI MWI\n",
1223				    sc->ti_unit, cacheline);
1224			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1225			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1226			break;
1227		}
1228	}
1229
1230#ifdef __brokenalpha__
1231	/*
1232	 * From the Alteon sample driver:
1233	 * Must insure that we do not cross an 8K (bytes) boundary
1234	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1235	 * restriction on some ALPHA platforms with early revision
1236	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1237	 */
1238	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1239#else
1240	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1241#endif
1242
1243	/* This sets the min dma param all the way up (0xff). */
1244	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1245
1246	/* Configure DMA variables. */
1247#if BYTE_ORDER == BIG_ENDIAN
1248	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1249	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1250	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1251	    TI_OPMODE_DONT_FRAG_JUMBO);
1252#else
1253	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1254	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1255	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1256#endif
1257
1258	/*
1259	 * Only allow 1 DMA channel to be active at a time.
1260	 * I don't think this is a good idea, but without it
1261	 * the firmware racks up lots of nicDmaReadRingFull
1262	 * errors.  This is not compatible with hardware checksums.
1263	 */
1264	if (sc->arpcom.ac_if.if_hwassist == 0)
1265		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1266
1267	/* Recommended settings from Tigon manual. */
1268	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1269	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1270
1271	if (ti_64bitslot_war(sc)) {
1272		printf("ti%d: bios thinks we're in a 64 bit slot, "
1273		    "but we aren't", sc->ti_unit);
1274		return(EINVAL);
1275	}
1276
1277	return(0);
1278}
1279
1280/*
1281 * Initialize the general information block and firmware, and
1282 * start the CPU(s) running.
1283 */
1284static int ti_gibinit(sc)
1285	struct ti_softc		*sc;
1286{
1287	struct ti_rcb		*rcb;
1288	int			i;
1289	struct ifnet		*ifp;
1290
1291	ifp = &sc->arpcom.ac_if;
1292
1293	/* Disable interrupts for now. */
1294	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1295
1296	/* Tell the chip where to find the general information block. */
1297	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1298	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1299
1300	/* Load the firmware into SRAM. */
1301	ti_loadfw(sc);
1302
1303	/* Set up the contents of the general info and ring control blocks. */
1304
1305	/* Set up the event ring and producer pointer. */
1306	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1307
1308	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1309	rcb->ti_flags = 0;
1310	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1311	    vtophys(&sc->ti_ev_prodidx);
1312	sc->ti_ev_prodidx.ti_idx = 0;
1313	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1314	sc->ti_ev_saved_considx = 0;
1315
1316	/* Set up the command ring and producer mailbox. */
1317	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1318
1319	sc->ti_rdata->ti_cmd_ring =
1320	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1321	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1322	rcb->ti_flags = 0;
1323	rcb->ti_max_len = 0;
1324	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1325		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1326	}
1327	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1328	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1329	sc->ti_cmd_saved_prodidx = 0;
1330
1331	/*
1332	 * Assign the address of the stats refresh buffer.
1333	 * We re-use the current stats buffer for this to
1334	 * conserve memory.
1335	 */
1336	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1337	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1338
1339	/* Set up the standard receive ring. */
1340	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1341	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1342	rcb->ti_max_len = TI_FRAMELEN;
1343	rcb->ti_flags = 0;
1344	if (sc->arpcom.ac_if.if_hwassist)
1345		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1346		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1347#if NVLAN > 0
1348	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1349#endif
1350
1351	/* Set up the jumbo receive ring. */
1352	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1353	TI_HOSTADDR(rcb->ti_hostaddr) =
1354	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1355	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1356	rcb->ti_flags = 0;
1357	if (sc->arpcom.ac_if.if_hwassist)
1358		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1359		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1360#if NVLAN > 0
1361	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1362#endif
1363
1364	/*
1365	 * Set up the mini ring. Only activated on the
1366	 * Tigon 2 but the slot in the config block is
1367	 * still there on the Tigon 1.
1368	 */
1369	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1370	TI_HOSTADDR(rcb->ti_hostaddr) =
1371	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1372	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1373	if (sc->ti_hwrev == TI_HWREV_TIGON)
1374		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1375	else
1376		rcb->ti_flags = 0;
1377	if (sc->arpcom.ac_if.if_hwassist)
1378		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1379		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1380#if NVLAN > 0
1381	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1382#endif
1383
1384	/*
1385	 * Set up the receive return ring.
1386	 */
1387	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1388	TI_HOSTADDR(rcb->ti_hostaddr) =
1389	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1390	rcb->ti_flags = 0;
1391	rcb->ti_max_len = TI_RETURN_RING_CNT;
1392	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1393	    vtophys(&sc->ti_return_prodidx);
1394
1395	/*
1396	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1397	 * of putting the transmit ring in the host's address space and
1398	 * letting the chip DMA it instead of leaving the ring in the NIC's
1399	 * memory and accessing it through the shared memory region. We
1400	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1401	 * so we have to revert to the shared memory scheme if we detect
1402	 * a Tigon 1 chip.
1403	 */
1404	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1405	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1406		sc->ti_rdata->ti_tx_ring_nic =
1407		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1408	}
1409	bzero((char *)sc->ti_rdata->ti_tx_ring,
1410	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1411	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1412	if (sc->ti_hwrev == TI_HWREV_TIGON)
1413		rcb->ti_flags = 0;
1414	else
1415		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1416#if NVLAN > 0
1417	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1418#endif
1419	if (sc->arpcom.ac_if.if_hwassist)
1420		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1421		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1422	rcb->ti_max_len = TI_TX_RING_CNT;
1423	if (sc->ti_hwrev == TI_HWREV_TIGON)
1424		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1425	else
1426		TI_HOSTADDR(rcb->ti_hostaddr) =
1427		    vtophys(&sc->ti_rdata->ti_tx_ring);
1428	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1429	    vtophys(&sc->ti_tx_considx);
1430
1431	/* Set up tuneables */
1432	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1433		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1434		    (sc->ti_rx_coal_ticks / 10));
1435	else
1436		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1437	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1438	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1439	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1440	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1441	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1442
1443	/* Turn interrupts on. */
1444	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1445	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1446
1447	/* Start CPU. */
1448	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1449
1450	return(0);
1451}
1452
1453/*
1454 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1455 * against our list and return its name if we find a match.
1456 */
1457static int ti_probe(dev)
1458	device_t		dev;
1459{
1460	struct ti_type		*t;
1461
1462	t = ti_devs;
1463
1464	while(t->ti_name != NULL) {
1465		if ((pci_get_vendor(dev) == t->ti_vid) &&
1466		    (pci_get_device(dev) == t->ti_did)) {
1467			device_set_desc(dev, t->ti_name);
1468			return(0);
1469		}
1470		t++;
1471	}
1472
1473	return(ENXIO);
1474}
1475
1476static int ti_attach(dev)
1477	device_t		dev;
1478{
1479	u_int32_t		command;
1480	struct ifnet		*ifp;
1481	struct ti_softc		*sc;
1482	int			unit, error = 0, rid;
1483
1484	sc = device_get_softc(dev);
1485	unit = device_get_unit(dev);
1486	bzero(sc, sizeof(struct ti_softc));
1487
1488	/*
1489	 * Map control/status registers.
1490	 */
1491	command = pci_read_config(dev, PCIR_COMMAND, 4);
1492	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1493	pci_write_config(dev, PCIR_COMMAND, command, 4);
1494	command = pci_read_config(dev, PCIR_COMMAND, 4);
1495
1496	if (!(command & PCIM_CMD_MEMEN)) {
1497		printf("ti%d: failed to enable memory mapping!\n", unit);
1498		error = ENXIO;
1499		goto fail;
1500	}
1501
1502	rid = TI_PCI_LOMEM;
1503	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1504	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1505
1506	if (sc->ti_res == NULL) {
1507		printf ("ti%d: couldn't map memory\n", unit);
1508		error = ENXIO;
1509		goto fail;
1510	}
1511
1512	sc->ti_btag = rman_get_bustag(sc->ti_res);
1513	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1514	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1515
1516	/* Allocate interrupt */
1517	rid = 0;
1518
1519	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1520	    RF_SHAREABLE | RF_ACTIVE);
1521
1522	if (sc->ti_irq == NULL) {
1523		printf("ti%d: couldn't map interrupt\n", unit);
1524		error = ENXIO;
1525		goto fail;
1526	}
1527
1528	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1529	   ti_intr, sc, &sc->ti_intrhand);
1530
1531	if (error) {
1532		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1533		bus_release_resource(dev, SYS_RES_MEMORY,
1534		    TI_PCI_LOMEM, sc->ti_res);
1535		printf("ti%d: couldn't set up irq\n", unit);
1536		goto fail;
1537	}
1538
1539	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF);
1540	TI_LOCK(sc);
1541
1542	sc->ti_unit = unit;
1543
1544	if (ti_chipinit(sc)) {
1545		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1546		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1547		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1548		bus_release_resource(dev, SYS_RES_MEMORY,
1549		    TI_PCI_LOMEM, sc->ti_res);
1550		error = ENXIO;
1551		goto fail;
1552	}
1553
1554	/* Zero out the NIC's on-board SRAM. */
1555	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1556
1557	/* Init again -- zeroing memory may have clobbered some registers. */
1558	if (ti_chipinit(sc)) {
1559		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1560		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1561		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1562		bus_release_resource(dev, SYS_RES_MEMORY,
1563		    TI_PCI_LOMEM, sc->ti_res);
1564		error = ENXIO;
1565		goto fail;
1566	}
1567
1568	/*
1569	 * Get station address from the EEPROM. Note: the manual states
1570	 * that the MAC address is at offset 0x8c, however the data is
1571	 * stored as two longwords (since that's how it's loaded into
1572	 * the NIC). This means the MAC address is actually preceeded
1573	 * by two zero bytes. We need to skip over those.
1574	 */
1575	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1576				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1577		printf("ti%d: failed to read station address\n", unit);
1578		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1579		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1580		bus_release_resource(dev, SYS_RES_MEMORY,
1581		    TI_PCI_LOMEM, sc->ti_res);
1582		error = ENXIO;
1583		goto fail;
1584	}
1585
1586	/*
1587	 * A Tigon chip was detected. Inform the world.
1588	 */
1589	printf("ti%d: Ethernet address: %6D\n", unit,
1590				sc->arpcom.ac_enaddr, ":");
1591
1592	/* Allocate the general information block and ring buffers. */
1593	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1594	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1595
1596	if (sc->ti_rdata == NULL) {
1597		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1598		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1599		bus_release_resource(dev, SYS_RES_MEMORY,
1600		    TI_PCI_LOMEM, sc->ti_res);
1601		error = ENXIO;
1602		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1603		goto fail;
1604	}
1605
1606	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1607
1608	/* Try to allocate memory for jumbo buffers. */
1609	if (ti_alloc_jumbo_mem(sc)) {
1610		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1611		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1612		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1613		bus_release_resource(dev, SYS_RES_MEMORY,
1614		    TI_PCI_LOMEM, sc->ti_res);
1615		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1616		    M_DEVBUF);
1617		error = ENXIO;
1618		goto fail;
1619	}
1620
1621	/*
1622	 * We really need a better way to tell a 1000baseTX card
1623	 * from a 1000baseSX one, since in theory there could be
1624	 * OEMed 1000baseTX cards from lame vendors who aren't
1625	 * clever enough to change the PCI ID. For the moment
1626	 * though, the AceNIC is the only copper card available.
1627	 */
1628	if (pci_get_vendor(dev) == ALT_VENDORID &&
1629	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1630		sc->ti_copper = 1;
1631	/* Ok, it's not the only copper card available. */
1632	if (pci_get_vendor(dev) == NG_VENDORID &&
1633	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1634		sc->ti_copper = 1;
1635
1636	/* Set default tuneable values. */
1637	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1638	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1639	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1640	sc->ti_rx_max_coal_bds = 64;
1641	sc->ti_tx_max_coal_bds = 128;
1642	sc->ti_tx_buf_ratio = 21;
1643
1644	/* Set up ifnet structure */
1645	ifp = &sc->arpcom.ac_if;
1646	ifp->if_softc = sc;
1647	ifp->if_unit = sc->ti_unit;
1648	ifp->if_name = "ti";
1649	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1650	ifp->if_ioctl = ti_ioctl;
1651	ifp->if_output = ether_output;
1652	ifp->if_start = ti_start;
1653	ifp->if_watchdog = ti_watchdog;
1654	ifp->if_init = ti_init;
1655	ifp->if_mtu = ETHERMTU;
1656	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1657
1658	/* Set up ifmedia support. */
1659	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1660	if (sc->ti_copper) {
1661		/*
1662		 * Copper cards allow manual 10/100 mode selection,
1663		 * but not manual 1000baseTX mode selection. Why?
1664		 * Becuase currently there's no way to specify the
1665		 * master/slave setting through the firmware interface,
1666		 * so Alteon decided to just bag it and handle it
1667		 * via autonegotiation.
1668		 */
1669		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1670		ifmedia_add(&sc->ifmedia,
1671		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1672		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1673		ifmedia_add(&sc->ifmedia,
1674		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1675		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1676		ifmedia_add(&sc->ifmedia,
1677		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1678	} else {
1679		/* Fiber cards don't support 10/100 modes. */
1680		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1681		ifmedia_add(&sc->ifmedia,
1682		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1683	}
1684	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1685	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1686
1687	/*
1688	 * Call MI attach routine.
1689	 */
1690	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1691	TI_UNLOCK(sc);
1692	return(0);
1693
1694fail:
1695	TI_UNLOCK(sc);
1696	mtx_destroy(&sc->ti_mtx);
1697	return(error);
1698}
1699
1700static int ti_detach(dev)
1701	device_t		dev;
1702{
1703	struct ti_softc		*sc;
1704	struct ifnet		*ifp;
1705
1706
1707	sc = device_get_softc(dev);
1708	TI_LOCK(sc);
1709	ifp = &sc->arpcom.ac_if;
1710
1711	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1712	ti_stop(sc);
1713
1714	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1715	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1716	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1717
1718	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1719	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1720	ifmedia_removeall(&sc->ifmedia);
1721
1722	TI_UNLOCK(sc);
1723	mtx_destroy(&sc->ti_mtx);
1724
1725	return(0);
1726}
1727
1728/*
1729 * Frame reception handling. This is called if there's a frame
1730 * on the receive return list.
1731 *
1732 * Note: we have to be able to handle three possibilities here:
1733 * 1) the frame is from the mini receive ring (can only happen)
1734 *    on Tigon 2 boards)
1735 * 2) the frame is from the jumbo recieve ring
1736 * 3) the frame is from the standard receive ring
1737 */
1738
1739static void ti_rxeof(sc)
1740	struct ti_softc		*sc;
1741{
1742	struct ifnet		*ifp;
1743	struct ti_cmd_desc	cmd;
1744
1745	ifp = &sc->arpcom.ac_if;
1746
1747	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1748		struct ti_rx_desc	*cur_rx;
1749		u_int32_t		rxidx;
1750		struct ether_header	*eh;
1751		struct mbuf		*m = NULL;
1752#if NVLAN > 0
1753		u_int16_t		vlan_tag = 0;
1754		int			have_tag = 0;
1755#endif
1756
1757		cur_rx =
1758		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1759		rxidx = cur_rx->ti_idx;
1760		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1761
1762#if NVLAN > 0
1763		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1764			have_tag = 1;
1765			vlan_tag = cur_rx->ti_vlan_tag;
1766		}
1767#endif
1768
1769		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1770			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1771			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1772			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1773			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1774				ifp->if_ierrors++;
1775				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1776				continue;
1777			}
1778			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1779				ifp->if_ierrors++;
1780				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1781				continue;
1782			}
1783		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1784			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1785			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1786			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1787			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1788				ifp->if_ierrors++;
1789				ti_newbuf_mini(sc, sc->ti_mini, m);
1790				continue;
1791			}
1792			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1793				ifp->if_ierrors++;
1794				ti_newbuf_mini(sc, sc->ti_mini, m);
1795				continue;
1796			}
1797		} else {
1798			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1799			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1800			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1801			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1802				ifp->if_ierrors++;
1803				ti_newbuf_std(sc, sc->ti_std, m);
1804				continue;
1805			}
1806			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1807				ifp->if_ierrors++;
1808				ti_newbuf_std(sc, sc->ti_std, m);
1809				continue;
1810			}
1811		}
1812
1813		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1814		ifp->if_ipackets++;
1815		eh = mtod(m, struct ether_header *);
1816		m->m_pkthdr.rcvif = ifp;
1817
1818		/* Remove header from mbuf and pass it on. */
1819		m_adj(m, sizeof(struct ether_header));
1820
1821		if (ifp->if_hwassist) {
1822			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1823			    CSUM_DATA_VALID;
1824			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1825				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1826			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1827		}
1828
1829#if NVLAN > 0
1830		/*
1831		 * If we received a packet with a vlan tag, pass it
1832		 * to vlan_input() instead of ether_input().
1833		 */
1834		if (have_tag) {
1835			vlan_input_tag(eh, m, vlan_tag);
1836			have_tag = vlan_tag = 0;
1837			continue;
1838		}
1839#endif
1840		ether_input(ifp, eh, m);
1841	}
1842
1843	/* Only necessary on the Tigon 1. */
1844	if (sc->ti_hwrev == TI_HWREV_TIGON)
1845		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1846		    sc->ti_rx_saved_considx);
1847
1848	TI_UPDATE_STDPROD(sc, sc->ti_std);
1849	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1850	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1851
1852	return;
1853}
1854
1855static void ti_txeof(sc)
1856	struct ti_softc		*sc;
1857{
1858	struct ti_tx_desc	*cur_tx = NULL;
1859	struct ifnet		*ifp;
1860
1861	ifp = &sc->arpcom.ac_if;
1862
1863	/*
1864	 * Go through our tx ring and free mbufs for those
1865	 * frames that have been sent.
1866	 */
1867	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1868		u_int32_t		idx = 0;
1869
1870		idx = sc->ti_tx_saved_considx;
1871		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1872			if (idx > 383)
1873				CSR_WRITE_4(sc, TI_WINBASE,
1874				    TI_TX_RING_BASE + 6144);
1875			else if (idx > 255)
1876				CSR_WRITE_4(sc, TI_WINBASE,
1877				    TI_TX_RING_BASE + 4096);
1878			else if (idx > 127)
1879				CSR_WRITE_4(sc, TI_WINBASE,
1880				    TI_TX_RING_BASE + 2048);
1881			else
1882				CSR_WRITE_4(sc, TI_WINBASE,
1883				    TI_TX_RING_BASE);
1884			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1885		} else
1886			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1887		if (cur_tx->ti_flags & TI_BDFLAG_END)
1888			ifp->if_opackets++;
1889		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1890			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1891			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1892		}
1893		sc->ti_txcnt--;
1894		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1895		ifp->if_timer = 0;
1896	}
1897
1898	if (cur_tx != NULL)
1899		ifp->if_flags &= ~IFF_OACTIVE;
1900
1901	return;
1902}
1903
1904static void ti_intr(xsc)
1905	void			*xsc;
1906{
1907	struct ti_softc		*sc;
1908	struct ifnet		*ifp;
1909
1910	sc = xsc;
1911	TI_LOCK(sc);
1912	ifp = &sc->arpcom.ac_if;
1913
1914#ifdef notdef
1915	/* Avoid this for now -- checking this register is expensive. */
1916	/* Make sure this is really our interrupt. */
1917	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1918		TI_UNLOCK(sc);
1919		return;
1920	}
1921#endif
1922
1923	/* Ack interrupt and stop others from occuring. */
1924	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1925
1926	if (ifp->if_flags & IFF_RUNNING) {
1927		/* Check RX return ring producer/consumer */
1928		ti_rxeof(sc);
1929
1930		/* Check TX ring producer/consumer */
1931		ti_txeof(sc);
1932	}
1933
1934	ti_handle_events(sc);
1935
1936	/* Re-enable interrupts. */
1937	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1938
1939	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1940		ti_start(ifp);
1941
1942	TI_UNLOCK(sc);
1943
1944	return;
1945}
1946
1947static void ti_stats_update(sc)
1948	struct ti_softc		*sc;
1949{
1950	struct ifnet		*ifp;
1951
1952	ifp = &sc->arpcom.ac_if;
1953
1954	ifp->if_collisions +=
1955	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1956	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1957	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1958	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1959	   ifp->if_collisions;
1960
1961	return;
1962}
1963
1964/*
1965 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1966 * pointers to descriptors.
1967 */
1968static int ti_encap(sc, m_head, txidx)
1969	struct ti_softc		*sc;
1970	struct mbuf		*m_head;
1971	u_int32_t		*txidx;
1972{
1973	struct ti_tx_desc	*f = NULL;
1974	struct mbuf		*m;
1975	u_int32_t		frag, cur, cnt = 0;
1976	u_int16_t		csum_flags = 0;
1977#if NVLAN > 0
1978	struct ifvlan		*ifv = NULL;
1979
1980	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1981	    m_head->m_pkthdr.rcvif != NULL &&
1982	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
1983		ifv = m_head->m_pkthdr.rcvif->if_softc;
1984#endif
1985
1986	m = m_head;
1987	cur = frag = *txidx;
1988
1989	if (m_head->m_pkthdr.csum_flags) {
1990		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1991			csum_flags |= TI_BDFLAG_IP_CKSUM;
1992		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1993			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1994		if (m_head->m_flags & M_LASTFRAG)
1995			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1996		else if (m_head->m_flags & M_FRAG)
1997			csum_flags |= TI_BDFLAG_IP_FRAG;
1998	}
1999	/*
2000 	 * Start packing the mbufs in this chain into
2001	 * the fragment pointers. Stop when we run out
2002 	 * of fragments or hit the end of the mbuf chain.
2003	 */
2004	for (m = m_head; m != NULL; m = m->m_next) {
2005		if (m->m_len != 0) {
2006			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2007				if (frag > 383)
2008					CSR_WRITE_4(sc, TI_WINBASE,
2009					    TI_TX_RING_BASE + 6144);
2010				else if (frag > 255)
2011					CSR_WRITE_4(sc, TI_WINBASE,
2012					    TI_TX_RING_BASE + 4096);
2013				else if (frag > 127)
2014					CSR_WRITE_4(sc, TI_WINBASE,
2015					    TI_TX_RING_BASE + 2048);
2016				else
2017					CSR_WRITE_4(sc, TI_WINBASE,
2018					    TI_TX_RING_BASE);
2019				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2020			} else
2021				f = &sc->ti_rdata->ti_tx_ring[frag];
2022			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2023				break;
2024			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2025			f->ti_len = m->m_len;
2026			f->ti_flags = csum_flags;
2027#if NVLAN > 0
2028			if (ifv != NULL) {
2029				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2030				f->ti_vlan_tag = ifv->ifv_tag;
2031			} else {
2032				f->ti_vlan_tag = 0;
2033			}
2034#endif
2035			/*
2036			 * Sanity check: avoid coming within 16 descriptors
2037			 * of the end of the ring.
2038			 */
2039			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2040				return(ENOBUFS);
2041			cur = frag;
2042			TI_INC(frag, TI_TX_RING_CNT);
2043			cnt++;
2044		}
2045	}
2046
2047	if (m != NULL)
2048		return(ENOBUFS);
2049
2050	if (frag == sc->ti_tx_saved_considx)
2051		return(ENOBUFS);
2052
2053	if (sc->ti_hwrev == TI_HWREV_TIGON)
2054		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2055		    TI_BDFLAG_END;
2056	else
2057		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2058	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2059	sc->ti_txcnt += cnt;
2060
2061	*txidx = frag;
2062
2063	return(0);
2064}
2065
2066/*
2067 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2068 * to the mbuf data regions directly in the transmit descriptors.
2069 */
2070static void ti_start(ifp)
2071	struct ifnet		*ifp;
2072{
2073	struct ti_softc		*sc;
2074	struct mbuf		*m_head = NULL;
2075	u_int32_t		prodidx = 0;
2076
2077	sc = ifp->if_softc;
2078	TI_LOCK(sc);
2079
2080	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2081
2082	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2083		IF_DEQUEUE(&ifp->if_snd, m_head);
2084		if (m_head == NULL)
2085			break;
2086
2087		/*
2088		 * XXX
2089		 * safety overkill.  If this is a fragmented packet chain
2090		 * with delayed TCP/UDP checksums, then only encapsulate
2091		 * it if we have enough descriptors to handle the entire
2092		 * chain at once.
2093		 * (paranoia -- may not actually be needed)
2094		 */
2095		if (m_head->m_flags & M_FIRSTFRAG &&
2096		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2097			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2098			    m_head->m_pkthdr.csum_data + 16) {
2099				IF_PREPEND(&ifp->if_snd, m_head);
2100				ifp->if_flags |= IFF_OACTIVE;
2101				break;
2102			}
2103		}
2104
2105		/*
2106		 * Pack the data into the transmit ring. If we
2107		 * don't have room, set the OACTIVE flag and wait
2108		 * for the NIC to drain the ring.
2109		 */
2110		if (ti_encap(sc, m_head, &prodidx)) {
2111			IF_PREPEND(&ifp->if_snd, m_head);
2112			ifp->if_flags |= IFF_OACTIVE;
2113			break;
2114		}
2115
2116		/*
2117		 * If there's a BPF listener, bounce a copy of this frame
2118		 * to him.
2119		 */
2120		if (ifp->if_bpf)
2121			bpf_mtap(ifp, m_head);
2122	}
2123
2124	/* Transmit */
2125	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2126
2127	/*
2128	 * Set a timeout in case the chip goes out to lunch.
2129	 */
2130	ifp->if_timer = 5;
2131	TI_UNLOCK(sc);
2132
2133	return;
2134}
2135
2136static void ti_init(xsc)
2137	void			*xsc;
2138{
2139	struct ti_softc		*sc = xsc;
2140
2141	/* Cancel pending I/O and flush buffers. */
2142	ti_stop(sc);
2143
2144	TI_LOCK(sc);
2145	/* Init the gen info block, ring control blocks and firmware. */
2146	if (ti_gibinit(sc)) {
2147		printf("ti%d: initialization failure\n", sc->ti_unit);
2148		TI_UNLOCK(sc);
2149		return;
2150	}
2151
2152	TI_UNLOCK(sc);
2153
2154	return;
2155}
2156
2157static void ti_init2(sc)
2158	struct ti_softc		*sc;
2159{
2160	struct ti_cmd_desc	cmd;
2161	struct ifnet		*ifp;
2162	u_int16_t		*m;
2163	struct ifmedia		*ifm;
2164	int			tmp;
2165
2166	ifp = &sc->arpcom.ac_if;
2167
2168	/* Specify MTU and interface index. */
2169	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2170	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2171	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2172	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2173
2174	/* Load our MAC address. */
2175	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2176	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2177	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2178	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2179
2180	/* Enable or disable promiscuous mode as needed. */
2181	if (ifp->if_flags & IFF_PROMISC) {
2182		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2183	} else {
2184		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2185	}
2186
2187	/* Program multicast filter. */
2188	ti_setmulti(sc);
2189
2190	/*
2191	 * If this is a Tigon 1, we should tell the
2192	 * firmware to use software packet filtering.
2193	 */
2194	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2195		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2196	}
2197
2198	/* Init RX ring. */
2199	ti_init_rx_ring_std(sc);
2200
2201	/* Init jumbo RX ring. */
2202	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2203		ti_init_rx_ring_jumbo(sc);
2204
2205	/*
2206	 * If this is a Tigon 2, we can also configure the
2207	 * mini ring.
2208	 */
2209	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2210		ti_init_rx_ring_mini(sc);
2211
2212	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2213	sc->ti_rx_saved_considx = 0;
2214
2215	/* Init TX ring. */
2216	ti_init_tx_ring(sc);
2217
2218	/* Tell firmware we're alive. */
2219	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2220
2221	/* Enable host interrupts. */
2222	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2223
2224	ifp->if_flags |= IFF_RUNNING;
2225	ifp->if_flags &= ~IFF_OACTIVE;
2226
2227	/*
2228	 * Make sure to set media properly. We have to do this
2229	 * here since we have to issue commands in order to set
2230	 * the link negotiation and we can't issue commands until
2231	 * the firmware is running.
2232	 */
2233	ifm = &sc->ifmedia;
2234	tmp = ifm->ifm_media;
2235	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2236	ti_ifmedia_upd(ifp);
2237	ifm->ifm_media = tmp;
2238
2239	return;
2240}
2241
2242/*
2243 * Set media options.
2244 */
2245static int ti_ifmedia_upd(ifp)
2246	struct ifnet		*ifp;
2247{
2248	struct ti_softc		*sc;
2249	struct ifmedia		*ifm;
2250	struct ti_cmd_desc	cmd;
2251
2252	sc = ifp->if_softc;
2253	ifm = &sc->ifmedia;
2254
2255	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2256		return(EINVAL);
2257
2258	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2259	case IFM_AUTO:
2260		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2261		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2262		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2263		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2264		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2265		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2266		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2267		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2268		break;
2269	case IFM_1000_SX:
2270	case IFM_1000_TX:
2271		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2272		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2273		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2274		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2275			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2276		}
2277		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2278		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2279		break;
2280	case IFM_100_FX:
2281	case IFM_10_FL:
2282	case IFM_100_TX:
2283	case IFM_10_T:
2284		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2285		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2286		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2287		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2288			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2289		} else {
2290			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2291		}
2292		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2293			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2294		} else {
2295			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2296		}
2297		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2298		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2299		break;
2300	}
2301
2302	return(0);
2303}
2304
2305/*
2306 * Report current media status.
2307 */
2308static void ti_ifmedia_sts(ifp, ifmr)
2309	struct ifnet		*ifp;
2310	struct ifmediareq	*ifmr;
2311{
2312	struct ti_softc		*sc;
2313	u_int32_t		media = 0;
2314
2315	sc = ifp->if_softc;
2316
2317	ifmr->ifm_status = IFM_AVALID;
2318	ifmr->ifm_active = IFM_ETHER;
2319
2320	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2321		return;
2322
2323	ifmr->ifm_status |= IFM_ACTIVE;
2324
2325	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2326		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2327		if (sc->ti_copper)
2328			ifmr->ifm_active |= IFM_1000_TX;
2329		else
2330			ifmr->ifm_active |= IFM_1000_SX;
2331		if (media & TI_GLNK_FULL_DUPLEX)
2332			ifmr->ifm_active |= IFM_FDX;
2333		else
2334			ifmr->ifm_active |= IFM_HDX;
2335	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2336		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2337		if (sc->ti_copper) {
2338			if (media & TI_LNK_100MB)
2339				ifmr->ifm_active |= IFM_100_TX;
2340			if (media & TI_LNK_10MB)
2341				ifmr->ifm_active |= IFM_10_T;
2342		} else {
2343			if (media & TI_LNK_100MB)
2344				ifmr->ifm_active |= IFM_100_FX;
2345			if (media & TI_LNK_10MB)
2346				ifmr->ifm_active |= IFM_10_FL;
2347		}
2348		if (media & TI_LNK_FULL_DUPLEX)
2349			ifmr->ifm_active |= IFM_FDX;
2350		if (media & TI_LNK_HALF_DUPLEX)
2351			ifmr->ifm_active |= IFM_HDX;
2352	}
2353
2354	return;
2355}
2356
2357static int ti_ioctl(ifp, command, data)
2358	struct ifnet		*ifp;
2359	u_long			command;
2360	caddr_t			data;
2361{
2362	struct ti_softc		*sc = ifp->if_softc;
2363	struct ifreq		*ifr = (struct ifreq *) data;
2364	int			error = 0;
2365	struct ti_cmd_desc	cmd;
2366
2367	TI_LOCK(sc);
2368
2369	switch(command) {
2370	case SIOCSIFADDR:
2371	case SIOCGIFADDR:
2372		error = ether_ioctl(ifp, command, data);
2373		break;
2374	case SIOCSIFMTU:
2375		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2376			error = EINVAL;
2377		else {
2378			ifp->if_mtu = ifr->ifr_mtu;
2379			ti_init(sc);
2380		}
2381		break;
2382	case SIOCSIFFLAGS:
2383		if (ifp->if_flags & IFF_UP) {
2384			/*
2385			 * If only the state of the PROMISC flag changed,
2386			 * then just use the 'set promisc mode' command
2387			 * instead of reinitializing the entire NIC. Doing
2388			 * a full re-init means reloading the firmware and
2389			 * waiting for it to start up, which may take a
2390			 * second or two.
2391			 */
2392			if (ifp->if_flags & IFF_RUNNING &&
2393			    ifp->if_flags & IFF_PROMISC &&
2394			    !(sc->ti_if_flags & IFF_PROMISC)) {
2395				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2396				    TI_CMD_CODE_PROMISC_ENB, 0);
2397			} else if (ifp->if_flags & IFF_RUNNING &&
2398			    !(ifp->if_flags & IFF_PROMISC) &&
2399			    sc->ti_if_flags & IFF_PROMISC) {
2400				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2401				    TI_CMD_CODE_PROMISC_DIS, 0);
2402			} else
2403				ti_init(sc);
2404		} else {
2405			if (ifp->if_flags & IFF_RUNNING) {
2406				ti_stop(sc);
2407			}
2408		}
2409		sc->ti_if_flags = ifp->if_flags;
2410		error = 0;
2411		break;
2412	case SIOCADDMULTI:
2413	case SIOCDELMULTI:
2414		if (ifp->if_flags & IFF_RUNNING) {
2415			ti_setmulti(sc);
2416			error = 0;
2417		}
2418		break;
2419	case SIOCSIFMEDIA:
2420	case SIOCGIFMEDIA:
2421		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2422		break;
2423	default:
2424		error = EINVAL;
2425		break;
2426	}
2427
2428	TI_UNLOCK(sc);
2429
2430	return(error);
2431}
2432
2433static void ti_watchdog(ifp)
2434	struct ifnet		*ifp;
2435{
2436	struct ti_softc		*sc;
2437
2438	sc = ifp->if_softc;
2439	TI_LOCK(sc);
2440
2441	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2442	ti_stop(sc);
2443	ti_init(sc);
2444
2445	ifp->if_oerrors++;
2446	TI_UNLOCK(sc);
2447
2448	return;
2449}
2450
2451/*
2452 * Stop the adapter and free any mbufs allocated to the
2453 * RX and TX lists.
2454 */
2455static void ti_stop(sc)
2456	struct ti_softc		*sc;
2457{
2458	struct ifnet		*ifp;
2459	struct ti_cmd_desc	cmd;
2460
2461	TI_LOCK(sc);
2462
2463	ifp = &sc->arpcom.ac_if;
2464
2465	/* Disable host interrupts. */
2466	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2467	/*
2468	 * Tell firmware we're shutting down.
2469	 */
2470	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2471
2472	/* Halt and reinitialize. */
2473	ti_chipinit(sc);
2474	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2475	ti_chipinit(sc);
2476
2477	/* Free the RX lists. */
2478	ti_free_rx_ring_std(sc);
2479
2480	/* Free jumbo RX list. */
2481	ti_free_rx_ring_jumbo(sc);
2482
2483	/* Free mini RX list. */
2484	ti_free_rx_ring_mini(sc);
2485
2486	/* Free TX buffers. */
2487	ti_free_tx_ring(sc);
2488
2489	sc->ti_ev_prodidx.ti_idx = 0;
2490	sc->ti_return_prodidx.ti_idx = 0;
2491	sc->ti_tx_considx.ti_idx = 0;
2492	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2493
2494	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2495	TI_UNLOCK(sc);
2496
2497	return;
2498}
2499
2500/*
2501 * Stop all chip I/O so that the kernel's probe routines don't
2502 * get confused by errant DMAs when rebooting.
2503 */
2504static void ti_shutdown(dev)
2505	device_t		dev;
2506{
2507	struct ti_softc		*sc;
2508
2509	sc = device_get_softc(dev);
2510	TI_LOCK(sc);
2511	ti_chipinit(sc);
2512	TI_UNLOCK(sc);
2513
2514	return;
2515}
2516